11 research outputs found

    QMRNet: Quality Metric Regression for EO Image Quality Assessment and Super-Resolution

    Get PDF
    [EN] The latest advances in super-resolution have been tested with general-purpose images such as faces, landscapes and objects, but mainly unused for the task of super-resolving earth observation images. In this research paper, we benchmark state-of-the-art SR algorithms for distinct EO datasets using both full-reference and no-reference image quality assessment metrics. We also propose a novel Quality Metric Regression Network (QMRNet) that is able to predict the quality (as a no-reference metric) by training on any property of the image (e.g., its resolution, its distortions, etc.) and also able to optimize SR algorithms for a specific metric objective. This work is part of the implementation of the framework IQUAFLOW, which has been developed for the evaluation of image quality and the detection and classification of objects as well as image compression in EO use cases. We integrated our experimentation and tested our QMRNet algorithm on predicting features such as blur, sharpness, snr, rer and ground sampling distance and obtained validation medRs below 1.0 (out of N = 50) and recall rates above 95%. The overall benchmark shows promising results for LIIF, CAR and MSRN and also the potential use of QMRNet as a loss for optimizing SR predictions. Due to its simplicity, QMRNet could also be used for other use cases and image domains, as its architecture and data processing is fully scalable.The project was financed by the Ministry of Science and Innovation (MICINN) and by the European Union within the framework of FEDER RETOS-Collaboration of the State Program of Research (RTC2019-007434-7), Development and Innovation Oriented to the Challenges of Society, within the State Research Plan Scientific and Technical and Innovation 2017ยฟ2020, with the main objective of promoting technological development, innovation and quality research.Berga, D.; Gallรฉs, P.; Takรกts, K.; Mohedano, E.; Riordan-Chen, L.; Garcรญa-Moll, C.; Vilaseca, D.... (2023). QMRNet: Quality Metric Regression for EO Image Quality Assessment and Super-Resolution. Remote Sensing. 15(9). https://doi.org/10.3390/rs1509245115

    ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„ ํ–ฅ์ƒ์„ ํ†ตํ•œ ์‹์ƒ ๋ณ€ํ™” ๋ชจ๋‹ˆํ„ฐ๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ˜‘๋™๊ณผ์ • ์กฐ๊ฒฝํ•™, 2023. 2. ๋ฅ˜์˜๋ ฌ.์œก์ƒ ์ƒํƒœ๊ณ„์—์„œ ๋Œ€๊ธฐ๊ถŒ๊ณผ ์ƒ๋ฌผ๊ถŒ์˜ ์ƒํ˜ธ ์ž‘์šฉ์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‹์ƒ ๋ณ€ํ™”์˜ ๋ชจ๋‹ˆํ„ฐ๋ง์ด ํ•„์š”ํ•˜๋‹ค. ์ด ๋•Œ, ์œ„์„ฑ์˜์ƒ์€ ์ง€ํ‘œ๋ฉด์„ ๊ด€์ธกํ•˜์—ฌ ์‹์ƒ์ง€๋„๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ์ง€ํ‘œ๋ณ€ํ™”์˜ ์ƒ์„ธํ•œ ์ •๋ณด๋Š” ๊ตฌ๋ฆ„์ด๋‚˜ ์œ„์„ฑ ์ด๋ฏธ์ง€์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„์— ์˜ํ•ด ์ œํ•œ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ์œ„์„ฑ์˜์ƒ์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๊ฐ€ ์‹์ƒ์ง€๋„๋ฅผ ํ†ตํ•œ ๊ด‘ํ•ฉ์„ฑ ๋ชจ๋‹ˆํ„ฐ๋ง์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์€ ์™„์ „ํžˆ ๋ฐํ˜€์ง€์ง€ ์•Š์•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณ ํ•ด์ƒ๋„ ์‹์ƒ ์ง€๋„๋ฅผ ์ผ๋‹จ์œ„๋กœ ์ƒ์„ฑํ•˜๊ธฐ ์œ„์„ฑ ์˜์ƒ์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜์˜€๋‹ค. ๊ณ ํ•ด์ƒ๋„ ์œ„์„ฑ์˜์ƒ์„ ํ™œ์šฉํ•œ ์‹์ƒ ๋ณ€ํ™” ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์‹œ๊ณต๊ฐ„์ ์œผ๋กœ ํ™•์žฅํ•˜๊ธฐ ์œ„ํ•ด 1) ์ •์ง€๊ถค๋„ ์œ„์„ฑ์„ ํ™œ์šฉํ•œ ์˜์ƒ์œตํ•ฉ์„ ํ†ตํ•ด ์‹œ๊ฐ„ํ•ด์ƒ๋„ ํ–ฅ์ƒ, 2) ์ ๋Œ€์ ์ƒ์„ฑ๋„คํŠธ์›Œํฌ๋ฅผ ํ™œ์šฉํ•œ ๊ณต๊ฐ„ํ•ด์ƒ๋„ ํ–ฅ์ƒ, 3) ์‹œ๊ณต๊ฐ„ํ•ด์ƒ๋„๊ฐ€ ๋†’์€ ์œ„์„ฑ์˜์ƒ์„ ํ† ์ง€ํ”ผ๋ณต์ด ๊ท ์งˆํ•˜์ง€ ์•Š์€ ๊ณต๊ฐ„์—์„œ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด์ฒ˜๋Ÿผ, ์œ„์„ฑ๊ธฐ๋ฐ˜ ์›๊ฒฉํƒ์ง€์—์„œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์ด ๋“ฑ์žฅํ•จ์— ๋”ฐ๋ผ ํ˜„์žฌ ๋ฐ ๊ณผ๊ฑฐ์˜ ์œ„์„ฑ์˜์ƒ์€ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„ ์ธก๋ฉด์—์„œ ํ–ฅ์ƒ๋˜์–ด ์‹์ƒ ๋ณ€ํ™”์˜ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ2์žฅ์—์„œ๋Š” ์ •์ง€๊ถค๋„์œ„์„ฑ์˜์ƒ์„ ํ™œ์šฉํ•˜๋Š” ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ์œผ๋กœ ์‹๋ฌผ์˜ ๊ด‘ํ•ฉ์„ฑ์„ ๋ชจ๋‹ˆํ„ฐ๋ง ํ–ˆ์„ ๋•Œ, ์‹œ๊ฐ„ํ•ด์ƒ๋„๊ฐ€ ํ–ฅ์ƒ๋จ์„ ๋ณด์˜€๋‹ค. ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ ์‹œ, ๊ตฌ๋ฆ„ํƒ์ง€, ์–‘๋ฐฉํ–ฅ ๋ฐ˜์‚ฌ ํ•จ์ˆ˜ ์กฐ์ •, ๊ณต๊ฐ„ ๋“ฑ๋ก, ์‹œ๊ณต๊ฐ„ ์œตํ•ฉ, ์‹œ๊ณต๊ฐ„ ๊ฒฐ์ธก์น˜ ๋ณด์™„ ๋“ฑ์˜ ๊ณผ์ •์„ ๊ฑฐ์นœ๋‹ค. ์ด ์˜์ƒ์œตํ•ฉ ์‚ฐ์ถœ๋ฌผ์€ ๊ฒฝ์ž‘๊ด€๋ฆฌ ๋“ฑ์œผ๋กœ ์‹์ƒ ์ง€์ˆ˜์˜ ์—ฐ๊ฐ„ ๋ณ€๋™์ด ํฐ ๋‘ ์žฅ์†Œ(๋†๊ฒฝ์ง€์™€ ๋‚™์—ฝ์ˆ˜๋ฆผ)์—์„œ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ ์‚ฐ์ถœ๋ฌผ์€ ๊ฒฐ์ธก์น˜ ์—†์ด ํ˜„์žฅ๊ด€์ธก์„ ์˜ˆ์ธกํ•˜์˜€๋‹ค (R2 = 0.71, ์ƒ๋Œ€ ํŽธํ–ฅ = 5.64% ๋†๊ฒฝ์ง€; R2 = 0.79, ์ƒ๋Œ€ ํŽธํ–ฅ = -13.8%, ํ™œ์—ฝ์ˆ˜๋ฆผ). ์‹œ๊ณต๊ฐ„ ์˜์ƒ์œตํ•ฉ์€ ์‹์ƒ ์ง€๋„์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ์ ์ง„์ ์œผ๋กœ ๊ฐœ์„ ํ•˜์—ฌ, ์‹๋ฌผ ์ƒ์žฅ๊ธฐ๋™์•ˆ ์œ„์„ฑ์˜์ƒ์ด ํ˜„์žฅ ๊ด€์ธก์„ ๊ณผ์†Œ ํ‰๊ฐ€๋ฅผ ์ค„์˜€๋‹ค. ์˜์ƒ์œตํ•ฉ์€ ๋†’์€ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ๊ด‘ํ•ฉ์„ฑ ์ง€๋„๋ฅผ ์ผ๊ฐ„๊ฒฉ์œผ๋กœ ์ƒ์„ฑํ•˜๊ธฐ์— ์ด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์œ„์„ฑ ์˜์ƒ์˜ ์ œํ•œ๋œ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ๋ฐํ˜€์ง€์ง€ ์•Š์€ ์‹๋ฌผ๋ณ€ํ™”์˜ ๊ณผ์ •์„ ๋ฐœ๊ฒฌํ•˜๊ธธ ๊ธฐ๋Œ€ํ•œ๋‹ค. ์‹์ƒ์˜ ๊ณต๊ฐ„๋ถ„ํฌ์€ ์ •๋ฐ€๋†์—…๊ณผ ํ† ์ง€ ํ”ผ๋ณต ๋ณ€ํ™” ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์œ„ํ•ด ํ•„์ˆ˜์ ์ด๋‹ค. ๊ณ ํ•ด์ƒ๋„ ์œ„์„ฑ์˜์ƒ์œผ๋กœ ์ง€๊ตฌ ํ‘œ๋ฉด์„ ๊ด€์ธกํ•˜๋Š” ๊ฒƒ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•ด์กŒ๋‹ค. ํŠนํžˆ Planet Fusion์€ ์ดˆ์†Œํ˜•์œ„์„ฑ๊ตฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•ด ๋ฐ์ดํ„ฐ ๊ฒฐ์ธก์ด ์—†๋Š” 3m ๊ณต๊ฐ„ ํ•ด์ƒ๋„์˜ ์ง€ํ‘œ ํ‘œ๋ฉด ๋ฐ˜์‚ฌ๋„์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณผ๊ฑฐ ์œ„์„ฑ ์„ผ์„œ(Landsat์˜ ๊ฒฝ์šฐ 30~60m)์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋Š” ์‹์ƒ์˜ ๊ณต๊ฐ„์  ๋ณ€ํ™”๋ฅผ ์ƒ์„ธ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์„ ์ œํ•œํ–ˆ๋‹ค. ์ œ3์žฅ์—์„œ๋Š” Landsat ๋ฐ์ดํ„ฐ์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒํ•˜๊ธฐ ์œ„ํ•ด Planet Fusion ๋ฐ Landsat 8 ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด์ค‘ ์ ๋Œ€์  ์ƒ์„ฑ ๋„คํŠธ์›Œํฌ(the dual RSS-GAN)๋ฅผ ํ•™์Šต์‹œ์ผœ, ๊ณ ํ•ด์ƒ๋„ ์ •๊ทœํ™” ์‹์ƒ ์ง€์ˆ˜(NDVI)์™€ ์‹๋ฌผ ๊ทผ์ ์™ธ์„  ๋ฐ˜์‚ฌ(NIRv)๋„๋ฅผ ์ƒ์„ฑํ•˜๋Š” ํ•œ๋‹ค. ํƒ€์›Œ๊ธฐ๋ฐ˜ ํ˜„์žฅ ์‹์ƒ์ง€์ˆ˜(์ตœ๋Œ€ 8๋…„)์™€ ๋“œ๋ก ๊ธฐ๋ฐ˜ ์ดˆ๋ถ„๊ด‘์ง€๋„๋กœ the dual RSS-GAN์˜ ์„ฑ๋Šฅ์„ ๋Œ€ํ•œ๋ฏผ๊ตญ ๋‚ด ๋‘ ๋Œ€์ƒ์ง€(๋†๊ฒฝ์ง€์™€ ํ™œ์—ฝ์ˆ˜๋ฆผ)์—์„œ ํ‰๊ฐ€ํ–ˆ๋‹ค. The