97,680 research outputs found

    Modeling sublimation by computer simulation: morphology dependent effective energies

    Full text link
    Solid-On-Solid (SOS) computer simulations are employed to investigate the sublimation of surfaces. We distinguish three sublimation regimes: layer-by-layer sublimation, free step flow and hindered step flow. The sublimation regime is selected by the morphology i.e. the terrace width. To each regime corresponds another effective energy. We propose a systematic way to derive microscopic parameters from effective energies and apply this microscopical analysis to the layer-by-layer and the free step flow regime. We adopt analytical calculations from Pimpinelli and Villain and apply them to our model. Key-Words: Computer simulations; Models of surface kinetics; Evaporation and Sublimation; Growth; Surface Diffusion; Surface structure, morphology, roughness, and topography; Cadmium tellurideComment: 12 pages, 6 Postscript figures, uses psfig.st

    Tunnel lining studies II

    Get PDF
    In the CRREL tunnel (Fig. B1, B2), sublimation is extremely apparent, but because of the tunnels limited usage it poses no significant problems. However, in an operating mine with forced air ventilation and continuously operating machinery, the problems associated with sublimation may no longer be insignificant. The dust released by the evaporating ice poses not only the obvious respiratory threat, but an additional safety threat, as fine silt suspended in the air reduces visibility, and removal or suppression of the dust will be of importance.Sublimation control measures of the permafrost in the CRREL tunnel -- Introduction -- The sublimation process -- Sublimation control -- Test installations -- Conclusion -- References -- Appendix A: Summary of data -- Appendix B: Photographs

    Mass wasting triggered by seasonal CO<sub>2</sub> sublimation under Martian atmospheric conditions: Laboratory experiments

    Get PDF
    Sublimation is a recognized process by which planetary landscapes can be modified. However, interpretation of whether sublimation is involved in downslope movements on Mars and other bodies is restricted by a lack of empirical data to constrain this mechanism of sediment transport and its influence on landform morphology. Here we present the first set of laboratory experiments under Martian atmospheric conditions which demonstrate that the sublimation of CO2 ice from within the sediment body can trigger failure of unconsolidated, regolith slopes and can measurably alter the landscape. Previous theoretical studies required CO2 slab ice for movements, but we find that only frost is required. Hence, sediment transport by CO2 sublimation could be more widely applicable (in space and time) on Mars than previously thought. This supports recent work suggesting CO2 sublimation could be responsible for recent modification in Martian gullies

    Dewetting of solid films with substrate mediated evaporation

    Full text link
    The dewetting dynamics of an ultrathin film is studied in the presence of evaporation - or reaction - of adatoms on the substrate. KMC simulations are in good agreement with an analytical model with diffusion, rim facetting, and substrate sublimation. As sublimation is increased, we find a transition from the usual dewetting regime where the front slows down with time, to a sublimation-controlled regime where the front velocity is approximately constant. The rim width exhibits an unexpected non-monotonous behavior, with a maximum in time.Comment: 6 pages, 6 figure

    Warm Cores around Regions of Low-Mass Star Formation

    Full text link
    Warm cores (or hot corinos) around low-mass protostellar objects show a rich chemistry with strong spatial variations. This chemistry is generally attributed to the sublimation of icy mantles on dust grains initiated by the warming effect of the stellar radiation. We have used a model of the chemistry in warm cores in which the sublimation process is based on extensive laboratory data; these data indicate that sublimation from mixed ices occurs in several well-defined temperature bands. We have determined the position of these bands for the slow warming by a solar-mass star. The resulting chemistry is dominated by the sublimation process and by subsequent gas-phase reactions; strong spatial and temporal variations in certain molecular species are found to occur, and our results are, in general, consistent with observational results for the well-studied source IRAS 16293-2422. The model used is similar to one that describes the chemistry of hot cores. We infer that the chemistry of both hot cores and warm cores may be described by the same model (suitably adjusted for different physical parameters).Comment: 11 pages, 5 figures, 2 tables. Accepted by MNRA

    Optimization of CO2 production rate for firefighting robot applications using response surface methodology

    Get PDF
    A carbon dioxide gas-powered pneumatic actuation has been proposed as a suitable power source for an autonomous firefighting robot (CAFFR), which is designed to operate in an indoor fire environment in our earlier study. Considering the consumption rate of the pneumatic motor, the gas-powered actuation that is based on the theory of phase change material requires optimal determination of not only the sublimation rate of carbon dioxide but also the sizing of dry ice granules. Previous studies that have used the same theory are limited to generating a high volume of carbon dioxide without reference to neither the production rate of the gas nor the size of the granules of the dry ice. However, such consideration remains a design requirement for efficient driving of a carbon dioxide-powered firefighting robot. This paper investigates the effects of influencing design parameters on the sublimation rate of dry ice for powering a pneumatic motor. The optimal settings of these parameters that maximize the sublimation rate at the minimal time and dry ice mass are presented. In the experimental design and analysis, we employed full-factorial design and response surface methodology to fit an acceptable model for the relationship between the design factors and the response variables. Predictive models of the sublimation rate were examined via ANOVA, and the suitability of the linear model is confirmed. Further, an optimal sublimation rate value of 0.1025 g/s is obtained at a temperature of 80°C, the mass of 16.1683 g, and sublimation time of 159.375 s

    Fluidized bed as a solid precursor delivery system in a chemical vapor deposition reactor

    Get PDF
    Chemical vapor deposition (CVD) using precursors that are solids at operating temperatures and pressures, presents challenges due to their relatively low vapor pressures. In addition, the sublimation rates of solid state precursors in fixed bed reactors vary with particle and bed morphology. In a recent patent application, the use of fluidized bed (FB) technology has been proposed to provide high, reliable, and reproducible flux of such precursors in CVD processes. In the present contribution, we first focus on the reactor design which must satisfy fluidization,sublimation and CVD reactor feeding constraints. Then, we report masstransport results on the sublimation of aluminium acetylacetonate, a common precursor for the CVD of alumina films. Finally, we discuss the efficiency of the precursor feeding rate, we address advantages and drawbacks of the invention and we propose design modifications in order to meet the process requirements

    Political season's blocking sublimation

    Get PDF

    Sublimation of ice particles from rocket exhausts in the upper atmosphere

    Get PDF
    The process of sublimation of ice particles from a rocket exhaust in the upper atmosphere is examined. Heating by solar radiation and losses of energy by means thermal radiation and sublimation are taken into account in the thermal balance of the ice particles. The time dependences of size and temperature of the ice particles are obtained. An estimation of water vapor concentration around the rocket trajectory is made. The process of sublimation of the rocket exhaust ice particles may be important for the interpretation of optical phenomena in the upper atmosphere connected with rocket launches and for propagation of disturbances at a large distance from the rocket
    corecore