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Abstract: In electricity markets, electricity retailers or brokers want to maximize profits by allocating
tariff profiles to end-consumers. One of the objectives of such demand response management is to
incentivize the consumers to adjust their consumption so that the overall electricity procurement in
the wholesale markets is minimized, e.g., it is desirable that consumers consume less during peak
hours when the cost of procurement for brokers from wholesale markets are high. We consider a
greedy solution to maximize the overall profit for brokers by optimal tariff profile allocation, i.e.,
allocate that tariff profile to a consumer that maximizes the profit with respect to that consumer.
This, in turn, requires forecasting electricity consumption for each user for all tariff profiles. This
forecasting problem is challenging compared to standard forecasting problems due to following
reasons: (1) the number of possible combinations of hourly tariffs is high and retailers may not have
considered all combinations in the past resulting in a biased set of tariff profiles tried in the past, i.e.,
the retailer may want to consider new tariff profiles that may achieve better profits; (2) the profiles
allocated in the past to each user is typically based on certain policy, i.e., tariff profile allocation for
historical electricity consumption data is biased. These reasons violate the standard IID assumptions
as there is a need to evaluate new tariff profiles on existing customers and historical data is biased
by the policies used in the past for tariff allocation. In this work, we consider several scenarios
for forecasting and optimization under these conditions. We leverage the underlying structure of
how consumers respond to variable tariff rates by comparing tariffs across hours and shifting loads,
and propose suitable inductive biases in the design of deep neural network based architectures
for forecasting under such scenarios. More specifically, we leverage attention mechanisms and
permutation equivariant networks that allow desirable processing of tariff profiles to learn tariff
representations that are insensitive to the biases in the data and still representative of the task.
Through extensive empirical evaluation using the PowerTAC simulator, we show that the proposed
approach significantly improves upon standard baselines that tend to overfit to the historical tariff
profiles.

Keywords: out-of-distribution generalization; forecasting; temporal bias; permutation equivariance;
optimization

1. Introduction

A smart grid consists of multiple types of entities such as those involved in generation,
distribution, and consumption (smart appliances and buildings). One of the aims of a smart
grid is to manage electricity demand in an economical manner via integration and exchange
of information about all entities involved. For the customers or the end-consumers as well
as the electricity distributing agencies or the electricity brokers, it offers the flexibility
to choose/allocate among dynamically changing tariffs to meet certain objectives, e.g.,

CSFM 2022, 3, 1. https://doi.org/10.3390/cmsf2022003001 https://www.mdpi.com/journal/csmf3
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minimize electricity bill for customers, maximize profit for retailers, etc. However, meeting
such objectives is challenging due to dynamics of the market, e.g., changing wholesale
electricity prices, supply–demand fluctuations, etc.

As depicted in Figure 1, a broker typically performs three functions: (1) purchase or
sell power to its subscribers or customers in the retail market, (2) purchase or sell power in
the wholesale market, and (3) rectify any supply–demand imbalance within its portfolio
through the balancing market. In this work, we consider a simplified setting where the
broker performs the following two functions: (1) sell power to those customers in the
retail market who are electricity consumers, and (2) purchase power in the wholesale
market. Typical examples of consumers include offices, housing complexes, hospitals, and
villages. Furthermore, we focus on only those subset of consumers who have a shiftable
load component in their total or aggregate consumption in addition to the traditional fixed
or non-shiftable load, i.e., the consumption (e.g., appliance usage) at an hour that cannot
be moved to another hour. This shiftable load can be shifted from the originally preferred
hour to another hour in the day if the tariff for the latter is lower. The broker may want
to encourage such a behavior, known as demand response management [1], to maximize
profit or balance demand–supply.

Figure 1. Various aspects and objectives in an electricity markets. In this work, we focus on a
sub-problem related to allocation of optimal time-of-use tariff (TOU Tariff) to each customer.

In this work, we consider the following out-of-distribution generalization problem:
given historical aggregated consumption of consumers to tariff profiles allocated to them,
forecast the aggregated consumption for new tariff profiles. These new tariff profiles are
part of the electricity broker or retailer’s plan to explore new profiles to further improve
the profits. This is different from standard forecasting problems as the exogenous variables
(tariff profiles) at test time are different from the exogenous variables at train time. Fur-
thermore, the allocation of tariff profiles in the past is not random, so the data is biased in
the sense that, for different consumer personas, not all historical tariff profiles would have
been tried. We note that the logic based on which the consumers respond to tariff profiles
is consistent irrespective of the tariff profile. We propose to capture that logic in the neural
network by using permutation equivariant networks and attention mechanisms.

The key contributions of this work can be summarized as follows:

• We consider the problem of electricity consumption forecasting under new tariff
profiles not encountered previously. This is then used for tariff profile allocation to
optimize electricity broker’s profits.

• We note that the forecasting problem can be seen as an out-of-distribution (OOD)
generalization problem with bias in the training data consisting of temporal and
confounding bias.

• To achieve OOD generalization, we leverage the logic behind how consumers respond
to tariff profiles in order to shift load, and propose a novel neural network architecture
to achieve better OOD generalization.

Through empirical evaluation, we show that the proposed approach is able to improve
upon vanilla methods that do not take into account suitable inductive biases guided by the
knowledge of how consumers respond to tariff profiles.

4
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2. Problem Formulation

The aggregated consumption ec,t ∈ R+ of a consumer c at time t has two components:
(1) Type-I consumption: this is non-shiftable consumption corresponding to the appli-

ances that have to be used at specific hours only and cannot be shifted to alternative hour;
(2) Type-II consumption: this is shiftable component of the consumption corresponding

to appliances whose usage can be planned. Refer to Figure 2a for more details.

(a) (b) (c)

Figure 2. (a) Logic for Consumption Data generation in Electricity Markets and (b,c) Hourly Tariff
Rate Distributions depicting changing distribution across hours that poses generalization challenge.
(a) Causal Diagram. (b) Hourly Tariff Distributions in IID Profiles depicting temporal bias (Tin).
(c) Hourly Tariff Distributions in OOD Profiles (Tout).

Let ec,1:t denote the time series of electricity consumption for consumer c until time t.
We consider a consumer c ∈ C, where C is the set of consumers with non-zero Type-II
consumption, i.e., part of their load can be shifted in response to variations in tariff across
hours. Further, the i-th time-of-use (TOU) tariff profile is denoted as an ordered sequence or
H-length time series of hourly tariffs TOUi = TOUi

1 . . . TOUi
H , where TOUi

h (h = 1 . . . H)
denotes the tariff at hour h. In this work, we consider tariff profile with hourly rates over a
day such that H = 24, without loss of generality.

Let fc,1:t denote all features (static or time-varying) for consumer c at time t, including
e.g., past consumption time series, type of consumer (household, office, etc.), and ft denote
a vector of temporal features at timestamp t, e.g., hour of the day, day of the week, week
of the month, month of the year, etc. Note that fc,1:t refers to relevant features from entire
history, but in practice, we consider a window of length w over t − w + 1 : t for deriving
features at time t.

Further consider a tariff allocation policy function π such that

TOUc,t+τ = π(fc,:t, ft+τ , p̂t+1:t+H),

i.e., the tariff at a future time t + τ with τ = 1 . . . H is decided based on consumer features
at time t, the temporal features for time t + τ, where p̂t+τ denotes the estimate of electricity
price pt+τ in the wholesale market at time t + τ. Without loss of generality, we consider
the scenario where t + 1 corresponds to the first hour of the day, i.e., tariff profile for the
next day is decided using data until the end of the current day.

Consider historical time series data D = {ec,1:t, TOUc,1:t}c∈C , where the tariff time
series are a result of sequence of tariff profile allocations over days such that any profile
TOUi ∈ Tin is chosen from a fixed set of profiles Tin.

The goal for the broker is to allocate that tariff profile TOUi to a consumer that
maximizes the gain Gi

c over the next H hours:

Gi
c =

H

∑
t′=1

(TOUi
c,t+t′ − pt+t′)× ec,t+t′ . (1)

Importantly, the electricity consumption ec,t+t′ at t + t′ hour is a function of the entire
tariff profile on that day, as the consumer could choose to shift the shiftable part of the load

5
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from high tariff hours to low tariff hours by looking at the tariff profile allocated to the
consumer at the beginning of the day.

We consider the following two scenarios depending on the tariff profiles being consid-
ered for future allocations:
IID Scenario: when the profiles to be allocated to the consumers in future are from the
same set of profiles Tin used historically, i.e., TOUi ∈ Tin.
OOD Scenario: when the tariff profiles to be allocated to the consumers in future belong
to Tall = Tin ∪ Tout, where Tout is a new set of profiles not previously seen in D, i.e., are
out-of-distribution with respect to the training data, and not previously allocated to any
consumer by the broker who wants to consider these new profiles to improve future gains,
i.e., TOUi ∈ Tall .

3. Related Work

Our work relates to two bodies of literature: (1) demand response management in
electricity markets and the related sub-problem of electricity consumption forecasting
under exogenous variables, using reinforcement learning and deep learning methods [2–4],
and (2) out-of-distribution (OOD) generalization [5–8].

There have been many studies for (1); however, to the best of our knowledge, the
problem of bias in historical data in terms of the tariff profiles has been largely overlooked.
We draw attention of the community working on (1) to the potential of OOD generalization
by improving forecasts for previously unallocated tariffs by using the underlying structure
of the problem in terms of the particular way in which consumers shift loads in response
to changes in tariff. More specifically, we rely on the partial permutation equivariance
property of the response to time series of tariffs.

OOD detection and generalization is an emerging area of research, and aims at im-
proving the robustness of models to previously unseen scenarios. Many of the recent
approaches for (2) rely on changes in the objective function or different training procedures.
For example, the approaches based on meta-learning [9] are not applicable as there is no
notion of multiple tasks. We can consider each tariff profile as a task but then the forecasting
can involve different profiles in input versus output. In this work, we focus on using induc-
tive biases in the form of the neural network architecture to improve OOD generalization.
There is enough evidence to support the improvement in generalization abilities of neural
networks by using the structure of the problem to introduce suitable inductive biases
in the learning process. The most commonly used inductive bias is in the design of the
neural network architecture motivated by the structure of the problem. Recent examples
of this include using graph neural networks [10,11] and modular networks [12]. Recently,
using structural biases in deep neural networks motivated by the nature of bias and the
structure of the problem have been successfully evaluated for time series forecasting [13].
Data-dependent priors have been recently proposed in [14]. However, to the best of our
knowledge, using consumer behavior properties for electricity time series forecasting under
out-of-distribution exogenous variables to guide the design of neural network architecture
has not been considered so far in the literature.

4. The Learning Problem

We consider a 2-step approximate solution to maximize the gain (Equation (1)):
Step 1: For each consumer, forecast/estimate the consumption under each potential tariff
profile allocation. Given features fc,1:t (including ec,1:t), history of allocated tariffs TOUc,1:t,
and values of potential future tariff TOUc,t+1:t+H , the goal is to estimate ec,t+1:t+H . This can
be seen as a multi-step time series forecasting problem with exogenous variables. We
provide the details of our proposed approach for this in the next section.
Step 2: Compute the profit using

Ĝi
c =

H

∑
t′=1

(TOUi
c,t+t′ − p̂t+t′)× êc,t+t′ (2)

6
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for each tariff in TOUi ∈ Tall for OOD scenario (Tin for IID scenario). Allocate the tariff
profile to consumer c which results in maximum Ĝi

c. Note that, in practice, the future
wholesale rates pt+t′ (t′ = 1 . . . T) are also not known and might need to be estimated. In
this work, we assume that pt+t′s are known in advance or estimable accurately and focus
on estimating êc,t+t′s which are the only terms controllable via TOUc,t+t′s.

In summary, the tariff profile allocation policy corresponds to estimating the gain for
each tariff profile for a consumer, and then allocating the profile with maximum estimated
gain. We use a deep neural network based architecture as the function approximator that
estimates E[ec,t+t′ |TOUc,t+1:t+T ] from the data.

4.1. Biased and Scarce Data

The OOD scenario is challenging as there is no historical data for the profiles in
Tout. More concretely, we consider three possible values of tariff at any time t: low
(0.2), medium (0.5), and high (0.8). Therefore, there are 3H unique profiles possible. For
H = 24, there can be ≈ 3 × 1011 profiles possible. However, in practice, the number
of allocated profiles would be significantly smaller than this. In this work, we consider
|Tin| ∈ {2, 5, 8, 10, 12, 15, 20, 30, 35}, which is a range of values encountered for |Tin| in prac-
tice. This poses serious OOD generalization challenge in estimating ec,t+1:t+T for previously
unseen profiles TOUi

t+1:t+T ∈ Tout.
We note that one peculiar type of bias that manifests in practice is the temporal bias: at

any hour h of the day, certain values of tariff are more common than others. We explain this
further using a practical scenario as depicted in Figure 2: In practice, it is common to use the
following heuristic for tariff profile allocation: Keep most expensive tariff rates during peak
demand periods, least expensive tariff rates during non-peak hours, and slightly cheaper
(medium) rates, typically between peak and off-peak periods. Every tariff profile is curated
on the basis of average aggregated consumption of each customer. High tariff is allocated
when the aggregated consumption is high, and for rest of the hours, low/mid tariff are
allocated. The distribution of tariff rates over hours would depend on the distribution of
peak consumption across customers (refer Figure 2c). Furthermore, there is confounding
bias [15] with latent consumer attributes affecting (1) past aggregated consumption which
in turn affects the treatment (tariff profile allocation), and (2) the outcome (electricity
consumption) in D both can depend on the consumer features (refer Figure 2a). We leave
the handling of confounding bias for future work, and focus on handling temporal bias in
this work.

We empirically show that temporal bias poses a generalization challenge for vanilla
feed-forward neural networks, and propose an attention-based architecture to deal with
the same, in the next section.

4.2. How Consumers Respond to Tariffs

Consider the following toy example with H = 6 where there is only one tariff profile
in Tin given by {HHMMLL}, i.e., tariff rate is high (H) for the first two hours, medium
(M) for the next two hours, and low (L) for the last two hours. Further assume that the
consumer has a certain Type-II load during the 1st hour. After looking at this tariff profile,
the consumer responds by shifting the load from the 1st (high tariff) hour to the 5th (low
tariff) hour. Now, consider a tariff profile in Tout as {HHLLMM}. Clearly, this profile is
different from the profile in Tin as the sequence of highs and lows over the hours is different.
However, importantly, the underlying decision-making behavior of the consumer remains
the same, i.e., shift the Type-II load from high tariff hour (1st hour in this case) to low tariff
hour (3rd hour instead of 5th hour in this case). Therefore, it is still possible to forecast
the behavior of the user for this OOD profile. In this work, we intend to leverage this
aspect of the consumer’s decision-making process that stays the same irrespective of the
IID-vs-OOD profiles.

Further, consider five ways to process the sequence of tariff rates (Figure 3):

7
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Figure 3. How different methods process the sequence of tariff rates.

• Independent processing: Here, the tariff at each hour is processed independently [16,17]
and used to estimate the consumption at that hour. Of course, since the consumer’s
decision making is based on comparison of tariff rates across hours, such a processing of
tariff profiles will not be effective.

• All considered together or fully connected: Here, tariffs at all hours (the entire tariff
profile) are processed simultaneously, e.g., through a fully connected layer in a feed-
forward neural network. We argue that such processing of tariff profiles will be able
to effectively learn a good function approximator for the profiles in Tin. However, it
will be highly biased to the profiles in Tin since it does not effectively learn the way
consumers are processing the tariff rates for shifting the loads. This leads to biased
tariff profile processing modules due to the temporal bias in the historical profiles, as
discussed above.

• Focusing on relevant information or Attention: Here, the tariffs rates in a day are
considered as tokens and hours of a day are used as a positional information. This
information is processed through a self-attention layer. We argue that such processing
of tariff profiles will mimic the logic of how consumers respond to a tariff profile.
However, it will be biased towards the profiles in Tin since the tariffs and hour of the
day are correlated (due to temporal bias in the historical tariff profiles).

• Permutation Equivariance: As discussed earlier, permutation equivariance is an
important aspect of the consumer decision-making logic. To mimic the same in the
processing of tariffs by the neural networks, we expect that if trained on one of the
tariff sequences, say, HHMMLL in the earlier example), it should perform equally well
on other sequence (i.e., HHLLMM). In other words, processing of tariffs by neural
networks should be Permutation Equivariant. We propose two ways to achieve
approximate permutation equivariance:

– Attention w/o Hour of Day (Att.-HOD): As explained above, the standard self-
attention method can mimic the logic of how consumers respond to tariffs, but
due to temporal bias in the data, the attention method does not generalize well
to Tout. We propose a simple variant that does not take HOD as input in the
self-attention module to obtain the permutation equivariance property.

– Attention with Permutation Equivariant Query Processing Module (Att.+PE):
Here, the tariff rates in a day are considered as a set and processed in such a way
that ordering of the tariff rates does not matter, i.e., the processing is permutation
equivariant [18,19].

In the next section, we explain how we achieve permutation equivariance while
forecasting the consumption given a consumer’s consumption history, sequence of past
tariff profiles, and a future tariff profile.

5. Forecasting Architecture

Consider the consumption history of a consumer along with past allocated tariffs
to be a time series of vectors f1:t including dimensions for past aggregate consumption
and past allocated tariff rates {e1:t, TOU1:t}, and the candidate tariff profile for the next
H hours to be TOUt+1:t+H . The goal is to estimate et+1:t+H while ensuring permutation
equivariance in processing TOU1:t+H in the sense of [19], e.g., if the output of process-
ing {TOU1, TOU2, TOU3} is {o1, o2, o3}, then the output of processing a permutation
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of the input, say {TOU2, TOU1, TOU3}, is given by the permutation {o2, o1, o3} of the
original output.

To achieve the above-stated goal, we consider the following modularized neural
network architecture as depicted in Figures 4 and 5:

Figure 4. Flow diagram of “Attention w/o Hour of Day” approach. The left part of the figure
indicates the variability in the tariff profiles and also some tariffs are more frequent in tariff profiles.
The right part of the figure indicates flow of the inputs through the network and how the information
of tariffs is consumed by the proposed approach.

Figure 5. Architectures contrasting “Attention w/o Hour of Day” and “Attention with Permutation
Equivariant Query Processing Module” approaches.

• Dilated Convolutional Neural Networks (DCNN) branch for processing of past con-
sumption time series. (Since we have large input time series (t = 168 in our case), we
consider 1D-Convolution Neural Networks for computational efficiency instead of
Recurrent Neural Networks based architecture such as LSTMs [20].)

• Exogenous branch: This branch consists of Attention with Permutation Equivariant

Query Processing Module (Att.+PE) branch for processing of tariff rates, and other
modules for processing of features like hour of day, day of week, etc.

• Implicit Quantile Network (IQN) branch for generating the quantile estimates for
future consumption.

Next, we provide details of the exogenous branch which is the key novel component
of the proposed approach and helps to mitigate temporal bias.

To achieve permutation equivariance and handle temporal bias, we consider process-
ing the tariff rates TOUt+1:t+H (same processing is done for past tariffs as well) via an
attention mechanism where a part of the processing is done independently for tariff at
each time step t + t′ (t′ = 1 . . . H) while still taking into account the global information
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TOUt+1:t+H in order to mimic the behavior of the consumer as explained in the previ-
ous section.

More specifically, we consider key K and value V for the attention mechanism to
be dependent on a single time step t + t′, while the query Q depends on the entire tariff
profile TOUt+1:t+H for the day. In other words, Kt+t′ = fK(TOUt+t′ , t + t′, θK), Vt+t′ =
fV(TOUt+t′ , t + t′, θV), and Qt+t′ = fQ(TOUt+1:t+H , θQ). Subsequently, the output for the
part of the exogenous branch processing the tariffs at time t + t′ is given by

Att(Qt+t′ , Kt+t′ , Vt+t′) = softmax(
Qt+t′KT

t+t′√
d

)Vt+t′ , (3)

where d is the dimension of Q, K, and V. While the fK and fV are implemented as simple
linear layers, fQ is implemented as a permutation equivariant network as follows:

f (x) = σ(xΛ − 1maxpool(x)Γ) (4)

where x = ReLU(TOUt+1:t+H , θTOU) ∈ RH×d and θ shared across timesteps t + 1 . . . t + H,
Λ, Γ ∈ Rdxd′ , matrix of ones 1 ∈ 1H×H , maxpool is taken along columns implying that the
resulting value for any timestep contains information from all timesteps and is independent
of a particular timestep. In this work, we use d = 10, d′ = 20.

Objective function: We use quantile loss for training the DCNN model given by:

Lquantile =
1

b × n

b

∑
i=1

qn

∑
q=q1

max(q × ei, (q − 1)× ei), (5)

where ei = yi − ŷi indicates the error of the forecasted consumption ŷi with respect to
ground-truth consumption yi of i-th window instance, b is the batch size and n is the
number of quantiles used for training.

6. Experimental Evaluation

The goal is to evaluate the efficacy of the proposed approach to deal with OOD
scenarios. For this, we compare the proposed approach with various baselines in the IID
as well as OOD settings. We use the simulated data from a high-fidelity and popular
PowerTAC (https://powertac.org/, accessed on 12 November 2021) [21] simulator that
uses complex state-of-the-art user-behavior models and real world weather data to simulate
the complex dynamics of a smart grid system.

We consider ‘Office Complex Controllable type’ consumers where consumers’ daily
behavior depends on factors such as number of sub-customers, number of appliances,
weather information, hour of day, month, day of week, etc. The various values these factors
can take across consumers is given in Table 1.

Table 1. Dataset details.

S.N. Properties of Consumers Value(s)

1 Number of consumers 12
2 Number of sub-consumers 3, 5
3 Working days 3, 4
4 Work Start hour {8, 9, 10} (+/−) 1 h
5 Break Start hour {13, 14} (+/−) 1 h
6 Work duration 8 (+/−) 1 h
7 Shiftable consumption( in KW) 600, 2400
8 Total data duration (in months) 6

To obtain train, validation, and test split, we divide the total data of 6 months into 4, 1,
and 1 month, respectively. The time series of hourly data for each consumer is divided into
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windows of length t = 168 (corresponding to 7 days) with window-shift of 24 to forecast one
day-head consumption, i.e., output window size is 24. We consider varying number of tariff
profiles in historical data, i.e., |Tin| ∈ {2, 5, 8, 10, 12, 15, 20, 25, 30, 35}, and an additional
set of |Tout| = 40 profiles. As the number of profiles |Tin| in the training set increases, we
expect the bias in the training data to reduce.

6.1. Baselines Considered

For comparison, we consider the following approaches all using DCNN as the core
time series processing module:

• No future exogenous variable (NoX) is the simple univariate time series forecasting
approach which uses only history of aggregated consumption without any additional
future information. This can be considered as a lower bound in the sense that the
network does not have access to any future tariff rates to estimate where a consumer
will shift the load.

• Independent tariff-based method (Ind.) is an approach that treats each tariff rate
independently, and uses the tariff at time t+ t′ to estimate the aggregated consumption
at that time. Importantly, this approach has no means to capture comparison of the
tariff rates in order to figure out whether the tariff at time t + t′ is high or low in
comparison to another timestep.

• Fully-Connected Approach (FC) utilizes the information of all timesteps to estimate
the aggregated consumption at each timestep. As explained previously, we expect
such an approach to perform well in the IID scenario but struggle in the OOD scenario
where new profiles are included.

• Permutation Equivariant (PE) method uses only the permutation equivariance idea
from our approach and ignores the attention mechanism. This method can be thought
of as an ablation over our approach.

• Attention (Att.): This is another ablation over our approach which uses standard
attention module for processing the tariffs along with hour of the day information
without any permutation equivariance property.

• Upper Bound (UB): This is an oracle approach that assumes knowledge about the
hours at which the consumer is going to shift the load. In this, a binary value indicating
whether the shiftable load will be shifted to this hour or not is passed as an additional
feature to the exogenous branch of the Att.+PE network.

6.2. Hyperparameters Used

We use z-normalized consumption time series. DCNN has three layers with each layer
having 16 convolutional filters of length 2, and dilation rate 1, 2, and 4, respectively. We
use batch normalization and L2 filter regularizer (λ = 0.001) for regularization purposes.
ReLU layers are applied on each CNN layer. The output of the DCNN layer is processed
by a channel-wise fully connected layer, which has 24 hidden units (equal to the output
window size) i.e., 24, followed by locally connected layer with 10 filters which are applied
at each time-step independently (filter size = 1).

To obtain categorical feature (hour of day, day of week, month of year) embeddings
and tariff rate embeddings, we use a separate feed-forward network with ReLU layer
followed by linear layer, having 5 hidden units and 10 hidden units respectively. Similarly,
we use 10 hidden units for each feed-forward network fQ, fK, fV . Finally, the output layer
is a small feed-forward network that has 2 layers followed by a linear layer having 40,
10, and 1 hidden unit, respectively. We use batch size of 16, number of epochs 200, and
Adam optimizer with fixed learning rate of 0.0001 for training the neural network. During
training, quantiles are sampled from uniform distribution while during validation and
testing, we use three quantiles 0.1, 0.5, and 0.9. All hyperparameters were obtained via grid
search based on validation quantile loss on the IID set.
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6.3. Results and Observations

We make following key observations from the results in Figures 6 and 7:

(a) (b)

Figure 6. Forecasting performance Comparison of different approaches (in terms of Average Quantile
Loss). (a) IID Scenario. (b) OOD Scenario.

(a) (b)

Figure 7. %gains of the proposed Att.+PE, Att.-HOD, and Att. approaches over the vanilla FC
approach. (a) Option-1. (b) Option-2.

• Observations from forecasting results as shown in Figure 6:

– In the IID scenario, the average quantile loss (AQL) for all approaches increases
with increasing number of tariff profiles as the complexity of the dataset increases.
The FC approach performs better than other approaches for |Tin| ≤ 15, indicating
higher expressivity of the FC approach to fit to a smaller number of IID profiles,
indicating potential overfitting.

– On the other hand, for the OOD scenario, the performance of all approaches
improves with increasing number of IID profiles which is expected as more
IID profiles implies less bias and better generalization to OOD profiles as well.
Interestingly, the FC approach which was the best approach for the IID profiles
for |Tin| ≤ 12, is the worst approach (except the lower bound NoX) in the OOD
setting, because it uses a fully connected layer to process the tariffs of the day,
and due to temporal bias in the data, the weights of fully connected layer will try
to overfit on |Tin| and thus not generalize to OOD profiles|Tout|.
On the other hand, our proposed approaches Att.+PE and Att.-HOD are con-
sistently better than FC for all values of Tin, which shows that FC struggles
with the temporal bias in the historical data. We also analyze that Att.-HOD as
well as Att.+PE are also consistently better than Att. for all values of Tin, which
shows that permutation equivariant way of handling tariff profiles provide better
generalization on OOD profiles.
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• We further analyze whether the gains of Att.+PE and Att.-HOD over other methods
on the OOD scenario translate into more profitable tariff profile allocation for the
retailer. We compare the gain G of Att.+PE, Att.-HOD, and Att. in comparison to FC.
We consider two kinds of profiles for wholesale prices p, one with two values (0.2 and
0.8, referred to as Option-1) and one with three values (0.2, 0.5, and 0.8, referred to as
Option-2).

– Comparison with FC: We observe that all attention-based proposed approaches
Att., Att.-HOD, and Att.+PE depict significant positive gains over FC. We also
observe that Att., Att.-HOD, and Att.+PE approaches have higher positive gain
in fewer IID tariff profiles scenarios |Tin| ≤ 12 (except |Tin| = 2, where data is
too little to claim any generalization), and the gains tend to diminish as |Tin|
increases.

– As expected, we note that it is not important that the gains in forecasting translate
directly into monetary profits, as the optimization objective involves other terms
such as wholesale costs p. Therefore, the best approach on forecasting (Att.+PE)
in the OOD scenario is not necessarily the best approach in terms of profit always.

– Comparison with Att.: For Option-1, Att.-HOD has significantly better gains
than Att. for all values of Tin except |Tin| = 2, which shows that the permutation
equivariant way of handling tariff profiles is helpful. For Option-2, the gains of
Att.-HOD are better or close to the gains of Att. approach (except |Tin| = 2).

In Figure 8, we also provide sample forecasts comparing Att., Att.-HOD, Att.+PE, and
FC with the ground truth (GT) on an OOD profile, indicating better generalization ability
of Att.-HOD and Att.+PE, especially around points where Type-II load gets shifted. On the
other hand, all methods perform well in the IID setting as shown in Figure 9.

Figure 8. Sample results comparing the proposed approaches Att.-HOD and Att.+PE with FC on an
OOD tariff profile. Here, GT: Ground Truth time series. FC struggles to capture the subtle changes in
consumption due to shifting of load, while both Att.-HOD and Att.+PE are able to forecast better.
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Figure 9. Sample results comparing the proposed approaches Att.-HOD and Att.+PE with FC on an
IID tariff profile. Here, GT: Ground Truth time series. In IID scenario, all proposed attention-based
approaches and baselines perform well.

7. Conclusions and Future Work

In this work, we consider the problem of demand response management from an
electricity broker or retailer’s perspective. We highlight temporal bias as an issue in
optimizing profits via suitable tariff profile allocations. We motivate the need for better
generalization to out-of-distribution profiles, and note that this is possible by leveraging the
fact that consumers respond with same logic across profiles. We propose suitable inductive
biases in deep neural networks-based approach for forecasting electricity consumption in
response to new tariff profiles. This takes the form of a permutation equivariance-enabled
attention mechanism that can leverage the property of consumer behavior to respond in a
certain way across profiles. In the future, it will be interesting to look at the generalization
from the perspective of handling confounding bias as the historical profile allocation and
the outcome are affected by the historical allocation policies, which in turn rely on the latent
consumer attributes acting as confounders. The current optimization objective takes into
account broker’s profit but ignores the cost of electricity for the end consumer—bringing
this into the optimization objective is a potential next step.
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Abstract: Recent works in machine learning have focused on understanding and mitigating bias
in data and algorithms. Because the pre-trained models are trained on large real-world data, they
are known to learn implicit biases in a way that humans unconsciously constructed for a long
time. However, there has been little discussion about social biases with pre-trained face recognition
models. Thus, this study investigates the robustness of the models against racial, gender, age, and
an intersectional bias. We also present the racial bias with a different ethnicity other than white and
black: Asian. In detail, we introduce the Face Embedding Association Test (FEAT) to measure the
social biases in image vectors of faces with different race, gender, and age. It measures social bias in
the face recognition models under the hypothesis that a specific group is more likely to be associated
with a particular attribute in a biased manner. The presence of these biases within DeepFace, DeepID,
VGGFace, FaceNet, OpenFace, and ArcFace critically mitigate the fairness in our society.

Keywords: face-recognition models; facial attributes; social bias; fairness

1. Introduction

Recent advances in machine learning technologies allow computer vision researchers
to employ massive datasets from the web to train models with image representations for
general purposes from face recognition to image classification [1,2]. However, the absence
of scrutinizing those datasets disproportionately can cause negative impacts on racial and
ethnic minorities as well as other vulnerable individuals [3]. Without the necessary precau-
tions of these problematic narratives, there can be some issues in image classification and
labeling practices that entail stereotypes and prejudices [4,5]. The machine learning models
with such datasets may elaborate and normalize these stereotypes, inflicting unprecedented
harm on those who already comprise the margins of our society.

Therefore, it is essential to understand how datasets are sourced, labeled, and what
representations the models are trained on. One of the common measures called the Word
Embedding Association Test (WEAT) is used to assess undesirable associations in word
embeddings [6]. That is, WEAT is used to show that both humans and natural language
processing reveal many of the same biases with similar significance. For instance, WEAT
shows racial bias in the word vector space by quantifying the close relations between pleas-
ant words and European American names and unpleasant words with African American
names. Ross et al. [7] extend this work with a metric throughout interaction between vision
and language embeddings to measure biases in social and cultural concepts, such as race.
We extend prior works with a metric, which we term Face Embedding Association Test
(FEAT) to probe race, gender, and age biases in embeddings of pre-trained face recognition
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models. Unlike the previous measurements that measure bias within the facial image rep-
resentation itself [8,9], our measurement measures evaluative associations between pairs
of semantic categories which resemble the implicit attitudes underlying human cognitive
priming procedure [10]. That is, FEAT measures the models’ automatic associations as if
estimating humans’ stereotypical discrimination toward social categories represented by
associations between a target and an attribute dimension. In addition, a strong advantage
of FEAT is its potential for extension to additional discrimination tests. It is adaptable to
assess a wide range of biases in our society.

By taking advantage of the expandability of FEAT, we expand to assess social biases
toward a relatively unexplored racial group. There have been a lack of studies measuring
biases of various races but only focused on white and black ethnicity. It is a significant
oversight to invalidate ethnic group differences within racial category, which is another
common form of discrimination experienced not only by Asian people but by other racial
groups as well [11]. Understanding nuances in how different groups of people are affected
by their ethnicities represents the next step in advancing this field of study. Thus, we
take the next step to answer the question whether the models are significantly affected
by the biases toward other racial groups rather than white and black. To achieve this
goal, we employ face images of European American (EU), African American (AF), and
Asian American (AS) people. Moreover, we measure an interaction between racial and
gender biases that submissiveness and incapable of becoming leaders is prevalent in Asian
women [12]. In short, our contributions are:

• We introduce FEAT to measure racial, gender, age, and an intersectional bias in face
recognition models with images.

• We find statistically significant social biases embedded in pre-trained DeepFace [13],
DeepID [14], VGGFace [15], FaceNet [16], OpenFace [17], and ArcFace [18].

• Our new dataset and implementations are publicly available (https://github.com/
sange1104/face-embedding-association-test, accessed on 28 February 2022).

2. Related Work

A bias mitigation method can be largely divided according to the areas of model
distribution targeted for pre-processing, in-processing, and post-processing [19]. The most
widely used pre-processing technique is to re-balance datasets [20,21] or use synthetic
data [22]. In the case of datasets used in face recognition tasks, they proved to have
an imbalanced class distribution both in gender and race [23]. To address this problem,
several datasets with a balanced number of gender, ethnicity, and the other attributes are
proposed by the previous studies, including Racial Faces in Wild [24], Balanced Faces in the
Wild [25], and DiveFace [26]. Although, these datasets contribute to mitigating abnormal
distributions, but not to demonstrating that training with these datasets leads to impartial
results, because labels for ethnicity in the datasets are not widely allowed as ground truth
and are overly dependent on the annotator’s decision [27]. This motivates researchers to
develop in- and post-processing methods.

In-processing approaches take several methods to get rid of impartiality while training.
For example, cost-sensitive training and adversarial learning are used to get rid of sensitive
information from functionality [20,21]. Moreover, adjusting parameters of loss functions
and taking an unsupervised way of training are used to protect minorities by training
models with unbiased representations [26,28]. The examples of post-processing techniques
include re-regulating the similarity scores of the two feature vectors based on demographic
groups of the images [29] or attaching layers to the feature extractor for removing sensitive
information from the representation [26].

Along the line, growing numbers of measurements have appeared to measure the
effectiveness of the mitigation approaches. In the natural language processing field, var-
ious tests have been proposed to quantify bias in pre-trained word embedding models.
Bolukbasi et al. [30] and Manzini et al. [31] employed word analogy tests and demon-
strated undesirable bias toward gender, racial, and religious groups in word embeddings.
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Moreover, Nadeem et al. [32] present a new evaluation metric that measures how close a
model is to an idealistic model, showing that word embeddings contain several stereotypi-
cal biases.

Though less work has been studied to measure bias in the computer vision area com-
pared to text, there are several approaches to examine embedded bias in visual recognition
tasks. Acien et al. [33] investigate to what extent sensitive data such as gender or ethnic
origin attributes are present in the face recognition models. Wang et al. [34] propose a set
of measurements of the encoded bias in vision tasks and demonstrate that models amplify
the gender biases with an existing dataset. Furthermore, recent studies focus on generation
models to explore biases in face classification systems [22,35].

One of the widely used methods to examine bias is evaluating the representation
produced by the model [6,36], as it can be easily utilized as a tool to analyze human
bias [37,38]. To analyze the implicit bias, the WEAT [6] calculates word associations
between target words and attribute words. Replacing words to sentences, the Sentence
Encoder Association Test (SEAT) is introduced to apply WEAT to measure biases in sentence
embeddings [39]. Moreover, recent studies generalize WEAT to contextualized word
embeddings and investigate gender bias in contextual word embeddings from ELMo [40,41].
Steed and Caliskan [1] adapt WEAT to the image domain to evaluate embedded social
biases. However, to our knowledge, there are no principle tests for measuring bias toward
diverse racial subgroups, especially for Asians with face recognition models. Our work
aims to generalize WEAT to facial image embeddings in order to examine social biases
toward a wide range of subgroups in pre-trained face recognition models.

3. Methods

3.1. Face Embedding Association Test

Existing bias measures in natural language processing assess bias of word or sentence
based on an Implicit Association Test administered to humans [6,42,43]. We introduce
Face Embedding Association Test (FEAT) by extending the prior works throughout face
embeddings. The details of the FEAT are as follows.

FEAT uses sets of face images, rather than sets of words or sentences, to demonstrate
race and gender. Two sets of face images, X and Y, denote two sets of target races of the
same size, while A and B are two sets of attribute images. For example, as in Figure 1,
a face image x represents EU, while y as AS. One example of career attribute images A
denote as a and b is an example of family attributes B. The basis of an indicator of bias is
calculated by the average cosine similarity between pairs of images. Equation (1) measures
the association of one of the target face images f with different attributes as follows:

s( f , A, B) = meana∈Acos( f , a)− meanb∈Bcos( f , b) (1)

where the s function measures how close an average embedding for face image f with
attribute set A compared to the B. The relative proximity of f and A opposed to B indicates
that both concepts are more closely related.

Then, all target face images (i.e., X and Y) can be used to measure the bias in vector
space. Bias is defined as one of the two target sets being significantly closer to one set of
attribute images compared to the other. For example, the social bias is present when it comes
to one of the target sets EU or AS is significantly closer to the concept of career compared
to family. The following equation, s(X, Y, A, B), measures the differential association of the
two sets of target images with the attribute:

s(X, Y, A, B) = ∑
x∈X

s(x, A, B)− ∑
y∈Y

s(y, A, B) (2)

To compute the significance of the association between (X, Y) and (A, B), a permuta-
tion test on s(X, Y, A, B) is used as below:

p = Pri
[
s(Xi, Yi, A, B) > s(X, Y, A, B)

]
(3)
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where the probability is computed over the space of partitions (Xi, Yi) of X ∪ Y with
such that Xi and Yi are of same size. The effect size, a normalized difference of means of
s( f , A, B), is used to measure the magnitude of the association,

d =
meanx∈Xs(x, A, B)− meany∈Ys(y, A, B)

std f∈X∪Ys( f , A, B)
(4)

This normalized measure implies how separated the two distributions of associations
between the target and attribute are. That is, a larger effect size indicates a larger differential
association.

�

�

�� ��

����

Figure 1. One example set of images for measuring race bias, where the targets are face images of
European American and Asian American while the attributes are Career and Family. The images labeled
with ax, bx, ay, and by are images that depict a target in the context of an attribute.

3.2. Face Recognition Models

To evaluate the robustness of the models toward the social biases, we employed
popular pre-trained face recognition models. All the models are widely used in real world
applications, where the models learn to produce embeddings based on the implicit patterns
in the entire training set of image features. Moreover, with different structures of multiple
hidden layers, each model learns a different level of abstraction [1]. We extracted image
representations from the last layer of each model, where each model encoded a different
set of information. The detail of each model is given below:

DeepFace. DeepFace is the face recognition model by adopting a deep neural network.
DeepFace uses a pre-trained three-dimensional face geometry model to perform face
alignment by using affine transformations after landmark extraction and then learns feature
representation from a neural network consisting of convolutional nine layers. This model
is trained on the Social Face Classification (SFC) dataset which consists of 4.4 million
face images.

DeepID. DeepID is one of the well-known face recognition models. DeepID employs
a set of high-level feature representations through deep learning, referred to as deep hidden
identity features. This model is trained with CelebFaces+ dataset and rated by the state-
of-the-art score with Labeled Faces in the Wild (LFW) dataset (http://vis-www.cs.umass.
edu/lfw/, accessed on 1 December 2021) [44,45].

VGGFace. VGGFace is a very deep CNN model with a VGG16 architecture that
employs 15 convolutional layers. The VGGFace is trained by the VGG face dataset, a
dataset for a large capacity of face images created from Internet face image searches. This
dataset contains over 2.6 million images of 2622 celebrities.
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FaceNet. FaceNet is another face recognition model, which returns 128-dimensional
face feature representations. To achieve better performance, FaceNet measures face sim-
ilarity by mapping face images to a compact Euclidean space. The model uses a triplet
loss to optimize the weights of the deep convolution layers. This model was pre-trained
with MicroSoft Celebrity dataset (MS Celeb) (https://megapixels.cc/msceleb/, accessed on
1 December 2021).

OpenFace. OpenFace is an approximate version of FaceNet. With 3.7 million parame-
ters, it is more frequently adapted in the face recognition field. The model is trained on 500k
images from combining the two labeled face recognition datasets, CASIA WebFace [46] and
FaceScrub [47].

ArcFace. ArcFace is one of the face recognition models, which learned features
from CASIA [46], VGGFace2 [48], ms1m-arcface, and DeepGlint-Face (http://trillionpairs.
deepglint.com/overview, accessed on 1 December 2021) datasets. This model proposes
a new loss function, Additive Angular Margin Loss, which uses the arc-cosine function to
calculate angles between the input features and target weight.

3.3. Dataset

To measure the social biases in face embeddings, we compared the closeness between
target images and attribute images. For target images, we used UTKFace dataset (https:
//susanqq.github.io/UTKFace/, accessed on 1 December 2021), which consists of 24,190
cropped by 200 × 200 face images with diverse demographic profiles. In order to measure
racial bias in face recognition models, we randomly selected 3434 images from each EU, AF,
and AS, which is the minimum number among three categories. Moreover, for the attribute
images, we combined images from Ross et al. [7] and top-ranked hits on Google Images.
As we additionally examined racial bias toward Asian American, we collected the same
attribute images of Asians as the other racial groups. In detail, we input the search query
as Asian, Attribute to obtain the images from a search engine in line with our interest. To
measure gender bias, 5244 of male and 5058 of female images were employed. For the
attribute images, we used images from Ross et al. [7].