dual RSS-GAN์€ Landsat 8 ์˜์ƒ์˜ ๊ณต๊ฐ„ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ ๊ณต๊ฐ„ ํ‘œํ˜„์„ ๋ณด์™„ํ•˜๊ณ  ์‹์ƒ ์ง€์ˆ˜์˜ ๊ณ„์ ˆ์  ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ–ˆ๋‹ค(R2> 0.96). ๊ทธ๋ฆฌ๊ณ  the dual RSS-GAN์€ Landsat 8 ์‹์ƒ ์ง€์ˆ˜๊ฐ€ ํ˜„์žฅ์— ๋น„ํ•ด ๊ณผ์†Œ ํ‰๊ฐ€๋˜๋Š” ๊ฒƒ์„ ์™„ํ™”ํ–ˆ๋‹ค. ํ˜„์žฅ ๊ด€์ธก์— ๋น„ํ•ด ์ด์ค‘ RSS-GAN๊ณผ Landsat 8์˜ ์ƒ๋Œ€ ํŽธํ–ฅ ๊ฐ’ ๊ฐ๊ฐ -0.8% ์—์„œ -1.5%, -10.3% ์—์„œ -4.6% ์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐœ์„ ์€ Planet Fusion์˜ ๊ณต๊ฐ„์ •๋ณด๋ฅผ ์ด์ค‘ RSS-GAN๋กœ ํ•™์Šตํ•˜์˜€๊ธฐ์— ๊ฐ€๋Šฅํ–ˆ๋‹ค. ํ—ค๋‹น ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” Landsat ์˜์ƒ์˜ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ ์ˆจ๊ฒจ์ง„ ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ด๋‹ค. ๊ณ ํ•ด์ƒ๋„์—์„œ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ์ง€๋„๋Š” ํ† ์ง€ํ”ผ๋ณต์ด ๋ณต์žกํ•œ ๊ณต๊ฐ„์—์„œ ํƒ„์†Œ ์ˆœํ™˜ ๋ชจ๋‹ˆํ„ฐ๋ง์‹œ ํ•„์ˆ˜์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Sentinel-2, Landsat ๋ฐ MODIS์™€ ๊ฐ™์ด ํƒœ์–‘ ๋™์กฐ ๊ถค๋„์— ์žˆ๋Š” ์œ„์„ฑ์€ ๊ณต๊ฐ„ ํ•ด์ƒ๋„๊ฐ€ ๋†’๊ฑฐ๋‚˜ ์‹œ๊ฐ„ ํ•ด์ƒ๋„ ๋†’์€ ์œ„์„ฑ์˜์ƒ๋งŒ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ์ตœ๊ทผ ๋ฐœ์‚ฌ๋œ ์ดˆ์†Œํ˜•์œ„์„ฑ๊ตฐ์€ ์ด๋Ÿฌํ•œ ํ•ด์ƒ๋„ ํ•œ๊ณ„์„ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ Planet Fusion์€ ์ดˆ์†Œํ˜•์œ„์„ฑ ์ž๋ฃŒ์˜ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ์ง€ํ‘œ๋ฉด์„ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. 4์žฅ์—์„œ, Planet Fusion ์ง€ํ‘œ๋ฐ˜์‚ฌ๋„๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹์ƒ์—์„œ ๋ฐ˜์‚ฌ๋œ ๊ทผ์ ์™ธ์„  ๋ณต์‚ฌ(NIRvP)๋ฅผ 3m ํ•ด์ƒ๋„ ์ง€๋„๋ฅผ ์ผ๊ฐ„๊ฒฉ์œผ๋กœ ์ƒ์„ฑํ–ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ๋ฏธ๊ตญ ์บ˜๋ฆฌํฌ๋‹ˆ์•„์ฃผ ์ƒˆํฌ๋ผ๋ฉ˜ํ† -์ƒŒ ํ˜ธ์•„ํ‚จ ๋ธํƒ€์˜ ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๋„คํŠธ์›Œํฌ ๋ฐ์ดํ„ฐ์™€ ๋น„๊ตํ•˜์—ฌ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•œ NIRvP ์ง€๋„์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ „์ฒด์ ์œผ๋กœ NIRvP ์ง€๋„๋Š” ์Šต์ง€์˜ ์žฆ์€ ์ˆ˜์œ„ ๋ณ€ํ™”์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ฐœ๋ณ„ ๋Œ€์ƒ์ง€์˜ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์˜ ์‹œ๊ฐ„์  ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋Œ€์ƒ์ง€ ์ „์ฒด์— ๋Œ€ํ•œ NIRvP ์ง€๋„์™€ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋Š” NIRvP ์ง€๋„๋ฅผ ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๊ด€์ธก๋ฒ”์œ„์™€ ์ผ์น˜์‹œํ‚ฌ ๋•Œ๋งŒ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ๊ด€์ธก๋ฒ”์œ„๋ฅผ ์ผ์น˜์‹œํ‚ฌ ๊ฒฝ์šฐ, NIRvP ์ง€๋„๋Š” ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์„ ์ถ”์ •ํ•˜๋Š” ๋ฐ ์žˆ์–ด ํ˜„์žฅ NIRvP๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์„ฑ๋Šฅ ์ฐจ์ด๋Š” ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๊ด€์ธก๋ฒ”์œ„๋ฅผ ์ผ์น˜์‹œํ‚ฌ ๋•Œ, ์—ฐ๊ตฌ ๋Œ€์ƒ์ง€ ๊ฐ„์˜ NIRvP-์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ ๊ด€๊ณ„์˜ ๊ธฐ์šธ๊ธฐ๊ฐ€ ์ผ๊ด€์„ฑ์„ ๋ณด์˜€๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์œ„์„ฑ ๊ด€์ธก์„ ํ”Œ๋Ÿญ์Šค ํƒ€์›Œ ๊ด€์ธก๋ฒ”์œ„์™€ ์ผ์น˜์‹œํ‚ค๋Š” ๊ฒƒ์˜ ์ค‘์š”์„ฑ์„ ๋ณด์—ฌ์ฃผ๊ณ  ๋†’์€ ์‹œ๊ณต๊ฐ„ ํ•ด์ƒ๋„๋กœ ์‹๋ฌผ ๊ด‘ํ•ฉ์„ฑ์„ ์›๊ฒฉ์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ์ดˆ์†Œํ˜•์œ„์„ฑ๊ตฐ ์ž๋ฃŒ์˜ ์ž ์žฌ๋ ฅ์„ ๋ณด์—ฌ์ค€๋‹ค.Monitoring