Similar approach was conducted to collect data for measuring age bias. We categorized
an individual between 19 to 50 as young adult, while over 60 as old adult [49]. Following
this, we randomly selected 851 face images for each young and old adult from the UTKFace
dataset. For the attribute images, we crawled images from Google Images by adapting the
search rule used in gender query.

In order to measure an intersectional bias in the face recognition models, we employed
1515, 1684, and 1859 images of European American Female, African American Female,
and Asian American Female, respectively. To analyze a certain stereotype with respect to
incompetence of Asian Female, we employed images from “Competent” and “Incompetent”
attribute. Detailed statistics of the collected dataset are described in Table 1.

Table 1. The statistics of dataset used in our paper. To measure racial bias, targets are EU, AF, and AS,
while attributes are Career/Family, Pleasant/Unpleasant, Likable/Unlikable, and Competent/Incompetent.
For gender bias test, targets are Male and Female, while attributes are same as racial bias test. In age
bias measure, targets are young and old, while attributes are also same as in the gender bias test. To
measure gendered racism, the most common stereotype of Asian Female (ASF) having Incompetent
attribute, we sorted out images of each racial group with a certain gender (i.e., European American
Female (EUF) and African American Female (AFF)) and attribute (i.e., Competent/Incompetent).

Target
EU AF AS M F Young Old EUF AFF ASF

3434 3434 3434 5244 5058 851 851 1515 1684 1859

Attribute

Career/Family 237 239 280 236 230 264 250 - - -

Pleasant/Unpleasant 541 579 681 546 541 713 537 - - -

Likable/Unlikable 123 110 153 111 112 160 160 - - -

Competent/Incompetent 177 155 189 158 148 200 197 92 82 92

21



CSFM 2022, 3, 2

4. Experiments and Results

In this paper, we validate the FEAT in correspondence with the previous studies [1,6,7]
to measure social biases based on the human Implicit Association Test (IAT) [10] with
face image stimuli. The FEAT aims to measure the biases embedded during pre-training
by comparing the relative association of image embeddings in a systematic process. We
present three tests to measure racial, gender, and an intersectional bias:

1. Race test, in which two target race concepts are tested for association with a pair of
stereotypical attributes (e.g., “European American” vs. “Asian American”, “Pleasant”
vs. “Unpleasant”).

2. Gender test, where two target gender images are tested for stereotypical association
(e.g., “Male” vs. “Female”, “Career” vs. “Family”).

3. Age test, where two target age images are tested for stereotypical association (e.g.,
“Young” vs. “Old”, “Career” vs. “Family”).

4. Intersectional test, we term as gendered racism to measure well-known stereotype
toward Asian Female; “Asian women are considered as incompetent; not a leader,
submissive, and expected to work at a low-level gendered job [12]”.

In line with the human IATs, we find several significant racial biases, gender stereo-
types, age biases, and an intersectional bias shared by pre-trained face recognition models.

4.1. Experiment 1: Do Face Recognition Models Contain Racial Biases?

We first present a racial bias test where targets have different ethnicity, including Euro-
pean American, African American, and Asian American. For the attributes, we replicate the
same concepts as the original IATs [10]. We adapted sets of attribute pairs, which include
Career/Family, Pleasant/Unpleasant, Likable/Unlikable, and Competent/Incompetent, into images.
In this experiment, we hypothesized that European American will be significantly related
to the first attributes of the pairs, which are career, pleasantness, likable, competences than
the others in line with the previous studies [1,6,7,50]. To validate this assumption, we
measured the association of races with attributes using FEAT. For example, we calculated
s(EU, AF, Career, Family) to compare relative distance between vectors of the target sets, EU
and AF, against career attributes such as “business” and “ceo” and family-related attributes
such as “children” and “home”.

Effect sizes and p-values from the 100,000 permutation test for each racial bias mea-
surement are reported in Table 2. As we hypothesized, EU is more likely to be related with
the attributes career and pleasant compared to other racial groups in all models. In detail,
relations show strong bias with presence of large effect size with associations between faces
of EU and pleasantness, whereas AF with unpleasantness (VGGFace: d = 0.939, p < 10−4;
FaceNet: d = 1.081, p < 10−4). Moreover, EU is significantly biased with the attribute
likable when embeddings are extracted from all models, except VGGFace.

On the other hand, the differential association of images of EU vs. AS with the
attributes show less significant biases. Even though the associations might be significantly
different, the effect sizes scored below 0.5, which is considered a small magnitude of
biases. Meanwhile, regardless of the race of the counterpart, OpenFace and ArcFace present
inherent bias that EU is more likely to be significantly related to the concepts of career,
pleasant, likable, and competent (p < 10−4).
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Table 2. The results for FEAT on race tests present biases toward races. Each cell represents the effect
size, which indicates the magnitude of bias as small (0.2), medium (0.5), and large (0.8). p-values
under 0.001 are significant, which are marked as *. Targets for test are European American, African
American, and Asian American. Attributes are Career/Family, Pleasant/Unpleasant, Likable/Unlikable,
and Competent/Incompetent.

DeepFace DeepID VGGFace FaceNet OpenFace ArcFace

Career/Family
EU/AF 0.095 * 0.078 * 0.294 * 0.569 * 0.148 * −0.000

EU/AS −0.006 −0.209 −0.476 −0.097 0.372 * 0.078 *

Pleasant/Unpleasant
EU/AF 0.507 * 0.557 * 0.939 * 1.081 * 0.635 * 0.277 *

EU/AS −0.049 −0.001 −0.138 0.009 0.140 * 0.165 *

Likable/Unlikable
EU/AF 0.134 * 0.647 * 0.021 1.084 * 0.287 * 0.517 *

EU/AS −0.032 −0.112 −0.829 −0.121 0.111 * −0.524

Competent/Incompetent
EU/AF −0.038 −0.520 −1.215 0.704 * −0.575 −0.200

EU/AS 0.012 0.075 * 0.223 * −0.123 −0.334 0.186 *

4.2. Experiment 2: Do Face Recognition Models Contain Gender Stereotypes?

This experiment measures gender biases in the pre-trained face recognition models.
To be concrete, the target is a gender pair (i.e., male/female) and attributes are the same
as we employed in the racial bias test. To examine gender stereotypes, we calculated the
association as s(Male, Female, Career, Family), which measures the relative association of the
category men with career attributes and the category women with family-related attributes.
We hypothesized male will be highly associated with the concepts including career and
competence compared to the other attributes. To examine the magnitude of the gendered
biases in the models, we quantified the effect size and p-value as mentioned.

As in Table 3, there are statistically significant gender biases in VGGFace, FaceNet,
OpenFace, and ArcFace. As we hypothesized, male is more likely to be associated with
career (OpenFace: d = 0.445, p < 10−4; ArcFace: d = 0.112, p < 10−4) and competence
(VGGFace: d = 0.205, p < 10−4; OpenFace: d = 0.212, p < 10−4). These findings parallel
with the previous studies that image search results for powerful occupations such as “ceo”
systematically under-represented women [30,51]. Moreover, male appears to be more likely
to be related with pleasant (ArcFace: d = 0.452, p < 10−4) and likable attributes (FaceNet:
d = 0.237, p < 10−4; OpenFace: d = 0.053, p < 10−2). However, overall effect sizes represent
the small magnitude of bias (d < 0.5).

Table 3. The results for FEAT on gender stereotype test that measures biases toward gender. Each
cell represents the effect size, which indicates the magnitude of bias as small (0.2), medium (0.5), and
large (0.8). p-values under 0.001 are significant, which are marked as *. Targets for test are Male and
Female. Attributes are Career/Family, Pleasant/Unpleasant, Likable/Unlikable, and Competent/Incompetent.

DeepFace DeepID VGGFace FaceNet OpenFace ArcFace

Career/Family

Male/Female

0.002 −0.412 −0.197 −0.106 0.445 * 0.111 *

Pleasant/Unpleasant 0.001 −0.194 −0.089 −0.042 0.020 0.452 *

Likable/Unlikable 0.002 −0.053 −0.030 0.237 * 0.053 −0.243

Competent/Incompetent −0.001 −0.036 0.205 * −0.343 0.212 * 0.035

On the other hand, there is no presence of gender bias in DeepFace and DeepID, where
all the p-values rated at least 0.1. To confirm whether both models are not gender biased, a
replication test is left for future work.

23



CSFM 2022, 3, 2

4.3. Experiment 3: Do Face Recognition Models Contain Age Stereotypes?

This experiment explores whether face recognition models reproduce stereotypes
toward a particular age group, such as elderly are slow, incompetent, and forgetful [52,53].
To measure age bias, we replicated the same attributes as the racial and gender bias
tests. Specifically, the target is an age pair (i.e., young/old) and attributes are pairs of
Career/Family, Pleasant/Unpleasant, Likable/Unlikable, and Competent/Incompetent. One of the
possible stereotypes is that young adults are more likely to be associated with the concepts
of career and competence compared to the other attributes. As in the aforementioned ex-
periments, effect sizes and p-values are quantified to examine the magnitude of stereotypes
toward each age group.

The results in Table 4 show that DeepID, VGGFace, OpenFace, and ArcFace present
age biases. That is, young people are associated with the attributes pleasant (VGGFace:
d = 1.406, p < 10−4, OpenFace: d = 0.551, p < 10−4), likable (DeepID: d = 0.290,
p < 10−4, VGGFace: d = 1.222, p < 10−4, OpenFace: d = 0.431, p < 10−4, ArcFace:
d = 0.509, p < 10−4), and competent (VGGFace: d = 1.046, p < 10−4, OpenFace: d = 0.225,
p < 10−4). In particular, VGGFace shows age biased representation with all four attributes.
Moreover, effect size d of three attributes, including Pleasant/Unpleasant, Likable/Unlikable,
and Competent/Incompetent, rated over one, which is considered a large magnitude of
bias. On the contrary, we cannot observe any significant differences in associations from
DeepFace and FaceNet. Further studies are needed to ensure that neither model shows
age bias.

Table 4. The results for FEAT on age stereotype test that measures biases toward age. Each cell
represents the effect size, which indicates the magnitude of bias as small (0.2), medium (0.5), and
large (0.8). p-values under 0.001 are significant, which are marked as *. Targets for test are Young and
Old. Attributes are Career/Family, Pleasant/Unpleasant, Likable/Unlikable, and Competent/Incompetent.

DeepFace DeepID VGGFace FaceNet OpenFace ArcFace

Career/Family

Young/Old

−0.055 −0.376 0.344 * −0.166 0.993 −0.416

Pleasant/Unpleasant 0.062 −0.036 1.406 * 0.137 0.551 * −0.260

Likable/Unlikable 0.066 0.290 * 1.222 * 0.000 0.431 * 0.509 *

Competent/Incompetent −0.021 −0.001 1.046 * 0.031 0.225 * −0.477

4.4. Experiment 4: Are Face Recognition Models Gendered Racism?

We attempt to replicate a stereotype toward the Asian American Female (ASF). Asian
women are usually seen as incapable of being or becoming leaders as they are quiet and
lacking leadership qualities. Instead, they are assumed to work at a low-level gendered
job, such as being a maid or working in a nail salon [12]. We used incompetent attribute to
test this intersectional stereotype, which includes “passive” and “indecisive”. In detail, we
set the targets for comparison as European American Female (EUF) and African American
Female (AFF). Similar to the bias tests above, we computed the relative distances between
the pairs of targets and attributes. For example, s(EUF, ASF, Competent, Incompetent) is
used to compare distance between EUF and ASF against the concepts of competence and
incompetence. Effect size and p-values are measured to systematically present the gendered
racism in the pre-trained models.

Table 5 presents the results of gendered racism of each model, which indicates the
biases are prevalent in VGGFace, FaceNet, OpenFace, and ArcFace. In detail, AFF is more
likely to be related to competence notions, while ASF is associated with incompetence
(VGGFace: d = 1.424, p < 10−4; FaceNet: d = 0.451, p < 10−4; OpenFace: d = 0.453,
p < 10−4). Moreover, compared to EUF, ASF is significantly related to incompetence
concepts (FaceNet: d = 0.165, p < 10−4; ArcFace: d = 0.354, p < 10−4). The results prove
the incompetent Asian women stereotype is prevalent in several face recognition models
which hampers the accuracy of the models.
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Table 5. The results for FEAT on intersectional bias that measures stereotypes toward Asian females.
Each cell represents the effect size, which indicates the magnitude of bias as small (0.2), medium (0.5),
and large (0.8). p-values under 0.001 are significant, which are marked as *. Targets are European
American Female, African American Female, and Asian American Female. All target pairs are tested
with a single attribute pair, Competent and Incompetent.

DeepFace DeepID VGGFace FaceNet OpenFace ArcFace

Competent/Incompetent

EUF/AFF −0.017 0.465 * −1.007 0.748 * −0.095 0.358 *

EUF/ASF 0.007 −0.172 0.029 0.165 * −0.237 0.354 *

AFF/ASF 0.072 0.018 1.424 * 0.451 * 0.453* −0.367

In addition to the incompetent Asian women stereotype, it appears that EUF is more
likely to be associated with competence, while AFF is related to incompetence (DeepID:
d = 0.465, p < 10−4; FaceNet: d = 0.748, p < 10−4; ArcFace: d = 0.358, p < 10−4). This
counters the past stereotypes that black women are self-reliant, strength, resourcefulness,
autonomy, and the responsibility of providing for the material for their family [54].

4.5. Race Sensitivity Analysis

In order to verify that the racial features of the images result in racial bias in pre-
trained models, we measured the differences of racial bias depending on the variances of
racial features. We hypothesized that if a strong association between a target and attribute
becomes loose as changing the racial features, a model tends to link a certain target that has
specific race-dependent features with an attribute. In this regard, we reversed the races of
images to measure associations between reversed race targets and attributes with FEAT. We
synthesized the set of target images to having reversed races (i.e., EU to AF and AF to EU)
by varying the extent of the racial variances by increasing the levels of transformation from
0% to 100% with 25% interval. We preserved the identity-related features of the images
while reversing the racially dependent features of the faces. Following the findings of prior
research, AF and EU have several differences in external facial features [55]: (1) skin color,
(2) nose shape, and (3) lip shape. In detail, skin color is one of the most representative
features that can be used to visually distinguish race. Moreover, AF individuals typically
have shorter, wider, and shallower noses than the EU population [56]. In addition, their
lips are also thicker and wider [57]. Therefore, the aforementioned face features of EU are
converted into AF features and vice versa.

For the reliability of the racial transformation, we validated whether the race of a given
image is represented differently as the level of the transformation increased. We employed
the convolutional neural network (CNN) model, which has shown good performance
with image classification tasks [58], to classify the race of the image. We trained the CNN
using a race balanced dataset which consists of 774 EU and 774 AF. By employing the
trained CNN, we classified the race transformed dataset which contains 500 EU and 500
AF images into one of the race classes. For each degree of transformation, we averaged the
race classification probabilities of transformed images where 0 indicates the EU class and 1
indicates the AF class. The classification probabilities are represented in Figure 2. As the
transformation level of EU becoming AF moves from 0% to 100%, there is a probability of
EU being classified as AF. Similarly, AF are more likely to be classified into EU throughout
the level of race transformation. The classification variances imply that the race of the
image is distinguished by the extent of the transformation.

As we verified the racial transformation, we measured the FEAT by varying the racial
features of target images. For example, we calculated s(EU25, AF25, Career, Family), where
EU25 indicates the EU images transformed into AF at about 25%, while AF25 represents the
AF images converted into EU by 25%. Table 6 describes the FEAT result with race sensitivity.
Accordingly, as the race converted, the number of significant differences decreases. In other
words, as the race becomes converted, the associations between targets and attributes are
not significantly different. For instance, EU25 is more likely to be related to a career than
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family, while EU100 is not significantly related to a certain attribute. In accordance with
this result, AF100 is not associated with a certain attribute, but AF25 is linked with family
rather than a career.

Table 6. The results for race sensitivity analysis with FEAT on race transformation by varying the
racial features in each image. Each cell represents the effect size, which indicates the magnitude
of bias as small (0.2), medium (0.5), and large (0.8). p-values under 0.001 are significant, which
are marked as *. Targets for test are EU and AF. Attributes are Career/Family, Pleasant/Unpleasant,
Likable/Unlikable, and Competent/Incompetent.

Race Transformation Attribute DeepFace DeepID VGGFace FaceNet OpenFace ArcFace

25%

Career/Family 0.598 * 0.470 * 0.354 * 0.419 * 0.657 * 0.523 *

Pleasant/Unpleasant 0.438 * 0.314 * 1.723 * 0.720 * 0.267 * 0.901 *

Likable/Unlikable 0.796 * 0.202 * 1.414 * 0.607 * 0.756 * 0.077

Competent/Incompetent 0.957 * 0.717 * 1.420 * 0.645 * 1.306 * 0.657 *

50%

Career/Family −0.007 −0.560 −0.689 −0.770 −0.281 −0.443

Pleasant/Unpleasant −0.029 −0.409 1.591 * −0.754 −0.510 0.201 *

Likable/Unlikable 0.008 −0.961 0.834 * −0.729 −0.378 −0.951

Competent/Incompetent −0.095 −0.624 0.817 * −0.716 0.308 * −0.501

75%

Career/Family −0.768 −1.226 −1.362 −1.467 −1.134 −1.089

Pleasant/Unpleasant −0.653 −0.888 1.324 * −1.547 −1.188 −0.475

Likable/Unlikable −1.018 −1.515 −0.387 −1.490 −1.318 −1.375

Competent/Incompetent −1.170 −1.439 −0.549 −1.509 −1.036 −1.278

100%

Career/Family −1.112 −1.538 −1.586 −1.725 −1.490 −1.382

Pleasant/Unpleasant −0.999 −1.200 0.761 * −1.785 −1.493 −0.884

Likable/Unlikable −1.448 −1.733 −1.102 −1.745 −1.619 −1.593

Competent/Incompetent −1.536 −1.697 −1.046 −1.755 −1.493 −1.628

In particular, for the Career/Family attribute, we found that a significant difference in
association only exists in the 25% race transformed embeddings for all models. As the EU
becomes AF (i.e., 50% to 100%), and vice versa, the associations between target and the
attribute become insignificant. That is, the models are sensitive to racial features which
would be the cause of discriminative associations.
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Figure 2. The classification probability of race between AF and EU by extent of the race transformation;
x-axis indicates level of race transformation, while y-axis indicates probability of prediction to EU (0)
or AF (1).
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5. Discussion

The current study demonstrates that the pre-trained face recognition models are prone
to stereotypical bias even though they are widely used as building blocks for various
vision tasks. We investigated a wide range of social biases to show how human-like biases
are automatically encoded in vector spaces of face recognition models. By introducing
FEAT, we systematically evaluated how pre-trained models interpret an image containing
a bias target and associate them to a specific attribute. We confirmed racial, gender,
age, and an intersectional bias are reproduced through the embeddings from pre-trained
models by assessing differences in evaluative associations between pairs of semantic or
social categories. To be specific, the results show an intersectional bias in minorities such
as females of relatively unexplored ethnicity in the field. This implies a wide range of
subgroups and ethnicities should be considered with respect to diagnosing social biases.

The new measurement, FEAT, would be useful for quantification of the social biases
from the way people are portrayed in images that are used to train machine learning
models. This alerts practitioners to be cautious against using pre-trained models for
transfer learning, which implies the importance of monitoring the harms these biases may
pose. Moreover, the different levels of social biases in each model emphasize the importance
of model selection when fair decisions are to be made in the real world. Leveraging these
developments will spur future research in understanding human bias in pre-trained models
and further mitigating social biases in models to build a fair society.

However, our study has some limitations to be solved in a future study. There is a lack
of exploration as to whether the discriminative associations result from underlying biased
data distribution or a training procedure. Moreover, as we collected our test data in the
wild, the test set might amplify the biases of the models because most of the models are
fine-tuned on task specific datasets. That is, the absence of the fine tuning process with
the new dataset might deteriorate the accuracy of the models. Therefore, to confirm the
origins of these biases in face images, syntactic and semantic features from the contextual
representation would be analyzed in the future study following the previous study [59].
Furthermore, measuring biases depending on each training batch can be another direction
for future work. That is, we can test the FEAT with the face embeddings from every batch to
detect the stage where the social biases start while training with the pre-trained model. In
addition, to analyze the main factors of biases within the embeddings, the bias mitigation
techniques would be presented to contribute to the fairness in the field of computer vision.
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Abstract: Transformer models are now increasingly being used in real-world applications. Indiscrim-
inately using these models as automated tools may propagate biases in ways we do not realize. To
responsibly direct actions that will combat this problem, it is of crucial importance that we detect and
quantify these biases. Robust methods have been developed to measure bias in non-contextualized
embeddings. Nevertheless, these methods fail to apply to contextualized embeddings due to their
mutable nature. Our study focuses on the detection and measurement of stereotypical biases asso-
ciated with gender in the embeddings of T5 and mT5. We quantify bias by measuring the gender
polarity of T5’s word embeddings for various professions. To measure gender polarity, we use a
stable gender direction that we detect in the model’s embedding space. We also measure gender bias
with respect to a specific downstream task and compare Swedish with English, as well as various
sizes of the T5 model and its multilingual variant. The insights from our exploration indicate that
the use of a stable gender direction, even in a Transformer’s mutable embedding space, can be a
robust method to measure bias. We show that higher status professions are associated more with the
male gender than the female gender. In addition, our method suggests that the Swedish language
carries less bias associated with gender than English, and the higher manifestation of gender bias is
associated with the use of larger language models.

Keywords: natural language processing; gender bias; bias detection; contextualized embeddings;
deep learning

1. Introduction

Social stereotypes may be present in the semantics of the corpora used to pre-train
large language models, including Transformer based models. These models run the risk
of learning those stereotypes and later on propagating them in the tasks for which they
are used. Taking into account the dangers that may arise from such incidents, this study
explores ways of detecting stereotypical biases related to gender in a Transformer model’s
representations, in addition to quantifying and measuring such biases when they manifest
in a downstream task.

Word embeddings like Word2Vec [1] assign words to fixed vectors that do not take
into account the context of the whole input sentence. Conversely, contextual embeddings
move beyond word-level semantics by mapping words to representations that take into
account how the surroundings of a word can alter its semantics. In this way, contextual
embeddings are capable of capturing polysemy.

It is common to use cosine similarity based methods to measure bias in non-contextualized
embeddings [2,3]. Nevertheless, the mutable nature of the contextualized embeddings can
render all cosine similarity based methods inapplicable or inconsistent for Transformer
based models [4,5].

CSFM 2022, 3, 3. https://doi.org/10.3390/cmsf2022003003 https://www.mdpi.com/journal/csmf31
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2. Related Work

2.1. Bias Detection in Non-Contextual Word Embeddings

It has been shown that a global bias direction can exist in a word embedding space.
Moreover, gender neutral words can be linearly separated from gendered words [3]. Those
two properties constitute the foundation of seminal works by Caliskan et al. [6] and Boluk-
basi et al. [3], who introduce word analogy tests and word association tests as bias de-
tection methods. In a word analogy test, given two related words, e.g., man : king, the
goal is to generate a word x that is in a similar (usually linear) relation to a given word,
e.g., woman. In this particular example, the correct answer would be x = queen, since
man− woman ≈ king− queen. The results in [3] indicate that word embeddings like he
or man are associated with higher-status jobs like doctor, whereas gendered words like
she or woman are associated with different professions such as homemaker and nurse. In
word association tests, there is a pleasant and an unpleasant attribute and the distances
between each one of them and a word, e.g., he, are measured. Ideally, if the model is
unbiased towards gender, the subtraction of these two distances should be equal to the
corresponding one produced by the word she.

2.2. Bias Detection in Contextualized Word Embeddings

The association between certain targets (e.g., gendered words) and attributes (e.g.,
career-related words) for BERT [7] has been computed by utilizing the same task BERT
uses as a learning objective during pre-training [5]. That is, the model is first fed sentences
in which specific tokens are masked. Then, the model is given a sentence in which the
attribute is masked, and the probability that it is associated to he is measured. This is
defined as the target probability. Then, the model is passed a sentence where both the target
and the attribute are masked, aiming to measure the prior probability of how likely the
gendered word would be in BERT. The same procedure is repeated for gendered words of
the opposite sex, and the difference between the normalized predictions of the two targets
is computed.

Nangia et al. [8] and Nadeem et al. [9] collect examples of minimally different pairs
of sentences, in which one sentence stereotypes a group, and the second sentence has less
stereotyping of the same group. As a result, in all examples there are two parts of each
sentence: the unmodified part, which is composed of the tokens that overlap between the
two sentences in a pair, and the modified part, which contains the non-overlapping tokens.
Nadeem et al. [9] estimate the probability of the unmodified tokens conditioned on the
modified tokens, Pr(U | M, θ), by iterating over the sentence, masking a single token at a
time, measuring its log likelihood, and accumulating the result in a sum. Nangia et al. [8],
on the other hand, estimate the probability of the modified tokens conditioned on the
unmodified ones, Pr(M | U, θ). Both methods measure the degree to which the model
prefers stereotyping sentences over less stereotyping sentences by comparing probabilities
across the pairs of sentences. The difference between them lies in that the first one computes
the posterior probability and the second one computes the likelihood.

Webster et al. [10] present four different bias-detection methods that focus on gender
bias. These include a co-reference resolution method, a classification task, and a template
of sentences with masked tokens similar to that of [5]. Finally, they present a remarkable
method where they collect sentences from STS-B that start with “A man” or “A woman”,
and form two sentence pairs per profession, one using the word “man” and the other using
the word “woman”. If a model is unbiased, it should give equal estimates of similarity for
the two pairs. Note that these approaches do not really quantify the biases encoded in the
contextualized embeddings. Instead, they measure the extent to which the biases manifest
in downstream tasks or in the probabilities associated with the model preferring male over
female targets for specific attributes. Moreover, the majority of recent approaches focus on
detecting biases on encoder-only Transformers such as BERT, neglecting decoder-only or
encoder-decoder architectures.
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Bias Detection in Contextualized Embeddings Using Non-Contextualized
Word Embeddings

Dhamala et al. [11] recently studied how to measure various kinds of societal biases in
sentences produced by generative models by using a collection of prompts that the authors
created: the BOLD dataset. After prompting the model with the beginning of a sentence,
they let it complete the sentence by generating text. For example, given the prompt “A
flight nurse is a registered”, the model might complete the sentence like: “A flight nurse is
a registered nurse who is trained to provide medical care to her patients as they transport
in air-crafts”.

BOLD comes with a set of five evaluation metrics, designed to capture biases in the
generated text from various angles. Amongst those metrics, the most relevant to this work
is the weighted average of gender polarity, defined as

Gender-Wavg :=
∑n

i=1 sign(bi)b2
i

∑n
i=1 |bi|

, (1)

where bi := �wi ·�g
‖�wi‖|�g|| and �g := �she − �he.

Initially, they compute the gender polarity of each word wi present in a generated
sentence, bi, and then they proceed to compute the weighted average over all words
present in the sequence. An important detail is that all word vectors wi are not the ones
that the language model creates; instead, they are mapped to the corresponding vectors
in the Word2Vec space [11]. Vectors created by the language model are not used at all in
this approach. The goal of the Gender-Wavg metric is to detect if a sentence is polarized
towards the male or female gender rather than calculating the bias of the language model’s
embedding space.

In contrast, Guo and Caliskan [12] propose a method for detecting intersectional bias
in contextualized English word embeddings from ELMo, BERT, GPT, and GPT-2. First,
they utilize Word Embedding Association Test (WEAT) with static word embeddings to
identify words that represented biases associated with intersectional groups. This is done
by measuring the Word Embedding Factual Association Test (WEFAT) association score,
defined as:

s(�w,A,B) =
Ê�a∈A[cos(�w,�a)]− Ê�b∈B [cos(�w,�b)]

V̂�x∈A∩B [cos(�w,�x)]1/2
, (2)

where Ê�a∈A and V̂�a∈A represent, respectively, the empirical mean and empirical variance
operators; A and B are sets of vectors encompassing concepts, e.g., male and female;
�w ∈ W ; and W is a set of target stimuli, e.g., occupations. Association scores are used to
identify words that are associated with intersectional groups uniquely in addition to words
that are associated with both intersectional groups and their constituent groups. Once these
words have been identified, the authors then extend WEAT to contextualized embeddings
by calculating a distribution of effect sizes ES(X ,Y ,A,Y) among the sets of target words
X and Y , and the sets of concepts or attributes A and B. These effect sizes are measured
across samples of 10,000 embeddings for each combination of targets/attributes, and a
random effects model is applied to generate a weighted mean of effect sizes. This approach
finds that stronger levels of bias are associated with intersectional group members than
with their constituent groups, and the degree of overall bias is negatively correlated with
the degree of contextualization in the model.

2.3. Bias Detection in Swedish Language Models

Sahlgren and Olsson [13] identified gender bias present in both contextualized and
static Swedish embeddings, though the contextual models they studied (BERT and ELMo)
appeared less susceptible. They also showed that existing debiasing methods, proposed by
Bolukbasi et al. [3], not only failed to mitigate bias in Swedish language models but possibly
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worsened existing stereotypes present in static embeddings. Similarly, Prècenth [14] found
evidence of gender bias in static Swedish language embeddings, and introduced several
methods for addressing Swedish distinctions not present in English (e.g., farmor “paternal
grandmother” and mormor “maternal grandmother” vs grandmother). While there is a
dearth of research related specifically to bias in Swedish, or even North Germanic, language
embeddings, some research exists for the Germanic language family more broadly. Kurpicz-
Briki [15] identified bias in static German language embeddings using Word Embedding
Association Test, and traced the origin of some gender biases to 18th century stereotypes that
still persist in modern embeddings. Matthews et al. [16] compare bias in static embeddings
across 7 languages (Spanish, French, German, English, Farsi, Urdu, and Arabic), and
attempt to update Bolukbasi et al. [3]’s methodology for languages that have grammatical
gender or gendered forms of the same noun (e.g., wissenschaftler “male scientist” vs
wissenschaftlerin “female scientist” in German). Additionally, Bartl et al. [17] evaluated
whether existing techniques for identifying bias in contextualized English embeddings
could apply to German. While they confirmed Kurita et al. [5]’s results with respect to
English, the method was unsuccessful when applied to German, illustrating not only the
need for language-specific bias detection methods but also that linguistic relatedness cannot
be used as a predictor of successful applicability.

Further research is needed in evaluating cross-language bias measurement approaches,
as bias can be influenced by etymology, morphology, and both syntactic and semantic
context, which vary significantly across languages.

3. Methods

Our method to measure gender bias in contextualized embeddings is twofold: first,
we implement an extrinsic approach, in which word embeddings are assessed with respect
to their contribution to a downstream task. We also follow an intrinsic approach, in which
we directly evaluate the embeddings with respect to a reference gender direction and detect
relations between representations of different professions.

Gender bias can be a nuanced social phenomenon that includes genders beyond the
woman and man binary. Nevertheless, in this work we exclusively study the correlation of
professions with respect to binary gender.

3.1. Extrinsic Evaluation of Gender Bias in T5 and mT5

The downstream task used in this work is semantic text similarity. We use Text-to-Text
Transfer Transformer (T5) and multilingual T5 (mT5), and we fine-tune two mT5 models:
one on the English STS-B dataset (http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark,
accessed on 12 December 2021) and one on the machine translated variant of it for
Swedish [18]. We do not have to fine-tune T5 on this task as it has undergone both unsu-
pervised and multi-task supervised pre-training that includes the same dataset. To conduct
our experiments, we need to bring stereotypical biases to manifestation during inference
for all three models. To this end, we create a new dataset by adapting the STS-B dataset.

3.1.1. Dataset Creation

To measure the impact of gender correlations on a semantic text similarity application,
we build on the test set of the STS-B corpus, and create a new dataset, inspired by the
counterfactual data augmentation method as introduced in [19]. We only use the test set as
a base for creating the final dataset, since the training and development sets have already
been seen by mT5 during fine-tuning.

A standard example of the STS-B dataset includes a pair of sentences that is labeled
after a scalar that denotes their degree of similarity. To transform STS-B into a dataset
that can assess gender correlations, we collected all sentences from the test set that started
with “A man” or “A woman”. To ensure that all references to gender were eliminated in
the final dataset, any sentences that included gendered words other than man or woman,
like pronouns (his, her, hers, etc.), were discarded; as a result man or woman were the only
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words present in each sample that could disclose gender information. We then extended
the dataset by substituting the gendered subject with an occupation, iterating over fifty
different occupations. The final dataset consists of 149 rows and 52 columns. We replaced
the gendered words, man and woman, with he and she, since they resemble a more natural
use of language. The same process is applied for the Swedish variant of the STS-B dataset.

3.1.2. Experimental Design

The trained models considered pairs of sentences that featured the same sample twice:
one including a gendered word (either she or he) and one including an occupation word.
For example, out of the source sentence “The nurse is walking”, we would create two
pairs of sentences to pass to the model:“He is walking” and “The nurse is walking”, and
secondly, “She is walking” and “The nurse is walking”. The models predicted a similarity
score for all 149 pairs for both genders. Computing the average similarity score over all
samples yielded one average similarity score per gender. If unbiased, the male and female
average similarity scores should be similar for all professions. The way our dataset was
created provides a clean environment in which all sentences that include professions are
gender agnostic. The model is thereby coerced to a manifestation of gender correlations
with profession that can only be attributed to inherent model bias, rather than to bias
residuals found in the sentence. This ensures the validity and reliability of this method.
All experiments were conducted using small, base, and large versions of both mT5 and
T5 models, for English and Swedish. With respect to mT5, since we fine-tuned the model
before making predictions, we re-ran the fine-tuning process using three different random
seeds before proceeding to the inference phase. This was done for two reasons: to add
statistical significance to the results and to address potential instability problems that can
be caused by fine-tuning large models on small datasets.

3.2. Intrinsic Evaluation of Gender Bias in T5

The mutable nature of a Transformer’s contextualized embeddings is an obstacle to
evaluating them intrinsically. Another caveat is that the model itself is changing every time
according to the task it is being fine-tuned on. This is the first work to apply an intrinsic
approach to evaluate the contextualized embeddings of a Transformer with respect to
gender bias by alleviating both problems.

As a workaround to the potential instability caused by the necessary changes in a
model’s architecture associated with different downstream tasks, we use T5: a model that
can work out-of-the-box for a number of tasks without having to make any architecture
modifications. Nevertheless, mT5 was not pre-trained on many tasks the same way as T5.
Thereby, we chose not to include mT5 in this experimental process, as it would have to be
fine-tuned on STS-B first, and that would render the model more specific to this task and
the results less general.

As a workaround to the problem of the embeddings not being fixed, we extended the
gender polarity metric to consider multiple values per profession. These values compose
a distribution, rather than strictly focusing on a single value, as has been the case with
previous work. Our goal is to measure the gender polarity in the embeddings produced by
T5. To this end, we were inspired by Dhamala et al. [11], who were the first to use bi as a
metric under the setting of a Transformer model:

bi =
�wi ·�g

‖�wi‖‖�g‖
, (3)

where �g = �she − �he. Nevertheless, the authors avoided the direct use of the contextual
embeddings �wi when computing the bias bi and chose to map them to the Word2Vec space
first. The motivation behind their choice is that there was no theoretical foundation in
literature to suggest that a constant gender direction, �g = �she − �he, exists in the embed-
ding space of a Transformer model. Thus, they settled for the fixed embedding space of
Word2Vec which can safely establish a well defined �g.
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In this work, we make the hypothesis that a versatile Transformer model like T5,
which already holds the knowledge of various downstream tasks due to the multi-task
pre-training procedure it has undergone, can still establish a gender direction, �g = �she − �he.
We hypothesize that this gender direction is stable enough to allow for T5’s contextual
embeddings to be used in computing bi. This way, we avoid losing information by mapping
the embeddings to the Word2Vec space and create a solution that is tailored to a Transformer
model. To validate this hypothesis, we let T5 produce contextualized embeddings of he
and she out of all 149 sentences of our dataset. That is, we consider the hidden state of the
model’s last encoder block for each of these sentences. We used the small, base, and large
version of T5. Then, we compute the Euclidean distances between all 149 he and she pairs
as well as their corresponding angles. For the large version of T5, we find that the Euclidean
distance has a mean and standard deviation of 2.79 ± 0.22 and the angle has a mean and
standard deviation of 0.68 ± 0.04 radians. The small value of the standard deviations,
compared with the mean values, suggests that the dispersion between the 149 he and she
angle values is small. This indicates that there might exist a well defined, and perhaps
constant, gender direction �g between he and she in the T5 embedding space. We use
the average vector �g = 1

149 ∑149
i=1(

�shei − �hei) as the gender direction and compute gender
polarity bi for ‘he and she, and nine selected occupations: nurse, engineer, surgeon,
scientist, receptionist, programmer, teacher, officer, and homemaker. The selection
of those occupations is based on the results obtained by the extrinsic evaluation, which
selected the professions that are more prone to be correlated with one of the two genders.
We obtain a distribution of 149 bias bi values for every profession instead of a single bias bi
value per occupation, as would be the case with Word2Vec embeddings.

4. Results

4.1. Extrinsic Evaluation of Gender Bias in T5 and mT5

We report the average similarity score per gender for all fifty occupations. Figure 1
shows bar charts in which the heights of the bars represent the average female (blue) and
male (grey) similarity score per occupation, for the large size mT5 model. Axis x shows
the various occupations and axis y shows the average similarity score. The model is not
correlating professions with a specific gender when fine-tuned on the Swedish language.
All 50 similarity scores exhibit no statistically significant difference between men’s and
women’s average similarity scores. The same applies for all three sizes of the model, in
contrast with the English version of the model, which follows a similar behavior to that of
T5. That is, the base and large versions of the model associate specific professions to the
female gender like nurse or receptionist.

Figure 2 presents the average difference between mean similarity scores for men
and women over the 50 occupations. Mean differences tend to grow larger for larger
sizes of the model. The same applies for mT5 in Swedish, but these differences are not
statistically significant for all occupations. Incidentally, the English version of mT5 has
smaller differences between genders for the base version of the model than for the small one.
The difference between men’s and women’s mean similarity scores increases proportionally
with the size of the model for the majority of the occupations. We also observe that larger
versions of the models exhibit a higher degree of gender bias. Plots for all sizes of T5 and
mT5 in both English and Swedish can be found in Appendix A.
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(a)

(b)
Figure 1. (a) Average similarity scores per occupation. Language: English, (b) Average similarity
scores per occupation. Language: Swedish. The average female (blue) and male (grey) similarity
scores per occupation: a comparison between the English and Swedish language for the large size
of mT5.

(a)

(b)

(c)
Figure 2. (a) Mean difference between gender similarity scores per model size. Model: mT5. Lan-
guage: English. (b) Mean difference between gender similarity scores per model size. Model: mT5.
Language: Swedish. (c) Mean difference between gender similarity scores per model size. Model:
T5. Language: English. The mean difference between gender similarity scores per model size, for
different models and languages.
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4.2. Intrinsic Evaluation of Gender Bias in T5

Figure 3 shows the gender polarity (bi) distributions for the selected professions.
Histograms of the gender polarity values for the selected occupations are illustrated with
different colours. The graph compares the three different sizes of T5. The embedding
dimensionality varies according to the size of the model, that is, 512 for the small version,
768 for the base version and 1024 for the large version. In all three sub-graphs, we observe
that the distributions which correspond to she and he are symmetrically distant from the
centre of the x-axis. Additionally, nurse, receptionist, homemaker, and teacher are closer
to the she distribution on the left side of the graph, whereas programmer, engineer, and
surgeon are closer to the he distribution on the right.

(a)

(b)

(c)
Figure 3. (a) The 149 bi values per occupation for the small size of T5. Embedding dimensionality:
512. (b) The 149 bi values per occupation for the base size of T5. Embedding dimensionality: 768.
(c) The 149 bi values per occupation for the large size of T5. Embedding dimensionality: 1024. The
mean difference between gender similarity scores per model size, for different models and languages.

By comparing all three sub-graphs in Figure 3, we notice that the gulf between the
various occupation distributions grows larger as the model’s size increases; there is a high
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overlap of the distributions for the small size of T5, which indicates that the occupations
are less gender polarized. For the base and large size of T5 though, there is a larger distance
between the distributions, so that she attracts occupations like nurse, receptionist, and
homemaker, and he gets closer to programmer, engineer, and surgeon. Conversely, the
distribution of the scientist, keeps equal distance fromhe and she for both base and large
versions of T5. We refer readers who are interested in reproducing the experiments for
all occupations to our code that has been made publicly available (https://github.com/
Stellakats/Master-thesis-gender-bias, accessed on 12 December 2021).

5. Discussion

In this paper, we introduced an intrinsic approach to measuring gender bias on
contextualized embeddings by using gender polarity: an existing bias metric that measures
how related an embedding of a word is to a specific gender. This metric has previously been
applied on contextualized embeddings by first mapping them to the Word2Vec embedding
space. We contribute by first detecting a stable gender direction in T5’s embedding space
and then computing gender polarity distributions for the various embeddings, instead of
single values, for each word. The results of this approach are consistent with those of an
extrinsic approach that we also followed; we evaluated T5’s and mT5’s outputs in terms of
how bias can be propagated to the downstream task of semantic text similarity.

Our results indicate that higher status professions tend to be more associated to the
male gender than the female gender. We also compared Swedish with English as well
as various model sizes and found that our methods find less bias associated with gender
in the Swedish language, though we note that the detection method itself may be more
sensitive to bias in English. Additionally, we find that larger sizes of the models can lead
to an increased manifestation of gender bias. This finding suggests that the embedding
dimensionality might be proportional to the extend to which biases will be successfully
encoded in the embedding vectors.

The consistency of the results between the intrinsic and extrinsic approach might
be a positive indicator that deriving a stable gender direction in a Transformer model’s
embedding space is feasible and can lead to valid results. This is a simple, yet powerful
idea, which if supported by further research, can offer a solid basis for effective debiasing
in Transformer models.