changes in terrestrial vegetation is essential to understanding interactions between atmosphere and biosphere, especially terrestrial ecosystem. To this end, satellite remote sensing offer maps for examining land surface in different scales. However, the detailed information was hindered under the clouds or limited by the spatial resolution of satellite imagery. Moreover, the impacts of spatial and temporal resolution in photosynthesis monitoring were not fully revealed. In this dissertation, I aimed to enhance the spatial and temporal resolution of satellite imagery towards daily gap-free vegetation maps with high spatial resolution. In order to expand vegetation change monitoring in time and space using high-resolution satellite images, I 1) improved temporal resolution of satellite dataset through image fusion using geostationary satellites, 2) improved spatial resolution of satellite dataset using generative adversarial networks, and 3) showed the use of high spatiotemporal resolution maps for monitoring plant photosynthesis especially over heterogeneous landscapes. With the advent of new techniques in satellite remote sensing, current and past datasets can be fully utilized for monitoring vegetation changes in the respect of spatial and temporal resolution. In Chapter 2, I developed the integrated system that implemented geostationary satellite products in the spatiotemporal image fusion method for monitoring canopy photosynthesis. The integrated system contains the series of process (i.e., cloud masking, nadir bidirectional reflectance function adjustment, spatial registration, spatiotemporal image fusion, spatial gap-filling, temporal-gap-filling). I conducted the evaluation of the integrated system over heterogeneous rice paddy landscape where the drastic land cover changes were caused by cultivation management and deciduous forest where consecutive changes occurred in time. The results showed that the integrated system well predict in situ measurements without data gaps (R2 = 0.71, relative bias = 5.64% at rice paddy site; R2 = 0.79, relative bias = -13.8% at deciduous forest site). The integrated system gradually improved the spatiotemporal resolution of vegetation maps, reducing the underestimation of in situ measurements, especially during peak growing season. Since the integrated system generates daily canopy photosynthesis maps for monitoring dynamics among regions of interest worldwide with high spatial resolution. I anticipate future efforts to reveal the hindered information by the limited spatial and temporal resolution of satellite imagery. Detailed spatial representations of terrestrial vegetation are essential for precision agricultural applications and the monitoring of land cover changes in heterogeneous landscapes. The advent of satellite-based remote sensing has facilitated daily observations of the Earths surface with high spatial resolution. In particular, a data fusion product such as Planet Fusion has realized the delivery of daily, gap-free surface reflectance data with 3-m pixel resolution through full utilization of relatively recent (i.e., 2018-) CubeSat constellation data. However, the spatial resolution of past satellite sensors (i.e., 30โ€“60 m for Landsat) has restricted the detailed spatial analysis of past changes in vegetation. In Chapter 3, to overcome the spatial resolution constraint of Landsat data for long-term vegetation monitoring, we propose a dual remote-sensing super-resolution generative adversarial network (dual RSS-GAN) combining Planet Fusion and Landsat 8 data to simulate spatially enhanced long-term time-series of the normalized difference vegetation index (NDVI) and near-infrared reflectance from vegetation (NIRv). We evaluated the performance of the dual RSS-GAN against in situ tower-based continuous measurements (up to 8 years) and remotely piloted aerial system-based maps of cropland and deciduous forest in the Republic of Korea. The dual RSS-GAN enhanced spatial representations in Landsat 8 images and captured seasonal variation in vegetation indices (R2 > 0.95, for the dual RSS-GAN maps vs. in situ data from all sites). Overall, the dual RSS-GAN reduced Landsat 8 vegetation index underestimations compared with in situ measurements; relative bias values of NDVI ranged from โˆ’3.2% to 1.2% and โˆ’12.4% to โˆ’3.7% for the dual RSS-GAN and Landsat 8, respectively. This improvement was caused by spatial enhancement through the dual RSS-GAN, which captured fine-scale information from Planet Fusion. This study presents a new approach for the restoration of hidden sub-pixel spatial information in Landsat images. Mapping canopy photosynthesis in both high spatial and temporal resolution is essential for carbon cycle monitoring in heterogeneous areas. However, well established satellites in sun-synchronous orbits such as Sentinel-2, Landsat and MODIS can only provide either high spatial or high temporal resolution but not both. Recently established CubeSat satellite constellations have created an opportunity to overcome this resolution trade-off. In particular, Planet Fusion allows full utilization of the CubeSat data resolution and coverage while maintaining high radiometric quality. In Chapter 4, I used the Planet Fusion surface reflectance product to calculate daily, 3-m resolution, gap-free maps of the near-infrared radiation reflected from vegetation (NIRvP). I then evaluated the performance of these NIRvP maps for estimating canopy photosynthesis by comparing with data from a flux tower network in Sacramento-San Joaquin Delta, California, USA. Overall, NIRvP maps captured temporal variations in canopy photosynthesis of individual sites, despite changes in water extent in the wetlands and frequent mowing in the crop fields. When combining data from all sites, however, I found that robust agreement between NIRvP maps and canopy photosynthesis could only be achieved when matching NIRvP maps to the flux tower footprints. In this case of matched footprints, NIRvP maps showed considerably better performance than in situ NIRvP in estimating canopy photosynthesis both for daily sum and data around the time of satellite overpass (R2 = 0.78 vs. 0.60, for maps vs. in situ for the satellite overpass time case). This difference in performance was mostly due to the higher degree of consistency in slopes of