6. Ethics Statement

It has been shown that changes in stereotypes and attitudes towards women and their
participation in the workforce can be quantified by tracking the temporal dynamics of
bias in word embeddings [20]. Furthermore, it has been observed in various use cases
that models might marginalize specific groups in the way they handle downstream tasks,
establishing a behavior similar to that of a stereotypically biased conduct [21–26]. To
responsibly direct actions that will combat this problem, it is of crucial importance that we
find reliable ways of detecting and quantifying it, which is what we aim for in this work. A
reliable way of bias detection could be the touchstone of developing effective bias mitigation
techniques, which could practically contribute to the pursuit of a more fair representation
of different races and genders by the models. Such a course of action complies with the
fifth and tenth goal regarding “gender equality” and “reduced inequalities” respectively,
as defined in the 17 Sustainable Development Goals (https://sdgs.un.org/goals, accessed
on 12 December 2021) set by the United Nations General Assembly and intended to be
achieved by the year 2030. More specifically, this work is aligned with sub-goal 10.2 that
is about empowering and promoting “the social, economic and political inclusion of all,
irrespective of age, sex, disability, race, ethnicity, origin, religion or economic or other
status” (https://sdgs.un.org/goals/goal10, accessed on 12 December 2021). This work
is also aligned with sub-goal 5.1 that is about ending ”all forms of discrimination against
women and girls everywhere”, and sub-goal 5.5, which ensures “women’s full and effective
participation and equal opportunities for leadership at all levels of decision-making in
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political, economic and public life” (https://sdgs.un.org/goals/goal5, accessed on 12
December 2021).
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Appendix A

Figure A1. Average similarity scores per occupation. Model: T5 small.

Figure A2. Average similarity scores per occupation. Model: T5 base.
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Figure A3. Average similarity scores per occupation. Model: T5 large.

Figure A4. Average similarity scores per occupation. Language: English. Model: mT5 small.

Figure A5. Average similarity scores per occupation. Language: Swedish. Model: mT5 small.

Figure A6. Average similarity scores per occupation. Language: English. Model: mT5 base.
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Figure A7. Average similarity scores per occupation. Language: Swedish. Model size: mT5 base.

Figure A8. Average similarity scores per occupation. Language: English. Model: mT5 large.

Figure A9. Average similarity scores per occupation. Language: Swedish. Model: mT5 large.
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Abstract: Supervised contrastive learning optimizes a loss that pushes together embeddings of
points from the same class while pulling apart embeddings of points from different classes. Class
collapse—when every point from the same class has the same embedding—minimizes this loss but
loses critical information that is not encoded in the class labels. For instance, the “cat” label does
not capture unlabeled categories such as breeds, poses, or backgrounds (which we call “strata”).
As a result, class collapse produces embeddings that are less useful for downstream applications
such as transfer learning and achieves suboptimal generalization error when there are strata. We
explore a simple modification to supervised contrastive loss that aims to prevent class collapse by
uniformly pulling apart individual points from the same class. We seek to understand the effects of
this loss by examining how it embeds strata of different sizes, finding that it clusters larger strata more
tightly than smaller strata. As a result, our loss function produces embeddings that better distinguish
strata in embedding space, which produces lift on three downstream applications: 4.4 points on
coarse-to-fine transfer learning, 2.5 points on worst-group robustness, and 1.0 points on minimal
coreset construction. Our loss also produces more accurate models, with up to 4.0 points of lift across
9 tasks.

Keywords: contrastive learning; supervised contrastive learning; transfer learning; robustness; noisy
labels; coresets

1. Introduction

Supervised contrastive learning has emerged as a promising method for training deep
models, with strong empirical results over traditional supervised learning [1]. Recent
theoretical work has shown that under certain assumptions, class collapse—when the repre-
sentation of every point from a class collapses to the same embedding on the hypersphere,
as in Figure 1—minimizes the supervised contrastive loss LSC [2]. Furthermore, modern
deep networks, which can memorize arbitrary labels [3], are powerful enough to produce
class collapse.

Although class collapse minimizes LSC and produces accurate models, it loses infor-
mation that is not explicitly encoded in the class labels. For example, consider images with
the label “cat.” As shown in Figure 1, some cats may be sleeping, some may be jumping,
and some may be swatting at a bug. We call each of these semantically-unique categories of
data—some of which are rarer than others, and none of which are explicitly labeled—a stra-
tum. Distinguishing strata is important; it empirically can improve model performance [4]
and fine-grained robustness [5]. It is also critical in high-stakes applications such as medical
imaging [6]. However, LSC maps the sleeping, jumping, and swatting cats all to a single
“cat” embedding, losing strata information. As a result, these embeddings are less useful
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for common downstream applications in the modern machine learning landscape, such as
transfer learning.

In this paper, we explore a simple modification to LSC that prevents class collapse.
We study how this modification affects embedding quality by considering how strata are
represented in embedding space. We evaluate our loss both in terms of embedding quality,
which we evaluate through three downstream applications, and end model quality.

Sleeping

Head-On

Swatting

JumpingSupervised Contrastive
Learning

New Loss
Function

Class
Collapse

Classes,
Strata
Spread
Apart

Higher-Quality
Models

Higher-Quality
Embeddings

Applications of
Embeddings

Transfer Learning

Robustness

Minimal
Coresets

Unlabeled Strata

Figure 1. Classes contain critical information that is not explicitly encoded in the class labels. Su-
pervised contrastive learning (left) loses this information, since it maps unlabeled strata such as
sleeping cats, jumping cats, and swatting cat to a single embedding. We introduce a new loss function
Lspread that prevents class collapse and maintains strata distinctions. Lspread produces higher-quality
embeddings, which we evaluate with three downstream applications.

In Section 3, we present our modification to LSC, which prevents class collapse by
changing how embeddings are pushed and pulled apart. LSC pushes together embeddings
of points from the same class and pulls apart embeddings of points from different classes.
In contrast, our modified loss Lspread includes an additional class-conditional InfoNCE loss
term that uniformly pulls apart individual points from within the same class. This term on
its own encourages points from the same class to be maximally spread apart in embedding
space, which discourages class collapse (see Figure 1 middle). Even though Lspread does
not use strata labels, we observe that it still produces embeddings that qualitatively appear
to retain more strata information than those produced by LSC (see Figure 2).

In Section 4, motivated by these empirical observations, we study how well Lspread
preserves distinctions between strata in the representation space. Previous theoretical tools
that study the optimal embedding distribution fail to characterize the geometry of strata.
Instead, we propose a simple thought experiment considering the embeddings that the
supervised contrastive loss generates when it is trained on a partial sample of the dataset.
This setup enables us to distinguish strata based on their sizes by considering how likely
it is for them to be represented in the sample (larger strata are more likely to appear in a
small sample). In particular, we find that points from rarer and more distinct strata are
clustered less tightly than points from common strata, and we show that this clustering
property can improve embedding quality and generalization error.

In Section 5, we empirically validate several downstream implications of these insights.
First, we demonstrate that Lspread produces embeddings that retain more information about
strata, resulting in lift on three downstream applications that require strata recovery:
• We evaluate how well Lspread’s embeddings encode fine-grained subclasses with coarse-

to-fine transfer learning. Lspread achieves up to 4.4 points of lift across four datasets.
• We evaluate how well embeddings produced by Lspread can recover strata in an un-

supervised setting by evaluating robustness against worst-group accuracy and noisy
labels. We use our insights about how Lspread embeds strata of different sizes to im-
prove worst-group robustness by up to 2.5 points and to recover 75% performance
when 20% of the labels are noisy.

• We evaluate how well we can differentiate rare strata from common strata by construct-
ing limited subsets of the training data that can achieve the highest performance under
a fixed training strategy (the coreset problem). We construct coresets by subsampling
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points from common strata. Our coresets outperform prior work by 1.0 points when
coreset size is 30% of the training set.
Next, we find that Lspread produces higher-quality models, outperforming LSC by up

to 4.0 points across 9 tasks. Finally, we discuss related work in Section 6 and conclude
in Section 7.

LSC (Class Collapse) Lspread (No Class Collapse)

Common Stratum

Rare Stratum
(Rare Pose)

Avg Cos.
Sim: 0.88

Avg Cos.
Sim: 0.49

0.98 Sim
w/ Center

0.76 Sim
w/ Center

0.22 Sim
w/ Center

0.92 Sim
w/ Center

Plane
Car
Bird
Cat
Deer

Dog
Frog
Horse
Ship
Truck

Figure 2. Lspread produces embeddings that are qualitatively better than those produced by LSC.
We show t-SNE visualizations of embeddings for the CIFAR10 test set and report cosine similarity
metrics (average intracluster cosine similarities, and similarities between individual points and the
class cluster). Lspread produces lower intraclass cosine similarity and embeds images from rare strata
further out over the hypersphere than LSC.

2. Background

We present our generative model for strata (Section 2.1). Then, we discuss supervised
contrastive learning—in particular the SupCon loss LSC from [1] and its optimal embedding
distribution [2]—and the end model for classification (Section 2.2).

2.1. Data Setup

We have a labeled input dataset D = {(xi, yi)}N
i=1, where (x, y) ∼ P for x ∈ X and

y ∈ Y = {1, . . . , K}. For a particular data point x, we denote its label as h(x) ∈ Y with
distribution p(y|x). We assume that data is class-balanced such that p(y = i) = 1

K for all
i ∈ Y . The goal is to learn a model p̂(y|x) on D to classify points.

Data points also belong to categories beyond their labels, called strata. Following [5],
we denote a stratum as a latent variable z, which can take on values in Z = {1, . . . , C}. Z
can be partitioned into disjoint subsets S1, . . . , SK such that if z ∈ Sk, then its corresponding
y label is equal to k. Let S(c) denote the deterministic label corresponding to stratum c. We
model the data generating process as follows. First, the latent stratum is sampled from
distribution p(z). Then, the data point x is sampled from the distribution Pz = p(·|z),
and its corresponding label is y = S(z) (see Figure 2 of [5]). We assume that each class
has m strata, and that there exist at least two strata, z1, z2, where S(z1) �= S(z2) and
supp(z1) ∩ supp(z2) �= ∅.

2.2. Supervised Contrastive Loss

Supervised contrastive loss pushes together pairs of points from the same class (called
positives) and pulls apart pairs of points from different classes (called negatives) to train
an encoder f : X → Rd. Following previous works, we make three assumptions on the
encoder: (1) we restrict the encoder output space to be Sd−1, the unit hypersphere; (2) we
assume K ≤ d + 1, which allows Graf et al. [2] to recover optimal embedding geometry;
and (3) we assume the encoder f is “infinitely powerful”, meaning that any distribution on
Sd−1 is realizable by f (x).

2.2.1. SupCon and Collapsed Embeddings

We focus on the SupCon loss LSC from [1]. Denote σ(x, x′) = f (x) f (x′)/τ, where
τ is a temperature hyperparameter. Let B be the set of batches of labeled data on D and
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P(i, B) = {p ∈ B\i : h(p) = h(i)} be the points in B with the same label as xi. For an

anchor xi, the SupCon loss is L̂SC( f , xi, B) = −1
|P(i,B)| ∑p∈P(i,B) log exp(σ(xi ,xp))

∑a∈B\i exp(σ(xi ,xa))
, where

P(i, B) forms positive pairs and B\i forms negative pairs.
The optimal embedding distribution that minimizes LSC has one embedding per class,

with the per-class embeddings collectively forming a regular simplex inscribed in the
hypersphere Graf et al. [2]. Formally, if h(x) = i, then f (x) = vi for all x ∈ B. {vi}K

i=1
makes up the regular simplex, defined by: a) ∑K

i=1 vi = 0; b) ‖vi‖2 = 1; and c) ∃cK ∈ R s.t.
vi vj = cK for i �= j. We describe this property as class collapse and define the distribution of
f (x) that satisfies these conditions as collapsed embeddings.

2.2.2. End Model

After the supervised contrastive loss is used to train an encoder, a linear classifier
W ∈ RK×d is trained on top of the representations f (x) by minimizing cross-entropy loss
over softmax scores. We assume that ‖Wy‖2 ≤ 1 for each y ∈ Y . The end model’s empirical

loss can be defined as L̂(W,D) = ∑xi∈D − log
exp( f (xi)

Wh(xi)
)

∑K
j=1 exp( f (xi)Wj)

. The model uses softmax

scores constructed with f (x) and W to generate predictions p̂(y|x), which we also write as
p̂(y| f (x)). Finally, the generalization error of the model on P is the expected cross-entropy
between p̂(y|x) and p(y|x), namely L(x, y, f ) = Ex,y∼P [− log p̂(y| f (x))].

3. Method

We now highlight some theoretical problems with class collapse under our generative
model of strata (Section 3.1). We then propose and qualitatively analyze the loss function
Lspread (Section 3.2).

3.1. Theoretical Motivation

We show that the conditions under which collapsed embeddings minimize gener-
alization error on coarse-to-fine transfer and the original task do not hold when distinct
strata exist.

Consider the downstream coarse-to-fine transfer task (x, z) of using embeddings f (x)
learned on (x, y) to classify points by fine-grained strata. Formally, coarse-to-fine transfer
involves learning an end model with weight matrix W ∈ RC×d and fixed f (x) (as described
in Section 2.2) on points (x, z), where we assume the data are class-balanced across z.

Observation 1. Class collapse minimizes L(x, z, f ) if for all x, (1) p(y = h(x)|x) = 1, meaning
that each x is deterministically assigned to one class, and (2) p(z|x) = 1

m where z ∈ Sh(x). The
second condition implies that p(x|z) = p(x|y) for all z ∈ Sy, meaning that there is no distinction
among strata from the same class. This contradicts our data model described in Section 2.1.

Similarly, we characterize when collapsed embeddings are optimal for the original
task (x, y).

Observation 2. Class collapse minimizes L(x, y, f ) if, for all x, p(y = h(x)|x) = 1. This
contradicts our data model.

Proofs are in Appendix D.1. We also analyze transferability of f on arbitrary new
distributions (x′, y′) information-theoretically in Appendix C.1, finding that a one-to-one
encoder obeys the Infomax principle [7] better than collapsed embeddings on (x′, y′).
These observations suggest that a distribution over the embeddings that preserves strata
distinctions and does not collapse classes is more desirable.
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3.2. Modified Contrastive Loss Lspread

We introduce the loss Lspread, a weighted sum of two contrastive losses Lattract and
Lrepel . Lattract is a supervised contrastive loss, while Lrepel encourages intra-class separation.
For α ∈ [0, 1],

Lspread= αLattract + (1 − α)Lrepel . (1)

For a given anchor xi, define xaug
i as an augmentation of the same point as x. Define

the set of negative examples for i to be N(i, B) = {a ∈ B\i : h(a) �= h(i)}. Then,

L̂attract( f , xi, B) =
−1

|P(i, B)| × ∑
p∈P(i,B)

log
exp(σ(xi, xp))

exp(σ(xi, xp)) + ∑a∈N(i,B) exp(σ(xi, xa))
(2)

L̂repel( f , xi, B) = − log
exp(σ(xi, xaug

i ))

∑p∈P(i,B) exp(σ(xi, xp))
. (3)

L̂attract is a variant of the SupCon loss, which encourages class separation in embedding
space as suggested by Graf et al. [2]. L̂repel is a class-conditional InfoNCE loss, where the
positive distribution consists of augmentations and the negative distribution consists of
i.i.d samples from the same class. It encourages points within a class to be spread apart, as
suggested by the analysis of the InfoNCE loss by Wang and Isola [8].

Qualitative Evaluation

Figure 2 shows t-SNE plots for embeddings produced with LSC versus Lspread on
the CIFAR10 test set. Lspread produces embeddings that are more spread out than those
produced by LSC and avoids class collapse. As a result, images from different strata can
be better differentiated in embedding space. For example, we show two dogs, one from a
common stratum and one from a rare stratum (rare pose). The two dogs are much more
distinguishable by distance in the Lspread embedding space, which suggests that it helps
preserve distinctions between strata.

4. Geometry of Strata

We first discuss some existing theoretical tools for analyzing contrastive loss geometri-
cally and their shortcomings with respect to understanding how strata are embedded. In
Section 4.2, we propose a simple thought experiment about the distances between strata in
embedding space when trained under a finite subsample of data to better understand our
prior qualitative observations. Then, in Section 4.3, we discuss implications of represen-
tations that preserve strata distinctions, showing theoretically how they can yield better
generalization error on both coarse-to-fine transfer and the original task and empirically
how they allow for new downstream applications.

4.1. Existing Analysis

Previous works have studied the geometry of optimal embeddings under contrastive
learning [2,8,9], but their techniques cannot analyze strata because strata information is not
directly used in the loss function. These works use the infinite encoder assumption, where
any distribution on Sd−1 is realizable by the encoder f applied to the input data. This allows
the minimization of the contrastive loss to be equivalent to an optimization problem over
probability measures on the hypersphere. As a result, solving this new problem yields a
distribution whose characterization is solely determined by information in the loss function
(e.g., labels information [2,9]) and is decoupled from other information about the input
data x and hence decoupled from strata.

More precisely, if we denote the measure of x ∈ X as μX , minimizing the contrastive
loss over the mapping f is equal (at the population level) to minimizing over the pushfor-
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ward measure μX ◦ f−1 : Sd−1 → [0, 1]. The infinite encoder assumption allows us to relax
the problem and instead consider optimizing over any μ ∈ M(Sd−1) in the Borel set of
probability measures on the hypersphere. Then, the optimal μ� learned is independent of
the distribution of the input data P beyond what is in the relaxed objective function.

This approach using the infinite encoder assumption does not allow for analysis of
strata. Strata are unknown at training time and thus cannot be incorporated explicitly
into the loss function. Their geometries will not be reflected in the characterization of
the optimal distribution obtained from previous theoretical tools. Therefore, we need
additional reasoning for our empirical observations that strata distinctions are preserved in
embedding space under Lspread.

4.2. Subsampling Strata

We propose a simple thought experiment based on subsampling the dataset—randomly
sampling a fraction of the training data—to analyze strata. Consider the following: we
subsample a fraction t ∈ [0, 1] of a training set of N points from P . We use this subsampled
dataset Dt to learn an encoder f̂t, and we study the average distance under f̂t between two
strata z and z′ as t varies.

The average distance between z and z′ is δ( f̂t, z, z′) = ‖Ex∼Pz [ f̂t(x)]−Ex∼Pz′ [ f̂t(x)]‖2

and depends on whether z and z′ are both in the subsampled dataset. We study when z and
z′ belong to the same class. We have three cases (with probabilities stated in Appendix C.2)
based on strata frequency and t—when both, one, or neither of the strata appears in Dt:

1. Both strata appear in Dt The encoder f̂t is trained on both z and z′. For large N, we
can approximate this setting by considering f̂t trained on infinite data from these strata.
Points belonging to these strata will be defined in the optimal embedding distribution
on the hypersphere, which can be characterized by prior theoretical approaches [2,8,9].
With Lspread, δ( f̂t, z, z′) depends on α, which controls the extent of spread in the
embedding geometry. With LSC, points from the two strata would asymptotically
map to one location on the hypersphere, and δ( f̂t, z, z′) would converge to 0. This
case occurs with probability increasing in p(z), p(z′), and t.

2. One stratum but not the other appears in Dt Without loss of generality, suppose that
points from z appear in Dt but no points from z′ do. To understand δ( f̂t, z, z′), we
can consider how the end model p̂(y| f̂t(x)) learned using the “source” distribution
containing z performs on the “target” distribution of stratum z′ since this downstream
classifier is a function of distances in embedding space. Borrowing from the literature
in domain adaptation, the difficulty of this out-of-distribution problem depends on
both the divergence between source z and target z′ distributions and the capacity
of the overall model. The HΔH-divergence from Ben-David et al. [10,11], which is
studied in lower bounds in Ben-David and Urner [12], and the discrepancy difference
from Mansour et al. [13] capture both concepts. Moreover, the optimal geometries of
Lspread and LSC induce different end model capacities and prediction distributions,
with data being more separable under LSC, which can help explain why Lspread better
preserves strata distances. This case occurs with probability increasing in p(z) and
decreasing in p(z′) and t.

3. Neither strata appears in Dt The distance δ( f̂t, z, z′) in this case is at most 2DTV(Pz,Pz′)
(total variation distance) regardless of how the encoder is trained, although differences
in transfer from models learned on Z\z, z′ to z versus z′ can be further analyzed. This
case occurs with probability decreasing in p(z), p(z′), and t.

We make two observations from these cases. First, if z and z′ are both common
strata, then as t increases, the distance between them depends on the optimal asymptotic
distribution. Therefore, if we set α = 1 in Lspread, these common strata will collapse.
Second, if z is a common strata and z′ is uncommon, the second case occurs frequently
over randomly sampled Dt, and thus the strata are separated based on the difficulty of the
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respective out-of-distribution problem. We thus arrive at the following insight from our
thought experiment:

Common strata are more tightly clustered together, while rarer and more semantically
distinct strata are far away from them.

Figure 3 demonstrates this insight. It shows a t-SNE visualization of embeddings
from training on CIFAR100 with coarse superclass labels, and with artifically imbalanced
subclasses. We show points from the largest subclasses in dark blue and points from the
smallest subclasses in light blue. Points from the largest subclasses (dark blue) cluster
tightly, whereas points from small subclasses (light blue) are scattered throughout the
embedding space.

500 Points
250 Points 
100 Points
50 Points

Subclass Size

Figure 3. Points from large subclasses cluster tightly; points from small subclasses scatter (CIFAR100-
Coarse, unbalanced subclasses).

4.3. Implications

We discuss theoretical and practical implications of our subsampling argument. First,
we show that on both the coarse-to-fine transfer task (x, z) and the original task (x, y),
embeddings that preserve strata yield better generalization error. Second, we discuss
practical implications arising from our subsampling argument that enable new applications.

4.3.1. Theoretical Implications

Consider f̂1, the encoder trained on D with all N points using Lspread, and suppose

a mean classifier is used for the end model, e.g., Wy = Ex|y
[

f̂1(x)
]

and Wz = Ex|z
[

f̂1(x)
]
.

On coarse-to-fine transfer, generalization error depends on how far each stratum center is
from the others.

Lemma 1. There exists λz > 0 such that the generalization error on the coarse-to-fine transfer task
is at most

L(x, z, f̂1) ≤ Ez

[
log

(
∑

z′∈Z
exp

(
− λz

(1
2

δ( f̂1, z, z′)2 − 1
)))]

− 1, (4)

where δ( f̂1, z, z′) is the average distance between strata z and z′ defined in Section 4.2.

The larger the distances between strata, the smaller the upper bound on generalization
error. We now show that a similar result holds on the original task (x, y), but there is an
additional term that penalizes points from the same class being too far apart.

Lemma 2. There exists λy > 0 such that the generalization error on the original task is at most

L(x, y, f̂1) ≤ Ez

[
Ez′ |S(z)

[
1
2

δ( f̂1, z, z′)2 − 1
]

(5)

+ log
(

∑
y∈Y

exp
(
Ez′ |y

[
− λy

(1
2

δ( f̂1, z, z′)2 − 1
)]))]

. (6)
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This result suggests that maximizing distances between strata of different classes is
desirable, but less so for distances between strata of the same class as suggested by the first
term in the expression. Both results illustrate that separating strata to some extent in the
embedding space results in better bounds on generalization error. In Appendix C.3, we
provide proofs of these results and derive values of the generalization error for these two
tasks under class collapse for comparison.

4.3.2. Practical Implications

Our discussion in Section 4.2 suggests that training with Lspread better distinguishes
strata in embedding space. As a result, we can use differences between strata of different
sizes for downstream applications. For example, unsupervised clustering can help recover
pseudolabels for unlabeled, rare strata. These pseudolabels can be used as inputs to worst-
group robustness algorithms, or used to detect noisy labels, which appear to be rare strata
during training (see Section 5.3 for examples). We can also train over subsampled datasets
to heuristically distinguish points that come from common strata from points that come
from rare strata. We can then downsample points from common strata to construct minimal
coresets (see Section 5.4 for examples).

5. Experiments

This section evaluates Lspread on embedding quality and model quality:
• First, in Section 5.2, we use coarse-to-fine transfer learning to evaluate how well the

embeddings maintain strata information. We find that Lspread achieves lift across four
datasets.

• In Section 5.3, we evaluate how well Lspread can detect rare strata in an unsupervised
setting. We first use Lspread to detect rare strata to improve worst-group robustness by
up to 2.5 points. We then use rare strata detection to correct noisy labels, recovering
75% performance under 20% noise.

• In Section 5.4, we evaluate how well Lspread can distinguish points from large strata
versus points from small strata. We downsample points from large strata to construct
minimal coresets on CIFAR10, outperforming prior work by 1.0 points at 30% labeled
data.

• Finally, in Section 5.5, we show that training with Lspread improves model quality, vali-
dating our theoretical claims that preventing class collapse can improve generalization
error. We find that Lspread improves performance in 7 out of 9 cases.

5.1. Datasets and Models

Tabel 1 lists all the datasets we use in our evaluation. CIFAR10, CIFAR100, and
MNIST are the standard computer vision datasets. We also use coarse versions of each,
wherein classes are combined to create coarse superclasses (animals/vehicles for CIFAR10,
standard superclasses for CIFAR100, and <5, ≥5 for MNIST). In CIFAR100-Coarse-U,
some subclasses have been artificially imbalanced. Waterbirds, ISIC and CelebA are image
datasets with documented hidden strata [5,14–16]. We use a ViT model [17] (4 × 4, 7 layers)
for CIFAR and MNIST and a ResNet50 for the rest. For the ViT models, we jointly optimize
the contrastive loss with a cross entropy loss head. For the ResNets, we train the contrastive
loss on its own and use linear probing on the final layer. More details in Appendix E.

52



CSFM 2022, 3, 4

Table 1. Summary of the datasets we use for evaluation.

Dataset Notes

CIFAR10 Standard computer vision dataset
CIFAR10-Coarse CIFAR10 with animal/vehicle coarse labels
CIFAR100 Standard computer vision dataset
CIFAR100-Coarse CIFAR100 with standard coarse labels
CIFAR100-Coarse-U CIFAR100 with standard coarse labels, but with some fine classes

sub-sampled
MNIST Standard computer vision dataset
MNIST-Coarse MNIST with <5 and ≥5 coarse labels
Waterbirds Robustness dataset mixing up images of birds and their

backgrounds [14]
ISIC Images of skin lesions [15]
CelebA Images of celebrity faces [16]

5.2. Coarse-to-Fine Transfer Learning

In this section, we use coarse-to-fine transfer learning to evaluate how well Lspread
retains strata information in the embedding space. We train on coarse superclass labels,
freeze the weights, and then use transfer learning to train a linear layer with subclass labels.
We use this supervised strata recovery setting to isolate how well the embeddings can
recover strata in the optimal setting. For baselines, we compare against training with LSC
and the SimCLR loss LSS.

Table 2 reports the results. We find that Lspread produces better embeddings for coarse-
to-fine transfer learning than LSC and LSS. Lift over LSC varies from 0.2 points on MNIST
(16.7% error reduction), to 23.6 points of lift on CIFAR10. Lspread also produces better
embeddings than LSS, since LSS does not encode superclass labels in the embedding space.

Table 2. Performance of coarse-to-fine transfer on various datasets compared against contrastive
baselines. In these tasks, we first train a model on coarse task labels, then freeze the representation
and train a model on fine-grained subclass labels. Lspread produces embeddings that transfer better
across all datasets. Best in bold.

Coarse-to-Fine Transfer

Dataset LSS LSC Lspread

CIFAR10-Coarse 71.7 52.5 76.1
CIFAR100-Coarse 62.0 62.4 63.9
CIFAR100-Coarse-U 61.9 59.5 62.4
MNIST-Coarse 97.1 98.8 99.0

5.3. Robustness Against Worst-Group Accuracy and Noise

In this section, we use robustness to measure how well Lspread can recover strata
in an unsupervised setting. We use clustering to detect rare strata as an input to worst-
group robustness algorithms, and we use a geometric heuristic over embeddings to correct
noisy labels.

To evaluate worst-group accuracy, we follow the experimental setup and datasets
from Sohoni et al. [5]. We first train a model with class labels. We then cluster the embed-
dings to produce pseudolabels for hidden strata, which we use as input for a Group-DRO
algorithm to optimize worst-group robustness [14]. We use both LSC and cross entropy
loss [5] for training the first stage as baselines.

To evaluate robustness against noise, we introduce noisy labels to the contrastive loss
head on CIFAR10. We detect noisy labels with a simple geometric heuristic: points with
incorrect labels appear to be small strata, so they should be far away from other points of
the same class. We then correct noisy points by assigning the label of the nearest cluster in
the batch. More details can be found in Appendix E.
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Table 3 shows the performance of unsupervised strata recovery and downstream worst-
group robustness. We can see that Lspread outperforms both LSC and Sohoni et al. [5] on
strata recovery. This translates to better worst-group robustness on Waterbirds and CelebA.

Figure 4 (left) shows the effect of noisy labels on performance. When noisy labels are
uncorrected (purple), performance drops by up to 10 points at 50% noise. Applying our
geometric heuristic (red) can recover 4.8 points at 50% noise, even without using Lspread.
However, Lspread recovers an additional 0.9 points at 50% noise, and an additional 1.6 points
at 20% noise (blue). In total, Lspread recovers 75% performance at 20% noise, whereas LSC
only recovers 45% performance.

Table 3. Unsupervised strata recovery performance (top, F1), and worst-group performance (AUROC
for ISIC, Acc for others) using recovered strata. Best in bold.

Sub-Group Recovery

Dataset Sohoni et al. [5] LSC Lspread

Waterbirds 56.3 47.2 59.0
ISIC 74.0 92.5 93.8
CelebA 24.2 19.4 24.8

Worst-Group Robustness

Waterbirds 88.4 86.5 89.0
ISIC 92.0 93.3 92.6
CelebA 55.0 66.1 67.8
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Figure 4. (Left) Performance of models under various amounts of label noise for the contrastive
loss head. (Right) Performance of a ResNet18 trained with coresets of various sizes. Our coreset
algorithm is competitive with the state-of-the-art in the large coreset regime (from 40–90% coresets),
but maintains performance for small coresets (smaller than 40%). At the 10% coreset, our algorithm
outperforms [18] by 32 points and matches random sampling.

5.4. Minimal Coreset Construction

Now we evaluate how well training on fractional samples of the dataset with Lspread
can distinguish points from large versus small strata by constructing minimal coresets for
CIFAR10. We train a ResNet18 on CIFAR10, following Toneva et al. [18], and compare
against baselines from Toneva et al. [18] (Forgetting) and Paul et al. [19] (GradNorm,
L2Norm). For our coresets, we train with Lspread on subsamples of the dataset and record
how often points are correctly classified at the end of each run. We bucket points in the
training set by how often the point is correctly classified. We then iteratively remove points
from the largest bucket in each class. Our strategy removes easy examples first from the
largest coresets, but maintains a set of easy examples in the smallest coresets.

Figure 4 (right) shows the results at various coreset sizes. For large coresets, our algorithm
outperforms both methods from Paul et al. [19] and is competitive with Toneva et al. [18]. For
small coresets, our method outperforms the baselines, providing up to 5.2 points of lift
over Toneva et al. [18] at 30% labeled data. Our analysis helps explain this gap; removing
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too many easy examples hurts performance, since then the easy examples become rare and
hard to classify.

5.5. Model Quality

Finally, we confirm that Lspread produces higher-quality models and achieves better
sample complexity than both LSC and the SimCLR loss LSS from [20]. Table 4 reports the
performance of models across all our datasets. We find that Lspread achieves better overall
performance compared to models trained with LSC and LSS in 7 out of 9 tasks, and matches
performance in 1 task. We find up to 4.0 points of lift over LSC (Waterbirds), and up to
2.2 points of lift (AUROC) over LSS (ISIC). In Appendix F, we additionally evaluate the
sample complexity of contrastive losses by training on partial subsamples of CIFAR10.
Lspread outperforms LSC and LSS throughout.

Table 4. End model performance training with Lspread on various datasets compared against con-
trastive baselines. All metrics are accuracy except for ISIC (AUROC). Lspread produces the best
performance in 7 out of 9 cases, and matches the best performance in 1 case. Best in bold.

End Model Perf.

Dataset LSS LSC Lspread

CIFAR10 89.7 90.9 91.5
CIFAR10-Coarse 97.7 96.5 98.1
CIFAR100 68.0 67.5 69.1
CIFAR100-Coarse 76.9 77.2 78.3
CIFAR100-Coarse-U 72.1 71.6 72.4
MNIST 99.1 99.3 99.2
MNIST-Coarse 99.1 99.4 99.4
Waterbirds 77.8 73.9 77.9
ISIC 87.8 88.7 90.0

6. Related Work and Discussion

From work in contrastive learning, we take inspiration from [21], who use a latent
classes view to study self-supervised contrastive learning. Similarly, [22] considers how
minimizing the InfoNCE loss recovers a latent data generating model. We initially started
from a debiasing angle to study the effects of noise in supervised contrastive learning
inspired by [23], but moved to our current strata-based view of noise instead. Recent work
has also analyzed contrastive learning from the information-theoretic perspective [24–26],
but does not fully explain practical behavior [27], so we focus on the geometric perspec-
tive in this paper because of the downstream applications. On the geometric side, we
are inspired by the theoretical tools from [8] and [2], who study representations on the
hypersphere along with [9].

Our work builds on the recent wave of empirical interest in contrastive learning [20,28–31]
and supervised contrastive learning [1]. There has also been empirical work analyzing the
transfer performance of contrastive representations and the role of intra-class variability
in transfer learning. [32] find that combining supervised and self-supervised contrastive
loss improves transfer learning performance, and they hypothesize that this is due to both
inter-class separation and intra-class variability. [33] find that combining cross entropy
and self-supervised contrastive loss improves coarse-to-fine transfer, also motivated by
preserving intra-class variability.

We derive Lspread from similar motivations to losses proposed in these works, and
we futher theoretically study why class collapse can hurt downstream performance. In
particular, we study why preserving distinctions of strata in embedding space may be
important, with theoretical results corroborating their empirical studies. We further propose
a new thought experiment for why a combined loss function may lead to better separation
of strata.
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Our treatment of strata is strongly inspired by [5,6], who document empirical conse-
quences of hidden strata. We are inspired by empirical work that has demonstrated that
detecting subclasses can be important for performance [4,34] and robustness [14,35,36].

Each of our downstream applications is a field in itself, and we take inspiration
from recent work from each. Our noise heuristic is similar to the ELR [37] and takes
inspiration from a various work using contrastive learning to correct noisy labels and for
semi-supervised learning [38–40]. Our coreset algorithm is inspired by recent work in
coresets for modern deep networks [19,41,42], and takes inspiration from [18] in particular.

7. Conclusions

We propose a new supervised contrastive loss function to prevent class collapse
and produce higher-quality embeddings. We discuss how our loss function better main-
tains strata distinctions in embedding space and explore several downstream applications.
Future directions include encoding label hierarchies and other forms of knowledge in
contrastive loss functions and extending our work to more modalities, models, and ap-
plications. We hope that our work inspires further work in more fine-grained supervised
contrastive loss functions and new theoretical approaches for reasoning about generaliza-
tion and strata.
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We provide a glossary in Appendix A. Then we provide definitions of terms in
Appendix B. We discuss additional theoretical results in Appendix C. We provide proofs
in Appendix D. We discuss additional experimental details in Appendix E. Finally, we
provide additional experimental results in Appendix F.

Appendix A. Glossary

The glossary is given in Table A1 below.

Table A1. Glossary of variables and symbols used in this paper.

Symbol Used for

LSC SupCon (see Section 2.2), a supervised contrastive loss introduced by [1].
Lspread Our modified loss function defined in Section 3.2.
x Input data x ∈ X .
y Class label y ∈ Y = {1, . . . , K}.
D Dataset of N points {(xi, yi)}N

i=1 drawn i.i.d. from P .
h(x) The class that x belongs to, i.e., h(x) is a label drawm from p(y|x). This label

information is used as input in the supervised contrastive loss.
p̂(y|x) The end model’s predicted distribution over y given x.
z A stratum is a latent variable z ∈ Z = {1, . . . , C} that further categorizes data

beyond labels.
Sk The set of all strata corresponding to label k (deterministic).
S(c) The label corresponding to strata c (deterministic).
Pz The distribution of input data belonging to stratum z, i.e., x ∼ p(·|z).
m The number of strata per class.
d Dimension of the embedding space.
f The encoder f : X → Rd maps input data to an embedding space and is learned by

minimizing the contrastive loss function.
Sd−1 The unit hypersphere, formally {v ∈ Rd : ‖v‖2 = 1}.
τ Temperature hyperparameter in contrastive loss function.

σ(x, x′) Notation for f (x) f (x′)
τ .

B Set of batches of labeled data on D.
P(i, B) Points in B with the same label as xi, formally {p ∈ B\i : h(p) = h(i)}.
{vi}K

i=1 A regular simplex inscribed in the hypersphere (see Definition A1).
W The weight matrix that parametrizes the downstream linear classifier

(end model) learned on f (x).
L̂(W,D) The empirical cross entropy loss used to learn W over dataset D (see (A1)).
L(x, y, f ) The generalization error of the end model of predicting output y on x using

encoder f (see (A2) and (A3)).
Lattract A variant on SupCon that is used in Lspread that pushes points of a class together

(see (2)).
Lrepel A class-conditional InfoNCE loss that is used in Lspread to pull apart points

within a class (see (3)).
α Hyperparameter α ∈ [0, 1] controls how to balance Lattract and Lrepel .
xaug An augmentation of data point x.
N(i, B) Points in B with a label different from that of xi, formally {a ∈ B\i : h(a) �= h(i)}.
t Fraction of training data t ∈ [0, 1] that is varied in our thought experiment.
Dt Randomly sampled dataset from P with size equal to t · N fraction of D.
f̂t Encoder trained on sampled dataset Dt.
δ( f̂t, z, z′) The distance between centers of strata z and z′ under encoder f̂t,

namely δ( f̂t, z, z′) = ‖Ex∼Pz [ f̂t(x)]−Ex∼Pz′ [ f̂t(x)]‖2.

Appendix B. Definitions

We restate definitions used in our proofs.

Definition A1 (Regular Simplex). The points {vi}K
i=1 form a regular simplex inscribed in the

hypersphere if

1. ∑K
i=1 vi = 0
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2. ‖vi‖ = 1 for all i
3. ∃cK ≤ 1 s.t. vi vj = cK for i �= j

Definition A2 (Downstream model). Once an encoder f (x) is learned, the downstream model
consists of a linear classifier trained using the cross-entropy loss:

L̂(W,D) = ∑
xi∈D

− log
exp( f (xi)

Wh(xi)
)

∑K
j=1 exp( f (xi)Wj)

. (A1)

Define Ŵ := argmin‖W‖2≤1 L̂(W,D). Then, the end model’s outputs are the probabilities

p̂(y|x) = p̂(y| f (x)) =
exp( f (x)Ŵy)

∑K
j=1, exp( f (x)Ŵj)

, (A2)

and the generalization error is

L(x, y, f ) = Ex,y[− log p̂(y| f (x))]. (A3)

Appendix C. Additional Theoretical Results

Appendix C.1. Transfer Learning on (x′, y′)

We now show an additional transfer learning result on new tasks (x′, y′). Formally,
recall that we learn the encoder f on (x, y) ∼ P . We wish to use it on a new task with target
distribution (x′, y′) ∼ P′. We find that an injective encoder f (x) is more appropriate to be
used on new distributions than collapsed embeddings based on the Infomax principle [7].

Observation 3. Define fc(y) as the mapping to collapsed embeddings and f1−1(x) as an injective
mapping, both learned on P . Construct a new variable ỹ with joint distribution (x′, ỹ) ∼ p(y|x) ·
p′(x′) and suppose that ỹ ⊥⊥ y′|x′. Then, by the data processing inequality, it holds that I(ỹ, y′) ≤
I(x′, y′) where I(·, ·) is the mutual information between two random variables. We apply fc to ỹ
and f1−1 to x′ to get that

I( fc(ỹ), y′) ≤ I( f1−1(x′), y′).

Therefore, f1−1 obeys the Infomax principle [7] better on P′ than fc. Via Fano’s inequality,
this statement implies that the Bayes risk for learning y′ from x′ is lower using f1−1 than fc.

Appendix C.2. Probabilities of Strata z, z′ Appearing in Subsampled Dataset

As discussed in Section 4.2, the distance between strata z and z′ in embedding space
depends on if these strata appear in the subsampled dataset Dt that the encoder was trained
on. We define the exact probabilities of the three cases presented. Let Pr(z, z′ ∈ Dt) be the
probability that both strata are seen, Pr(z ∈ Dt, z′ /∈ Dt) be the probability that only z is
seen, and Pr(z, z′ /∈ Dt be the probability that neither are seen.

First, the probability of neither strata appearing in Dt is easy to compute. In particular,
we have that Pr(z, z′ /∈ Dt) = (1 − p(z)− p(z′))tN . This quantity decreases in p(z) and
p(z′), confirming that it is less likely for two common strata to not appear in Dt.

Second, the probability of z being in Dt and z′ not being in Dt can be expressed
as Pr(z ∈ Dt|z′ /∈ Dt) · Pr(z′ /∈ Dt). Pr(z′ /∈ Dt) is equal to (1 − p(z′))tN , and Pr(z ∈
Dt|z′ /∈ Dt) = 1 − Pr(z /∈ Dt|z′ /∈ Dt) = 1 − (1 − p(z|z ∈ Z\z′))tN . Finally, note
that p(z|z ∈ Z\z′) = p(z)

1−p(z′) . Putting this together, we get that Pr(z ∈ Dt, z′ /∈ Dt) =

(1 − p(z′))tN − (1 − p(z′)− p(z))tN , and we can similarly construct Pr(z′ ∈ Dt, z /∈ Dt).
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This quantity depends on the difference between p(z) and p(z′), so this case is common
when one stratum is common and one is rare.

Lastly, the probability of both z and z′ being in Dt is thus Pr(z, z′ ∈ Dt) = 1−Pr(z, z′ /∈
Dt) − Pr(z′ ∈ Dt, z /∈ Dt) − Pr(z ∈ Dt, z′ /∈ Dt) = 1 + (1 − p(z′) − p(z))tN − (1 −
p(z′))tN − (1 − p(z))tN . This quantity increases in p(z) and p(z′).

Appendix C.3. Performance of Collapsed Embeddings on Coarse-to-Fine Transfer and Original Task

Lemma A1. Denote fc to be the encoder that collapses embeddings such that fc(x) = vy for any
(x, y) ∼ P . Then, the generalization error on the coarse-to-fine transfer task using fc and a linear
classifier learned using cross entropy loss is at least

L(x, z, fc) ≥ log(m exp(1) + (C − m) exp(cK)− 1,

where cK is the dot product of any two different class-collapsed embeddings. The generalization
error on the original task under the same setup is at least

L(x, y, fc) ≥ log(exp(1) + (K − 1) exp(cK))− 1.

Proof. We first bound generalization error on the coarse-to-fine transfer task. For collapsed
embeddings, f (x) = vi when h(x) = i, where h(x) is information available at training
time that follows the distribution p(y|x). We thus denote the embedding f (x) as vh(x).
Therefore, we write the generalization error with an expectation over h(x) and factorize
the expectation according to our generative model.

Ex,z,h(x)[− log p̂(z| f (x))] = −
C

∑
z=1

K

∑
h(x)=1

∫
p(x, z, h(x)) log p̂(z|h(x))dx

= −
C

∑
z=1

K

∑
h(x)=1

∫
p(z)p(x|z)p(h(x)|x) log p̂(z|h(x))dx

= −
C

∑
z=1

K

∑
h(x)=1

∫
p(z)p(x|z)p(h(x)|x) log

exp( fh(x)Wz)

∑C
i=1 exp( fh(x)Wi)

dx

=
C

∑
z=1

p(z)Ex∼Pz

[
K

∑
y=1

p(y|x)
(
− vy Wz + log

C

∑
i=1

exp(vy Wi)
)]

.

Furthermore, since the W learned over collapsed embeddings satisfies Wz = vy for
S(z) = y, we have that log ∑C

i=1 exp(vy Wi) = m exp(1) + (C − m) exp(cK) for any y, and
our expected generalization error is

C

∑
z=1

p(z)Ex∼Pz [−p(y = S(z)|x)− p(y �= S(z)|x)δ + log(m exp(1) + (C − m) exp(cK))]

= log(m exp(1) + (C − m) exp(cK))− cK − (1 − cK)
C

∑
z=1

p(z)Ex∼Pz [p(y = S(z)|x)].

This tells us that the generalization error is at most log(m exp(1) + (C −m) exp(cK))−
cK and at least log(m exp(1) + (C − m) exp(cK))− 1.

For the original task, we can apply this same approach to the case where m = 1, C = K
to get that the average generalization error is

Eh(x)

[
L(x, y, f̂1)

]
= log(exp(1) + (K − 1) exp(cK))

− cK − (1 − cK)
C

∑
z=1

p(z)Ex∼Pz [p(y = S(z)|x)].
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This is at least log(exp(1) + (K − 1) exp(cK)) − 1 and at most log(exp(1) + (K −
1) exp(cK))− cK.

Appendix D. Proofs

Appendix D.1. Proofs for Theoretical Motivation

We provide proofs for Section 3.1. First, we characterize the optimal linear classifier
(for both the coarse-to-fine transfer task and the original task) learned on the collapsed
embeddings. Note that this result appears similar to Corollary 1 of [2], but their result
minimizes the cross entropy loss over both the encoder and downstream weights (i.e., in a
classical supervised setting where only cross entropy is used in training).

Lemma A2 (Downstream linear classifier for coarse-to-fine task). Suppose the dataset Dz is
class-balanced across z, and the embeddings satisfy f (x) = vi if h(x) = i where {vi}K

i=1 form the
regular simplex. Then the optimal weight matrix W� ∈ RC×d that minimizes L̂(W,Dz) satisfies
W�

z = vy for y = S(z).

Proof. Formally, the convex optimization problem we are solving is

minimize −
K

∑
y=1

∑
z∈Sy

log
exp(vy Wz)

∑C
j=1 exp(vy Wj)

(A4)

s.t. ‖Wz‖2
2 ≤ 1 ∀z ∈ Z (A5)

The Lagrangian of this optimization problem is

K

∑
y=1

∑
z∈Sy

−vy Wz + m
K

∑
y=1

log
( C

∑
j=1

exp(vy Wj)

)
+

C

∑
i=1

λi(‖Wi‖2
2 − 1),

and the stationarity condition w.r.t. Wz is

−vS(z) + m
K

∑
y=1

vy exp(vy Wz)

∑C
j=1 exp(vy Wj)

+ 2λzWz = 0. (A6)

Substituting Wz = vS(z), we get −vS(z) + m ∑K
y=1

vy exp(vy vS(z))

∑C
j=1 exp(vy vS(j))

+ 2λzvS(z) = 0. Using

the fact that vi vj = δ for all i �= j, this equals −vS(z) + m · vS(z) exp(1)+exp(δ)∑y �=S(z) vy

m exp(1)+(C−m) exp(δ) +

2λzvS(z) = 0. Next, recall that ∑K
i=1 vi = 0. Then, λz =

1
2
(
1 − m · exp(1)−exp(δ)

m exp(1)+(C−m) exp(δ)

)
≥ 0,

satisfying the dual constraint. We can further verify complementary slackness and primal
feasibility, since ‖W�

z ‖2
2 = 1, to confirm that an optimal weight matrix satisfies W�

z = vy for
y = S(z).

Corollary A1. When we apply the above proof to the case when m = 1, we recover that the optimal
weight matrix W� ∈ RK×d that minimizes L̂(W,D) for the original task on (x, y) ∼ P satisfies
W�

y = vy for all y ∈ Y .

We now prove Observation 1 and 2. Then, we present an additional result on transfer
learning on collapsed embeddings to general tasks of the form (x′, y′) ∼ P′.
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Proof of Observation 1. We write out the generalization error for the downstream task,
L(x, z, f ) = Ex,z[− log p̂(z|x)] using our conditions that p(y = h(x)|x) = 1 and p(z|x) = 1

m .

L(x, z, f ) = −
∫

p(x)
C

∑
z=1

p(z|x) log p̂(z| f (x))dx

= −
∫

p(x)
C

∑
z=1

p(z|x) log
exp( f (x)Wz)

∑C
i=1 exp( f (x)Wi)

dx

= −
K

∑
y=1

∫
x:h(x)=y

p(x) · 1
m ∑

z∈Sy

log
exp( f (x)Wz)

∑C
i=1 exp( f (x)Wi)

.

To minimize this, f (x) should be the same across all x where h(x) is the same value,
since p(z|x) does not change across fixed h(x) and thus varying f (x) will not further
decrease the value of this expression. Therefore, we rewrite f (x) as fh(x). Using the fact
that y is class balanced, our loss is now

L(x, y, z) = − 1
m

K

∑
y=1

∑
z∈Sy

∫
x:h(x)=y

p(x) log
exp( fh(x)Wz)

∑C
i=1 exp( fh(x)Wz)

dx

= − 1
C

K

∑
y=1

∑
z∈Sy

log
exp( fy Wz)

∑C
i=1 exp( fy Wi)

.

We claim that fy = vy and Wz = vy for all S(z) = y minimizes this convex function.
The corresponding Lagrangian is

K

∑
y=1

∑
z∈Sy

− fy Wz + m
K

∑
y=1

log
( C

∑
i=1

exp( fy Wi)

)
+

K

∑
y=1

νy(‖ fy‖2
2 − 1) +

C

∑
i=1

λi(‖Wi‖2
2 − 1).

The stationarity condition with respect to Wz is the same as (A6), and we have already
demonstrated that the feasibility constraints and complementary slackness are satisfied on
W. The stationarity condition with respect to fy is

− ∑
z∈Sy

Wz + m · ∑C
i=1 Wi exp( fy Wi)

∑C
i=1 exp( fy Wi)

+ 2λy fy = 0.

Substituting in Wi = vS(i) and fy = vy, we get −∑z∈Sy vy + m · ∑C
i=1 vS(i) exp(vy vS(i))

∑C
i=1 exp(vy vS(i))

+

2λyvy = 0. From the regular simplex definition, this is −mvy + m mvy exp(1)−mvy exp(δ)
m exp(1)+(C−m) exp(δ) +

2λyvy = 0. We thus have that λy = m
2

(
1 − m(exp(1)−exp(δ))

m exp(1)+(C−m) exp(δ)

)
, and the feasibility

constraints are satisfied. Therefore, fy = Wz = vy for y = S(z) minimizes the generalization
error L(x, z, f ) when p(h(x)|x) = 1 and p(z|x) = 1

m .
p(z|x) = 1

m and p(y = h(x)|x) = 1, so p(z)=
∫

x:h(x)=S(z) p(z, x)dx= 1
m
∫

x:h(x)=S(z) p(x)

= 1
mK = 1

C . p(z) being class balanced means that p(x|z) = p(z|x)p(x)
p(z) = Kp(x) =

p(y|x)p(x)
p(y) = p(x|y). Therefore, this condition suggests that there is no distinction among

the strata within a class.

Proof of Observation 2. This observation follows directly from Observation 1 by repeating
the proof approach with z = y, m = 1.

Lastly, suppose it is not true that p(y = h(x)|x) = 1. Then, the generalization error
on the original task is L(x, y, f ) = −

∫
X ∑K

y=1 p(x)p(y|x) log p̂(y| f (x)), which is mini-
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mized when p̂(y| f (x)) = p(y|x). Intuitively, a model constructed with label information,
p̂(y|h(x)), will not improve over one that uses x itself to approximate p(y|x).

Appendix D.2. Proofs for Theoretical Implications

We provide proofs for Section 4.3.

Proof of Lemma 1. The generalization error is

L(x, z, f̂1) = −Ez

[
Ex∼Pz

[
log

exp( f̂1(x)Wz)

∑C
i=1 exp( f̂1(x)Wi)

]]

= Ez

[
Ex∼Pz

[
− f̂1(x)Wz + log

C

∑
i=1

exp( f̂1(x)Wi)

]]
.

Using the definition of the mean classifier,

L(x, z, f̂1) = Ez

[
−1 +Ex∼Pz

[
log

C

∑
i=1

exp
(

f̂1(x)Ex∼Pi [ f̂1(x)]
)]]

= −1 +Ez

[
Ex∼Pz

[
log

C

∑
i=1

exp
(

f̂1(x)Ei[ f̂1(x)]
)]]

.

Since f̂1(x) is bounded, there exists a constant λ > 0 such that

Ex∼Pz

[
log

C

∑
i=1

exp
(

f̂1(x)Ei[ f̂1(x)]
)]

≤ log
( C

∑
i=1

exp
(
λEz[ f̂1(x)]Ei[ f̂1(x)]

))
.

We can also rewrite the dot product between mean embeddings per strata in terms of
the distance between them:

L(x, z, f̂1) ≤ −1 +Ez

[
log

( C

∑
i=1

exp
(
λEz[ f̂1(x)]Ei[ f̂1(x)]

))]

= −1 +Ez

[
log

( C

∑
i=1

exp
(
− λ

2
‖Ez[ f̂1(x)]−Ei[ f̂1(x)]‖2 + λ

))]
.

This directly gives us our desired bound.

Proof of Lemma 2. The generalization error is

L(x, y, f̂1) = −Ez

[
Ex∼Pz

[
log

exp( f̂1(x)WS(z))

∑K
i=1 exp( f̂1(x)Wi)

]]

= Ez

[
Ex∼Pz

[
− f̂1(x)WS(z) + log

K

∑
i=1

exp( f̂1(x)Wi)

]]
.

We substitute in the definition of the mean classifier to get

L(x, y, f̂1) = Ez

[
− ∑
z′∈SS(z)

p(z′|S(z))Ez[ f̂1(x)]Ez′ [ f̂1(x)]

+Ex∼Pz

[
log

K

∑
i=1

exp
(

∑
z′∈Si

p(z′|Si) f̂1(x)Ez′ [ f̂1(x)]
)]]

.
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We can rewrite the dot product between mean embeddings per strata in terms of the
distance between them:

L(x, y, f̂1) =Ez

[
∑

z′∈SS(z)

p(z′|S(z)) ·
(1

2
‖Ez[ f̂1(x)]−Ez′ [ f̂1(x)]‖2 − 1

)

+Ex∼Pz

[
log

K

∑
i=1

exp
(

∑
z′∈Si

p(z′|Si) f̂1(x)Ez′ [ f̂1(x)]
)]]

.

We can write ‖Ez[ f̂1(x)]−Ez′ [ f̂1(x)]‖ in the above expression as δ( f̂1, z, z′), which we
have analyzed:

L(x, y, f̂1) =Ez

[
∑

z′∈SS(z)

p(z′|S(z)) ·
(1

2
δ( f̂1, z, z′)2 − 1

)

+Ex∼Pz

[
log

K

∑
i=1

exp
(

∑
z′∈Si

p(z′|Si) f̂1(x)Ez′ [ f̂1(x)]
)]]

.

From our previous proof, there exists λ > 0 such that this is at most

L(x, y, f̂1) ≤Ez

[
∑

z′∈SS(z)

p(z′|S(z)) ·
(1

2
δ( f̂1, z, z′)2 − 1

)

+ log
( K

∑
i=1

exp( ∑
z′∈Si

p(z′|Si)λEz[ f̂1(x)]Ez′ [ f̂1(x)])
)]

=Ez

[
∑

z′∈SS(z)

p(z′|S(z)) ·
(1

2
δ( f̂1, z, z′)2 − 1

)

+ log
( K

∑
i=1

exp
(

∑
z′∈Si

p(z′|Si)
(
− λ

2
‖Ez[ f̂1(x)]−Ez′ [ f̂1(x)]‖2 + λ

)))]
.

We can write each weighted summation over p(z′|S(z)) and p(z′|Si) as an expectation
and use the definition of δ( f̂1, z, z′) to obtain our desired bound.

Appendix E. Additional Experimental Details

Appendix E.1. Datasets

We first describe all the datasets in more detail:

• CIFAR10, CIFAR100, and MNIST are all the standard computer vision datasets.
• CIFAR10-Coarse consists of two superclasses: animals (dog, cat, deer, horse, frog,

bird) and vehicles (car, truck, plane, boat).
• CIFAR100-Coarse consists of twenty superclasses. We artificially imbalance subclasses

to create CIFAR100-Coarse-U. For each superclass, we select one subclass to keep
all 500 points, select one subclass to subsample to 250 points, select one subclass to
subsample to 100 points, and select the remaining two to subsample to 50 points. We
use the original CIFAR100 class index to select which subclasses to subsample: the
subclass with the lowest original class index keeps all 500 points, the next subclass
keeps 250 points, etc.

• MNIST-Coarse consists of two superclasses: <5 and ≥5.
• Waterbirds [14] is a robustness dataset designed to evaluate the effects of spurious

correlations on model performance. The waterbirds dataset is constructed by cropping
out birds from photos in the Caltech-UCSD Birds dataset [43], and pasting them on
backgrounds from the Places dataset [44]. It consists of two categories: water birds and
land birds. The water birds are heavily correlated with water backgrounds and the

63



CSFM 2022, 3, 4

land birds with land backgrounds, but 5% of the water birds are on land backgrounds,
and 5% of the land birds are on water backgrounds. These form the (imbalanced)
hidden strata.

• ISIC is a public skin cancer dataset for classifying skin lesions [15] as malignant or be-
nign. 48% of the benign images contain a colored patch, which form the hidden strata.

• CelebA is an image dataset commonly used as a robustness benchmark [14,16]. The
task is blonde/not blonde classification. Only 6% of blonde faces are male, which
creates a rare stratum in the blonde class.

Appendix E.2. Hyperparameters

For all model quality experiments for Lspread, we first fixed τ = 0.5 and swept
α ∈ [0.16, 0.25, 0.33, 0.5, 0.67]. We then took the two best-performing values and swept
τ ∈ [0.1, 0.3, 0.5, 0.7, 0.9]. For LSC and LSS, we swept τ ∈ [0.1, 0.3, 0.5, 0.7, 0.9]. Final
hyperparameter values for (τ, α) for Lspread were (0.9, 0.67) for CIFAR10, (0.5, 0.16) for
CIFAR10-coarse, (0.5, 0.33) for CIFAR100, (0.5, 0.25) for CIFAR100-Coarse, (0.5, 0.25) for
CIFAR100-Coarse-U, (0.5, 0.5) for MNIST, (0.5, 0.5) for MNIST-coarse, (0.5, 0.5) for ISIC,
and (0.5, 0.5) for waterbirds.

For coarse-to-fine transfer learning, we fixed τ = 0.5 for all losses and swept α ∈
[0.16, 0.25, 0.33, 0.5, 0.67]. Final hyperparameter values for α were 0.25 for CIFAR10-Coarse,
0.25 for CIFAR100-Coarse, 0.25 for CIFAR100-Coarse-U, and 0.5 for MNIST-Coarse.

Appendix E.3. Applications

We describe additional experimental details for the applications.

Appendix E.3.1. Robustness Against Worst-Group Performance

We follow the evaluation of [5]. First, we train a model on the standard class labels. We
evaluate different loss functions for this step, including Lspread, LSC, and the cross entropy
loss LCE. Then we project embeddings of the training set using a UMAP projection [45], and
cluster points to discover unlabeled subgroups. Finally, we use the unlabeled subgroups in
a Group-DRO algorithm to optimize worst-group robustness [14].

Appendix E.3.2. Robustness Against Noise

We use the same training setup as we use to evaluate model quality, and introduce
symmetric noise into the labels for the contrastive loss head. We train the cross entropy
head with a fraction of the full training set. In Section 5.3, we report results from training
with 20% labels to cross entropy. We report additional levels in Appendix F.

We detect noisy labels with a simple geometric heuristic: for each point, we compute
the cosine similarity between the embedding of the point and the center of all the other
points in the batch that have the same class. We compare this similarity value to the average
cosine similarity with points in the batch from every other class, and rank the points by the
difference between these two values. Points with incorrect labels have a small difference
between these two values (they appear to be small strata, so they are far away from points
of the same class). Given the noise level ε as an input, we rank the points by this heuristic
and mark the ε fraction of the batch with the smallest scores as noisy. We then correct their
labels by adopting the label of the closest cluster center.

Appendix E.3.3. Minimal Coreset Construction

We use the publicly-available evaluation framework for coresets from [18] (https://
github.com/mtoneva/example_forgetting, accessed on 1 October 2021). We use the official
repository from [19] (https://github.com/mansheej/data_diet, accessed on 1 October 2021)
to recreate their coreset algorithms.
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Our coreset algorithm proceeds in two parts. First, we give each point a difficulty
rating based on how likely we are to classify it correctly under partial training. Then we
subsample the easiest points to construct minimal coresets.

First, we mirror the set up from our thought experiment and train with Lspread on
random samples of t% of the CIFAR10 training set, taking three random samples for each of
t ∈ [10, 20, 50] (and we train the cross entropy head with 1% labeled data). For each run, we
record which points are classified correctly by the cross entropy head at the end of training,
and bucket points the training set by how often the point was correctly classified. To
construct a coreset of size t%, we iteratively remove points from the largest bucket in each
class. Our strategy removes easy examples first from the largest coresets, but maintains a
set of easy examples in the smallest coresets.

Appendix F. Additional Experimental Results

In this section, we report three sets of additional experimental results: the performance
of using Lattract on its own to train models, sample complexity of Lspread compared to LSC,
and additional noisy label results (including a bonus de-noising algorithm).

Appendix F.1. Performance of Lattract

In an early iteration of this project, we experienced success with using Lattract on its
own to train models, before realizing the benefits of adding in an additional term to prevent
class collapse. As an ablation, we report on the performance of using Lattract on its own
in Table A2. Lattract can outperform LSC, but Lspread outperforms both. We do not report
the results here, but Lattract also performs significantly worse than LSC on downstream
applications, since it more direclty encourages class collapse.

Table A2. Performance of Lspread compared to LSC and using Lattract on its own. Best in bold.

End Model Perf.

Dataset LSS LSC Lattract Lspread

CIFAR10 89.7 90.9 91.3 91.5
CIFAR100 68.0 67.5 68.9 69.1

Appendix F.2. Sample Complexity

Figure A1 shows the performance of training ViT models with various amounts
of labeled data for Lspread, LSC, and LSS. In these experiments, we train the cross en-
tropy head with 1% labeled data to isolate the effect of training data on the contrastive
losses themselves.

Lspread outperforms LSC and LSS throughout. At 10% labeled data, Lspread outper-
forms LSS by 13.9 points, and outperforms LSC by 0.5 points. By 100% labeled data (for
the contrastive head), Lspread outperforms LSS by 25.4 points, and outperforms LSC by
10.3 points.
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Figure A1. Performance of training ViT with Lspread compared to training with LSC and LSS on
CIFAR10 at various amounts of labeled data. Lspread outperforms the baselines at each point. The
cross entropy head here is trained with 1% labeled data to isolate the effect of training data on the
contrastive losses.

Appendix F.3. Noisy Labels

In Section 5.3, we reported results from training the contrastive loss head with noisy
labels and the cross entropy loss with clean labels from 20% of the training data.

In this section, we first discuss a de-noising algorithm inspired by [23] that we ini-
tially developed to correct for noisy labels, but that we did not observe strong empirical
results from. We hope that reporting this result inspires future work into improving
contrastive learning.

We then report additional results with larger amounts of training data for the cross
entropy head.

Appendix F.3.1. Debiasing Noisy Contrastive Loss

First, we consider the triplet loss and show how to debias it in expectation under noise.
Then we present an extension to supervised contrastive loss.

Noise-Aware Triplet Loss

Consider the triplet loss:

Ltriplet = Ex∼P ,x+∼p+(·|x),
x−∼p−(·|x)

[
− log

exp(σ(x, x+))
exp(σ(x, x+)) + exp(σ(x, x−))

]
. (A7)

Now suppose that we do not have access to true labels but instead have noisy labels
denoted by the weak classifier ỹ := h̃(x). We adopt a simple model of symmetric noise
where p̃ = Pr(noisy label is correct).

We use ỹ to construct P̃+ and P̃− as p(x+|h̃(x) = h̃(x+)) and p(x−|h̃(x) �= h̃(x−)).
For simplicity, we start by looking at how the triplet loss in (A7) is impacted when noise is
not addressed in the binary setting. Define Ltriplet

noisy as Ltriplet used with P̃+ and P̃−.

Lemma A3. When class-conditional noise is uncorrected, Lnoisy
triplet is equivalent to
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( p̃3 + (1 − p̃)3)Ltriplet + p̃(1 − p̃)E x∼P
x+1 ,x+2 ∼p+(·|x)

[
− log

exp(σ(x, x+1 ))

exp(σ(x, x+1 )) + exp(σ(x, x+2 ))

]

+ p̃(1 − p̃)E x∼P
x−1 ,x−2 ∼p−(·|x)

[
− log

exp(σ(x, x−1 ))

exp(σ(x, x−1 )) + exp(σ(x, x−2 ))

]

+ p̃(1 − p̃)E x∼P
x+∼p+(·|x)
x−∼p−(·|x)

[
− log

exp(σ(x, x−))
exp(σ(x, x+)) + exp(σ(x, x−))

]
.

Proof. We split Lnoisy
triplet depending on if the noisy positive and negative pairs are truly

positive and negative.

Lnoisy
triplet = E x∼P

x̃+∼ p̃+(·|x)
x̃−∼ p̃−(·|x)

[
− log

exp(σ(x, x̃+))
exp(σ(x, x̃+)) + exp(σ(x, x̃−))

]

= p(h(x) = h(x̃+), h(x) �= h(x̃−))E x∼P
x+∼p+(·|x)
x−∼p−(·|x)

[
− log

exp(σ(x, x+))
exp(σ(x, x+)) + exp(σ(x, x−))

]

+ p(h(x) = h(x̃+), h(x) = h(x̃−))E x∼P
x+

1 ,x+
2 ∼p+(·|x)

[
− log

exp(σ(x, x+1 ))

exp(σ(x, x+1 )) + exp(σ(x, x+2 ))

]

+ p(h(x) �= h(x̃+), h(x) �= h(x̃−))E x∼P
x−

1 ,x−
2 ∼p−(·|x)

[
− log

exp(σ(x, x−1 ))

exp(σ(x, x−1 )) + exp(σ(x, x−2 ))

]

+ p(h(x) �= h(x̃+), h(x) = h(x̃−))E x∼P
x+∼p+(·|x)
x−∼p−(·|x)

[
− log

exp(σ(x, x−))
exp(σ(x, x+)) + exp(σ(x, x−))

]
.

Define p̃ = p(noisy label is correct). Note that

p(h(x) = h(x̃+), h(x) �= h(x̃−)) = p̃3 + (1 − p̃)3,

(i.e., all three points are correct or all reversed, such that their relative pairings are
correct). In addition, the other three probabilities above are all equal to p̃(1 − p̃).

We now show that there exists a weighted loss function that in expectation equals
Ltriplet.

Lemma A4. Define

L̃triplet = E x∼P ,
x̃+1 ,x̃+2 ∼P̃+(·|x)
x̃−1 ,x̃−2 ∼P̃−(·|x)

[
− w+σ(x, x̃+1 ) + w−σ(x, x̃−1 )

+ w1 log
(

exp
(

σ(x, x̃+1 )
)
+ exp

(
σ(x, x̃−1 )

))
− w2 log

(
(exp(σ(x, x̃+1 )) + exp(σ(x, x̃+2 ))) · (exp(σ(x, x̃−1 )) + exp(σ(x, x̃−2 )))

)]
,

where
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w+ =
p̃2 + (1 − p̃)2

(2p̃ − 1)2 w− =
2p̃(1 − p̃)
(2p̃ − 1)2 w1 =

p̃2 + (1 − p̃)2

(2p̃ − 1)2 w2 =
p̃(1 − p̃)
(2p̃ − 1)2 .

Then, E
[

L̃triplet

]
= Ltriplet.

Proof. We evaluate E
[
−w1σ(x, x̃+1 ) + w2σ(x, x̃−1 )

]
and the other terms separately. Using

the same probabilities as computed in Lemma A3,

E
[
−w1σ(x, x̃+1 ) + w2σ(x, x̃−1 )

]
= −( p̃2 + (1 − p̃)2)w1E

[
σ(x, x+1 )

]
− 2p̃(1 − p̃)w1E

[
σ(x, x−1 )

]
+ ( p̃2 + (1 − p̃)2)w2E

[
σ(x, x−1 )

]
+ 2p̃(1 − p̃)w2E

[
σ(x, x+1 )

]
= −E

[
σ(x, x+1 )

]
.

We evaluate the remaining terms:

E

[
w3 log

(
exp

(
σ(x, x̃+1 )

)
+ exp

(
σ(x, x̃−1 )

))]
=

( p̃2 + (1 − p̃)2)w3E
[
log

(
exp

(
σ(x, x+1 )

)
+ exp

(
σ(x, x−1 )

))]
+ p̃(1 − p̃)w3E

[
log

(
(exp(σ(x, x̃+1 )) + exp(σ(x, x̃+2 ))) · (exp(σ(x, x̃−1 )) + exp(σ(x, x̃−2 )))

)]
.

and

E

[
w4 log

(
exp

(
σ(x, x̃+1 )

)
+ exp

(
σ(x, x̃+2 )

))]
+E

[
w4 log

(
exp

(
σ(x, x̃−1 )

)
+ exp

(
σ(x, x̃−2 )

))]
=

( p̃2 + (1 − p̃)2)w4E
[
log

(
exp

(
σ(x, x+1 )

)
+ exp

(
σ(x, x+2 )

))]
+ 4p̃(1 − p̃)w4E

[
log

(
exp

(
σ(x, x+1 )

)
+ exp

(
σ(x, x−1 )

))]
+ ((1 − p̃)2 + p̃2)w4E

[
log

(
exp

(
σ(x, x−1 )

)
+ exp

(
σ(x, x−2 )

))]
.

Examining the coefficients, we see that

( p̃2 + (1 − p̃)2)w3 − 4p̃(1 − p̃)w4 =
( p̃2 + (1 − p̃)2)2

(2p̃ − 1)2 − 4p̃2(1 − p̃)2

(2p̃ − 1)2 = 1

p̃(1 − p̃)w3 − ( p̃2 + (1 − p̃)2)w4 =
p̃(1 − p̃)( p̃2 + (1 − p̃)2)

(2p̃ − 1)2 − ( p̃2 + (1 − p̃)2) p̃(1 − p̃)
(2p̃ − 1)2 = 0,

which shows that only the term E

[
log

(
exp

(
σ(x, x+1 )

)
+ exp

(
σ(x, x−1 )

))]
persists. This

completes our proof.

We now show the general case for debiasing Lattract, which uses more negative samples.

Proposition A1. Define m = n + 1 (as the “batch size” in the denominator), and

L̃attract = E x∼P
{x̃+i }m

i=1
{x̃−j }m

j=1

[
− w+σ(x, x̃+1 ) + w−σ(x, x̃−1 ) (A8)

+
m

∑
k=0

wk log
( k

∑
i=1

exp
(

σ(x, x̃+i )
)
+

m−k

∑
j=1

exp
(

σ(x, x̃−j )
))]

. (A9)
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w+ and w− are defined in the same was as before. �w = {w0, . . . wm} ∈ Rm+1 is the solution to the
system Pw = e2 where e2 is the standard basis vector in Rm+1 where the 2nd index is 1 and all
others are 0. The i, jth element of P is Pij = p̃Qi,j + (1 − p̃)Qm−i,j where

Qi,j =

⎧⎨⎩∑
min{j,m−i}
k=0 ( j

k)(
m−j

i−j+k)(1 − p̃)i−j+2k p̃m+j−i−2k j ≤ i

∑
min{i,m−j}
k=0 (m−j

k )( j
j−i+k)(1 − p̃)j−i+2k p̃m−j+i−2k j > i

Then, E
[

L̃attract

]
= Lattract.

We do not present the proof for Proposition A1, but the steps are very similar to
the proof for the triplet loss case. We also note that a different form of E

[
L̃attract

]
must

be computed for the multi-class case, which we do not present here (but can be derived
through computation).

Observation 4. Note that the values of Qi,j have high variance in the noise rate as m increases.
Additionally, note that the number of terms in the summation of Qi,j increase combinatorially with
m. We found this de-noising algorithm very unstable as a result.

Appendix F.3.2. Additional Noisy Label Results

Now we report the performance of denoising algorithms with additional amounts
of labeled data for the cross entropy loss head. We also report the performance of using
L̃attract to debias noisy labels.

Figure A2 shows the results. Our geometric correction together with Lspread works
the most consistently. Using the geometric correction with LSC can be unreliable, since
LSC can learn memorize noisy labels early on in training. The expectation-based debiasing
algorithm L̃attract occasionally shows promise but is unreliable, and is very sensitive to
having the correct noise rate as an input.

Figure A2. Performance of models under various amounts of label noise for the contrastive loss head,
and various amounts of clean training data for the cross entropy loss.
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Abstract: Detecting defects, especially when they are small in the early manufacturing stages, is
critical to achieving a high yield in industrial applications. While numerous modern deep learning
models can improve detection performance, they become less effective in detecting small defects in
practical applications due to the scarcity of labeled data and significant class imbalance in multiple
dimensions. In this work, we propose a distribution-aware pseudo labeling method (DAP-SDD) to
detect small defects accurately while using limited labeled data effectively. Specifically, we apply
bootstrapping on limited labeled data and then utilize the approximated label distribution to guide
pseudo label propagation. Moreover, we propose to use the t-distribution confidence interval for
threshold setting to generate more pseudo labels with high confidence. DAP-SDD also incorporates
data augmentation to enhance the model’s performance and robustness. We conduct extensive
experiments on various datasets to validate the proposed method. Our evaluation results show that,
overall, our proposed method requires less than 10% of labeled data to achieve comparable results of
using a fully-labeled (100%) dataset and outperforms the state-of-the-art methods. For a dataset of
wafer images, our proposed model can achieve above 0.93 of AP (average precision) with only four
labeled images (i.e., 2% of labeled data).

Keywords: pseudo labeling; small defect detection; t-distribution; threshold setting

1. Introduction

In the semiconductor industry, detecting small defects at the early stages of man-
ufacturing is crucial for improving yield and saving costs. For example, as wafers are
processed in batches or lots, malfunctioning tools or suboptimal operations may result
in whole batches of wafers suffering mass yield loss or even being discarded [1,2]. If
we can detect anomalies early, tool issues or operation problems can be fixed quickly
before more batches of wafers travel through malfunctioning tools or undergo unnecessary
value-adding manufacturing processes. Small defects on wafer images usually indicate
early-phase tool malfunctions or improper operations. However, due to the high variance
of working conditions (e.g., position, orientation, illumination) and complex calibration
procedures [2], traditional inspection tools lack the flexibility to detect various defects and
suffer from poor detection performance, especially for small and dim defects.

In recent years, numerous deep learning models for object detection have been pro-
posed, such as object detection models [3–6] and segmentation models [7–9] and have
demonstrated impressive improvements in detecting objects. However, they suffer from
a performance bottleneck on detecting small objects [10,11] due to several factors. First,
small objects have a limited number of pixels to represent information. Additionally, small
objects are scarce in the training dataset [10,12]. Furthermore, key features that can be
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used to distinguish small objects from a background or other categories are vulnerable or
even lost while going through deep layers of networks, such as convolution or pooling
layers [13]. Figure 1 presents examples of small defects we explore in this work, which
have these previously mentioned challenges. In these industrial inspection datasets, the
sizes of defects range from 3 × 3 to 31 × 31 pixels and smaller than 16 × 16 on average.
Moreover, there are usually fewer than four small defects in each image.

(a) Edge void defects (b) Arc-like defects (c) Dagm-1 (d) Dagm-2

Figure 1. Examples of small defects that we explored in this work. (a,b) are examples of in-house
wafer image datasets; (c,d) are examples of industrial optical inspection [14]. Due to confidentiality
reasons, the wafer images are artificially-created ones that approximate the real-world data for
demonstration purposes; we use the real-world dataset for model training and evaluation in this work.

Several studies proposed techniques such as multi-scale feature learning [15,16], scale
normalization [17,18], or introducing super-resolution networks [19,20] to address the
challenges of small object detection. However, these deep learning models require a
large number of labeled data for training, while only a limited number of labeled data is
available in practical applications. Meanwhile, manual labeling is inherently expensive,
time-consuming, and especially challenging and error-prone for small defects. To ease the
effort of acquiring a large number of labels, semi-supervised learning (SSL) is a natural
fit as SSL offers a promising paradigm that leverages unlabeled data to improve model
performance [21]. However, much of recent progress in SSL has focused on image classi-
fication tasks, such as [21–24]. In our case, it is vital to obtain accurate, pixel-level labels
to understand the number of dies impacted by the defect. Thus, we formalize the task of
detecting small defects as a segmentation problem.

There have been several approaches proposed for semi-supervised semantic segmen-
tation [25–28]. However, they are mostly consistency-regularization-based methods, which
enforce the network output to be invariant to the input perturbations [25–27]. Though
these methods have reported encouraging results, they become less effective for small
defects as the information contained in the few pixels of a small defect can be lost due to
perturbations of the input.

Pseudo labeling [29] is another SSL strategy to utilize the limited labeled data to predict
labels for unlabeled data, where the model is encouraged to produce high-confidence
predictions. While it is a simple heuristic and does not require augmentations, some prior
works suggest that pseudo labeling alone is not competitive as other SSL methods [30]. The
reason is due to poor network calibration, or threshold setting used in the conventional
pseudo labeling methods usually resulting in many incorrect pseudo labels, which in turn
leads to a poor generalization of a model [24]. In this work, we use incorrect pseudo labels
and noisy pseudo labels or noisy predictions in pseudo labeling interchangeably. Several
works propose to combine pseudo labeling with consistency training, such as [28,31].
However, these proposed methods are primarily for medium or large objects and are
often unsuitable for small defects. For example, PseudoSeg [28] uses multiple predictions
obtained from class activation map (CAM) [32] to calibrate pseudo labels. However, CAM
is ineffective in locating the target regions of small defects due to too few pixels contained in
small defects. In other words, CAM cannot provide multiple reliable predictions for pseudo
labels calibration, thus making PseudoSeg [28] less effective in detecting small defects.
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To address these challenges and limitations, we propose a distribution-aware pseudo
labeling method (DAP-SDD) to detect small defects precisely while effectively using lim-
ited labeled data. To the best of our knowledge, there is no existing method based on
distribution-aware pseudo labeling for a semantic segmentation model. Our key contribu-
tions are summarized as follows:

• We propose a distribution-aware pseudo labeling method for small defect detection
(DAP-SDD) that maximizes the use of the limited number of labels available. Bootstrap-
ping is applied on the limited available labels to obtain an approximate distribution of
the complete labels, effectively guiding the pseudo labeling propagation.

• We utilize the approximate distribution in conjunction with t-distribution confidence
interval and adaptive training strategies in our proposed threshold setting method,
thereby dynamically generating more pseudo labels with high confidence while re-
ducing confirmation bias.

• We conduct extensive experiments on various datasets to validate the proposed
method. The evaluation results demonstrate the effectiveness of our proposed ap-
proach that outperforms the state-of-the-art techniques.

2. Related Work

Small Object Detection. In recent years, numerous deep learning models such
as [3–6] have been proposed and demonstrated impressive progress on detection per-
formance. However, these models focus on tuning for detecting general objects, mostly of
medium or large size, thus suffering from a performance bottleneck for small object detec-
tion. There are several approaches proposed to address the challenges of detecting small
objects. For example, Kisantal et al. [12] applied data augmentation techniques to increase
the number of small objects to improve the detection performance of the model. The au-
thors of [15,16,33] used a multi-scale feature pyramid and deconvolution layers to improve
detection performance on small and large objects. SNIP [17] proposed scale normalization
and [34] used a dilated convolution network to improve the performance of detecting small
objects. These approaches aimed to mitigate the imbalanced distribution of small objects
from conventional object sizes. However, they still require a substantial amount of labeled
data for training, which is not viable when limited labeled data are available.

Semi-supervised Semantic Segmentation. There are two common strategies used in
SSL: consistency regularization and entropy minimization. In consistency regularization-
based methods, the prediction is enforced to be consistent when using data augmentation
for input images [25], perturbation for embedding features [26], or different networks [35].
While these methods reported impressive detection performance, they become less effec-
tive for small defects because of a limited number of pixels in small objects, which could
be ignored or even lost when the input or embedding features are perturbed in consis-
tency regularization-based methods. In this way, the model fails to learn key features to
distinguish small defects from the background or other categories. On the other hand, en-
tropy minimization encourages a model to predict low-entropy outputs for unlabeled data.
Pseudo labeling [29] is one of the implicit entropy minimization methods [36]. Pseudo la-
beling is usually used with a high confidence threshold setting to reduce the introduction of
noisy predictions. With more high confidence information incorporated, the model would
learn to minimize output entropy better. However, due to suboptimal threshold setting
mechanisms in the conventional pseudo labeling methods [24], some prior works suggest
pseudo labeling on its own is not competitive as other SSL methods [30]. Ref. [28] combines
consistency regularization with pseudo labeling to improve model performance. However,
it still requires consistency regularization, which is ineffectual for small defects. Our de-
sign of pseudo labels is inspired by recent SSL-based image classification works [21–23],
which incorporated distribution alignment to generate high confidence pseudo labels for
unlabeled data. While these approaches require data augmentation to generate multiple
class distributions for distribution alignment or comparison, our method does not require
data augmentation during pseudo labeling. In addition to these two main categories of SSL
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methods, several GAN-based models are proposed. For example, Souly et al. [37] generates
additional training data via GAN to alleviate the lack of labeled data. Hung et al. [38], on
the other hand, uses an adversarial network to learn a discriminator between the ground
truth and the prediction to generate a confidence map. Unlike GAN-based models, which
require adversarial networks to generate additional data, our method directly generates
labels via proper threshold setting without introducing extra data.

3. Methodology

Figure 2 depicts an overview of our proposed method: distribution-aware pseudo
labeling for small defect detection (DAP-SDD).

Figure 2. An overview of our proposed distribution-aware pseudo labeling for small defect detection
(DAP-SDD). We first use data augmentation techniques to leverage the limited labeled data for
training in Step 1 (green dash box). Then, we use the trained model to generate initial pseudo
labels for unlabeled data. We also apply bootstrapping for the limited labels to obtain approximate
distribution with statistics such as that of the whole labeled dataset. Then, we use it to guide the
threshold setting during pseudo labeling propagation in Step 2 (orange dash box). To achieve better
detection performance from our model, we update pseudo labels for unlabeled data iteratively.
Once the detection performance remains or starts to degrade, we apply the warm restart and mixup
augmentation for both labeled data and pseudo labeled data in Step 3 (purple dash box). This step is
to overcome confirmation bias [39] and overfitting, thereby improving model performance further.

3.1. Leverage Labeled Data

Data augmentation can usually help improve detection performance, and there are
several commonly used augmentation techniques we could employ, such as random crop,
rotation, horizontal flip, color jittering, mixup, etc. [28,40]. However, these commonly-used
techniques become incompetent in improving model performance when limited labels
are available, e.g., less than 5% of the fully-labeled dataset. Inspired by augmentation
techniques proposed in [12,41], we rotate images by 0, 90, 180, 270 degrees to quadruple
labeled data. Unlike augmenting images by directly copy-pasting multiple times as in [12],
our variants of original data not only enrich the labeled data but also can help prevent the
model from becoming biased when the amount of pseudo labeled data increases during
pseudo label propagation.

3.2. Distribution-Aware Pseudo Labeling

In pseudo labeling methods, one common way is to convert model predictions to
hard pseudo labels directly. To illustrate this, let Dl = {x(i)l , y(i)l } be a labeled dataset and

Du = {x(i)u } be a unlabeled dataset. We first train a model fθ on Dl and use the trained
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model to infer on Du. Let us further denote p(x(i)u ) as the prediction of unlabeled sample
x(i)u , then the pseudo label for x(i)u can be denoted as:

ỹ(i)u = 1[p(x(i)u ) > γ], (1)

where γ ∈ (0, 1) is a threshold to generate pseudo labels. Note that, for a semantic
segmentation model such as ours, p(x(i)u ) is a probability map and ỹ(i)u is a binary mask with
pseudo labels. As Equation (1) shows, threshold setting is critical to generate reliable pseudo
labels. However, determining an optimal threshold is difficult, and a sub-optimal threshold
value can introduce many incorrect pseudo labels, which degrades model performance.
Therefore, we propose a novel threshold setting method, which can generate more pseudo
labels with high confidence without bringing many noisy predictions.