NIRvP-canopy photosynthesis relationships across the study sites for flux tower footprint-matched maps. Our results show the importance of matching satellite observations to the flux tower footprint and demonstrate the potential of CubeSat constellation imagery to monitor canopy photosynthesis remotely at high spatio-temporal resolution.Chapter 1. Introduction 2 1. Background 2 1.1 Daily gap-free surface reflectance using geostationary satellite products 2 1.2 Monitoring past vegetation changes with high-spatial-resolution 3 1.3 High spatiotemporal resolution vegetation photosynthesis maps 4 2. Purpose of Research 4 Chapter 2. Generating daily gap-filled BRDF adjusted surface reflectance product at 10 m resolution using geostationary satellite product for monitoring daily canopy photosynthesis 6 1. Introduction 6 2. Methods 11 2.1 Study sites 11 2.2 In situ measurements 13 2.3 Satellite products 14 2.4 Integrated system 17 2.5 Canopy photosynthesis 21 2.6 Evaluation 23 3. Results and discussion 24 3.1 Comparison of STIF NDVI and NIRv with in situ NDVI and NIRv 24 3.2 Comparison of STIF NIRvP with in situ NIRvP 28 4. Conclusion 31 Chapter 3. Super-resolution of historic Landsat imagery using a dual Generative Adversarial Network (GAN) model with CubeSat constellation imagery for monitoring vegetation changes 32 1. Introduction 32 2. Methods 38 2.1 Real-ESRGAN model 38 2.2 Study sites 40 2.3 In situ measurements 42 2.4 Vegetation index 44 2.5 Satellite data 45 2.6 Planet Fusion 48 2.7 Dual RSS-GAN via fine-tuned Real-ESRGAN 49 2.8 Evaluation 54 3. Results 57 3.1 Comparison of NDVI and NIRv maps from Planet Fusion, Sentinel 2 NBAR, and Landsat 8 NBAR data with in situ NDVI and NIRv 57 3.2 Comparison of dual RSS-SRGAN model results with Landsat 8 NDVI and NIRv 60 3.3 Comparison of dual RSS-GAN model results with respect to in situ time-series NDVI and NIRv 63 3.4 Comparison of the dual RSS-GAN model with NDVI and NIRv maps derived from RPAS 66 4. Discussion 70 4.1 Monitoring changes in terrestrial vegetation using the dual RSS-GAN model 70 4.2 CubeSat data in the dual RSS-GAN model 72 4.3 Perspectives and limitations 73 5. Conclusion 78 Appendices 79 Supplementary material 82 Chapter 4. Matching high resolution satellite data and flux tower footprints improves their agreement in photosynthesis estimates 85 1. Introduction 85 2. Methods 89 2.1 Study sites 89 2.2 In situ measurements 92 2.3 Planet Fusion NIRvP 94 2.4 Flux footprint model 98 2.5 Evaluation 98 3. Results 105 3.1 Comparison of Planet Fusion NIRv and NIRvP with in situ NIRv and NIRvP 105 3.2 Comparison of instantaneous Planet Fusion NIRv and NIRvP with against tower GPP estimates 108 3.3 Daily GPP estimation from Planet Fusion -derived NIRvP 114 4. Discussion 118 4.1 Flux tower footprint matching and effects of spatial and temporal resolution on GPP estimation 118 4.2 Roles of radiation component in GPP mapping 123 4.3 Limitations and perspectives 126 5. Conclusion 133 Appendix 135 Supplementary Materials 144 Chapter 5. Conclusion 153 Bibliography 155 Abstract in Korea 199 Acknowledgements 202๋ฐ•

    Restauration d'images en IRM anatomique pour l'รฉtude prรฉclinique des marqueurs du vieillissement cรฉrรฉbral

    Get PDF
    Les maladies neurovasculaires et neurodรฉgรฉnรฉratives liรฉes ร  l'รขge sont en forte augmentation. Alors que ces changements pathologiques montrent des effets sur le cerveau avant l'apparition de symptรดmes cliniques, une meilleure comprรฉhension du processus de vieillissement normal du cerveau aidera ร  distinguer l'impact des pathologies connues sur la structure rรฉgionale du cerveau. En outre, la connaissance des schรฉmas de rรฉtrรฉcissement du cerveau dans le vieillissement normal pourrait conduire ร  une meilleure comprรฉhension de ses causes et peut-รชtre ร  des interventions rรฉduisant la perte de fonctions cรฉrรฉbrales associรฉe ร  l'atrophie cรฉrรฉbrale. Par consรฉquent, ce projet de thรจse vise ร  dรฉtecter les biomarqueurs du vieillissement normal et pathologique du cerveau dans un modรจle de primate non humain, le singe marmouset (Callithrix Jacchus), qui possรจde des caractรฉristiques anatomiques plus proches de celles des humains que de celles des rongeurs. Cependant, les changements structurels (par exemple, de volumes, d'รฉpaisseur corticale) qui peuvent se produire au cours de leur vie adulte peuvent รชtre minimes ร  l'รฉchelle de l'observation. Dans ce contexte, il est essentiel de disposer de techniques d'observation offrant un contraste et une rรฉsolution spatiale suffisamment รฉlevรฉs et permettant des รฉvaluations dรฉtaillรฉes des changements morphomรฉtriques du cerveau associรฉ au vieillissement. Cependant, l'imagerie de petits cerveaux dans une plateforme IRM 3T dรฉdiรฉe ร  l'homme est une tรขche difficile car la rรฉsolution spatiale et le contraste obtenus sont insuffisants par rapport ร  la taille des structures anatomiques observรฉes et ร  l'รฉchelle des modifications attendues. Cette thรจse vise ร  dรฉvelopper des mรฉthodes de restauration d'image pour les images IRM prรฉcliniques qui amรฉlioreront la robustesse des algorithmes de segmentation. L'amรฉlioration de la rรฉsolution spatiale des images ร  un rapport signal/bruit constant limitera les effets de volume partiel dans les voxels situรฉs ร  la frontiรจre entre deux structures et permettra une meilleure segmentation tout en augmentant la reproductibilitรฉ des rรฉsultats. Cette รฉtape d'imagerie computationnelle est cruciale pour une analyse morphomรฉtrique longitudinale fiable basรฉe sur les voxels et l'identification de marqueurs anatomiques du vieillissement cรฉrรฉbral en suivant les changements de volume dans la matiรจre grise, la matiรจre blanche et le liquide cรฉrรฉbral.Age-related neurovascular and neurodegenerative diseases are increasing significantly. While such pathological changes show effects on the brain before clinical symptoms appear, a better understanding of the normal aging brain process will help distinguish known pathologies' impact on regional brain structure. Furthermore, knowledge of the patterns of brain shrinkage in normal aging could lead to a better understanding of its causes and perhaps to interventions reducing the loss of brain functions. Therefore, this thesis project aims to detect normal and pathological brain aging biomarkers in a non-human primate model, the