3.2.1. Bootstrap Labels

Assuming the distribution of limited labeled data approximates that of fully labeled
data, we first apply bootstrapping, a resampling technique that estimates summary statistics
(e.g., mean and standard deviation) on a population by randomly sampling a dataset with
replacement. The metric we employed in bootstrapping is label_pixel_ratio, which is
denoted as:

label_pixel_ratio =
label_pixels

image_pixels
, (2)

where label_pixels is the number of pixels of one label, and the image_pixels is the number
of pixels of the image in which the label locates. For example, if the number of pixels of
one label is 256, and the image size is 2048 × 2048, then the label_pixel_ratio for this label
is 256/(2048 × 2048) = 0.00006104.

3.2.2. Distribution-Aware Pseudo Label Threshold Setting

Once we obtain the mean of label_pixel_ratio (μ) in the previous step, we calculate the
number (k) of pixels of predictions on Dl (p(Dl)), and the top k of sorted p(Dl) are pixels
for labels. In other words, the threshold for Dl is the k-th value in p(Dl), which we use to
set the threshold for unlabeled data Du as well. This mechanism works as both labeled and
unlabeled data are supposed to be sampled from the same distribution of fully labeled data
and share the same mean of label distribution. We also use the same trained model to infer
on them. The k at a specific iteration n with the predictions of pn(Dl) is given by:

kn,base = �N (pn(Dl)) ∗ μ�, (3)

where N (pn(Dl)) is used to obtain the total number of pixels in pn(Dl). The raw outcome
from this equation is a real number, so we round it to the nearest integer to obtain kn,base.
Then, the corresponding kn,base-th value in pn(Dl) can be used for threshold setting.

Using Equation (3), we can set a quite reasonable initial threshold as the calculation
utilizes the mean of estimated label distribution. However, as the pseudo labeling model
is encouraged to produce more high-confidence (i.e., low-entropy) predictions as training
continues, this method alone may suffer from an insufficient number of proposed pseudo
labels. To incorporate more pseudo labels with high-confidence predictions while reducing
the possibility of introducing noisy predictions, we use a confidence interval and gradually
increase it. An increasing confidence interval allows incorporating a higher number of con-
fident predictions as high-confidence pseudo labels. Specifically, we use the t-distribution
to find a given 100(1 − α)% confidence interval (CI), which can be obtained via:

CI = μ ± tα/2,m−1
s√
m

, (4)

where μ and s are the estimated mean and sample standard deviation of label_pixel_ratio,
respectively. m represents the number of labels and t is a critical value in t-distribution
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table to obtain P(T ≤ t) = 1 − α/2 at the degrees freedom of m − 1. The lower bound
of the confidence interval (CIlower) is μ − tα/2,m−1

s√
m , whereas the upper bound (CIupper)

is μ + tα/2,m−1
s√
m . We use the t-distribution in our proposed method because of the lack

of labeled samples available. In such a case, the estimated standard deviation tends to
be farther from the real standard deviation, and t-distribution fits better than the normal
distribution. We also present the comparison results of them in the later section of ablation
studies. Once we obtain the confidence interval, we can map them to find the lower and
upper bound of k via Equation (3) by replacing the μ with CIlower or CIupper. Then, we can
use the kn,ci-th value of pn(Dl), with a given 100(1 − αn)% confidence level to obtain the
threshold γn at a specific iteration n:

γn = K(pn(Dl), �N (pn(Dl)) ∗ tαn/2,m−1
2s√

m
∗ νn�), (5)

where K(pn, k) is a function to find k-th value in pn and νn is an adjustment factor used to
slow down or speed up propagation during training.

In addition to using the t-distribution to calculate the confidence interval for setting
thresholds, we also employ another intuitive method for selecting high confidence pseudo
labels. Specifically, we find the threshold that produces the best performance on labeled
data. We then use that threshold to generate initial pseudo labels for unlabeled data. To
illustrate this, let Pl,0 denote the precision obtained from the labeled data, which can be
considered as a confidence level for pseudo labels since the precision indicates how many
predictions out of all predictions are true small defects. We can increase the confidence
level with a moving step τ as the training goes on. Along with the kn,base via Equation (3),
we can obtain the threshold γn at a specific iteration n by using:

γn = K(pn(Dl), �N (pn(Dl)) ∗ μ ∗ (Pl,0 + νn ∗ τ)�). (6)

Overall, the method utilizing t-distribution confidence interval Equation (5) performs
better than the intuitive method Equation (6), and their comparison results are presented
in the later section of ablation studies.

3.2.3. Training Strategies

During training, we adjust the moving step of pseudo labeling propagation to set
threshold adaptively. To accomplish this, we keep monitoring training and use the model
evaluation results (e.g., Precision, Recall, F1 score) on labeled data. For example, if the
monitored results show a decrease in both F1 score and recall but an increase in precision
(close to 1.0), it indicates the threshold is set too high to incorporate more confident pseudo
labels. In other words, the model can speed up the propagation and set the adjustment factor
ν to a bigger value so that the threshold will be set to a lower value, thereby incorporating
more high-confidence pseudo labels and vice versa. Another strategy we adopt during
training is a weighted moving average of thresholds. Due to the random combination of
training data batch, a model may temporarily suffer a significant performance decrease in
a certain iteration. A weighted moving average of thresholds can prevent such an outlier
threshold from resetting the threshold value that the model has learned to ensure more
stable pseudo labeling propagation.

Algorithm 1 presents the training procedure of our proposed distribution-aware
pseudo labeling. First, we use the labeled data to train a model fθ,0, and then use the
trained model to generate initial pseudo labels and obtain the initial precision Pl,0. During
the iterative pseudo labeling with the maximum number of iterations N, we calculate
thresholds γn for each iteration via Equations (5) or (6). Then, we evaluate the obtained
thresholds γn and the moving average threshold γn−1,ma on labeled data. The threshold
that yields better evaluation results (i.e., F1 Score) is selected. Meanwhile, by comparing
the evaluation results (Precision, Recall, F1 Score denoted as Pn, Rn, F1n, respectively) of
the current iteration with that of the previous iteration, we can obtain the adjustment
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factor νn to speed up or slow down pseudo label propagation. Moreover, we update the
moving average threshold for the next iteration. Next, we use the selected threshold γn
to generate pseudo labels for unlabeled data Du. We then combine the pseudo labeled
data Dp with labeled data Dl to retrain the model. We repeat these steps to update pseudo
labels iteratively to achieve better detection performance of the model. Once the detection
performance from the model reaches a certain threshold (e.g., F1 ≥ 0.85) but remains or
decreases beyond that, the warm restart and mixup augmentation will be applied on both
labeled data and pseudo labeled data to improve detection performance further.

Algorithm 1 Distribution-Aware Pseudo Labeling.

1: Train a model fθ,0 using labeled data Dl .
2: for n = 1, 2, . . . , N do
3: Obtain threshold γn
4: Pn, Rn, F1n, νn, γn ← E(Dl , γn, γn−1,ma)
5: γn,ma ← M(γn, γn−1, γn−2, α, β)
6: Dp,n ← Pseudo label Du using γn
7: D̃ ← Dl ∪ Dp,n
8: Train fθ,n using D̃.
9: fθ , Dp ← fθ,n, Dp,n

10: end for
11: return fθ , Dp

3.2.4. Loss Function

During pseudo labeling propagation, the loss function Lp incorporates labeled and
pseudo labeled data, which can be denoted as:

Lp = −
(

∑
Dl

L(yl , ŷl) + η ∑
Du

L(yp, ŷp)
)

, (7)

where yl is the ground truth labels, and yp represents pseudo labels. ŷl and ŷp denote the
predictions of labeled data and unlabeled data, respectively. L represents the cross-entropy
loss function. As the pseudo labeling progresses, the amount of pseudo labeled data will
increase accordingly. To avoid the model increasingly favoring pseudo labeled data over
the original labeled data, we add a weight η ∈ (0, 1) to adjust the impact from pseudo labels.
In practice, we can achieve this by repeatedly sampling or using the similar augmentation
techniques described in Section 3.1.

During the training process using mixup augmentation, we define a mixup loss
function Lm, which is given by:

Lm = −
N

∑
i=1

(
λL(y(i)a , ŷ(i)a ) + (1 − λ)L(y(i)b , ŷ(i)b )

)
, (8)

ya and yb are the original labels of the input images, and ŷa and ŷb are corresponding
predictions. N is the number of samples used for training. In the first step of leveraging
labeled data, N only includes the number of labeled data, while in the last step, both the
labeled and pseudo labeled data will be included. λ ∈ [0, 1] is used in mixup augmentation
for constructing virtual inputs and outputs [40]. Specifically, the mixup uses the following
rules to create virtual training examples:

x̃ = λ × xa + (1 − λ)× xb

ỹ = λ × ya + (1 − λ)× yb,

where (xa, ya) and (xb, yb) are two original inputs drawn at random from training batch,
λ ∈ [0, 1] and the x̃ and ỹ are constructed input and corresponding output.
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4. Results and Discussion

4.1. Datasets

We use an in-house dataset from the wafer inspection system (WIS) in our evaluation.
This dataset contains two types of small defects on wafer images: edge void and arc-like
defects. Each of them has 213 images: 173 for training and 40 for test. There are 618 labels
for edge void and 406 labels for arc-like, weak labels from the current system tool and
verified predictions from a trained model. The image size is 2048 × 2048, and we crop it
into 512 × 512 patches to fit into GPU memory.

We also evaluate our method on two public datasets: industrial optical inspection
dataset of DAGM 2007 [14] and tiny defect detection dataset for PCB [42]. We use Class
8 and Class 9 of DAGM as they fit into a small defect category (denoted as Dagm-1 and
Dagm-2). We split each class into two sets of 150 defective images in gray-scale for training
and testing. The image size is 512 × 512 in DAGM. The defects are labeled as ellipses, and
each image has one labeled defect.

On the other hand, the PCB dataset includes six types of tiny defects (missing hole,
mouse bite, open circuit, short, spur, and spurious copper), and each image may have
multiple defects. PCB contains 693 images with defects: 522 and 101 images for training
and test, respectively. The total number of defects is 2953. There are different sizes of
PCB images, and the average pixel size of an image is 2777 × 2138. We also crop it into
512 × 512 patches for training.

4.2. Evaluation Metrics

Intersection over Prediction (IoP). In this work, instead of using IoU (intersection
over union), we adopt IoP (intersection over prediction) [43] to overcome the issue shown
in Figure 1, where one weak label may contain multiple small defects or cover more area
than the true defect area. IoP is defined as the intersection area between ground truth and
prediction divided by the area of prediction. If the IoP of a prediction for a small defect is
greater than a given threshold (0.5 in this work), we count it as a true positive; otherwise,
we count it as a false positive. If one weak label contains multiple true positive predictions,
we only count it as one true positive.

Average Precision (AP), F1 Score. We use AP (average precision) and F1 Score to
evaluate the performance of small defect detection.

4.3. Experimental Settings and Parameters

In this work, we adopt a commonly-used segmentation model U-Net [8] in our pro-
posed method, which has been proven to be effective in medical image segmentation tasks,
such as detecting microcalcifications in mammograms [43,44]. Moreover, U-Net has a rela-
tively small size of model parameters, which is favorable in practical use. U-Net consists
of three downsampling blocks and three upsampling blocks with skip connections. Each
block has two convolution layers, and each of them is followed by batch normalization and
ReLU. As our proposed pseudo labeling strategy is not confined to a specific deep learning
model, it can be easily implemented in other deep neural networks. We will extend our
proposed techniques to other segmentation models in future work.

We use the Adam optimizer in the model training. The initial learning rate is set to
1 × 10−3 and gradually decreases during training. The adjustment factor νn is set to 1.1 to
speed up pseudo label propagation or set to 0.9 to slow down the propagation. The moving
average weights [α, β, (1 − α − β)] are set to [0.5, 0.3, 0.2] for the current iteration threshold
γn and thresholds of previous two iterations γn−1, γn−2, respectively. The t-distribution
confidence interval ranges from 0.5 to 0.995 with a moving step of 0.005.

4.4. Experiment Results

We first evaluate our proposed method on two different types of small defects on
wafer images (the WIS dataset). Figure 3 demonstrates the improvements brought by our
method over the supervised baseline. Overall, our proposed method can achieve above
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0.93 of AP for a different amount of labeled data available and obtain comparable results as
a fully-labeled (100%) dataset even when the labeled data ratio is 2% (four labeled images).
However, the detection performance of the supervised method decreases dramatically
when the labeled data size is limited. For instance, the AP reduces to below 0.6 when 2% of
labeled data is available.

Figure 3. Improvement over the supervised baseline on two small defects in the WIS dataset.

Figure 4 demonstrates the improvements by our method (solid lines) over the super-
vised baseline (dash lines) on the DAGM and PCB datasets. Similar to the results of the
WIS dataset, our proposed method can achieve comparative results of fully-labeled (100%)
when the labeled data ratio is 10% on different small defects in DAGM and PCB datasets.
The average precision (AP) by our method remains above 0.9 when only 5% of labeled
data are available while the AP by the supervised model degrades dramatically. Note that
in Figure 4, the values of PCB-average represent the average AP of six different types of
defects in the PCB datasets.

Figure 4. Improvements over the supervised baseline on small defects in the DAGM and PCB datasets.

We then compare our method with state-of-the-art semi-supervised semantic segmen-
tation methods. Table 1 shows the comparison results on the Edge Void defect dataset with
10% of labeled data. CCT [26] is a consistency regularization-based method. As shown
in Table 1, the CCT alone fails to recognize and locate small defects. CCT also provides a
way of training with offline pseudo labels. So, we use the pseudo labels generated from the
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first step of our method. As we can see, CCT+Pseudo improves the detection performance
as more pseudo labeled data are incorporated. However, the initial pseudo labels might
contain incorrect labels, which are not updated iteratively in CCT. Therefore, CCT+Pseudo
still presents relatively low detection performance. AdvSemSeg [38], however, uses an
adversarial network for semi-supervised semantic segmentation. The experiment results
show that AdvSemSeg performs better than CCT, which indicates adversarial network
can be a potential direction for improving small defect detection. However, due to limited
ground truth labels, AdvSemSeg does not perform well as reported in [38]. In self-training,
we exclude the labeled data and only use the initial pseudo labels as the supervisory signals
for unlabeled data. During self-training, instead of setting pseudo labels based on pixel
confidence score higher than 0.5 as in [45], we adopt the same threshold setting strategies
as our method to generate pseudo labels for self-taught training effectively. As shown in
Table 1, self-training shows significantly better AP and F1 scores than CCT and AdvSegSeg.
Overall, DAP-SDD achieves the highest AP and F1 scores. We attribute this to the fact that
ours also incorporates labeled data that contain useful prior knowledge.

Table 1. Comparison with state-of-the-art methods on the WIS dataset with 10% of labeled data.

Method
Edge void Arc-like

AP (%) F1 (%) AP (%) F1 (%)

CCT (Ouali et al.) - - - -
CCT+Pseudo (Ouali et al.) 70.75 69.80 71.09 72.13
AdvSemSeg (Hung et al.) 76.61 76.42 76.98 79.51
Self-training (Zoph et al.) 89.29 88.14 85.34 86.89
DAP-SDD (Ours) 97.29 96.64 94.99 91.38

In Figure 5, we present examples of predicted labels for small defects generated by
different methods. We can observe that all the evaluated models can generate labels for
relatively large defects, as shown in the first row of edge void defects and the third row of
arc-like defects. Compared to CCT+Pseudo or AdvSemSeg, which generate incomplete
labels or overfull labels, self-training and our proposed method obtain more accurate labels.
However, for the significantly tiny or dim defects, such as ones shown in the second row
and fourth row, most of these models suffer from missing detection while our method can
still detect them. Overall, our proposed method performs best regardless of the different
sizes of small defects.

Figure 5. Examples of predicted labels using different methods for edge void and arc-like defects
(marked in red) in the WIS dataset. From left to right, columns are defects, segmentation results using
CCT+Pseudo, AdvSemSeg, self-training, and DAP-SDD (ours), respectively.

82



CSFM 2022, 3, 5

The prediction results and comparison results with state-of-the-art methods on the
DAGM and PCB datasets are shown in Tables 2 and 3.

Table 2. Evaluation results (AP, %) on public datasets (DAGM, PCB) when different amounts of
labeled data are available. Total data amount (100%): DAGM (552), DAGM (150).

Data Amount

DAGM PCB

Dagm-1 Dagm-2
Missing

Hole
Mouse

Bite
Open

Circuit
Short Spur

Spurious
Copper

Average

100% 98.46 98.65 98.75 96.03 95.34 98.57 96.38 92.46 96.26
20% 99.14 97.26 98.54 94.71 96.45 94.03 97.19 96.27 96.20
10% 97.96 97.09 97.35 93.98 91.75 92.77 95.28 96.19 94.55
5% 96.15 97.41 97.13 89.10 86.07 89.92 91.95 96.98 91.86
2% 94.74 96.54 95.67 87.71 83.07 85.79 88.32 90.38 88.49

Table 3. Comparison with state-of-the-art methods on public datasets (DAGM, PCB), evaluation
metric: AP (%).

Data Amount

DAGM PCB

Dagm-1 Dagm-2
Missing

Hole
Mouse Bite

Open
Circuit

Short Spur
Spurious
Copper

Average

CCT [26] 69.55 66.07 63.81 57.84 55.72 56.39 63.61 63.67 62.08
CCT+Pseudo [26] 83.15 82.79 79.37 73.32 70.18 72.46 79.40 76.99 75.29
AdvSemSeg [38] 84.62 85.68 84.28 80.71 80.44 82.10 83.45 83.75 82.46
Self-training [45] 92.59 91.18 88.15 85.84 86.83 85.67 87.92 87.41 86.97
DAP-SDD (Ours) 97.96 97.09 97.35 93.98 91.75 92.77 95.28 96.19 94.55

Moreover, we present examples of predicted labels for small defects in the DAGM
(Figure 6) and PCB datasets (Figure 7) generated by different methods. As the results have
shown, our proposed method consistently outperforms the state-of-the-art semi-supervised
segmentation models on various datasets with various types of defects.

Figure 6. Examples of predicted labels using different methods on the DAGM dataset. The top
two rows show results for Dagm-1, while the bottom two rows show results for Dagm-2. The first
column shows defect images with original weak labels (marked in red color), and the remaining
columns are segmentation results using CCT+Pseudo, AdvSemSeg, self-training, and DAP-SDD
(ours), respectively.
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Figure 7. Examples of predicted labels using different methods on the PCB dataset. From top to
bottom, each row represents six types of defects in the PCB dataset: mouse bite, missing hole, open
circuit, short, spur, and spurious copper. The first column shows defect images with original weak
labels (marked in red color), and the remaining columns are segmentation results using CCT+Pseudo,
AdvSemSeg, self-training, and DAP-SDD (ours), respectively.

4.5. Ablation Studies

Contribution of components for performance improvement. Figure 8 demonstrates
how different components in our proposed method contribute to detection performance on
both in-house and public datasets. For a fair comparison, we use the same data augmenta-
tions in the supervised baseline and ours. Therefore, the results of the first step using only
labeled data are also supervised baseline. As shown in Figure 8, for the WIS dataset (solid
bars), the model using 20% of labeled data can achieve around 88% of AP, which is still
lower than our target (our real-world applications typically require AP of 90% or higher).
When we have 2% of labeled data available, the AP value decreases to 56%. In Step 2,
utilizing the proposed distribution-aware pseudo labeling method significantly improved
the detection performance for all cases, and cases with fewer labeled data benefit more.
For example, AP is improved from 56% to 92% when using 2% of labeled data. The re-
sults demonstrate that our proposed method can effectively leverage the information from
massive unlabeled data to improve detection performance. In the final step, warm restart
and mixup are employed to improve performance further. We obtain similar results on
public datasets shown in Figure 8 (bars with patterns). Overall, the proposed distribution-
aware pseudo labeling contributes most significantly to the detection performance and
the data augmentations we adopted in DAP-SDD are effective in enhancing the model’s
performance and robustness.
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Figure 8. Ablation studies on different factors that contribute to performance improvement.

Compare with more baselines. In our proposed DAP-SDD, we assume the distribu-
tion of proposed labels approximates the distribution of ground truth labels as training
proceeds. We use the Kullback–Leibler (KL) divergence to evaluate the differences in the
distribution of proposed labels compared with ground truth labels during training, which
is shown in Figure 9. The KL divergence is a commonly-used measurement for evaluating
how one probability distribution differs from the other reference distribution. We can
observe that: (a) t-dist vs. normal-dist: t-distribution (t-dist) performs better than a normal
distribution (normal-dist) because t-dist has heavier tails. Thus it is more suitable for
estimating the confidence interval (CI) when the sample size is limited as in our cases. For
a given CI range, normal-dist tends to incorporate more predictions than t-dist, which in
turn brings ‘too many’ noisy predictions for pseudo labels. As a result, the accumulated
noisy impact overwhelms that of original limited labels as training proceeds. (b) Adaptive
vs. fixed threshold: adaptive thresholding that combines Equation (3) and Equation (5) can
keep the model learning more useful information during training and outperforms the
fixed threshold obtained via Equation (3). (c) Equation (5) vs. Equation (6): Equation (6) is
more conservative in incorporating confident predictions than Equation (5) when using
the same moving step (0.005), and it requires more training epochs to reach the equivalent
results as Equation (5). (d) with vs. without ma: compared with the baseline without
moving average (ma) threshold, our method incorporates ma, which helps prevent outlier
thresholds (e.g., epochs 23 and 65) from resetting what the model has learned. In addition,
the corresponding detection performance and KL divergence at the same training epoch
(100th) of these baselines are shown in Table 4. As we can observe, DAP-SDD using the
t-distribution confidence interval and with moving average achieves the best detection
performance while having the smallest KL divergence.

Figure 9. KL divergence curves of various baselines.
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Table 4. Comparison of detection performance (AP, %) and KL divergence (same training epochs 100)
on various baselines.

Baseline Method AP (%) KL divergence

Normal distribution 66.52 2.3772
Fixed threshold Equation (3) 81.63 0.6528
DAP-SDD via Equation (6) 94.34 0.2288
DAP-SDD w/o ma 86.98 0.4181
DAP-SDD (t-dist, Equation (5), ma) 97.29 0.0127

5. Conclusions

In this work, we propose a distribution-aware pseudo labeling for small defect detec-
tion (DAP-SDD) when limited labeled data are available. We first applied bootstrapping
for the available labeled data to approximate the distribution of the whole labeled dataset.
Then, we used it to guide pseudo label propagation. Our proposed method incorporates
t-distribution confidence interval and adaptive training strategies, and thus can effectively
generate more pseudo labels with high confidence while reducing confirmation bias. The
extensive experimental evaluation on various datasets with various types of defects has
demonstrated that our proposed DAP-SDD consistently outperforms the state-of-the-art
techniques with above 0.9 of average precision and up to 0.99. Our in-depth analysis of the
ablation studies clearly shows how each component employed in our approach effectively
utilizes the limited labeled data.
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Abstract: Machine learning models perform face verification (FV) for a variety of highly conse-
quential applications, such as biometric authentication, face identification, and surveillance. Many
state-of-the-art FV systems suffer from unequal performance across demographic groups, which is
commonly overlooked by evaluation measures that do not assess population-specific performance.
Deployed systems with bias may result in serious harm against individuals or groups who experience
underperformance. We explore several fairness definitions and metrics, attempting to quantify bias in
Google’s FaceNet model. In addition to statistical fairness metrics, we analyze clustered face embed-
dings produced by the FV model. We link well-clustered embeddings (well-defined, dense clusters)
for a demographic group to biased model performance against that group. We present the intuition
that FV systems underperform on protected demographic groups because they are less sensitive to
differences between features within those groups, as evidenced by clustered embeddings. We show
how this performance discrepancy results from a combination of representation and aggregation bias.

Keywords: face verification; bias; fairness

1. Introduction

In light of increased reliance on ML in highly consequential applications such as
pretrial risk assessment [1,2], occupation classification [3,4], and money lending [5], there is
growing concern for the fairness of ML-powered systems [4,6–10]. Unequal performance
across individuals and groups subject to a system may have unintended negative conse-
quences for those who experience underperformance [6], potentially depriving them of
opportunities, resources, or even freedoms.

Face verification (FV) and face recognition (FR) technologies are widely deployed in
systems such as biometric authentication [11], face identification [12], and surveillance [13].
In FV, the input data are two face images and the classifications may be genuine (positive
class) or imposters (negative class) [8]. FV/FR typically use a similarity measure (often
cosine similarity) applied to a pair of face embeddings produced by the model [12]. There
has been recent interest in assessing bias via these face embeddings [10].

Figure 1 presents a low-dimensional depiction of face embeddings generated by
FaceNet [12], which clearly groups same-race and same-gender faces closely together,
indicating that the model learned to identify the similarities between same-race, same-
gender faces. Exploring the connection between embedded clusters of protected groups
and biased performance [10] is an open area of research.

In this paper, we (1) identify and quantify sources of bias in a pretrained FaceNet
model using statistical and cluster-based measures, and (2) analyze the connection between
cluster quality and biased performance.
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Figure 1. A two-dimensional t-SNE [14] visualization of Balanced Faces in the Wild (BFW) [8] embed-
dings, colored by race and gender. Clusters roughly correspond to race and gender, with varied densities
(e.g., Asian clusters are tighter than White clusters). Note that t-SNE embeddings are not completely
representative of actual relationships due to information loss during dimensionality reduction.

2. Related Work

2.1. Sources of Bias

We define bias in an ML system as follows. For a more complete discussion of sources
of bias, see the work by Suresh and Guttag [15].

Historical Bias arises when injustice in the world conflicts with values we want
encoded in a model. Since systemic injustice creates patterns reflected in data, historical
bias can exist despite perfect sampling and representation.

Representation Bias arises when training data under-represent a subset of the target
population and the model fails to optimize for the under-represented group(s).

Measurement Bias arises when data are a noisy proxy for the information we desire,
e.g., in FV, camera quality and discretized race categories contribute to measurement bias.

Aggregation Bias arises when inappropriately using a “one-size-fits-all” model on
distinct populations, as a single model may not generalize well to all subgroups.

Evaluation Bias arises when the evaluation dataset is not representative of the target
population. An evaluation may purport good performance, but miss a disparity for
populations under-represented in the benchmark dataset.

Deployment Bias arises from inconsistency between the problem that a model is
intended to solve and how it is used to make decisions in practice, as there is no guarantee
that measured performance and fairness will persist.

2.2. Statistical Fairness Definitions

We first identify attributes of the data for which the system must perform fairly. An
attribute may be any qualitative or quantitative descriptor of the data, such as name,
gender, or image quality for a face image. A “sensitive” attribute defines a mapping to
advantaged and disadvantaged groups [6], breaking a dataset into “unprotected” and
“protected” groups. For example, if race is the sensitive attribute, the dataset is broken into
an unprotected group, White faces, and protected groups, other-race faces.
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We define fairness according to the equal metrics criteria [6,15–18]: a fair model yields
similar performance metric results for protected and unprotected subgroups. Other fairness
definitions include group-independent predictions [6,15,19,20] (a fair model’s decision is
not influenced by group membership with respect to a sensitive attribute), individual
fairness [6,15,21–23] (individuals who are similar with respect to their attributes have
similar outcomes), and causal fairness [6,15,24–26] (developing requirements on a causal
graph that links data/attributes to outcomes).

We quantify fairness according to the equal metrics definition using statistical fairness
metrics (see Table 1). The metrics use the definitions represented by the confusion matrix
in Table 3 of Verma and Rubin [7].

Table 1. Selected statistical fairness metrics. Notation [7,16]: A—sensitive attribute, Y—actual
classification, d—predicted classification, and S—similarity score. * PPV/NPV: Positive (Nega-
tive) Predictive Value.

Metric Description Definition References

Overall Accuracy Equality Equal prediction accuracy
across protected and unpro-
tected groups

P(d = Y|A1) =
P(d = Y|A2) = · · · =
P(d = Y|AN)

Berk et al. [27]
Mitchell et al. [6]
Verma and Rubin [7]

Predictive Equality Equal FPR across protected
and unprotected groups

P(d = 1|Y = 0, A1) =
P(d = 1|Y = 0, A2) = · · · =
P(d = 1|Y = 0, AN)

Chouldechova [17]
Corbett-Davies et al. [18]
Mitchell et al. [6]
Verma and Rubin [7]

Equal Opportunity Equal FNR across protected
and unprotected groups

P(d = 0|Y = 1, A1) =
P(d = 0|Y = 1, A2) = · · · =
P(d = 0|Y = 1, AN)

Chouldechova [17]
Hardt et al. [16]
Kusner et al. [24]
Mitchell et al. [6]
Verma and Rubin [7]

Conditional Use Accuracy
Equality

Equal PPV and NPV * across
protected and unprotected
groups

P(Y = 1|d = 1, A1) =
P(Y = 1|d = 1, A2) = · · · =
P(Y = 1|d = 1, AN)
AND
P(Y = 0|d = 0, A1) =
P(Y = 0|d = 0, A2) = · · · =
P(Y = 0|d = 0, AN)

Berk et al. [27]
Mitchell et al. [6]
Verma and Rubin [7]

Balance for the Positive
Class

Equal avg. score S for the posi-
tive class across protected and
unprotected groups

AVG(Y = 1|A1) =
AVG(Y = 1|A2) = · · · =
AVG(Y = 1|AN)

Kleinberg et al. [28]
Mitchell et al. [6]
Verma and Rubin [7]

Balance for the Negative
Class

Equal avg. score S for the neg-
ative class across protected
and unprotected groups

AVG(Y = 0|A1) =
AVG(Y = 0|A2) = · · · =
AVG(Y = 0|AN)

Kleinberg et al. [28]
Mitchell et al. [6]
Verma and Rubin [7]

2.3. Bias in the Embedding Space

Instead of solely considering model performance across protected and unprotected
groups, Gluge et al. [10] assess bias in FV models by investigating the face embeddings
produced by the model. The intuition behind this approach is that the “other-race effect”
observed in human FV, where people are able to distinguish between same-race faces better
than other-race faces, may have an analog in machine FV that is observable in how a model
clusters face embeddings according to sensitive attributes such as race, gender, or age.

Gluge et al. [10] attempt to measure bias with respect to a sensitive attribute by quanti-
fying how well embeddings are clustered according to that attribute. They hypothesize that
a “good” clustering of embeddings (i.e., well-separated clusters) into race, gender, or age
groups may indicate that the model is very aware of race, gender, or age differences, allow-
ing for discrimination based on the respective attribute. They investigate the connection
between quality of clustering and bias using cluster validation measures.

Their results do not support a connection between well-defined sensitive attribute
clusters and bias; rather, they suggest that a worse clustering of embeddings into sensitive
attribute groups yields biased performance (i.e., unequal recognition rates across groups).
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They conjecture that between-cluster separation (i.e., how well race, gender, or age groups
are separated from each other) may be less important than the within-cluster distribution of
embeddings (i.e., how well each individual race, gender, or age group is clustered), intuiting
that a cluster’s density indicates how similar or dissimilar its embeddings are according to
their separation from each other. Thus, a dense cluster may purport false matches more
frequently than a less dense cluster. We extend [10] by investigating this conjecture.

3. Method

We experiment using an FV pipeline to evaluate FaceNet [12] on four benchmark
datasets. We quantify bias according to the “equal metrics” fairness definition with several
distinct statistical fairness metrics, revealing representation bias. We then evaluate clus-
tered embeddings with respect to race and gender groups using clustering metrics and
visualizations, revealing aggregation bias. Using the statistical and cluster-based analyses,
we draw conclusions on the connection between the clustering of faces into protected and
unprotected groups and disparity in model performance between these groups. Figure 2
provides an overview of our method.

Figure 2. An overview of our approach. We use diverse face datasets to assess bias in FaceNet [12] by
leveraging the face embeddings that it produces for various fairness experiments.

3.1. FV Pipeline

We use MTCNN [29] for face detection and a facenet-pytorch Inception V1 model
(https://github.com/timesler/facenet-pytorch, accessed on 28 February 2022), cutting out
the final, fully connected layer from the FaceNet model so that it produces face embeddings.
The constructed pipeline follows.

1. Pass a pair of face images to MTCNN to crop them to bounding boxes around the
faces (we discard data where MTCNN detects no faces). Each input pair has an “actual
classification” of 1 (genuine) or 0 (imposter).

2. Pass each cropped image tensor into the model (FaceNet, for our experiments) to
produce two face embeddings.

3. Compute the cosine similarity between the two embeddings (the “similarity score”).
4. Use a pre-determined threshold (the threshold is determined according to a false

accept rate (FAR) of 0.05 on a 20% heldout validation set; all datasets have no over-
lap between people in the testing and validation splits) to produce a “predicted
classification” of 1 (genuine) or 0 (imposter).

As detailed in [12], FaceNet is trained using triplet loss on the VGGFace2 dataset [30],
comprising faces that are 74.2% White, 15.8% Black, 6.0% Asian, and 4.0% Indian, with
59.3% male and 40.7% female [30].

3.2. Datasets

We run experiments on four benchmark datasets: Balanced Faces in the Wild (BFW) [8],
Racial Faces in the Wild (RFW) [31–34], Janus-C [35], and the VGGFace2 [30] test set. Details
for each dataset are provided in Table 2.

92



CSFM 2022, 3, 6

Table 2. The four benchmark datasets that we use in our experiments. Faces/ID is the average
number of faces per ID. * VGG Test represents the VGGFace2 test set.

Dataset # IDs Faces/ ID Attributes Notes

BFW 800 25 Race, Gender
Equal balance
for race and

gender

RFW 12,000 6.7 Race Equal balance
for race

IJBC 3531 6 Skin Tone,
Gender

Occlusion,
occupation
diversity

VGG Test * 500 375 Gender Variation in pose
and age

We discuss results primarily for BFW experiments because the dataset is balanced
for race and gender. Balance in the sensitive attributes allows valid comparison between
results for protected and unprotected groups. BFW comes with pre-generated face pairs
with a ratio of 47:53 positive to negative pairs. However, we generate our own positive
and negative pairs in order to control holding out 20% of people in the dataset for a
validation set.

Table 3 shows the breakdown of our positive and negative pairs by race/gender
subgroups for the BFW testing split. Ratios for the validation set are similar. Positive
and negative pairs have same-race and same-gender faces. The supplemental material
documents pair generation for RFW, Janus-C, and VGGFace2.

We use race and gender as sensitive attributes to examine race, gender, and intersec-
tional race/gender biases [9] in our FV system. The race attribute encompasses four groups
(Asian, Indian, Black, and White) consistent across all datasets with a “race” attribute.

Table 3. The percentage of positive and negative pairs per subgroup for the BFW testing split. Ratios
for the validation set are similar.

Female Asian Indian Black White

% positive 25 25 25 25
% negative 75 75 75 75

Male Asian Indian Black White

% positive 25 25 25 25
% negative 75 75 75 75

3.3. Statistical Fairness

To quantify bias according to the “equal metrics” fairness definition, we use nine
statistical fairness metrics to evaluate FaceNet model performance on protected and unpro-
tected groups for each sensitive attribute across the four benchmark datasets. We generate
bootstrap confidence intervals for all metric results [36].

We compare results between the protected and unprotected groups of each sensitive
attribute to identify inequality in model performance, and present seven of the statistical
fairness metric results on BFW in this paper (see Table 1 for details). The supplemental
material documents results for additional metrics and datasets.

3.4. Cluster-Based Fairness

We extend Gluge et al. [10] by evaluating clustered embeddings to illuminate any
connection between sensitive-attribute cluster quality and model performance for protected
and unprotected subgroups. For example, we may consider face embeddings from the
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BFW dataset to be clustered according to race (four clusters), gender (two clusters), or
race/gender (eight clusters). Figure 1 provides a low-dimensional depiction of the BFW
embedding space, where groups are distinguished by race/gender.

Based on the findings of [10], we hypothesize a connection between the quality of
embedded clusters and model performance, where dense clustering for a particular sub-
group is linked to poor performance on that group. Intuition suggests that dense clustering
indicates high model confidence in the group affiliation of embeddings within that cluster,
but lesser ability to distinguish between individuals within the cluster compared to a less
dense group of embeddings. We evaluate clustered embeddings through (1) clustering
metrics, and (2) intra-cluster visualizations.

Clustering Metrics We employ the following three metrics [10] to assess embedding
space partitioning into clusters according to each sensitive attribute.

• Mean silhouette coefficient [37]: A value in the range [−1, 1] indicating how similar
elements are to their own cluster. A higher value indicates that elements are more
similar to their own cluster and less similar to other clusters (good clustering).

• Calinski–Harabasz index [38]: The ratio of between-cluster variance and within-cluster
variance. A larger index means greater separation between clusters and less within
clusters (good clustering).

• Davies–Bouldin index [39]: A value greater than or equal to zero aggregating the
average similarity measure of each cluster with its most similar cluster, judging cluster
separation according to their dissimilarity (a lower index means better clustering).

Intra-Cluster Visualizations To observe whether or not there is inequality in the
embedded cluster quality of protected and unprotected groups, we produce intra-cluster
visualizations and compare clusters using pairwise distance distribution, centroid distance
distribution, and persistent homology H0 death time distribution [40,41].

4. Experiments

4.1. Statistical Fairness Metrics

Figure 3 presents statistical fairness metric results for BFW race and gender subgroups;
the supplemental materials include complete results for all datasets.

Figure 3. Statistical fairness metric results for BFW race and gender subgroups. See Table 1 for metric
descriptions. Blue bars denote race subgroups; gray bars denote gender subgroups. A = Asian;
I = Indian; B = Black; W = White; F = Female; M = Male.

While results do not consistently favor one race group, a pattern of bias emerges when
considering each metric’s implications. Prediction accuracy for Asian faces is lower, but no
single race group exhibits significantly better performance than the rest (there is overlap
between the confidence intervals of Indian, Black, and White faces). The same observation
applies to FNR (lower FNR is better; the Indian and Black confidence intervals overlap) and
NPV (higher NPV is better; the Indian and Black confidence intervals overlap). However,
FPR and PPV tell a different story.
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The model has a low FPR for White faces compared to other race groups, indicating
more confidence in White non-matches than for other-race faces. A similar observation is
made for PPV; the model is considerably more precise in determining genuine White face
pairs compared to other races. The statistics on average similarity score for the positive
and negative classes provide an explanation for these results.

Average similarity scores for genuine pairs across race groups are relatively similar
(∼0.03 range), but not for imposter pairs (∼0.18 range). Low average similarity scores for
White imposter pairs indicate that the model separates non-match White faces very well,
hence its confidence in identifying imposter White face pairs (low FPR). Some metrics do
not reveal this bias due to comparable average similarity scores across races for genuine
pairs; the model is approximately equally confident in identifying genuine pairs for all
races, as supported by a similar FNR across race groups.

The inequality in average similarity scores for imposter pairs means that the model
learned to distinguish White faces much better than other-race faces, possibly due to
encountering significantly more White faces than other-race faces during training. Thus, we
identify representation bias as the first form of bias affecting FaceNet. The consistently poor
performance on Asian faces, less represented in the training data, supports representation
bias. However, despite having the least representation, the metrics indicate better model
performance on Indian as compared to Asian faces, hinting that additional biases may
be present.

Results for gender subgroups show a performance gap favoring the unprotected
(male) vs. protected (female) gender group. However, the performance gaps for female
vs. male faces are not as drastic as those for White vs. other-race faces (e.g., balance for
the negative class). The lower average similarity score for imposter male faces and higher
average similarity score for genuine male faces supports the model’s higher confidence
in identifying genuine male face pairs (lower FNR). Differences in FPR are insignificant
(confidence intervals overlap). The bias in average similarity scores appears in a higher
prediction accuracy for male as compared to female face pairs.

We conclude that the gender results are a less extreme example of representation bias,
supported by the race and gender breakdown of the training dataset, which is more skewed
for race than for gender subgroups.

4.2. Clustering Metrics

We assess embedding clusters using (1) the clustering metrics described in Section 3.4,
calculated for each sensitive attribute, and (2) intra-cluster visualizations. Table 4 shows
results for BFW; results for other datasets are available in the supplemental material.

Table 4. Clustering metric results for BFW. ↑ means that a higher value indicates better clustering
and ↓ means that a lower value indicates better clustering.

Metric Gender Race Both

MS↑ 0.034 0.091 0.103
CH↑ 280 572 444
DB↓ 7.55 4.36 3.98

The trend in mean silhouette coefficient, which quantifies the similarity of elements to
their own cluster, appears to vary with the number of clusters per sensitive attribute (i.e.,
attributes with more clusters have a higher mean silhouette coefficient). Results for the
Davies–Bouldin index follow the same pattern, indicating that race/gender clusters are
best separated according to similarity, followed by race clusters and then gender clusters.

Results for the Calinski–Harabasz index, quantifying the ratio of between-cluster vari-
ance and within-cluster variance, differ. A higher index for race compared to race/gender
means that mixed-gender race clusters are better separated than single-gender race/gender
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clusters. This result indicates that gender clusters within a race are close together compared
to the distance between racial groups, a property that is visualized in Figure 1.

While these metrics provide a thorough summary of embeddings clustered by sensitive
attributes, they do not help us to understand how protected and unprotected groups within
each sensitive attribute are clustered.

4.3. Intra-Cluster Fairness Visualizations

We use intra-cluster visualizations to observe within-group clustering inequality
between protected and unprotected groups in order to identify a potential connection
between cluster quality and statistical metric performance.

For each intra-cluster distribution visualization, we perform two-sided independent
two-sample t-tests for every combination of two subgroups in order to identify whether
or not the means of two subgroups’ distributions are significantly different. (Our null
hypothesis for every t-test is that there is no difference in sample mean between the
distributions for two subgroups. We accept an alpha level of 0.05 to determine statistical
significance.) We perform Dunn–Šidák correction (for BFW, we account for twenty-one null
hypotheses comprising all two-subgroup combinations of race and gender subgroups) of
the p-values for each dataset to counteract the multiple comparison problem. Corrected p-
values of the t-tests for BFW subgroup pairs are documented in the supplemental material.

4.3.1. Pairwise Distance Distribution

Figure 4 depicts a probability density distribution for within-subgroup pairwise dis-
tances for BFW race and gender subgroups.

Figure 4. Pairwise distance distribution for BFW race (left) and gender (right) subgroups. Top plots
include all pairs for each subgroup and bottom plots include distinct curves for genuine pairs (solid)
and imposter pairs (dashed) for each subgroup.

The White subgroup’s negative class plot has a distinct rightward shift compared
to other subgroups (p < 0.05 for W × A, W × I, and W × B t-tests), supporting the lower
average similarity score for imposter White pairs seen in Figure 3. Consequently, the
optimal classification threshold varies by race group; the overlap between the positive and
negative class curves for White faces is further right than for other races. Thus, the average

threshold will be lower than optimal for Asian, Indian, and Black face pairs, leading to
more frequent false positives (supported by Figure 3).

We conclude that aggregation bias is present because the classifier relies on one
aggregated, sub-optimal threshold for all subgroups [8]. Although the difference between
the pairwise distance distributions of gender subgroups is smaller, it is not supported by
an insignificant p-value (p < 0.05).
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4.3.2. Centroid Distance Distribution

Figure 5 depicts a probability density distribution of embedding distances from the
centroids of their respective race and gender subgroups for BFW. We use this as a supple-
mentary visualization for within-cluster distances.

Figure 5. Centroid distance distribution for BFW race subgroups (left) and BFW gender sub-
groups (right).

The centroid distance distributions for race subgroups tell a story similar to the
pairwise distance distributions, but slightly more nuanced. Faces are uniformly distributed
significantly further from the White centroid than in other race groups (p < 0.05 for
W × A, W × I, and W × B t-tests). The behavior of Euclidean distance in high-dimensional
space [42] suggests that the rightward shift of the White subgroup’s plot indicates that
White face embeddings are distributed less densely than other race groups. The plots
for gender subgroups indicate comparable cluster densities (p > 0.05). Thus, centroid
distance distribution supports findings from pairwise distance distribution by confirming
that White embeddings are better separated than other-race embeddings. It also supports
the findings from statistical metrics by demonstrating that there is less inequality between
gender clusterings as compared to race clusterings.

4.3.3. Persistent Homology

Our final experiment conducts a more rigorous analysis of the high-dimensional
geometry of embedding clusters using persistent homology [40,41], which investigates
qualitative information about the structure of data and is suited to high-dimensional, noisy
data. Figure 6 depicts density plots for death times of the 0th homology class (H0) [43] for
BFW race and gender subgroups in order to observe trends in the evolution of connected
components. “Death time” indicates how many timesteps pass before a connected compo-
nent “dies” (becomes connected with another component). Thus, death times of connected
components is an indicator of the distance between embeddings in the embedding space
(i.e., earlier death times indicate that embeddings are generally closer together).

H0 death times for White face embeddings tend to be later than other race groups
(p < 0.05 for W × A, W × I, and W × B t-tests), indicating that White embeddings are more
dispersed in the embedding space. The other race groups have peak death times that are
taller and earlier than the White race group. The shorter and wider peak for the White
subgroup means that there is more variety (higher variance) in H0 death times, rather than
the consistent peak around 0.8 with less variance for other race groups. This shows that
there is more variance for White face distribution in the embedding space compared to
other race groups, a trend that was not present in the centroid distance distribution for race
groups, which showed four bell-shaped density plots. Thus, our analysis of the (H0) death
times supports previous findings that the White race group is clustered differently to other
race groups. We note that there is less inequality in H0 death times for female vs. male
faces, despite our p-value indicating that this discrepancy may be significant (p < 0.05).
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Figure 6. Distribution of persistent homology class 0 (H0) death times for BFW race (left) and gender
(right) subgroups.

5. Conclusions

We quantify bias in a FaceNet FV system with statistical fairness metrics and clus-
tered embedding evaluations. Unequal statistical metric performance for protected and
unprotected race groups reflects representation inequality in the training data, implicating
representation bias. However, superior prediction accuracy for some less-represented
race groups (e.g., better performance on Indian faces than Asian faces) demonstrates that
representation bias is not the only bias present.

Pairwise distance distributions and unequal “balance for the positive/negative class”
statistical metrics indicate that the optimal classification threshold varies by race group.
Thus, the aggregated classification threshold is skewed lower than optimal for protected
race groups, identifying the presence of aggregation bias in the FaceNet FV system.

We demonstrate correspondence between poorly clustered subgroups and those with
the best statistical metric performance, supporting our hypothesis that worse clustering
may result in less bias. We thus support the intuition that the model learns to distinguish
between faces in less dense clusters better than between faces in more dense clusters.

In summary, the model was optimized to perform best on White and male faces due
to representation and aggregation bias, resulting in a less dense clustering of unprotected
groups in the embedding space. We conclude that FaceNet underperforms on protected
demographic groups because, as denser clustering shows, it is less sensitive to differences
between facial characteristics within those groups.

Our experiments implicate cluster quality as an apparent indicator of bias, but do not
prove causality. We identify causal fairness as an area of future investigation to supplement
this work [25]. We also believe that conducting a more rigorous clustering analysis using
persistent homology (i.e., quantifying the difference between persistence diagrams) would
strengthen the results presented here. Finally, we see potential in applying the metrics used
in this paper to multi-class classification problems (namely, FR instead of FV) in both open-
and closed-world settings.

The Appendixes A–D provides results from experiments not detailed in the main
paper. We first document positive and negative pair generation for Racial Faces in the Wild
(RFW) [31], Janus-C [35], and the VGGFace2 [30] test set. We then include results from
statistical fairness metrics, clustering metrics, and intra-cluster visualization for Balanced
Faces in the Wild (BFW) [8], RFW, Janus-C, and the VGGFace2 test set.
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Abbreviations

The following abbreviations are used in this manuscript:

BFW Balanced Faces in the Wild
CH Calinski–Harabasz Index
DB Davies–Bouldin Index
FNR False Negative Rate
FPR False Positive Rate
FR Face Recognition
FV Face Verification
IJBC IARPA Janus Benchmark C
ML Machine Learning
MS Mean Silhouette Coefficient
MTCNN Multi-Task Cascaded Convolutional Networks
NPV Negative Predictive Value
PPV Positive Predictive Value
RFW Racial Faces in the Wild
t-SNE t-distributed Stochastic Neighbor Embedding

Appendix A. Pair Generation

Racial Faces in the Wild Table A1 displays the breakdown of positive and negative
pairs for the RFW testing split for each race subgroup. Positive and negative pairs are
same-race faces (there is no gender attribute for this dataset).

Table A1. The test set percentages of positive and negative pairs generated per subgroup for RFW.

Asian Indian Black White

% positive 25.0 25.0 25.2 25.0
% negative 75.0 75.0 74.8 75.0
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Janus-C Table A2 details the Janus-C test set’s positive and negative pairs across skin
tone and gender subgroups. All pairs are same-skin-tone and same-gender faces. Because
Janus-C is not balanced over sensitive attributes, we had to vary positive and negative pair
generation for each skin tone and gender subgroup. The drastically different number of
faces across skin tones and genders make it difficult to achieve parity in the number of
pairs for these subgroups while maintaining a large enough sample for testing. This should
be considered when interpreting Janus-C results.

Table A2. The test set percentages of positive and negative pairs generated per subgroup for Janus-C.

Female 1 2 3 4 5 6

% positive 54.9 40.6 36.5 14.9 14.4 7.1
% negative 45.1 59.4 63.5 85.1 85.6 92.9

Male 1 2 3 4 5 6

% positive 54.7 37.3 29.5 13.7 8.6 5.5
% negative 45.3 62.7 70.5 86.3 91.4 94.5

VGGFace2 Test Set Table A3 shows the breakdown across gender subgroups of
positive and negative pairs for the VGG testing split. All pairs are same-gender faces
(VGGFace2 does not have a race attribute). The VGGFace2 test set is not balanced over
its sensitive attribute, so we had to vary positive and negative pair generation by gender
subgroup. Because VGGFace2 has less inequality than Janus-C in number of faces per
subgroup, we achieved positive to negative pair ratios much closer to 25:75.

Figure A1. Statistical fairness metric results for BFW subgroups. A = Asian; I = Indian; B = Black;
W = White; F = Female; M = Male.

Table A3. The test set percentages of positive and negative pairs generated per subgroup for the
VGGFace2 test set.

Female Male

% positive 23.6 29.6
% negative 76.4 70.4
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Appendix B. Statistical Fairness Metric Experiments

Figure A1 documents statistical metric results for BFW data that are not included
in the main paper, while Figures A2 and A3 document results for RFW and VGGFace2,
respectively.

Figure A2. Statistical fairness metric results for RFW race subgroups. A = Asian; I = Indian; B = Black;
W = White.

Figure A3. Statistical fairness metric results for VGGFace2 test set gender subgroups. F = Female;
M = Male.

We attempt to take advantage of the skin tone attribute in Janus-C to assess perfor-
mance deficits relating specifically to skin color. We hypothesize that an FV system may
perform worse on darker faces than lighter faces due to factors such as lighting or image
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quality. We attempt to measure this by running two experiments: one with a Gaussian blur
filter applied to the images and one without.

We compare blurred and non-blurred image results, expecting a greater drop in
performance for blur with darker skin tones, indicating that darker faces likely appear in
lower-quality images to begin with (a form of measurement bias). Figure A4 documents
the results of these Janus-C experiments. We do not include these results in the main
paper because (1) the inconsistent ratios of positive and negative pairs make it difficult to
compare results across skin tones, and (2) we do not see significant performance changes
after adding blur (the changes fall within the margin of error).

Figure A4. Statistical fairness metric results for Janus-C skin tone subgroups. Dark blue bars represent
original data; light blue bars represent blurred data. Skin tone groups are labelled from 1 (lightest
skin) to 6 (darkest skin).

Appendix C. Clustering Metrics

Tables A4–A6 display clustering metric results for RFW, VGGFace2, and Janus-C,
respectively. As stated in the main paper, these results do not add support to the connection
between cluster quality and model performance. However, they provide a quantifica-
tion of embedding clustering according to various sensitive attributes that is useful for
understanding each dataset’s clustered embeddings.

Table A4. Clustering metric results for RFW. ↑ means that a higher value indicates better clustering
and ↓ means that a lower value indicates better clustering.

Metric Race

MS↑ 0.112
CH↑ 1423
DB↓ 4.21

Table A5. Clustering metric results for the VGGFace2 test set.

Metric Gender

MS↑ 0.026
CH↑ 1835
DB↓ 8.44
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Table A6. Clustering metric results for Janus-C.

Metric Gender Skin Tone

MS↑ 0.034 −0.002
CH↑ 380 227
DB↓ 7.57 7.81

Appendix D. Clustering Visualizations

Figures A5–A7 document intra-cluster visualizations for RFW, VGGFace2, and Janus-
C, respectively. For each dataset and sensitive attribute, we include pairwise distance
distributions, centroid distance distributions, and persistent homology 0th class death
distributions.

Figure A5. Intra-cluster visualizations for RFW. Pairwise distance distribution (left); centroid distance
distribution (middle); persistent homology 0th class deaths distribution (right).

Figure A6. Intra-cluster visualizations for the VGGFace2 test set. Pairwise distance distribution (left);
centroid distance distribution (middle); persistent homology 0th class deaths distribution (right).

Figure A7. Intra-cluster visualizations for Janus-C. Pairwise distance distribution (left); centroid
distance distribution (middle); persistent homology 0th class deaths distribution (right).
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Trends in RFW and Janus-C skin tone intra-cluster visualizations are similar to trends
in BFW race intra-cluster visualizations; White faces (or lighter faces in Janus-C; skin tone
group 1) belong to less dense and more dispersed clusters than other-race faces.

Trends in VGGFace2 and Janus-C gender intra-cluster visualizations are similar to
trends in BFW gender intra-cluster visualizations; there is little difference in clustering
between male and female faces.

Intra-Cluster Distribution T-Tests

In the main paper, we describe the calculation of p-values for intra-cluster distribution
t-tests, used to determine if the means of two subgroups’ distributions are significantly
different. p-values below the alpha-level of 0.05 validate observations from the intra-cluster
visualizations, namely that White faces are less densely clustered in the embedding space
than other-race faces. Tables A5–A8 document corrected p-values of the t-tests for BFW,
RFW, VGGFace2, and Janus-C subgroup pairs, respectively.

Table A7. Corrected p-values of the 2-sample independent t-test results for BFW race (top) and
gender (bottom) subgroup pairs. A: Asian; I: Indian; B: Black; W: White; F: Female; M: Male.

Pairwise Distance Distributions Centroid Distance Distributions H0 Death Time Distributions

I B W I B W I B W

A <0.001 <0.001 <0.001 A <0.001 <0.001 <0.001 A >0.999 >0.999 <0.001
I - <0.001 <0.001 I - <0.001 <0.001 I - >0.999 <0.001
B - - <0.001 B - - <0.001 B - - <0.001

Pairwise Distance Distributions Centroid Distance Distributions H0 Death Time Distributions

M M M

F <0.001 F >0.999 F >0.03

Table A8. Corrected p-values of the 2-sample independent t-test results for RFW race subgroup pairs.
Top: race subgroup results; bottom: gender subgroup results. A: Asian; I: Indian; B: Black; W: White.

Pairwise Distance Distributions Centroid Distance Distributions H0 Death Time Distributions

I B W I B W I B W

A <0.001 <0.001 <0.001 A <0.001 <0.001 <0.001 A <0.001 >0.999 <0.001
I - <0.001 <0.001 I - <0.001 <0.001 I - <0.001 <0.001
B - - <0.001 B - - <0.001 B - - <0.001

Table A9. Corrected p-values of the 2-sample independent t-test results for VGGFace2 test set gender
subgroup pairs. F: Female; M: Male.

Pairwise Distance Distributions Centroid Distance Distributions H0 Death Time Distributions

M M M

F <0.001 F <0.001 F 0.02
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Table A10. Corrected p-values of the 2-sample independent t-test results for Janus-C skin tone (top)
and gender (bottom) subgroup pairs. Results are for non-blurred data. Skin tone groups are labelled
from 1 (lightest skin) to 6 (darkest skin). F: Female; M: Male.

Pairwise Distance Distributions Centroid Distance Distributions H0 Death Time Distributions

2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

1 >0.999 >0.999 0.01 0.62 >0.999 1 <0.001 <0.001 <0.001 <0.001 <0.001 1 <0.001 0.81 >0.999 0.13 <0.001
2 - 0.70 <0.001 0.02 >0.999 2 - <0.001 <0.001 >0.999 <0.001 2 - <0.001 <0.001 0.22 >0.999
3 - - 0.30 >0.999 0.54 3 - - <0.001 <0.001 <0.001 3 - - 0.98 0.03 <0.001
4 - - - 0.91 <0.001 4 - - - <0.001 <0.001 4 - - - 0.98 0.06
5 - - - - 0.003 5 - - - - <0.001 5 - - - - 0.99

Pairwise Distance Distributions Centroid Distance Distributions H0 Death Time Distributions

M M M

F 0.08 F >0.999 F >.999
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Abstract: We propose two essential techniques to effectively train generative adversarial network-
based super-resolution networks for brain magnetic resonance images, even when only a small
number of training samples are available. First, stochastic patch sampling is proposed, which in-
creases training samples by sampling many small patches from the input image. However, sampling
patches and combining them causes unpleasant artifacts around patch boundaries. The second pro-
posed method, an artifact-suppressing discriminator, suppresses the artifacts by taking two-channel
input containing an original high-resolution image and a generated image. With the introduction of
the proposed techniques, the network achieved generation of natural-looking MR images from only
~40 training images, and improved the area-under-curve score on Alzheimer’s disease from 76.17%
to 81.57%.

Keywords: super-resolution; generative adversarial networks; medical image processing

1. Introduction

In medical imaging, magnetic resonance imaging (MRI) is commonly used because
it can capture the anatomical structure of the human body without exposing subjects to
radiation. MRI scanners that generate a strong magnetic field can scan images with a higher
spatial and contrast resolution than commonly used scanners. These high-resolution MR
images are preferred in both the clinical and research fields since more information can be
obtained from a single scanning session, leading doctors to diagnose diseases earlier or
computers to analyze images more precisely.

3T MRI scanners provide high spatial resolution and contrast images and are widely
used in clinical practice and research studies. Moreover, 7T ultra-high-field scanners are
now becoming available for research use, providing ultra-high resolution images that depict
fine anatomical structures in unprecedented detail and with higher contrast. Such ultra-
high resolution MRI is attractive because it has the potential to capture mild disease-related
anatomical changes that are difficult to identify with 3T MRI. Alternatively, obtaining high-
definition images with commonly used scanners requires longer scanning times and places
a burden on the patient. In such a situation, super-resolving techniques draw attention,
which translates low-resolution (LR) MR images to high-resolution (HR) MR images [1].
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Resolution enhancing methods for MRI can be categorized into two groups: (1) pro-
cessing the raw signal from the MRI scanner to improve the resolution to be reconstructed
and (2) translating already reconstructed LR images into HR-like images, so-called super-
resolution (SR).

From a practical point of view, we chose a post-processing method instead of process-
ing the raw signal from the scanner. The choice is for the following three reasons: (1) MR
images are usually stored as rendered image files, while the raw signal data are discarded
immediately after each scan. In this approach, an extensive archive of legacy MR images
can be used. (2) Post-processing can be used to perform super-resolution. (3) This approach
is independent of specific scanner hardware and scan protocols, and can be applied to
many MRI contrasts, such as T1-MRI, T2-MRI, diffusion MRI, and functional MRI.

Although these deep-learning (DL) methods, including recent generative adversarial
network (GAN) -based ones, have many desirable features from non-DL techniques, they
have not yet been able to synthesize images as if they were taken by a high-field scanner.
This is because most of their methods are designed to be trained with pairs of ordinary
resolution MRI and its shrunken version. Therefore, the conventional SR methods can only
learn to translate low-resolution images to normal-resolution images and cannot perform
normal-to-high translation, which is an essential demand by clinicians and researchers.

What makes the normal-to-high translation difficult is the limited number of high-
definition training images. Deep neural networks, especially GANs, require a large number
of training samples to achieve desired performance. Due to the limitation of not having
access to images taken by high-end scanners, it is virtually impossible to apply existing
DL-based algorithms.

This paper proposes a simple yet effective GAN-based super-resolution method.
Compared to the existing DL-based super-resolution methods, the proposed method
requires significantly less training of MR images (dozens of data) and generates high-
quality SR images. The proposed method comprises two techniques: stochastic patch
sampling (SPS) and artifact suppressing discriminator (ASD). The SPS partitions input
LR MR images into several smaller patches (i.e., cubes) first. After the partitioning, the
ESRGAN-based neural network takes each LR patch as an input, and then outputs the
corresponding upscaled HR patch. Here, the ASD eliminates discontinuities in the joints
of each patch and generates natural-looking high-resolution images. In our experiments
to evaluate the performance of our SR method using 7T MR images of 37 patients, peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM) were significantly improved
from 16.19 to 26.92 and 0.766 to 0.944, respectively, compared with baseline ESRGAN. In
addition, the diagnostic performance of the Alzheimer’s disease discriminator trained on
super-resolution processed images improved from 80.31% to 83.85%.

2. Related Works

In the last decade, the accuracy of single image super-resolution for general (non-
medical) images has increased significantly along with the advancement of DL-based
algorithms [2]. Originating from the super-resolution convolutional neural networks (SRC-
NNs) [3], a very first successful attempt to utilize convolutional neural networks to perform
super-resolution, many studies have proposed DL-based SR techniques. Very-deep super-
resolution (VDSR) [4] extended SRCNN with a deeper network to improve the accuracy.
Enhanced deep residual networks for single image super-resolution (EDSR) [5] also intro-
duced a deeper network with residual connection from ResNet [6]. In more recent years,
significant quality improvements have been achieved by several generative adversarial
network (GAN)-based SR methods [7]. A super-resolution generative adversarial network
(SRGAN) [8] achieved significant improvement in pixel-wise accuracy by introducing a
discriminator to their ResNet-like SR network. An enhanced super-resolution generative
adversarial network (ESRGAN) [9] made even more improvements with a DenseNet-like
generator [10] and Relativistic discriminator [11].

108



CSFM 2022, 3, 7

Along with the advancement of super-resolution methods for general images, studies
for applying SR for medical images have also been made. Pham et al. [12] applied SRCNN
to MR images to enhance spatial resolution. The improvement with GAN-based techniques
has also been applied to medical imaging fields [13]. Sánchez and Vilaplana [14] utilized
a simplified version of SRGAN to MR images. Yamashita and Markov [15] improved the
quality of optical coherence tomography (OCT) images with ESRGAN.

3. Proposed Method

In this paper, we propose a new super-resolution technique for brain MR images with
a significantly smaller number of training images. To train the GAN-based super-resolution
network, SPS randomly selects many small cubic regions from the input images and feeds
them into the network. While the SPS enables the network to be effectively trained with
a few images, it also introduces intensity discontinuities around the boundaries of the
patches. The ASD suppresses such discontinuities by implicitly knowing the location
information of its input patches by referring to both the HR and the generated SR image.

3.1. The Network Architecture

Figure 1 illustrates the schematics of the proposed method. For the network architec-
ture, we used a slightly modified version of the ESRGAN. The modifications we applied
are as follows: (1) all the layers such as convolutions, poolings, and pixel-shufflers are
changed to their three-dimensional version to process volumetric MR images, and (2) the
number of residual-in-residual dense block (RRDB) is reduced from 23 to 5 because the
expected input size is smaller than the original ESRGAN.

artifact-suppressing discriminator (ASD)

merge HR and SR 
in the channel axis

training pair

generator

downsample

HR image

discriminator

SR image

feedback and optimize

“HR” / “SR”

stochastic patch sampling
(SPS) 

the whole-brain image

LR image

Figure 1. The schematics of the proposed method. Note that all 3D images are drawn in 2D for the
sake of visibility.

3.2. Stochastic Patch Sampling (SPS)

Each image is split into a set of smaller three-dimensional cubic patches by randomly
choosing the coordinate in the image space. If the patch is sampled from the background
and does not contain any brain structure, the patch is automatically rejected and repeatedly
re-sampled until sampled from the appropriate coordinate. While the total amount of
information fed to the network is theoretically identical, using a collection of sampled
patches has several benefits rather than using the whole image at once. Compared to
the whole-brain image, the sampled patch is relatively tiny. With this approach, we can
use more training samples per batch during mini-batch learning, enabling more stable
optimization. The network will also be more robust for unregistered images since the input
patches have more significant spatial variances introduced in random sampling. At the
inference phase, patches are sampled evenly from the input image with the grid manner.
Then, each patch is upscaled by the network and combined into a single image.
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3.3. Artifact Suppressing Discriminator (ASD)

Since the network processes small patches separately and performs super-resolution
on each one individually, there is no mechanism to sustain the consistency of the final
combined image. This lack of consistency causes discontinuities at each patch’s joints,
resulting in an unpleasant final image. To address this issue, we introduced ASD, which
is an extension of the common GAN discriminator. ASD takes two images; one is always
a “real” (or HR, in the context of super-resolution) image, and the other is a generated
image or an HR image combined as a two-channel image. Accordingly, the discriminator
takes (HR+HR) or (HR+SR) images during training. The proposed ASD can extract more
discriminative feature representations by learning the correlation/difference between HR
and SR images, while common discriminators take HR and SR images independently.

4. Experiments

The purpose of super-resolution is to aid clinicians or computers in analyzing im-
ages more precisely, providing more information on smaller structures. To confirm the
effectiveness of the proposed techniques, we investigate the impact of the proposed super-
resolution network on disease classification performance in addition to regular image
quality evaluation.

4.1. Dataset and Preprocessing

As the high-resolution reference images, we used 37 scans of T1-weighted MR im-
ages from the DS000113 (“Forrest Gump”) dataset [16] and 11 images from the DS002702
dataset [17], both published by OpenNeuro (https://openneuro.org/, accessed on 20
September 2020). Both datasets are provided as a collection of functional-MRI (fMRI)
images but also contain T1-weighted still MR images we used, which were taken on a
high-field 7T scanners. After the skull removal and intensity normalization, each HR image
is shrunken to 50% to make an LR image, providing high- and low-resolution training
pairs. At the SPS phase during the training, we randomly sampled 2500 24 × 24 × 24
patches per one high-resolution image and downsampled them to 50% resolution to make
low-resolution images.

4.2. Training of the Network

Since the network input and output are three-dimensional volume data, we cannot
use the perceptual loss with a VGG network used in the original SRGAN and ESRGAN
because it must be pre-trained with the ImageNet dataset. To train the network to generate
images with more fidelity, we added mean-squared error (MSE) of gradients of the images
for all directions to capture finer transitions of the intensity.

As for optimization of both networks, we used the Adam optimizer with the same
learning rate and β1, β2 parameters with the original ESRGAN.

4.3. Assessing the Image Quality

First, we measure the two most standard metrics for assessing a super-resolution sys-
tem: (1) peak signal-to-noise ratio (PSNR) and (2) structural similarity (SSIM) between each
output image and its corresponding original high-resolution image. In general, SR studies
using GAN, Inception Score, and Fréchet Inception Distance (FID) are often used. How-
ever, scores are calculated based on low-dimensional representations of two-dimensional
images by models trained on everyday objects (e.g., ImageNet) and are unsuitable for this
evaluation. We also investigate the line profile of the optic thalamus, which is difficult to
see for fine structure with a conventional MR scanner.

4.4. Assessing the Impact on Improving Diagnostic Performance

In addition, the purpose of super-resolution is to aid clinicians or computers in analyz-
ing images more precisely, providing more information on smaller structures. Therefore,
we investigate the effectiveness of the proposed SR method on disease classification perfor-
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mance. This way, we can emulate one of the real-world applications of super-resolution for
medical images.

In this experiment, we used 650 images from the ADNI2. (Data used in the prepara-
tion of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org,
accessed on 20 September 2020) dataset, containing 360 cognitively normal (CN) images
and 290 Alzheimer’s disease (AD) images. Each image is downsampled into 1.4-mm
pixel spacing to match the training data after skull removal and intensity normalization.
We first performed super-resolution for all images to make pseudo-high-resolution train-
ing/validation samples. Then, we trained a three-dimensional version of MobileNetV2
with 90% of the images and evaluated the area-under-curve (AUC) score with the remaining
10% of them.

To confirm that the proposed SR process recovers some of the lost information from
low-resolution images, we also trained a classifier with downsampled images. Then, we
trained another classifier with super-resolved downsampled images and compared their
AUC score. We used 50% and 25% for the downsampling scales and three-dimensional
MobileNetV2 for the classifier network.

Here, we defined “recovery ratio” to measure how much information is recovered
from a low-resolution image as follows:

recovery ratio =
AUC(SR)− AUC(LR)
AUC(HR)− AUC(LR)

,

where AUC(HR), AUC(LR), and AUC(SR) are the AUC score on HR images, LR (×0.5
downsampled from HR) images, and SR images, where 2× super-resolved images are
applied for LR images, respectively. Here, we assume that the AUC with the SR images
does not exceed that with the HR images, i.e., the AUC with the HR dataset is the upper
bound for the resolution.

5. Results

5.1. Image Quality Assessment

Figures 2 and 3 show examples of MR images generated by proposed super-resolution
networks and their original HR images, and their magnified view, respectively. In Table 1,
the average SSIM and PSNR between super-resolved images using each method and their
ground-truth high-resolution images are also summarized.

The output images of the network without SPS, i.e., plain ESRGAN (column (2)), are
visibly blurry, and most of the structural features are lost, leading to the lower SSIM/PSNR
value. With the proposed SPS (column (3)), generated images are significantly sharper and
visibly natural-looking. However, grid-shaped intensity shifts appear at the joints of each
patch (Figure 3 (3)). On the other hand, almost all the intensity shifts are suppressed with
the images with the proposed discriminator (column (4)).
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(1) (2) (3) (4) (5)

example subject
#1

example subject
#2

example subject
#3

Figure 2. Examples of generated images with their input and ground-truth images. (1) low-resolution
input image, (2) ESRGAN without SPS and ASD, (3) ESRGAN + SPS, (4) ESRGAN + SPS + ASD

(proposed), and (5) ground truth high-resolution image.

(1) LR image

(2) ESRGAN (3) ESRGAN + SPS
Figure 3. Cont.
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(4) ESRGAN + SPS + ASD (proposed) (5) ground truth high-resolution image
Figure 3. Magnified example of the the generated image.

Table 1. Values of image quality measurements with each method.

SR Method SSIM PSNR

ESRGAN 0.7659 16.19
ESRGAN + SPS 0.9056 25.81
ESRGAN + SPS + ASD (proposed) 0.9443 26.92

5.2. Effectiveness on Classification Performance

Table 2 shows the diagnostic performances of the Alzheimer’s disease classifier trained
and tested with the super-resolved images. The performance of pure ESRGAN is abysmal
because it fails to generate images, and the proposed method outperforms the other methods.

Table 2. AUC scores on Alzheimer’s disease diagnosis of the networks trained with images generated
by each SR method.

SR Method as Preprocessing AUC

None 76.17
ESRGAN 67.35
ESRGAN + SPS 79.01
ESRGAN + SPS + ASD (proposed) 81.57

Table 3 and Figure 4 summarize the classification accuracies with the downsampled
images with/without super-resolution. For the sake of better comparison, results on
original (non-downsampled) images are also listed/plotted in them.

Table 3. AUC scores on Alzheimer’s disease diagnosis of the networks trained with downsampled images.

Image Scale With SR (%) Without SR (%) Recovery Ratio

1× (a) 79.01 (d) 76.17 N/A
0.5× (b) 71.37 (e) 70.46 15.94
0.25× (c) 60.87 (f) 52.86 45.51
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Figure 4. AUC score comparison of networks, trained with downsampled images.

6. Discussion

6.1. Qualities of Generated SR Images

ESRGAN, a sophisticated super-resolution method based on GAN that requires many
training images, could not generate any images at all with about 30 training images. This
result is worse than the result from the bi-cubic interpolation of LR images. By introducing
patch learning with the proposed SPS, we can confirm that it is possible to generate images
with a certain level of accuracy. However, as mentioned earlier, discontinuities between
patches are noticeable.

With the introduction of the proposed ASD, the discontinuities are mostly suppressed
and achieved to generate more natural-looking super-resolution images. Besides the
quantitative metrics such as PSNR and SSIM, the line-profile shown in Figure 5 shows that
the proposed method can generate the details of finer tissues, which are known to be more
challenging to capture with conventional MRI scanners.

In regular GAN training, a generator and a discriminator are trained adversarially.
The discriminator indirectly lets the generator learn to make more natural images by trying
to identify whether the input is “real” or “fake” (i.e., HR or SR). On the other hand, the
proposed ASD takes a two-channeled input, which always contains a HR image in one
of the channels. Therefore, in addition to the usual effect, the discriminator itself learns
the SR image closer to the HR by implicitly giving the information of the relative location
of a patch in a whole-brain image. In this regard, an overfitting effect could be expected
because of more information given to the networks during training. Nevertheless, from
our experiment with different patients, no adverse effect was confirmed.

6.2. Impact of Super-Resolution on the Disease Classification Problem

The removal of unwanted boundary discontinuities by ASD resulted in an improved
AUC score by 5.4% in diagnosing Alzheimer’s disease. The increased visibility of es-
sential structures, as shown in Figure 5, is thought to have contributed to the improved
diagnostic performance.

In the experiment with downsampled images, first, we confirmed that the AUC score
drops as the input resolution decreases, as we intuitively expected. From Table 3, it can be
said that the images enhanced by the proposed method can boost the performance up to
45% closer to the possible upper bound of score.
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Figure 5. Line profile of the thalamus. The thalamus contains subnuclei with characteristic signal
intensity, but it is challenging to identify thalamic subnuclei because low-resolution MRI does not
provide sufficient contrast. Our SR method can obtain intrathalamic contrast equivalent to that of
HR images.

6.3. Limitations and Future Work

In the proposed method, a low-resolution training image is obtained by simply down-
sampling the corresponding high-resolution image. However, the actual differences be-
tween images with high-field scanners and ordinary ones are not just image resolution but
also intensity contrasts, the amount of noise, and so on. The network would perform better
if we trained it with high-field and actual ordinary scanners. In the future, we will use
more HR images to develop a better method.

7. Conclusions

In this paper, we propose a new super-resolution method for brain MR images with
a significantly smaller number of training images. Our method is GAN-based super-
resolution with two essential proposed techniques: the SPS and ASD. These proposed
techniques succeeded in generating super-resolution images from the training of only about
30 brain MR images. The images generated in this way showed an overall improvement
in image quality and an increase in the resolution of critical diagnostic regions, which
helped to improve the disease diagnostic performance of the CNN-based classifier built on
these images.
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Abstract: Few-shot semantic segmentation aims to transfer knowledge from base classes with suffi-
cient data to represent novel classes with limited few-shot samples. Recent methods follow a metric
learning framework with prototypes for foreground representation. However, they still face the
challenge of segmentation of novel classes due to inadequate representation of foreground and lack
of discriminability between foreground and background. To address this problem, we propose the
Dual Complementary prototype Network (DCNet). Firstly, we design a training-free Complementary
Prototype Generation (CPG) module to extract comprehensive information from the mask region in
the support image. Secondly, we design a Background Guided Learning (BGL) as a complementary
branch of the foreground segmentation branch, which enlarges difference between the foreground
and its corresponding background so that the representation of novel class in the foreground could
be more discriminative. Extensive experiments on PASCAL-5i and COCO-20i demonstrate that our
DCNet achieves state-of-the-art results.

Keywords: few-shot; semantic segmentation

1. Introduction

Attributed to the development of convolutional neural networks (CNNs) with its
strong representation ability and the access of large-scale datasets, semantic segmentation
and object detection have developed tremendously. However, it is worth to point out that
annotating a large number of object masks is time-consuming, expensive, and sometimes
infeasible in some scenarios, such as computer-aided diagnosis systems. Moreover, without
massive annotated data, the performance of deep learning models drops dramatically
on classes that do not appear in the training dataset. Few-shot segmentation (FSS) is a
promising field to tackle this issue. Unlike conventional semantic segmentation, which
merely segments the classes appearing in the training set, few-shot segmentation utilizes
one or a few annotated samples to segment new classes.

They firstly extract features from both query and support images, and then the support
features and their masks are encoded into a single prototype [1] to represent foreground
semantics or a pair of prototypes [2,3] to represent the foreground and background. Fi-
nally, they conduct dense comparison between prototype(s) and query feature. Feature
comparison methods are usually performed in one of two ways: explicit metric function,
(e.g., cosine-similarity [3]) and implicit metric function (e.g., relationNet [4]).

As shown in Figure 1a, it is common-sense [2,5,6] that using a single prototype gener-
ated by masked average pooling is unable to carry sufficient information. Specifically, due
to variant appearance and poses, using masked average pooling only retains the informa-
tion of discriminative pixels and ignores the information of plain pixels. To overcome this
problem, multi-prototype strategy [2,5,6] is proposed by dividing foreground regions into
several pieces.
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CSFM 2022, 3, 8

Figure 1. Illustration of difference in prototype learning for 1-shot segmentation. (a) Single prototype
methods [1,7] tend to lose information as plain pixels. (b) Multi-prototype methods [2,5,8] based
on regional division may damage the representation for the whole object. (c) Our Complementary
Prototype Generation module retains the information of discriminative pixels and plain pixels
adaptively.

However, as shown in Figure 1b, these multi-prototype methods still suffer from
two drawbacks. Firstly, the whole representation of foreground region is weakened, since
existing methods split regions into several pieces and damage the correlation among the
generated prototypes. Moreover, current methods often ignore inter-class similarity be-
tween foreground and background, and their training strategy in the context of segmenting
the main foreground objects leads to underestimating the discrimination between the fore-
ground and background. As a result, existing multi-prototype methods tend to misclassify
background pixels into foreground.

In this paper, we propose a simple yet effective method, called Dual Complementary
prototype Network (DCNet), to overcome the above mentioned drawbacks. Specifically, it is
composed of two branches to segment the foreground and background in a complementary
manner, and both segmentation branches rely on our proposed Complementary Prototype
Generation (CPG) module. The CPG module is proposed to extract comprehensive support
information from the support set. Through global average pooling with support mask, we
extract the average prototype at first, and we obtain its attention weight on the support
image by calculating the cosine distance between the foreground feature and the average
prototype iteratively. In this way, we can easily figure out which part of the information is
focused and which part of the information is ignored without segmentation on support
image. Then we use this attention weight to generate a pair of prototypes to represent
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the focused and the ignored region. By using a weight map to generate prototypes for
comparison, we can preserve the correlation among the generated prototypes and avoid
the information loss to a certain extent.

Furthermore, we introduce background guided learning to pay additional attention
on the inter-class similarity between the foreground and background. Considering that the
background in support images is not always the same as that in a query image, we adopt
a different training manner from foreground segmentation, where the query background
mask is used as guidance for query image background segmentation. In this way, our
model could learn a more discriminative representation for distinguishing foreground and
background. The proposed method effectively and efficiently improves the performance
on FSS benchmarks without extra inference cost.

The main contributions of this work are summarized as follows.

1. We propose Complementary Prototype Generation (CPG) to learn powerful prototype
representation without extra parameters costs;

2. We propose Background Guided Learning (BGL) to increase the feature discrimination
between foreground and background. Besides, BGL is merely applied in the training
phase so that it would not increase the inference time;

3. Our approach achieves the state-of-the-art results on both PASCAL-5i and COCO-20i

datasets and improves the performance of the baseline model by 9.1% and 12.6% for
1-shot and 5-shot setting on COCO-20i.

2. Related Work

2.1. Semantic Segmentation

Semantic segmentation, which aims to perform classification for each pixel, has been
extensively investigated. Following Fully Convolution Network (FCN) [9], which uses
fully convolutional layers instead of fully connected layers as a classifier for semantic
segmentation, large numbers of network frameworks have been designed. For example,
Unet adopted a multi-scale strategy and a encoder-decoder architecture to improve the
performance of FCN, and PSPNet was proposed to use the pyramid pooling module
(PPM) to generate object details. Deeplab [10,11] designed an Atrous Spatial Pyramid
Pooling (ASPP) module, conditional random field (CRF) module, and dilated convolution
to FCN architecture. Recently, attention mechanism has been introduced, PSANet [12] was
proposed to use point-wise spatial attention with a bi-directional information propagation
paradigm. Channel-wise attention [13] and non-local attention [14–17] are also effective for
segmentation. These methods have managed to succeed in large-scale datasets but they are
not designed to deal with rare and unseen classes and cannot be accommodated without
fine-tuning.

2.2. Few-Shot Learning

Few-shot learning focuses on the generalization ability of models, so that they can learn
to predict novel classes with a few annotated examples [4,18–21]. Matching networks [19]
were proposed for 1-shot learning to exploit a special kind of mini-batches called episodes
to match the training and testing environments, enhancing the generalization on the novel
classes. Prototypical network [20] was introduced to compute the distances between the
representation cluster centers for few-shot classification. Finn et al. [21] proposed an
algorithm for meta-learning that is model-agnostic. Even though few shot learning has
been extensively studied for classification task, it is still hard to adopt few-shot learning
directly on segmentation due to the dense prediction.

121



CSFM 2022, 3, 8

2.3. Few-Shot Segmentation

As the extension of few-shot learning, few-shot semantic segmentation has also re-
ceived considerable attention very recently. Shaban et al. first proposed the few-shot
segmentation problem with a two-branch conditional network that learned the parameters
on support images. Different from [22], later works [1–3,23,24] follow the idea of metric
learning. Zhang et al. generates the foreground object segmentation of the support class by
measuring the embedding similarity between query and supports, where their embeddings
are extracted by the same backbone model. Generally, metric learning based methods
can be divided into two groups: one group is inspired by ProtoNet [20], e.g., PANet [3]
first embeds different foreground objects and the background into different prototypes via
a shared feature extractor, and then measures the similarity between the query and the
prototypes. The other group is inspired by relationNet [4], which learns a metric function
to measure the similarity, e.g., Refs. [1,7,8] use an FPN-like structure to perform dense
comparison with affinity alignment. Then, considering the incomplete representation of a
single prototype, Li et al. [5] divide the masked region into pieces, the number of which is
decided by the area of the masked region and then conducts masked average pooling for
each piece to generate the numbers of the prototypes.Zhang et al. [6] utilize the uncovered
foreground region and covered foreground region through segmentation on support im-
ages to generate a pair of prototypes to retrieve the loss information. However, compared
to self-segmentation mechanism [6], our CPG does not need to segment on support images
and utilization of CPG obtains competitive performance with few cost.s Compared to
cluster methods [5,8], the experiment in the ablation study shows that our method can
avoid over-fitting and generate stable performance in each setting.

Moreover, recent methods such as MLC [25] and SCNet [26] start to make use of
knowledge hidden in the background. By exploiting the pre-training knowledge for the dis-
covery of the latent novel class in the background, their methods bring huge improvements
to the few-shot segmentation task. However, we argue that such a method is difficult to
apply in realistic scenarios, since a novel class object is not only unlabelled but also unseen
in the training set. Instead, we propose background guided learning to enhance the feature
discriminability between the foreground and the background, which also improves the
performance of the model.

3. Proposed Methods

3.1. Problem Setting

The aim of few-shot segmentation is to obtain a model that can learn to perform
segmentation from only a few annotated support images in novel classes. The few-shot
segmentation model should be trained on a dataset Dtrain and evaluated on a dataset Dtest.
Given the classes set in Dtrain is Ctrain and classes set in Dtest is Ctest, there is no overlap
between training classes and test classes, e.g., Ctrain ∩ Ctest = ∅.