marmoset monkey (Callithrix Jacchus) which possesses anatomical characteristics more similar to humans than rodents. However, structural changes (e.g., volumes, cortical thickness) that may occur during their adult life may be minimal with respect to the scale of observation. In this context, it is essential to have observation techniques that offer sufficiently high contrast and spatial resolution and allow detailed assessments of the morphometric brain changes associated with aging. However, imaging small brains in a 3T MRI platform dedicated to humans is a challenging task because the spatial resolution and the contrast obtained are insufficient compared to the size of the anatomical structures observed and the scale of the xpected changes with age. This thesis aims to develop image restoration methods for preclinical MR images that will improve the robustness of the segmentation algorithms. Improving the resolution of the images at a constant signal-to-noise ratio will limit the effects of partial volume in voxels located at the border between two structures and allow a better segmentation while increasing the results' reproducibility. This computational imaging step is crucial for a reliable longitudinal voxel-based morphometric analysis and for the identification of anatomical markers of brain aging by following the volume changes in gray matter, white matter and cerebrospinal fluid

    AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)

    Get PDF
    This book is a collection of the accepted papers presented at the Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD) in conjunction with the 36th AAAI Conference on Artificial Intelligence 2022. During AIBSD 2022, the attendees addressed the existing issues of data bias and scarcity in Artificial Intelligence and discussed potential solutions in real-world scenarios. A set of papers presented at AIBSD 2022 is selected for further publication and included in this book

    On advances, challenges and potentials of remote sensing image analysis in marine debris and suspected plastics monitoring

    Get PDF
    Marine plastic pollution is an emerging environmental problem since it pollutes the ocean, air and food whilst endangering the ocean wildlife via the ingestion and entanglements. During the last decade, an enormous effort has been spent on finding possible solutions to marine plastic pollution. Remote sensing imagery sits in a crucial place for these efforts since it provides informative earth observation products, and the current technology offers further essential development. Despite the advances in the last decade, there is still a way to go for marine plastic monitoring research where challenges are rarely highlighted. This paper contributes to the literature with a critical review and aims to highlight literature milestones in marine debris and suspected plastics (MD&SP) monitoring by promoting the computational imaging methodology behind these approaches along with detailed discussions on challenges and potential future research directions

    KEER2022

    Get PDF
    Avanttรญtol: KEER2022. DiversitiesDescripciรณ del recurs: 25 juliol 202
    corecore