Following a previous definition [22], we divide the images into two non-overlapping
sets of classes Ctrain and Ctest. The training set Dtrain is built on Ctrain and the test set is
built on Ctest. We adopt the episode training strategy, which has been demonstrated as an
effective approach for few-shot recognition. Each episode is composed of a shot support
set S = {Is

k , Ms
k}K

k=1 and a query set Q = Iq, Mq to form a K-shot episode {S, Iq}, where I∗

andM∗ are the image and its corresponding mask label, respectively. Then, the training set
and test set are denoted by Dtrain = {S}Ntrain and Dtest = {Q}Ntest , where Ntrain and Ntest
is the number of episodes for the training and test set. Note that both the mask Ms of the
support set and the mask Mq of the query set are provided in the training phase, but only
the support image mask Ms is included in the test phase.

3.2. Overview

As shown in Figure 2, our Dual Complementary prototype Network (DCNet) is trained
via the episodic scheme on the support-query pairs. In episodic training, supports images
and a query image are input to the share-weight encoder for feature extraction. Then,
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the query feature is compared with prototypes of the current support class to generate a
foreground segmentation mask via a FPN-like decoder. Besides, we propose an auxiliary
supervision, named Background Guided Learning (BGL), where our network learns robust
prototype representation for a class-agnostic background in an embedding space. In this
supervision, the query feature is compared with prototypes of the query background to
make a prediction on its own background. With this joint training strategy, our model can
learn discriminative representation for foreground and background.

Thus, the overall optimization target can be briefly formulated as:

Loverall = L f g + γLbg, (1)

where L f g and Lbg denote the foreground segmentation loss and background segmentation
loss, respectively, and γ is the balance weight, which is simply set as 1.

Figure 2. The framework of the proposed DCNet for 1-shot segmentation. At first, the encoder
generates feature maps Fs and Fq from the support images and query images. Then, the support
image masks Ms and related features are fed into CPG to generate a pair of foreground prototypes Ps.
Finally, Ps is expanded and concatenated with the query feature Fq as an input to the decoder to predict
the foreground in the query image. In the meantime, in BGL, the query feature Fq and its background
mask Mbq are fed into CPG to generate a pair of background prototypes Pbq. Pbq is expanded and
concatenated with query feature Fq as an input to the decoder to predict the background in the
query image.

In the following subsections, we first elaborate our prototype generation algorithm.
Then, background-guided learning on 1-shot setting is introduced, followed by inference.

3.3. Complementary Prototypes Generation

Inspired by SCL [6], we propose a simple and effective algorithm, named Complemen-
tary Prototypes Generation (CPG), as shown in Figure 3. This CPG algorithm generates a
pair of complementary prototypes and aggregates information hidden in features based
on cosine similarity. Specifically, given the support feature F ∈ RH×W×C with the mask
region as M ∈ RH×W , we extract a pair of prototypes to fully represent the information in
the mask region.

As the first step, we extract the targeted feature F′ ∈ RH×W×C filtered through mask
M from F, in Equation (2),

F′ = F � M (2)
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where � represents element-wise multiplication. Then, we initiate prototype P0 by masked
average pooling, in Equation (3),

P0 =
∑H

i ∑W
j F′

i,j

∑H
i ∑W

j Mi,j
(3)

where i, j represents the coordination of each pixel, H, W denotes the width and height of
feature F′, respectively. Since Mi,j ∈ 0, 1, the sum of M represents the area of the foreground
region.

Figure 3. Illustration of the proposed Complementary Prototypes Generation. Similarity St and
prototype Pt

c,0 is obtained in t-th iteration. The red arrow indicates the final result ST after T iterations.

In the next step, we aggregate the foreground features into two complementary clusters.
For each iteration t, we first compute the cosine distance matrix St ∈ RH×W between the
prototype Pt−1

0 and the targeted features F′ as follows,

St = cosine(F′, Pt−1
0 ) (4)

As we keep the relu layer in the encoder layer, the cosine distance is limited in [0, 1].
To calculate the weight of target features contributed to Pt

0, we normalize the S matrix as:

St
i,j =

St
i,j

∑H
i ∑W

j St
i,j

(5)

Then, after the end of the iteration, based on matrix St, we aggregate the features into
two complementary prototypes as:

P1 =
H

∑
i

W

∑
j

Si,j ∗ F′
i,j (6)

P2 =
H

∑
i

W

∑
j
(1 − Si,j) ∗ F′

i,j (7)

It is worth noting that these prototypes are not separated like priors and CPG algorithm
utilizes a weighted map to generate a pair of complementary prototypes. In this way, we
retain the correlation between the prototypes. The whole CPG is delineated in Algorithm 1.
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Algorithm 1 Complementary Prototypes Generation (CPG).
Input: targeted feature F′, corresponding mask M, the number of iteration T.

init prototype P0
c,0 by masked average pooling with F′. P0 =

∑H
i ∑W

j F′
i,j

∑H
i ∑W

j Mi,j

for iteration t in {1, .., T} do
Compute association matrix S between targeted feature F′ and prototype Pt−1

0 ,
St = cosine(F′, Pt−1

c,0 )

Standardize association St,
St

i,j = St
i,j/(∑

H
i ∑W

j St
i,j)

Update prototype Pc,0,
Pt

0 = ∑H
i ∑W

j St
i,j ∗ F′

i,j

end for
generate complementary prototypes Pc from ST ,
P1 = ∑H

i ∑W
j (ST

i,j) ∗ F′
i,j

P2 = ∑H
i ∑W

j (1 − ST
i,j) ∗ F′

i,j
return final prototypes P1, P2

3.4. Background Guided Learning

In previous works [1,5,6], the background information has not been adequately ex-
ploited for few-shot learning. Especially, these methods only use foreground prototypes to
make a final prediction on the query image in the training. As a result, the representation on
class-agnostic background is the lack of discriminability. To solve this problem, Background
Guided Learning (BGL) is proposed via joint training strategy.

As shown in Figure 2, BGL is proposed to segment the background on the query
image based on query background mask Mbq. As the first step, query feature Fq and its
background mask Mbq are fed into the CPG module to generate a pair of complementary
prototypes Pbq = P1, P2, following Algorithm 1. Next, we concatenate the complementary
prototype Pbq with all spatial location in query feature map Fq, as Equation (8):

Fm = ε(P1)⊕ ε(P2)⊕ Fq, (8)

where ε denotes the expansion operation and ⊕ denotes the concatenation operation, P1
and P2 are the complementary prototypes Pbq as well as Fm, denoting the concatenated
feature. Then, concatenate feature Fm is fed into the decoder, generating the final prediction,
as shown in Equation (9):

M̂ = D(Fm), (9)

where M̂ is the prediction of the model, D is a decoder. The loss Lbg is computed by:

Lbg = CE(M̂bq, Mbq) (10)

where M̂bq denotes the background prediction on a query image and CE denotes the
cross-entropy loss.

Intuitively, if the model can predict a good segmentation mask for the foreground
using a prototype extracted from the foreground mask region, the prototype learned
from the background mask region should be able to segment itself well. Thus, our BGL
encourages the model to distinguish the background from the foreground better.

3.5. Inference

In the inference phase, we only keep the foreground segmentation branch for the
final prediction. For K-shot setting, we following previous works and use the average to
generate a pair of complementary prototypes.
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4. Experiments

4.1. Dataset and Evaluation Metrics
4.1.1. Datasets

We evaluate our algorithm on two public few-shot datasets: PASCAL-5i [22] and
COCO-20i [27]. PASCAL-5i is built from PASCAL VOC 2012 and SBD datasets. COCO-20i

is built from MS-COCO dataset. In PASCAL-5i, 20 object classes of PASCAL VOC are split
into 4 groups, in which each group contains 5 categories. In COCO-20i, as PASCAL-5i, we
divide MS-COCO into 4 groups, in which each group contains 20 categories. For PASCAL-
5i and COCO-20i, we evaluate our approach based on PFENet. We use the same categories
division and randomly sample 20,000 support-query pairs to evaluate as PFENet.

For both datasets, we adopt 4-fold cross-validation i.e., a training model on three folds
(base class) and the inference model on the remaining one (novel class). The experimental
results are reported on each test fold, and we also report the average performance of all
four test folds.

4.1.2. Evaluation Metrics

Following previous work [7,27], we use the widely adopted class mean intersection
over union (mIoU) as our major evaluation metric for the ablation study, since the class
mIoU is more reasonable than the foreground-background IoU (FB-IoU), as stated in [7].
For each class, the IoU is calculated by TP

TP+FN+FP , where TP denotes the number of true
positives, FP denotes the number of false postives and FN denotes the number of false
negatives. Then, mIOU is the mean value of all classes IoU in the test set. For FB-IoU, only
the foreground and background are considered (C = 2). We take the average of the results
on all folds as the final mIoU/FB-IoU.

4.2. Implementation Details

Our approach is based on PFENet [1] with ResNet-50 as the backbone to create a
fair comparison with the other methods. Following previous work [1,5,6], the parameters
of the backbone are initialized with the pre-trained ImageNet, and is kept fixed during
training. Other layers are initialized by the default setting of PyTorch. For PASCAL-5i, the
network is trained with an initial learning rate of 2.5 × 10−3, weight decay of 1 × 10−4, and
a momentum of 0.9 for only 100 epochs. The batch size is 4. For COCO-20i, the network
is trained for 50 epochs with a learning rate of 0.005 and batch size of 8. We use data
augmentation during training. Specifically, input images are transformed with random
scale, horizontally flipped and rotated from [−10, 10], and then all images are cropped to
473 × 473 (for PASCAL and COCO) or 641 × 641 (for COCO) as the training samples, for
fair comparison. We implemented our model with 4 RTX2080Ti.

4.3. Comparisons with State-of-the-Art

4.3.1. COCO-20i Result

COCO-20i is a very challenging dataset that contains the numbers of objects in realistic
scene images. We compare our approach with others on this dataset, and our approach
outperforms other approaches by a big margin, as shown in Table 1. It can be seen that
our approach achieves state-of-the-art performance on both 1-shot and 5-shot settings with
mIOU gain of 0.3% and 0.5%, respectively. Furthermore, compared to our baseline (PFENet
with ResNet101), our approach (with ResNet101) obtains 9.1% and 12.6% mIoU increases
for 1-shot and 5-shot settings. In Table 2, our method obtains a top-performing 1-shot result
and competitive 5-shot result with respect to FB-IoU. Once again, these results demonstrate
that the proposed method is able to deal with more complex cases, since MSCOCO is a
much more challenging dataset with diverse samples and categories.
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Table 1. Comparison with other state-of-the-art methods on COCO-20i for 1-shot and 5-shot settings.
† denotes the model using size 641 × 641 as the training samples. All methods are tested on the
original size. Bold denotes the best performance and red denotes the second best performance.

Method Backbone
1-Shot 5-Shot

Fold-1 Fold-2 Fold-3 Fold-4 Mean Fold-1 Fold-2 Fold-3 Fold-4 Mean

PFENet (TPAMI’20) ResNet101 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4
SCL (CVPR’21) ResNet101 36.4 38.6 37.5 35.4 37.0 38.9 40.5 41.5 38.7 39.9
RePRI (CVPR’21) ResNet101 36.8 41.8 38.7 36.7 38.5 40.4 46.8 43.2 40.5 42.7
FWB (ICCV’19) ResNet101 17.0 18.0 21.0 28.9 21.2 19.1 21.5 23.9 30.1 23.7
CWT (ICCV’21) ResNet101 30.3 36.6 30.5 32.2 32.4 38.5 46.7 39.4 43.2 42.0
HSNet (ICCV’21) ResNet101 37.2 44.1 42.4 41.3 41.2 45.9 53 51.8 47.1 49.5
SCNet (2021) ResNet101 38.3 43.1 40.0 39.1 40.1 44.0 47.7 45.0 42.8 44.8
MLC (ICCV’21) ResNet101 50.2 37.8 27.1 30.4 36.4 57.0 46.2 37.3 37.2 44.4

SST (IJCAI’20) ResNet50 - - - - 22.2 - - - - 31.3
DAN (ECCV’20) ResNet50 - - - - 24.4 - - - - 29.6
PPNet (ECCV’20) ResNet50 34.5 25.4 24.3 18.6 25.7 48.3 30.9 35.7 30.2 36.2
RPMMs (ECCV’20) ResNet50 29.5 36.8 28.9 27.0 30.6 33.8 42.0 33.0 33.3 35.5
ASR (CVPR’21) ResNet50 29.9 35.0 31.9 33.5 32.6 31.3 37.9 33.5 35.2 34.4
ASGNet † (CVPR’21) ResNet50 - - - - 34.6 - - - - 42.5
CWT (ICCV’21) ResNet50 32.2 36.0 31.6 31.6 32.9 40.1 43.8 39.0 42.4 41.3

Ours † ResNet50 37.1 42.8 39.4 37.7 39.3 41.9 49.0 46.3 44.0 45.3
Ours ResNet101 40.6 44.1 40.6 40.2 41.5 49.0 52.9 50.5 47.7 50.0

Table 2. Comparison of FB-IoU on COCO-20i.

Methods Backbone 1-Shot 5-Shot

PFENet (TPAMI’20) ResNet101 58.6 61.9
DAN (ECCV’20) ResNet101 62.3 63.9

Ours ResNet101 64.0 68.8

4.3.2. PASCAL-5i Result

In Table 3, we compare our method with other state-of-the-art methods on PASCAL-
5i. It can be seen that our method achieves on par state-of-the-art performance on 1-shot
setting and 5-shot setting. Additionally, our method significantly improves the performance
of PFENet on 1-shot and 5-shot segmentation settings, with an mIOU increase of 1.6%
and 4%, respectively. In Table 4, our method obtains competitive 1-shot results and top-
performing 5-shot results with respect to FB-IoU. In Figure 4, we report some qualitative
results generated by our approach with PFENet [1] as the baseline. Our method is capable
of making correct predictions and each part of our method could independently improve
the performance of the model.

Table 3. Comparison with state-of-the-art methods on PASCAL-5i for 1-shot and 5-shot settings.
For fair comparison, all methods are evaluated with backbone ResNet50 and tested on labels with
original sizes. Bold denotes the best performance and red denotes the second best performance.

Method
1-Shot 5-Shot

Fold-1 Fold-2 Fold-3 Fold-4 Mean Fold-1 Fold-2 Fold-3 Fold-4 Mean

PGNet (ICCV’19) 56.0 66.9 50.6 50.4 56.0 57.7 68.7 52.9 54.6 58.5
CANet (CVPR’19) 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1
CRNet (CVPR’20) - - - - 55.7 - - - - 58.8
SimPropNet (IJCAI’20) 54.9 67.3 54.5 52.0 57.2 57.2 68.5 58.4 56.1 60.0
DAN (ECCV’20) - - - - 57.1 - - - - 59.5
PPNet (ECCV’20) 47.8 58.8 53.8 45.6 51.5 58.4 67.8 64.9 56.7 62.0
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Table 3. Cont.

Method
1-Shot 5-Shot

Fold-1 Fold-2 Fold-3 Fold-4 Mean Fold-1 Fold-2 Fold-3 Fold-4 Mean

RPMMs (ECCV’20) 55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3
PFENet (TPAMI’20) 61.7 69.5 55.4 56.3 60.7 63.1 70.7 55.8 57.9 61.9
ASR (CVPR’21) 53.8 69.6 51.6 52.8 56.9 56.2 70.6 53.9 53.4 58.5
ASGNet (CVPR’21) 58.8 67.9 56.8 53.8 59.3 63.7 70.6 64.2 57.4 63.9
SCL (CVPR’21) 63.0 70.0 56.5 57.7 61.8 64.5 70.9 57.3 58.7 62.9
RePRI (CVPR’21) 59.8 68.3 62.1 48.5 59.7 64.6 71.4 71.7 59.3 66.6
CWT (ICCV’21) 56.3 62.0 59.9 47.2 56.4 61.3 68.5 68.5 56.6 63.7
MLC (ICCV’21) 59.2 71.2 65.6 52.5 62.1 63.5 71.6 71.2 58.1 66.1
HSNet (ICCV’21) 64.3 70.7 60.3 60.5 64.0 70.3 73.2 67.4 67.1 69.5

Ours 63.6 70.2 57.1 58.2 62.3 67.7 72.3 59.3 64.1 65.9

Table 4. Comparison of FB-IoU on PASCAL-5i for 1-shot and 5-shot settings. We used ResNet50
as the backbone.

Methods 1-Shot 5-Shot

PFENet(TPAMI’20) 73.3 73.9
PANet (ICCV’19) 66.5 70.7
CANet (CVPR’19) 66.2 69.6
PGNet (ICCV’19) 69.9 70.5
CRNet (CVPR’20) 66.8 71.5
PPNet (ECCV’20) 69.2 75.8
DAN (ECCV’20) 71.9 72.3
SCL (CVPR’21) 71.9 72.8
ASGNet (CVPR’21) 69.2 74.2
ASR (ICCV’21) 71.3 72.5

Ours 72.5 76.0

Figure 4. Qualitative examples of 5-shot segmentation on the PASCAL-5i. (a) The ground-truth of
the query images. (b) Results of baseline (PFENet) . (c) Results of BGL. (d) Results of CPG. (e) Results
of the combination of BGL and CPG. Best viewed in color and zoomed in.

4.4. Ablation Study

To verify the effectiveness of out proposed methods, we conduct extensive ablation
studies with a ResNet-50 backbone on PASCAL-5i.
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4.4.1. The Effectiveness of CPG

To verify the effectiveness of CPG, we conduct several experiments on prototype
generation and compare it with other prototype generation algorithms. As a kind of soft
cluster algorithm, we first compare our method with Adaptive K-means Algorithm (AK)
provided by ASGNet [5], and a traditional algorithm, Expectation-Maximization Algorithm
(EM), as shown in Table 5. Compared to the baseline, both AK and EM degenerate the
performance of segmentation in a 1-shot setting while our CPG offers 0.6% improvement
on the baseline. Compared to SCL [6] which needs to segment both support images and
query images, our approach uses less computation cost and inference times (in Table 6)
with competitive results on both 1-shot and 5-shot settings. These indicated the superiority
of CPG on the few-shot segmentation task.

Table 5. Ablation study on prototype generation in a 1-shot setting on PASCAL-5i.

Methods Fold-1 Fold-2 Fold-3 Fold-4 Mean

baseline 61.7 69.5 55.4 56.3 60.8
AK [5] 60.5 68 55 54.2 59.4
EM 56.9 67.7 54.2 53.6 58.1
CPG 62.9 69.6 56.8 56.4 61.4

Table 6. Ablation study on the effectiveness of different components, evaluated on PASCAL-5i. We
report the mIoU and Frames (number of episodes) per second (FPS) for 1-shot and 5-shot. CPG:
Complementary Prototypes Generation. BGL: Background Guided Learning.

CPG BGL 1-Shot FPS 5-Shot FPS

- - 60.7 50 61.9 12.5√
- 61.4 50 63.6 11.11

-
√

62.1 50 65.1 12.5√ √
62.3 50 65.9 11.11

4.4.2. The Effectiveness of BGL

To demonstrate the effectiveness of our proposed BGL, we conduct both qualitative
and quantitative analysis on BGL. We assume the BGL has two sides of effectiveness on
feature representation. The first one is the enhancement of feature representation for the
novel classes and the second one is discrimination between the class-specific (foreground)
feature and the class-agnostic (background) feature. Following [28], we measure the inter-
class variance, intra-class variance, and discriminative function φ. Here φ is defined as
inter-class variance divided by the intra-class variance.

As shown in Figure 5a,b,d, BGL not only enlarges the inter-class variance for novel
classes but also increases intra-class variance for novel classes. In other words, BGL does
not improve the representation discriminability for novel classes. However, as shown in
Figure 5c,e, BGL enlarges the inter-class distance and increases the discriminative function
φ between the foreground and the background. Therefore, the effectiveness of BGL is in
the promotion of discrimination between the foreground and background.
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Figure 5. Discriminability analysis. (a) intra-class variance on novel classes. (b) Inter-class variance
on novel classes. (c) Inter-class variance on the foreground/background. (d) Discriminative function
φ on the novel class. (e) Discriminative function φ on the foreground/background.

4.4.3. The Effectiveness of BGL and CPG

To demonstrate the effectiveness of both CPG and BGL, ablation studies are conducted
on PASCAL-5i, as shown in Table 6. Compared with the baseline, using CPG and BGL
alone improves the performance by a large margin, 1.7% and 2.6% for mIoU on 5-shot
setting, respectively. In addition, we show that using CPG alone could achieve the current
SOTA performance provided by SCL [6], and using BGL could surpass thestate-of-the-
art performance with a 2.2% mIoU score. Then, combining both CPG and BGL achieves
higher performance than the aforementioned one, with 4% improvement in total. In
Figure 4, we show that using CPG and BGL alone may generate wrong segmentations on
the background, but a combination of them could improve the results. In Figure 6, we show
some representative heatmap examples, which further shows how the combination of CPG
and BGL helps the model segment precisely and accurately.

Figure 6. Heatmap examples on PASCAL-5i in a 5-shot setting. (a) Result of baseline. (b) Result of
CPG . (c) Result of BGL. (d) Result of the combination of BGL and CPG.

5. Conclusions

In this paper, we propose a novel few-shot semantic segmentation method named
DCNet, which is composed of CPG and BGL. Our approach is able to extract comprehensive
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support information through our proposed CPG module and generate discriminative
feature representation for background pixels by BGL. Extensive experiments demonstrate
the effectiveness of our proposed method.
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Abstract: In this paper, we propose the task of extracting salient facts from online company reviews.
Salient facts present unique and distinctive information about a company, which helps the user in
deciding whether to apply to the company. We formulate the salient fact extraction task as a text
classification problem, and leverage pretrained language models to tackle the problem. However, the
scarcity of salient facts in company reviews causes a serious label imbalance issue, which hinders
taking full advantage of pretrained language models. To address the issue, we developed two
data enrichment methods: first, representation enrichment, which highlights uncommon tokens by
appending special tokens, and second, label propagation, which interactively creates pseudopositive
examples from unlabeled data. Experimental results on an online company review corpus show
that our approach improves the performance of pretrained language models by up to an F1 score
of 0.24. We also confirm that our approach competitively performs well against the state-of-the-art
data augmentation method on the SemEval 2019 benchmark even when trained with only 20% of
training data.

Keywords: review mining; natural language processing; information extraction; pretrained models;
scarce labels

1. Introduction

Online reviews are an essential source of information. More than 80% of people read
online reviews before reaching decisions [1]. This trend also applies to job seekers. Before
applying to open positions, job seekers often read online employee reviews about hiring
experience and work environment on Indeed, LinkedIn, and other channels. However, the
overabundance of reviews can render them cumbersome to read. For example, there are
63,400 reviews about Amazon on Indeed. Furthermore, job seekers must skim through
several subjective comments in the reviews to find concrete information about a company
of interest.

Alternatively, job seekers can find such concrete information (e.g., Table 1) in expert
articles about companies on websites such as Business Insider [2,3] and FutureFuel [4].
However, such expert articles are typically written only for very popular companies and do
not cover the global majority of companies. Online company reviews, on the other hand,
are available for a vast number of companies, as (former) company employees submit
reviews about a company to review platforms such as Glassdoor. Therefore, we aim to
automatically extract unique and distinctive information from online reviews.

CSFM 2022, 3, 9. https://doi.org/10.3390/cmsf2022003009 https://www.mdpi.com/journal/csmf133
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We refer to informative descriptions in online reviews as salient facts. In order to
derive a formal definition of salient facts, we conducted an inhouse study where we asked
three editors to inspect 43,000 reviews about Google, Amazon, Facebook, and Apple. The
editors discussed salient and nonsalient sentences in the reviews, and concluded that a
salient fact mentions an uncommon attribute about a company and/or describes some
quantitative information of an attribute. Attributes of a company include employee perks,
onsite services and amenities, the company culture, and the work environment. We further
validated our definition by looking into expert articles, and confirmed that the articles were
extensively composed of the same properties. For example, 4 of the 8 benefits mentioned in
an article [2] about Google used less-known attributes such as food variety, fitness facilities,
and pet policy. The other 4 of 8 benefits used numeric values, such as 50% retirement
pension match.

Table 1. Sample sentences from an online review and expert article about Google.

Online Good work place, best pay, awesome company.

Expert In the event of your death, Google pays your family 50% of your salary each
year.

In this paper, we propose the novel task of salient fact extraction and formulate it as a
text classification problem. With this formulation, we could automate filtering company
reviews that contain salient information about the company. Pretrained models [5–7] are a
natural choice for such tasks [8,9] since they generalize better when the training data for the
task are extremely small. We, therefore, adopted BERT [5] for our extraction task. However,
generating even a small amount of task-specific balanced training data is challenging
for salient fact extraction due to the scarcity of salient sentences in the reviews. Naively
labeling more sentences to address the scarcity can be prohibitively expensive. As such,
even pretrained models that perform robustly in few-shot learning cannot achieve good
enough performance when used directly for this task.

In this work, we propose two data enrichment methods, representation enrichment
and label propagation, to address the scarcity of salient facts in training data. Our repre-
sentation enrichment method is based on the assumption that salient sentences tend to
mention uncommon attributes and numerical values. We can, therefore, enrich training
data using automatically identified uncommon attributes and numeric descriptions from
review corpora. Specifically, we append special tags to sentences that mention uncommon
attributes and numerical values to provide additional signals to the model. Our label prop-
agation method is based on the idea that we can use a small set of seed salient sentences to
fetch similar sentences from unlabeled reviews that are likely to be salient. This can help in
improving the representation of salient sentences in the training data. Our methods are
applicable to a wide variety of pretrained models [5–7].

We conducted extensive experiments to benchmark the extraction performance and
demonstrate the effectiveness of our proposed methods. Our methods could improve the F1
scores of pretrained models by up to 0.24 on salient fact extraction, which is 2.2 times higher
than the original F1 scores. This is because our models could identify more uncommon
attributes and more quantitative descriptions than directly using pretrained language
models can.Our models could also better distinguish between expert- and employee-
written reviews.

To summarize, our contributions are the following: (1) We practice a new review
mining taskcalled salient fact extraction using pretrained language models and data aug-
mentation in an end-to-end manner. The task faced an extremely low ratio (i.e., <10%)
of salient facts in raw reviews. (2) The best-performing methods still require massive
labels in the tens of thousands, because trained models and augmented examples tend
to be biased towards majority examples. To alleviate this problem, we leveraged a series
of improvements to ensure that the model training and data augmentation worked effec-
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tively for the desired minority examples. (3) An extension of our method demonstrates
that it generalizes well and could reduce the labeling cost for new domain adaption (e.g.,
transferring to a product domain achieves an improved label ratio from 5% to 43%) of
the same task and for similar tasks that deal with minority review comment extraction
(e.g., suggestion mining requires a reduced amount of labels by 75% to hit the performance
of UDA semisupervised learning [10]). To facilitate future research, we publicized our
implementations and experimental scripts (https://github.com/megagonlabs/factmine,
accessed on 22 August 2020). We did not release the company dataset due to copyright
issues. However, we aim to release datasets of similar tasks to benchmark the performance
of different methods. We also released a command-line programming interface that renders
our results readily reproducible.

2. Characterization of Salient Facts

The cornerstone towards automatic extraction is to understand what renders a review
(or sentence in a review) salient. To this end, we first inspected raw online reviews to derive
a definition of salient facts. We then analyzed expert articles to ensure that the derived
definition is valid (Figure 1).

Figure 1. Constitution of false instances.

2.1. Review Corpus Annotation and Analysis

We produced inhouse annotation to understand what review sentences are deemed
salient facts for human readers.We collected 43,000 company reviews about Google, Ama-
zon, Facebook, and Apple. We split each review into sentences using NLTK [11]. Then, we
inspected all the sentences and selected salient sentences according to our understanding of
the corresponding companies. Table 2 shows example sentences that were labeled salient.

Sentences labeled salient described more uncommon attributes than nonsalient sen-
tences did. Uncommon attributes include real-world objects and services such as cafes,
kitchens, dog parks. They are typically not provided by all companies and can help job
seekers differentiate between companies. Furthermore, salient sentences use quantitative
descriptions (e.g., 25+ and 100 ft in Table 2). Quantities often represent objective informa-
tion and vary across companies, even for the same attribute, thereby helping job seekers in
differentiating between companies.

These properties are not exhibited by nonsalient sentences. As shown in Table 3, most
nonsalient sentences mention solely common attributes (e.g., place, salary and people),
disclose purely personal sentiments (e.g., awesome, great, cool), or are noisy (e.g., invalid
or incomplete texts). Different kinds of nonsalient sentences and their ratios are shown in
Figure 1.
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Table 2. Sample salient facts extracted from online reviews.

Example 1. Google also has 25+ cafes and microkitchens every 100 ft. (Google)
Example 2. Dogs allowed in all the buildings I’ve been to (including some dog parks in
the buildings!) (Amazon)

Table 3. Example non-salient sentences and reasons.

Reason Example

noquantity awesome place to work, great salary, smart people
personal I couldn’t imagine a better large corporate culture that still tries to be agile
common Salary, perks, and benefits
noattribute ok ok ok ok ook
incomplete five single words for this
sentimental great, happy, cool, friendly, doable, beautiful, awesome, nice, good, big
invalid good fv gt tr tr yt y
irrelevant Best friendly free cab cool no target

2.2. Expert Article Analysis

We analyze expert-written reviews to investigate if they exhibited characteristics of
salient facts i.e., describe an uncommon attribute and/or use quantitative descriptions.
First, we compare frequencies of a set of attribute words across expert sentences and review
sentences. The used expert sentences attributed words that were infrequent in the review
sentences. For example, frequencies of death, family (commonly mentioned in expert reviews
for Google) in review sentences were 0.01% and 0.15%, respectively. In contrast, frequencies
of place, pay (commonly mentioned in review sentences for Google) were 3.44% and 1.28%,
respectively. This observation supports our definition.

Next, we inspected if the expert sentences used more quantitative descriptions than
randomly selected review sentences. For example, 4 of the 7 expert sentences describing most
benefits of Google used quantitative descriptions such as 10 years, USD 1000 per month,
18–22 weeks, and 50% match. On the other hand, none of the 7 sentences randomly sampled
from reviews mentioned any quantities. In fact, most of them used subjective descriptions such
as nice, interesting, and great. This observation supports our characterization of salient facts.

3. Methodology

Owing to the recent success of pretrained models in information extraction tasks,
we adopted these models for salient fact extraction. We first describe how we modelled
salient fact extraction as a sentence classification task over pretrained models. We describe
technical challenges unique to this task. We then describe two methods, representation
enrichment and label propagation, to address these challenges.

3.1. Pretrained Model and Fine Tuning

The goal of a supervised-learning model for salient fact extraction tasks is to predict
the correct label for an unseen review sentence: 1 if the sentence is salient, and 0 otherwise.
The model is trained using a set of labeled text instances (t, l)i, where t is a sentence and l
is a binary label. By seeing a number of training instances, the model learns to discriminate
between positive and negative instances. However, supervised learning is sensitive to the
coverage of salient sentences in the review corpus. It can yield suboptimal models when
faced with imbalanced datasets.

Pretrained models, on the other hand, tend to be more robust to such imbalances and
generalize better. These models project a text instance t into a high-dimensional vector
(e.g., 768 in BERT), such that text instances sharing similar words or synonyms have similar
vectors. Since predictions are based on dense-vector representations, they can predict the
same label for semantically equivalent instances (e.g., cafe and coffee) without having seen
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them explicitly during training. As a result, pretrained models require far fewer salient
sentences than supervised models trained from scratch do.

Despite their better generalizability, pretrained models struggle to make correct pre-
dictions for sentences with unseen attributes or quantities if their synonyms didn’t appear
in the training set. As a result, a training set should contain as many infrequent attributes
and quantitative descriptions as possible for optimal performance of pretrained models.
However, due to the inherent scarcity of infrequent attributes and quantitative descriptions,
the models can only see a limited amount of salient facts (and thus infrequent attributes and
quantities) during training. We propose representation enrichment and label propagation
methods to address these challenges. We next describe these methods in more detail.

3.2. Representation Enrichment

In our empirical experiment, we observed that only 0.55% of labeled sentences were
considered to be positive (i.e., salient facts.). Given such an extremely small number of
positive examples, there is a chance that the learning algorithm cannot generalize the model
using the training set as it may not cover sufficient patterns of salient facts. As a result, a
trained model may not be able to recognize salient facts with different linguistic patterns
than those of the training instances. In this paper, we considered that we could alleviate
the issue by incorporating prior knowledge about the task. Salient facts contain relatively
uncommon attributes and/or quantitative descriptions, so we aimed to implement those
functions into the model.

Since models may meet unseen salient facts during prediction, we developed a rep-
resentation enrichment method to help the models in recognizing their attributes and
quantities for prediction. The method appends a special tag to text instances if they contain
tokens related to uncommon attributes or quantitative descriptions. The model can learn
that a text instance containing the special tag tends to be a salient fact. During prediction,
even if a model does not recognize unseen tokens in a salient fact instance, the model can
recognize the special tag and make accurate prediction.

The expansion process begins by selecting a set of salient tokens. The salient tokens
are those common words that appear in the review corpus to describe uncommon attributes
or quantities. The expansion process comprises two steps. The first step identifies a list
of salient tokens as part of the inputs to Algorithm 1. The second step takes the list and
a special tag token (e.g., “salient” for uncommon attribute token list) to run Algorithm 1.
The algorithm iterates all text instances. If a text instance contains any token of the list, the
algorithm appends a special tag to it. All instances that contain salient tokens share the
same tag. After the two steps, both groups of tagged and untagged text instances are fitted
to train the extraction model. After the model is trained, it is used to produce predictions
for salient facts.

Uncommon attribute token list: we used a two-step method to discover tokens that are
used in the corpus to describe uncommon attributes. First, we identified nouns, since attribute
tokens are mostly nouns. We used NLTK to extract noun words. Second, we ranked the nouns
by their IDF scores. The IDF of a noun w is calculated as log(T/|{d|d ∈ D ∧ w ∈ d}|), where
T is the total number of sentences and |{d|d ∈ D ∧ w ∈ d}| is the number of sentences that
contain the noun token w. Nouns that appeared the least frequently (i.e., top 1000 words
based on the IDF scores) in the review corpus were considered to be uncommon attribute
tokens. We next inspect the top list to label tokens that are used to describe uncommon
attributes. The purpose was to exclude nonattribute words. By applying this two-step
method, we successfully constructed a list of uncommon attribute tokens.

Quantitative description token list: we curated a list of tokens that are used to describe
quantities. The list contains three types of tokens: digit, numeric, and unit. Digit tokens in-
clude all integer numbers from 0 to 9 and any integers composed of the 10 integers. Numeric
(https://helpingwithmath.com/cha0301-numbers-words01/, accessed on 22 August 2020)
are word descriptions of numbers, and representatives are hundreds, thousands, and mil-
lions. Unit (https://usma.org/detailed-list-of-metric-system-units-symbols-and-prefixes,
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accessed on 22 August 2020) consist of commonly used measurements that often appear in
quantitative descriptions, and some examples include hour and percentage. Digit, numeric,
and unit form a comprehensive coverage of word tokens that people commonly use in
quantitative descriptions. We last inspected the set of tokens and curated a final list of
tokens for quantitative descriptions.

Algorithm 1 Representation enrichment.

Input: Text instance t with tokens t1, t2, . . . , tk, list l of salient tokens, and special token s
Output: A new text instance tnew

1: tnew ← t
2: for i ← 1 to k do
3: if ti ∈ l then
4: tnew ← tnew + s
5: return tnew
6: end if
7: end for
8: return tnew

3.3. Label Propagation

Due to the extremely sparse positive examples for salient facts, the training procedure
may fail to generalize the model. To alleviate the issue, we augmented training data by
searching similar instances.

Candidate Selection: we show the label propagation process in Algorithm 2. The
process takes salient fact instance t from existing training data as input. Then, it searches
the m-most similar instances from unlabeled text instances (denoted as u1, u2, . . . , un.) As
the similarity function, we used the Jaccard score as defined in Equation (1), where Vt and
Vu denote the distinct vocabulary sets of t and u respectively. The score is 1 if two texts
share exactly same vocabulary sets, and 0 if they do not share any common tokens.

J(t, u) = |Vt ∩ Vu|/|Vt ∪ Vu| (1)

To obtain vocabulary sets, we used the BERT WordPiece tokenizer to split the text into
tokens by matching character sequence with a predefined vocabulary of about 30,000 [5].
Since an unlabeled corpus contains abundant text instances, Algorithm 2 can help in
retrieving the instances that are the most similar to salient facts to expand our training set.

Algorithm 2 Label propagation: candidate selection.

Input: Salient instances set T, unlabeled instances set U, similarity function sim(t, u),
candidate size m

Output: Candidate instances set C of size m
1: Candidate set C ← [ ]
2: for t in T do
3: for i ← 1 to n do
4: s ← sim(t, ui)
5: C ← C + (ui, s)
6: end for
7: end for
8: C = deduplicate(C)
9: Sort C by score

10: return C[1 : m]

Reranking: Jaccard score favors frequent word tokens such as stopwords. Therefore,
a negative instance can be ranked high and returned as a candidate if it contains a lot of
stopwords. To solve this issue, we introduced a reranking operator that sorts all candidates
by their relative affinity to positive and negative examples in the training set, as shown
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in Algorithm 3. For every candidate c, we calculated two scores, i.e., textual affinity ta
and semantic affinity sa, which were used to measure the overall distances to a group of
examples G.

avg_dist(c, G) = 1/|G| ∗ ∑
e∈G

(1 − J(c, e)) (2)

ta(c, X, Y) =
avg_dist(c, {xi|xi ∈ X, yi = 0})
avg_dist(c, {xi |xi ∈ X, yi = 1}) (3)

Textual affinity ta was defined as Equation (3) to measure the relative affinity of a
candidate c to the positive- and negative-example groups of the training set. Affinity is
measured by counter average distance (see Equation (2)). Greater textual affinity is better,
which means that c has smaller distance to the positive group and larger distance to the
negative group. Intuitively, textual affinity favors candidate c that shares many common
tokens with positive examples, while such tokens are not common (e.g., stopwords) in
negative examples.

sa(c, X, Y) = discriminator(X, Y).estimate(c) (4)

Textual affinity cannot recognize semantically connected words (e.g., million and
billion). Therefore, we introduced semantic affinity sa as defined in Equation (4). Semantic
affinity requires a discriminator that uses word embeddings as input representation. In
other words, a discriminator can recognize semantically connected words through similar
word vectors. Next, we trained the discriminator using the training set, so that the discrim-
inator learned to predict whether an input sentence is a positive example according to its
word vectors. The trained discriminator is used to estimate the probability of candidate c
belonging to the positive group. In our experiments, we used BERT as the discriminator
and took the product of textual affinity ta and semantic affinity sa to yield the best F1 scores.

Lastly, we sorted all candidates in descending order by their overall affinity score (i.e.,
textual affinity × semantic affinity). We returned the top pk as positive examples, and tail
nk as negative examples, where pk and nk are user-defined parameters. In our experiments,
label propagation performed reasonably well if pk

pk+nk equalled to the label ratio, and pk+ nk
equalled to the training size but was smaller than half the size of unlabeled examples.

Algorithm 3 Label propagation: reranking.

Input: Candidate collection C, training set X, Y, number of pseudopositive examples pk,
and negative examples nk

Output: pk positive and nk negative pseudoexamples
1: Reranking set R ← [ ]
2: for c in C do
3: ta = textual_affinity(c, X, Y)
4: estimator = BERT (X, Y)
5: sa = semantic_affinity(c, estimator)
6: R ← R + (c, ta ∗ sa)
7: end for
8: R.sorted(key = lambda(c, s) : −s)
9: return head pk and tail nk of R as positive and negative pseudoexamples

3.4. Additional Training Techniques

Fine tuning pretrained language models is limited in batch size due to GPU memory
capacity. For example, the maximal batch size that BERT base model can process on a
16 GB GPU is around 64. Given the extremely low label ratio (e.g., 5%), it is possible that a
batch may not contain any positive examples. Consequently, the trained model may exhibit
significant biases against positive examples. To alleviate this problem, we leveraged two
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fine-tuning techniques, namely, thresholding and choosing the best snapshot (described
below), to enable the trained model to weigh more on the positive examples.

Thresholding: pretrained models such as BERT adopt argmax to predict the label of an
example. First, the pretrained model outputs two probability scores for the same example,
indicating the likelihood of this example belonging to the negative or positive class. Next,
argmax selects the class of a larger score as the final prediction. Experiments showed
that the average positive probability was much smaller than negative probability; thus,
we replaced argmax with thresholding that only concerned the positive prediction score.
Thresholding sorts all examples by positive prediction scores and varies a threshold from
the highest to the lowest score. We tried 100 different thresholds at equal intervals between
highest and lowest, and chose the threshold that led to the largest F1 on the training set.

Choose best snapshot: due to severe label imbalance, a model could achieve the best
performance during its training snapshots. A potential reason is that the model met the
highest-quality positive and negative examples at the snapshots. Therefore, we set a fixed
number of snapshots and inspected the model during each snapshot. We compared the
model performance between two consecutive snapshots and checkpointed the model if
better performance was observed.

4. Experiments

In this section, we first examine the extraction performance of pretrained models BERT,
ALBERT, and RoBERTa. We then show the effectiveness of our proposed data enrichment
methods by conducting an ablation study with the pretrained models.

Datasets: we obtained company reviews from an online company review platform for
job seekers. We use the reviews of two companies (Google and Amazon) for evaluation.
We chose these companies because their expert articles were also available for comparison.
We first split the reviews into sentences using the NLTK sentence tokenizer [11]. For
Google, we used all 13,101 sentences from the reviews. For Amazon, we randomly sampled
10,000 sentences. We then asked four editors to finish labeling these sentences (1 or 0) on the
basis of their salience. We randomly sampled 100 sentences (50 positive and 50 negative)
and asked two editors to label them. There was Cohen’s kappa agreement of 0.9 between
the editors. This agreement is higher than the agreement scores reported in previous studies
related to our work e.g., 0.81 from a SEMEVAL-2019 Competition task 9 [8] and 0.59 from
TipRank [12]).

Hyperparameters: we split the labeled dataset into training and test sets at a ratio of
4:1. For training the pretrained models, we set the number of epochs to 5, max sequence
length to 128, and batch size to 32. We used the F1 score of the positive class (i.e., salient) to
measure the performance of a model. Since a model may achieve the best F1 score in the
middle of training, we inspected a model 15 times during training and reported the best F1
score of the 15 snapshots.

4.1. Effectiveness of Pretrained Models

We first compare the performance of pretrained models and other supervised learning
algorithms, namely, logistic regression (LR), support vector machine (SVM), convolutional
neural network (CNN), and recurrent neural network with long short-term memory (LSTM).
We used the same configuration to train and evaluate all models. Unsurprisingly, all
pretrained models consistently outperformed other models on the two datasets (as shown
in Table 4). BERT achieved the highest F1 scores with absolute F1 gain as high as 0.16 and
0.14 on Google and Amazon, respectively. These results indicate that the pretrained models
are suited for the salient fact extraction task.
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Table 4. F1 scores of BERT, ALBERT (ALB.), RoBERTa (ROB.), LR, SVM, CNN, and LSTM on Google
and Amazon datasets. The best score for each dataset is in bold.

Dataset BERT ALB. ROB. LR SVM CNN LSTM

Google 0.33 0.30 0.19 0.13 0.17 0.17 0.17
Amazon 0.27 0.13 0.20 0.13 0.12 0.03 0.07

4.2. Effectiveness of Representation Enrichment

To investigate the effectiveness of representation enrichment, we curated two lists, one
for uncommon attribute descriptions and one for quantitative descriptions. We separately
applied the two lists for each pretrained model, and report their F1 scores in Table 5. We
also computed the F1 scores before and after representation enrichment.

Table 5. F1 score of BERT, ALBERT (ALB.), RoBERTa (ROB.) when using representation enrichment.
F1 improvements compared with direct use of pretrained models (see Table 4) marked in orange.
Best scores marked in bold.

Expansion Dataset BERT ALB. ROB.

Uncommon Google 0.38 (+0.05) 0.43 (+0.13) 0.19 (+0.00)
Uncommon Amazon 0.29 (+0.02) 0.28 (+0.15) 0.35 (+0.15)

Quantitative Google 0.38 (+0.05) 0.40 (+0.10) 0.32 (+0.13)
Quantitative Amazon 0.27 (+0.00) 0.2 (+0.7) 0.44 (+0.24)

We first evaluated the effect of representation enrichment using uncommon attribute
token list (Uncommon). As shown in Table 5, Uncommon could improve the F1 score of
BERT, which appeared to be the best model, as shown in Table 4, from 0.33 to 0.38 on Google
and from 0.27 to 0.29 on Amazon, so improvement was 0.05 and 0.02, respectively. More
importantly, Uncommon also improved the F1 scores of models ALBERT and RoBERTa on
both Google and Amazon. ALBERT achieved the greatest F1 improvement (0.13 on Google
and 0.15 on Amazon) and outperformed BERT. RoBERTa achieved 0.15 F1 improvement
and outperformed BERT on Amazon. Results indicate that representation enrichment with
an uncommon attribute token list is generic and can improve the extraction performance of
various pretrained models.

We next evaluated the effect of representation enrichment using quantitative descrip-
tion token list (Quantitative). As shown in Table 5, Quantitative consistently improved F1
scores for all models. In particular, ALBERT achieved F1 improvement of 0.10 on Google,
while RoBERTa an F1 improvement of 0.24 on Amazon. The final F1 score of RoBERTa was
0.44 on Amazon, and the score was record-high in Amazon extraction performance. Results
further verified that representation enrichment, in particular the quantitative description
token list, is a general method that works with various pretrained models.

4.3. Effectiveness of Label Propagation

Label propagation boosts the number of training samples by retrieving similar texts
from unlabeled corpora. To evaluate the effect of label propagation, we retrieved three of
the most similar texts for each salient fact and use them as positive examples for training.
Since Google and Amazon had 62 and 66 salient facts, we retrieved 186 and 198 sentences,
respectively. We report the F1 scores of BERT, ALBERT, and RoBERTa in Table 6. We also
calculated the F1 improvements before and after the label propagation.
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Table 6. F1 score of BERT, ALBERT (ALB.), RoBERTa (ROB.) when using label propagation. F1
improvement compared with direct use of pretrained models (see Table 4) are marked in orange.
Best scores are marked in bold.

Dataset BERT ALB. ROB.

Google 0.48 (+0.15) 0.37 (+0.07) 0.36 (+0.17)
Amazon 0.28 (+0.01) 0.22 (+0.09) 0.29 (+0.07)

Pretrained models achieved better F1 scores with label propagation. F1 improvement
ranged from 0.07 to 0.17 on Google, and 0.01 to 0.09 on Amazon. RoBERTa showed the
largest improvement of 0.17 on Google, where its F1 score rose up to 0.36 from 0.19,
which did not leverage label propagation (see Table 4). On Google, BERT achieved0.15 F1
improvement and a record-high F1 score of 0.48. Results suggest that label propagation can
boost the performance of various pretrained models.

5. Extension

In this section, we extend our method to a new domain and similar tasks that deal
with imbalanced datasets to verify whether our task and method had much generality.

5.1. New Domain

We defined the concept of salient fact from analyzing company reviews. We then
attempted to transfer the concept to a new domain, i.e., product reviews. First, we directly
deployed a trained company model on product review sentences to predict their probability
of saliency. Next, we sorted all sentences by saliency score in descending order, and present
the top 100 to 4 human annotators. We asked annotators to give label every sentence with
positive or negative indicating salient or nonsalient, respectively. We also asked annotators
to label randomly sampled 100 sentences for comparison.

We report the averaged ratio of positive examples for four headset products, i.e.,
plantronic, jawbone, Motorola, and Samsung, in Table 7. According to the results, trans-
ferring consistently increased the label ratio by a large margin for all four products. The
margin varied from 3× to 7×. Results suggest that the definition of salient facts is general
enough to be applied to the product domain. For quick demonstration, we release all
sentence samples in our public codebase.

Table 7. Ratio of sentences that human annotators feel salient before and after transferring trained
company model to product reviews.

Plantronic Jawbone Motorola Samsung

random 0.05 0.08 0.08 0.06
transfer 0.40 0.37 0.38 0.39

5.2. Similar Public Task

We extended the label propagation algorithm to similar tasks since the algorithm
was designed to be general. We conducted experiments to compare our method with the
state-of-the-art baselines on public tasks that regard minority comment extraction. We
obtained four public datasets that contained binary labels for training extraction models.
SUGG [8] comes from SEMEVAL 2019 task 9; positive example means that it contains
customer suggestions for software improvement. HOTEL [13] was derived from the Hotel
domain with, positive example indicating that it carries customer-to-customer suggestions
for accommodation. SENT [14] contains sentence-level examples, and a positive label
means the sentence contains tips for PHP API design. PARA [14] comes from the same
source of SENT, but contain paragraph-level examples. The ratio of positive examples for
SUGG, HOTEL, SENT, and PARA was 26%, 5%, 10%, 17%, respectively. All four datasets
contained a training set and a test set at 4:1 ratio.
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We adopted UDA [10] as a strong baseline method. UDA uses BERT as base model
and augments every example in the training set using back translation from English to
French then back to English. The example and its back translation are fed into model
training to minimize KL divergence, so that the two examples are projected to close vector
representations. We ran UDA and BERT on the full training set, and our method on only
2000 training examples. Our F1 scores and those of BERT and UDA are shown Table 8.
The average F1 of BERT, UDA, and ours was 0.6687, 0.6980, and 0.6961, respectively. BERT
performed the worst because it does not use any data augmentation, so it suffers the most
from label imbalance. UDA and ours performed similarly across all the datasets, yet UDA
used full training examples, but ours used only 23.52%, 33.33%, 21.97%, and 38.46% of
the examples on SUGG, HOTEL, SENT, and PARA, respectively. UDA favors mild data
augmentation due to the usage of KL divergence and back translation mostly change one
or two word tokens in an example. However, the mild design choice was too conservative
to efficiently augment minority examples in imbalanced datasets (thus requiring a higher
volume of augmented data). Therefore, a more aggressive design choice such as ours,
which can return new sentences as augmented examples, is needed for the widespread
existence of imbalanced datasets.

Table 8. F1 of four public tasks for minority comment extraction. All baselines use full training
examples. Our method used 2000, yet could match the performance of baselines.

SUGG (8.5k) HOTEL (6k) SENT (9.1k) PARA (5.2k)

BERT (full) 0.8571 0.6467 0.5413 0.6297
UDA (full) 0.8695 0.7290 0.5614 0.6322
Ours (2k) 0.8673 0.7244 0.5416 0.6514

5.3. Statistical Significance

We conducted experiments to evaluate the statistical significance or randomness of
our results. Specifically, we set different random seeds to run BERT, UDA, and our method
on SUGG, HOTEL, SENT, and PARA. The number of training examples for SUGG, HOTEL,
SENT, and PARA was 8500, 6000, 9100, and 5200, respectively. For every dataset, we fed full
training examples to BERT and UDA, but only 2000 to our method. We repeated the same
experiment three times and reported F1 scores. Statistical analysis was performed using
GraphPad Prism 7, and statistical significance was determined using one-way ANOVA
followed by Tukey’s multiple-comparison test. We calculated the mean, SD, and p value
with Student’s t test. Significance: not significant (n.s.) p > 0.5, * p < 0.05, ** p < 0.01, ***
p < 0.001.

Comparison results of BERT, UDA, and ours (2000) on SUGG, HOTEL, SENT, and
PARA shown in Figure 2. When comparing BERT with ours (2000), BERT showed no signifi-
cant difference on SUGG and SENT, and worse performance on HOTEL and PARA. Results
suggest that ours (2000) could outperform BERT even with fewer training examples. When
comparing UDA and ours (2000), the two methods showed no significant difference on
SENT and PARA. On HOTEL, UDA was better, but on SUGG it showed worse performance.
Results suggest that ours (2000) could achieve equally good performance as that of UDA
with much fewer training examples.
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Figure 2. Comparison between BERT and UDA, with our method. BERT and UDA are trained with
full training examples, and our method was trained with only 2000 examples. Training datasets were
SUGG, HOTEL, SENT, and PARA. Data are presented as mean ± SD. Significance: not significant
(n.s.) p > 0.5, * p < 0.05.

6. Related Work

Informative reviews: extracting informative reviews drives broad applications in
web mining, while the definition of informativeness varies across application domains.
TipRank [12] extracts short and practical sentences from TripAdvisor reviews to prepare
travellers for upcoming trips. AR-Miner [15] and DeepTip [14] highlight useful comments
in software reviews to notify developers of potential artifact issues. AMPERE [16] extracts
argumentative sentences from paper reviews to help authors improve their manuscripts.
In addition to the above research, there are many works targeting different domains such
as products [17–19], restaurants [20–22], and hotels [13,23,24]. These works align with
discovering helpful reviews to save reader time. Unlike existing works, our paper targets
the company domain, where understanding a company heavily relies on knowledge of
uncommon attributes and quantitative information, as indicated by expert-written reviews.
Therefore, our definition of salient facts serves as another dimension to analyze massive
reviews, and our work complements existing efforts towards mining the most useful
information from reviews.

Supervised learning: existing works mostly adopt supervised learning when develop-
ing automatic extractors because supervised models can automatically learn to differentiate
positive and negative instances from human labels. There are three popular categories of
supervised models, depending on input sequence representation: word occurrence mod-
els [12,13,15], such as logistic regression [25] and support vector machine [26], representing
a text as a bag of words and thus suffering from limited vocabulary when the number of
training data is small. Word vector models [8,13,14,17,27,28],such as convolutional neu-
ral networks [29] and long short-term memory [30], represent a text as a matrix of word
embeddings and can thereby process unseen words through their embeddings. Recently,
pretrained models [8,9], such as BERT [5], ALBERT [6], and RoBERTa [7], have emerged
representing a text as a high-dimensional vector by aggregating word embeddings. Due to
the high dimension (e.g., 768 in BERT) and large-scale parameters (e.g., 110M in BERT) for
aggregation, pretrained models appear to be the most promising solutions for extractions.
In fact, among all different models, pretrained models achieved the best F1 scores and are
thus the base models for our work.

Label scarcity: the problem of salient fact extraction falls into the big category of text
classification. However, the unique challenge here is label sparsity. The ratios of salient
facts in raw reviews are extremely low (<10%) due to the nature of uncommon attributes
and quantitative descriptions that require solid domain-specific knowledge from crowd
reviewers. As a result, collecting a large number of salient facts for model training is very
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difficult. We thus propose a label propagation method to expand existing salient facts
with two benefits. First, the method expands the input tokens of a input sentence towards
instructing pretrained models about whether the input carries uncommon attributes or
quantitative descriptions. Second, the method fetches more salient fact instances from the
ample unlabeled corpus to enable pretrained models seeing more salient facts. The label
propagation method was specifically designed to suit the nature of uncommon attributes
and quantitative information, and is thus complementary to existing techniques such as data
augmentation [31–33] and active learning [34–36]. A combination of existing techniques can
further improve extraction quality. However, it is nontrivial to adapt existing techniques
here due to increased algorithmic complexity; therefore, incorporating existing techniques
is a fascinating future direction for this work.

7. Extraction

In this section, we present extracted salient facts for qualitative analysis. We used
BERT as the representative pretrained models. We also present extractions using exist-
ing solutions.

7.1. Extraction Comparison

We present salient facts extracted from reviews about Google on Table 9. We also
present salient facts extracted by baseline algorithms TextRank, K-means, Longest, and
Random. TextRank [37] formulates sentences and their similarity relation into a graph,
and extracts texts with the highest PageRank weights. K-means clusters sentences into
a number of centroids and extracts the centroid sentences. Longest chooses the longest
sentence from the corpus. Random randomly selects sentences from the corpus. These
algorithms form a complete set of existing solutions for mining informative texts from a
large corpus.

Table 9. Extractions of various methods on Google dataset with attributes and descriptions marked
in red and blue, respectively. Our extractions revealed finer-grained attributes (see red) and distilled
numeric knowledge (see blue).

Method Extractions

Ours on campus laundry rooms, lots of gyms, cars on demand in case you have
to drive during the day. Flexible working hours, 90% of health insurance
paid for, 12 weeks paid parental leave as a secondary care giver, free break-
fast/lunch/dinner.

TextRank lots of happy hours and the free food is as great as everyone says it is. Solving
challenging and interesting problems that matter to people.

Kmeans Interesting work. Google.

Longest Chapter 4 of “English to Go” deals with Aeon, one of the other mega English
teaching companies, and is entitled “Aeon’s Cult of Impersonality.” An earlier
chapter, chapter 2, that deals specifically with NOVA doesn’t delve into the
cultlike training. . .

Random free food. awesome place to work, great salary, smart people.

Finer-grained attribute discovery: extraction examples show that our method extracted
salient facts that contained finer-grained attributes than those extracted by the baseline
methods. Representative attributes include laundry room, gyms, cars, and museum tickets.
These attributes describe concrete properties about the company and are less common in the
company domain. In contrast, extractions by the existing solutions tend to contain common
attributes such as food, problem, work, salary, or people, which are popular and general
topics about companies. The extractions by Longest did not reveal company attributes since
the method retrieves long yet fake reviews that are copies of external literature. Results
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suggest that salient facts are informative when presenting specific or unique attributes of a
company to readers.

Numeric knowledge distillation: our extractions distill numeric knowledge compared
with extractions from existing solutions. Representative knowledge includes 90% paid
health insurance, 12 weeks paid parental leave, and free meals provided by the company.
Knowledge is objective since it quantitatively describes attributes. In contrast, extractions
from existing solutions mostly use subjective descriptions such as “lots of”, “great”, and
“awesome”. These subjective descriptions are biased towards reviewers. Results suggest
that salient facts can provide unbiased and reliable descriptions to readers.

7.2. Expert Comment Recognition

Online comments are written by different people. Some writers with better knowledge
about entities tend to give comments that are more informative. We refer to such writers as
experts, and their comments as expert comments. In order to show the most informative
comments to readers, a salient fact extractor should rank expert comments higher than
other comments.

To understand whether our trained model could rank expert comments higher, we
curated a collection of comments from online company reviews and FutureFuel. Online
comments are those that we labeled as nonsalient (some representatives are in Table 3) and
were thereby treated as nonexpert reviews. FutureFuel comments are those that came from
invited writers and were thereby treated as expert reviews. We then sorted the collection
of nonexpert and expert comments by prediction scores in descending order. A higher
prediction score indicated a higher probability to be an expert comment.

Ranking results of Google and Amazon datasets are shown in Table 10. In the optimal
case, all comments in the top-k list were expert comments. We show the number of expert
comments of our model and a baseline that randomly shuffles all comments. Our model
consistently achieved better results than the baseline in both the Google and the Amazon
dataset, as shown in Table 10. In top 4 lists, all comments returned by our models were
expert comments. In top 10 lists, 9 comments were expert comments in both Google and
Amazon. Results indicate that our model could identify expert comments with nearly 100%
accuracy. In the collection or comments that came from different people, our models could
effectively recognize comments that had been written by experts, could and this ensure
that readers are shown the most informative contents.

Table 10. Number of expert comments in top list after sorting all comments by prediction scores.
Baseline randomly shuffles all comments.

Google (14 Expert Comments + 14 Online Comments)

Top List Ours Baseline

Top 4 4 2
Top 10 9 5
Top 14 13 7

Amazon (16 Expert Comments + 16 Online Comments)

Top List Ours Baseline

Top 4 4 2
Top 10 9 5
Top 16 15 8

8. Conclusions

In this paper, we proposed a task of extracting salient facts from online company
reviews. In contrast to reviews written by experts, only a few online reviews contain
useful and salient information about a particular company, which creates a situation
where the solution can only rely on highly skewed and scarce training data. To address
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the data scarcity issue, we developed two data enrichment methods, (1) representation
enrichment and (2) label propagation, to boost the performance of supervised learning
models. Experimental results showed that our data enrichment methods could successfully
help in training a high-quality salient fact extraction model with fewer human annotations.
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Abstract: Preserving long-tail, minority information during model compression has been linked
to algorithmic fairness considerations. However, this assumes that large models capture long-tail
information and smaller ones do not, which raises two questions. One, how well do large pretrained
language models encode long-tail information? Two, how can small language models be made
to better capture long-tail information, without requiring a compression step? First, we study the
performance of pretrained Transformers on a challenging new long-tail, web text classification task.
Second, to train small long-tail capture models we propose a contrastive training objective that
unifies self-supervised pretraining, and supervised long-tail fine-tuning, which markedly increases
tail data-efficiency and tail prediction performance. Third, we analyze the resulting long-tail learning
capabilities under zero-shot, few-shot and full supervision conditions, and study the performance
impact of model size and self-supervision signal amount. We find that large pretrained language
models do not guarantee long-tail retention and that much smaller, contrastively pretrained models
better retain long-tail information while gaining data and compute efficiency. This demonstrates
that model compression may not be the go-to method for obtaining good long-tail performance from
compact models.

Keywords: contrastive language models; long-tail compression, text-to-text; self-supervised con-
trastive pretraining, contrastive autoencoder.

1. Introduction

Long-tail information has been found to be disproportionately affected during model
compression, which has in turn been linked to reducing aspects of algorithmic fairness for
minority information [1,2]. Additionally, real-world data is subject to long-tail learning
challenges such as imbalances, few-shot learning, open-set recognition [3], or feature and
label noise [4,5]. Crucially, works by Hooker et al. [6], Zhuang et al. [7] find that common
long-tail evaluation measures like top-k metrics mask tail prediction performance losses.
Current works on long-tail preservation in smaller models are focused on compressing large,
supervised computer vision models [3,8–11], while general long-tail learning methods only
study supervised contrastive learning.

In this work, we extend the field of ‘long-tail preservation in compact models’ to
(self-supervised) pretrained language models (PLMs), and investigate whether contrastive
language modeling (CLM) can be used to train a small, long-tail preserving model which
does not require compression or large pretrained models. In this context, large PLMs are
an important point of reference since they are often assumed to be base models for use
in arbitrary NLP downstream tasks, as a trade-off for their large pretraining costs. These
models are pretrained over many text domains in the hopes of achieving partial in-domain
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pretraining that later overlaps with arbitrary downstream applications. This works well
except in cases where fine-tuning data is limited [12]. Unfortunately, training data and
sub-domains in the tail of a distribution are always limited and diverse by definition, which
foreseeably increases the domain distribution mismatch between large PLMs and long-tail
distributed end-task data. Hence, in order to train long-tail preserving models, it is useful
to study small-scale, but in-domain pretraining, which ideally, is similarly or more compute
efficient than fine-tuning a large PLM, while still achieving superior long-tail prediction
performance. Thus, we first evaluate a large PLM in a challenging long-tail tag prediction
setup (see Section 4) and then move on to propose a small contrastive language model
(CLM) to answer the following three research questions.

• RQ-1: Does a large pretrained language model, in this case, RoBERTa [13], achieve
good long-tail class prediction performance (Section 5.1)?

• RQ-2: Can we extend language models such that a small language model can retain
accurate long-tail information, with overall training that is computationally cheaper
than fine-tuning RoBERTa?

• RQ-3: What are the long-tail prediction performance benefits of small CLMs that unify
self-supervised and supervised contrastive learning?

Contributions

We address RQ-2 by proposing a contrastive language model objective that unifies
supervised learning with self-supervised pretraining to produce a small model, with strong long-
tail retention that is cheap to compute, thereby avoiding the need for compressing a large
model. This takes inspiration from supervised contrastive learning, which is known to
improve long-tail learning in NLP [8,14,15]. However, we add self-supervised contrastive
learning since its effect has not been studied in the context of language models for long-
tail learning, especially not with the requirement of producing small models. We call
this unified learning objective: Contrastive Long-tail Efficient Self-Supervision or CLESS.
The method constructs pseudo-labels from input text tokens to use them for contrastive
self-supervised pretraining. During supervised fine-tuning on real (long-tail) labels, the
model directly reuses the self-supervision task head to predict real, human-annotated,
text labels. Thus, we unify self-supervised and supervised learning regimes into a ‘text-
to-text’ approach. This builds on ideas for large PLMs that use ‘text-to-text’ prediction
like T5 [16] and extends them to contrastive self-supervision to ensure long-tail retention
in small language models that pretrain efficiently, even under strong data limitations.
Using a ‘text-to-text’ prediction objective allows for modeling arbitrary NLP tasks by
design, though in this work we focus exclusively on improving the under-studied field
of long-tail language modeling. We evaluate RQ-1 and RQ-2 by comparing RoBERTa
against CLESS regarding long-tail prediction in Section 5.1. To address RQ-3, we study
three long-tail learning performance aspects. (RQ-3.1) We study how well our contrastive
self-supervised pretraining generalizes to long-tail label prediction without using labeled
examples, i.e. zero-shot, long-tail prediction in Section 5.2. (RQ-3.2) We evaluate how zero-
shot performance is impacted by increased model size and pseudo-label amount during
self-supervised pretraining (Section 5.2). (RQ-3.3) Finally, we investigate our models’ few-
shot learning capabilities during supervised long-tail fine-tuning and compare the results
to the RoBERTa model in Section 5.3.

2. Related Work

In this section, we summarize related work and how it influenced our method design
and evaluation strategy decisions.

2.1. Long-Tail Compression

Works by Hooker et al. [1,6] raised awareness of the disproportionate loss of long-tail
information during model compression and the undesirable rise in algorithmic bias and
fairness issues this may cause. Other works such as Liu et al. [3] pointed out that real-world
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learning is always long-tailed and that few-shot and zero-shot learning settings naturally
arise in tailed, real-world distributions. To make matters worse, real-world long-tail data
is highly vulnerable to noise, which creates drastic learning and evaluation challenges,
especially for self-supervised learning methods. For example, D’souza et al. [4] identify
types of noise that especially impact long-tail data prediction and Zhuang et al. [7] find
that noise disproportionately affects long-tail metrics. In fact, all the aforementioned show
that top-k metrics hide long-tail performances losses. This means that we need long-tail
sensitive evaluation, which inspired us to use Average Precision as a measure. In addition,
we split tail analysis into 5 buckets that all contain an equal amount of positive labels,
where each bucket contains increasingly more and rarer classes—see Section 4. These
label imbalances in long-tail tasks make manual noise treatment very cumbersome, but
fortunately, contrastive objectives are naturally robust to label noise as we will detail in the
paragraph below.

2.2. Contrastive Learning Benefits

Contrastive objectives like Noise Contrastive Estimation (NCE), have been shown to be
much more robust against label noise overfitting than the standard cross-entropy loss [17].
Additionally, Zimmermann et al. [18] found that contrastive losses can “recover the true
data distribution even from very limited learning samples”. Supervised contrastive learning
methods like Chang et al. [8], Liu et al. [14], Pappas and Henderson [15], Zhang et al. [19]
have repeatedly demonstrated improved long-tail learning. Finally, Jiang et al. [11] recently
proposed contrastive long-tail compression into smaller models. However, this still leaves
the research question (RQ-1), whether large models learn long-tail well enough in the first
place, unanswered. These observations, learning properties and open research questions
inspired us to forgo large model training and the subsequent compression by instead
training small contrastive models and extending them with contrastive self-supervision to
combine the benefits of language model pretraining and contrastive learning. This imbues
a small (contrastive language) model with strong long-tail retention capabilities, as well as
with data-efficient learning for better zero to few-shot learning—as is detailed in the results
Section 5.

2.3. Long-Tail Learning

Long-tail learning has prolific subfields like extreme classification, which is concerned
with supervised long-tail learning and top-line metric evaluation. The field provides varied
approaches for different data input types like images [3], categorical data, or text classifica-
tion using small supervised [14] or large supervision fine-tuned PLMs like Chang et al. [8]
for supervised tail learning. However, these methods only explore supervised contrastive
learning and limit their evaluation to top-line metrics, which, as mentioned above, mask
long-tail performance losses. This naturally leads us to explore the effects of self-supervised
contrastive learning (or pretraining) as one might expect such pretraining to enrich long-tail
information before tail learning supervision. Additionally, as mentioned above, we use Av-
erage Precision over all classes, rather than top-k class, to unmask long-tail performance losses.

2.4. Negative and Positive Generation

As surveys like Musgrave et al. [20], Rethmeier and Augenstein [21] point out, tra-
ditional contrastive learning research focuses on generating highly informative (hard)
negative samples, since most contrastive learning objectives only use a single positive learn-
ing sample and b (bad) negative samples—Musgrave et al. [20] give an excellent overview.
However, if too many negative samples are generated they can collide with positive sam-
ples, which degrades learning performance [22]. More recent computer vision works like
Khosla et al. [23], Ostendorff et al. [24] propose generating multiple positive samples to
boost supervised contrastive learning performance, while Wang and Isola [25] show that,
when generating positive samples, the representations of positives should be close (related)
to each other. Our method builds on these insights and extends them to self-supervised
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contrastive learning and to the language model domain using a straightforward extension
to NCE. Instead of using only one positive example the like standard NCE by Mnih and
Teh [26], our method uses g good (positive) samples (see Section 3). To ensure that positive
samples are representationally close (related) during self-supervised contrastive pretrain-
ing, we use words from a current input text as positive ‘pseudo-labels’—i.e., we draw
self-supervision pseudo-labels from a related context. Negative pseudo-labels (words) are
drawn as words from other in-batch text inputs, where negative sample words are not
allowed not appear in the current text to avoid the above-mentioned collision of positive
and negative samples.

2.5. Data and Parameter Efficiency

Using CNN layers can improve data and compute efficiency over self-attention layers
as found by various works [27–29]. data-efficiency is paramount when pretraining while
data is limited, which, for (rare) long-tail information, is by definition, always the case.
Radford et al. [30] find that replacing a Transformer language encoder with a CNN backbone
increases zero-shot data-efficiency 3 fold. We thus use a small CNN text encoder, while for
more data abundant or short-tail pretraining scenarios a self-attention encoder may be used
instead. Our method is designed to increase self-supervision signal, i.e., by sampling

more positive and negatives, to compensate for a lack of large pretraining data (signal)—

since rare and long-tailed data is always limited. It is our goal to skip compression and
still train small, long-tail prediction capable models. Notably, CLESS pretraining does not
require special learning rate schedules, residuals, normalization, warm-ups, or a modified
optimizer as do many BERT variations [13,31,32].

2.6. Label Denoising

Label dropout of discrete {0, 1} labels has been shown to increase label noise ro-
bustness by [33]. We use dropout on both the dense text and label embeddings. This
creates a ‘soft’, but dense label noise during both self-supervised and supervised training,
which is also similar to sentence similarity pretraining by Gao et al. [34], who used text
embedding dropout rather than label embedding dropout to generate augmentations for
contrastive learning.

3. CLESS: Unified Contrastive Self-supervised to Supervised Training and Inference

As done in natural language usage, we express labels as words, or more specifically as
word embeddings, rather than as {0, 1} label vectors. CLESS then learns to contrastively
(mis-)match <text embedding, (pseudo/real) label embedding> pairs as overviewed in
Figure 1. For self-supervised pretraining, we in-batch sample g (good) positive and b (bad)
negative <text, pseudo label> embedding pairs per text instance to then learn good and
bad matches from them. Positive pseudo labels are a sampled subset of words that appear
in the current text instance. Negative pseudo labels are words sampled from the other texts
within a batch. Crucially, negative words (pseudo labels) can not be the same words as
positive words (pseudo labels)—i.e. w+

i ∩ w−
j = ∅.

This deceptively simple sampling strategy ensures that we fulfill two important
criteria for successful self-supervised contrastive learning. One, using multiple positive labels
improves learning if we draw them from a similar (related) context, as Wang and Isola [25]
proved. Two, we avoid collisions between positive and negative samples, which otherwise
degrades learning when using more negatives as Saunshi et al. [22] find. Similarly, for
supervised learning, we use g positive, real labels and undersample b negative labels
to construct <text, positive/negative real label> pairs. A text-2-label classifier 5 learns
to match <text, label> embedding pairs using a noise contrastive loss [35], which we
extend to use g positives rather than just one. This unifies self-supervised and supervised
learning as contrastive ‘text embedding to (label) text embedding matching’ and allows
direct transfer like zero-shot predictions of real labels after pseudo label pretraining—i.e.
without prior training on other real labels as required by methods like [15,19,36]. Below,
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we describe our approach and link specific design choices to insights from existing research
in steps 1 - 6 .

Figure 1. Contrastive <text, pseudo/real label> embedding pair matcher model: A word embedding
layer E 1 embeds text and real/pseudo labels, where labels are word IDs. CLESS embeds a text
(‘measuring variable interaction’), real positive (R) or negative (p-value) labels, and positive (variable)
or negative (median) pseudo labels. A sequence encoder T 2 embeds a single text, while a label
encoder L 3 embeds c labels. Each text has multiple (pseudo) labels, so the text encoding ti is
repeated for, and concatenated with, each label encoding l◦i,l . The resulting batch of <text embedding,
label embedding> pairs [[ti, l◦i,1], . . . , [ti, l◦i,c]] 4 are fed into a ‘matcher’ classifier 5 that is trained
in 6 as a binary noise contrastive estimation loss LB [35] over multiple label (mis-)matches {0, 1}
per text instance ti. Unlike older works, we add contrastive self-supervision over pseudo labels as a
pretraining mechanism. Here, the word ‘variable’ is a positive self-supervision (pseudo) label for a
text instance ti, while words from other in-batch texts, e.g. ‘median’, provide negative pseudo labels.

We give the model a text instance i of words wi and a set of positive and negative label
words w◦

i = w+
i ⊕ w−

j ∈ Rc=g+b. We also construct a label indicator Ii as ground truth
labels for the binary NCE loss in 6 . This label indicator contains a g-sized vector of ones
1 ∈ N

g
0 to indicate positive (matching) <text, label> embedding pairs and a b-sized zero

vector 0 ∈ Nb
0 to indicated mismatching pairs, resulting in the indicator

Ii = {1 ⊕ 0} ∈ N
c=g+b
0 0

CLESS then encodes input text and labels in three steps 1 - 3 . First, both the input text
(words) wi and the labels w◦

i are passed through a shared embedding layer 1 to produce
E(wi) as text embeddings and E(w◦

i ) as label embeddings. Then, the text embeddings are
encoded via a text encoder T 2 , while labels are encoded by a label encoder L as follows:

E(wi), E(w◦
i ) 1

ti = T(E(wi)) 2

L◦
i = L(E(w◦

i )) = [l+i,1, . . . , l+i,g, l−i,1, . . . , l−i,b] 3

To make model learning more data-efficient we initialize the embedding layer E with
fastText word embeddings that we train on the 60MB of in-domain text data. Such word
embedding training only computes a few seconds, while enabling one to make the text
encoder architecture small, but well initialized. The text encoder T consists of a single,
k-max-pooled CNN layer followed by a fully connected layer for computation speed and
data-efficiency [30,37,38]. As a label encoder L, we average the embeddings of words in a
label and feed them through a fully connected layer—e.g. to encode a label ‘p-value’ we
simply calculate the mean word embedding for the words ‘p’ and ‘value’.
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To learn whether a text instance embedding ti matches any of the c label embed-
dings l◦i,· ∈ L◦

i , we repeat the text embedding ti, c times, and concatenate text and label
embeddings to get a matrix Mi of <text, label> embedding pairs:

Mi = [[ti, l+i,1], . . . , [ti, l−i,c]] 4

This text-label paring matrix Mi is then passed to the matcher network M 5 , which
first applies dropout to each text-label embedding pair and then uses a three layer MLP to
produce a batch of c label match probabilities:

pi = {σ(M(Mi,1)), . . . , σ(M(Mi,c))} 5

Here, applying dropout to label and text embeddings induces a dense version of label
noise. Discrete {0,1} label dropout has been shown to improve robustness to label noise in
Szegedy et al. [33], Lukasik et al. [39]. Because we always predict correct pseudo labels in
pretraining, this forces the classifier to learn to correct dropout induced label noise.

Finally, we use a binary noise contrastive estimation loss as in [35], but extend it to use
g positives, not one.

LB = −1
c

g+b=c

∑
l=1

Ii,l · log(pi,l) + (1 − Ii,l) · log(1 − pi,l) 6

Here, LB is the mean binary cross-entropy loss of g positive and b negative labels—i.e.
it predicts c = b+g label probabilities pi, where the label indicators Ii from 1 are used as
ground truth labels.

Though we focus on evaluating CLESS for long-tail prediction in this work, other
NLP tasks such as question answering or recognizing textual entailment can similarly be
modeled as contrast pairs <X = ’text 1 [sep] text 2’, Y = ’is answer’>. Unlike T5 language
models [16], this avoids translating back and forth between discrete words and dense
token embeddings. Not using T5s’ softmax objective, also allows for predicting unforeseen
(unlimited) test classes (label). We provide details on hyperparameter tuning of CLESS for
self-supervised and supervised learning in Appendix C.

Figure 2. Head to long-tail as 5 balanced class bins: We bin classes by label frequency. Each bin
contains equally many active label occurrences. Classes within a bin are imbalanced and become
few-shot or zero-shot towards the tail, especially after train/dev/test splitting. Class frequencies are
given in log scale—task data details in Section 4.

4. Data: Resource Constrained, Long-Tail, Multi-Label, Tag Prediction

To study efficient, small model, long-tail learning for ‘text-to-text’ pretraining models,
we choose a multi-label question tag prediction dataset as a testbed. We use the “Questions
from Cross Validated” dataset, where machine learning concepts are tagged per question—–
https://www.kaggle.com/stackoverflow/statsquestions, accessed on 30 August 2021. This
dataset is small (80MB of text), and entails solving a challenging ‘text-to-text’ long-tailed
prediction task. The dataset has 85k questions with 244k positive labels, while we do not
use answer texts. As with many real-world problems, labels are vague, since tagging was
crowd-sourced. This means that determining the correct amount of tags per question (label
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density) is hard, even for humans. The task currently has no prior state-of-the-art. As seen
in Figure 2, the datasets’ class occurrence frequencies are highly long-tailed, i.e. the 20%
most frequently occurring classes result in 7 ‘head’ classes, while the 20% least frequent
(rightmost) label occurrences cover 80% or 1061/1315 of classes. Tags are highly sparse—at
most 4 out of 1315 tags are labeled per question. We pretrain fastText word embeddings on
the unlabeled text data to increase learning efficiency, and because fastText embeddings
only take a few seconds to pretrain. The full details regarding preprocessing can be found
in Appendix A.

Long-tail evaluation metrics and challenges:

Long-tail, multi-label classification is challenging to evaluate because (i) top-k quality
measures mask performance losses on long-tailed minority classes as Hooker et al. [6]
point out. Furthermore, (ii) measures like ROCAUC overestimate performance under class
imbalance [40,41], and (iii) discrete measures like F-score are not scalable, as they require
discretization threshold search under class imbalance. Fortunately, the Average Precision
score AP = ∑n(Rn − Rn−1)Pn addresses issues (i-iii), where Pn and Rn are precision and
recall at the nth threshold. We choose APmicro weighting as this score variant is the hardest
to improve.

5. Results

In this section, we analyze the three research questions: (RQ-1) Does RoBERTa learn
long-tail tag prediction well? (RQ-2) Can a 12.5x smaller CLESS model achieve good
long-tail prediction, and at what cost? (RQ-3) How does CLESS compare in zero to few-
shot prediction and does its model size matter. We split the dataset into 80/10/10 for
training, development, and test set. Test scores or curves are reported for models that have
the best development set average precision score APmicro over all 1315 classes. RoBERTa has
125 million parameters and is pretrained on 160GB of text data. CLESS has 8-10 million
parameters and is pretrained on just 60MB of in-domain text data. We use a ZeroR classifier,
i.e. predicting the majority label per class, to establish imbalanced guessing performance.
The ZeroR APmicro on this dataset is 0.002 since a maximum of 4 in 1315 classes are active
per instance—i.e., which underlines the challenge of the task.

Figure 3. Long-tail performance (RQ-1, RQ-2), over all five head to tail class bins—see Figure 2. The
tail class bin contains 80.7% or 1062/1315 of classes. The non-pretrained CLESS (2) underperforms,
while RoBERTa performs the worst on the 80.7% of tail classes. The largest pretrained CLESS model
(3.XL) outperforms RoBERTa in tail and mid class prediction, while performing nearly on par for the
7/1315 = 0.5% (most common) head classes.
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5.1. (RQ-1+2): Long-Tail Capture of RoBERTa vs. CLESS

Here we compare the long-tail prediction performance of RoBERTa (1) vs. CLESS
setups that, either were pretrained (3, 3.XL), or not pretrained (2). Plotting individual scores
for 1315 classes is unreadable. Instead, we sort classes from frequent to rare and assign
them to one of five ‘20% of the overall class frequency’ bins, such that all bins are balanced.
This means all bins contain the same amount of positive real labels (label occurrences) and
are directly comparable. As seen in Figure 2, this means that the head bin (left) contains
the most frequent 7/1315 = 0.5% classes, while the tail contains the most rarely occurring
1061/1315 = 80.7% classes.

5.1.1. RoBERTa: A Large Pretrained Model Does not Guarantee Long-Tail Capture

Figure 3 shows how a tag prediction fine-tuned RoBERTa performs over the five
class bins as described above or in Section 4. RoBERTa learns the most common (0.5%
head) classes well, but struggles with mid to tail classes. On the tail class bin, i.e., on
1061/1315 = 80.7% of classes, RoBERTa performs worse than a CLESS model that did not
use contrastive pretraining (2). This allows multiple insights. One, a large PLM should not
implicitly be assumed to learn long-tail information well. Two, large-scale pretraining data
should not be expected to contain enough (rare) long-tailed domain information for an
arbitrary end-task, since in the tail-domain, data is always limited. Three, even a small
supervised contrastive model, without pretraining, can improve long-tail retention (for
80.7% of classes). Together these results indicate that compressing a large PLM may not be
the optimal approach to training a small, long-tail prediction capable model.

5.1.2. CLESS: Contrastive Pretraining Removes the Need for Model Compression

Model (3) and (3.XL) use our contrastive pretraining on the end-tasks’ 60MB of un-
labeled text data before supervised fine-tuning. We see that models with contrastive
pretraining (3, 3.XL) noticeably outperform RoBERTa (1) and the non-pretrained contrastive
model (2), on all non-head class bins, but especially on the 80.7% tail classes. We also see
that the pretraining model parameter amount impacts CLESS performance as the 10 million
parameter model (3.XL) outperforms the 8M parameters model (3) over all class bins and
especially the tail bin. The above observations are especially encouraging as they tell us that
contrastive in-domain pretraining can produce small, long-tail learning capable models
without the need for compressing large models. It also tells us that model capacity matters
in long-tail information retention, but not in the common sense that large PLMs are as
useful as they have proven to be for non-long-tail learning applications. This also means
that contrastive self-supervised LM pretraining can help reduce algorithmic bias caused by
long-tail information loss in smaller models, the potential fairness impact of which was
described by [1,2,6].

5.1.3. Practical Computational Efficiency of Contrastive Language Modeling

Though the long-tail performance results of CLESS are encouraging, its computational
burden should ideally be equal or less than that of fine-tuning RoBERTa. When we analyzed
training times we found that RoBERTa took 126 GPU hours to fine-tune for 48 epochs, when
using 100% of fine-tuning labels. For the same task we found that CLESS (3.XL) took 7 GPU
hours for self-supervised pretraining (without labels) and 5 GPU hours for supervised
fine-tuning over 51 epochs—To bring CLESS to the same GPU compute load as RoBERTa
(≈ 96%) we parallelized our data generation—otherwise our training times double and
the GPU load is only ≈ 45%. As a result, pretraining plus fine-tuning takes CLESS (3.XL)
12 h compared to 126 for fine-tuning RoBERTa. This means that the proposed contrastive
in-domain pretraining has both qualitative and computational advantages, while remaining
applicable in scenarios where large collections of pretraining data are not available—which
may benefit use cases like non-English or medical NLP. Additionally, both methods benefit
from parameter search, but since CLESS unifies self-supervised pretraining and supervised
fine-tuning as one objective we can reuse pretraining hyperparameters during fine-tuning.
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A more in-depth account of computational trade-offs is given in Appendix B, while details
of hyperparameter tuning are given in Appendix C.

It is of course possible to attempt to improve the long-tail performance of RoBERTa,
e.g. via continued pretraining on the in-domain data [42] or by adding new tokens [43,44].
However, this further increases the computation and memory requirements of RoBERTa,
while the model still has to be compressed—which requires even more computation. We
also tried to further improve the embedding initialization of CLESS using the method
described in [45], to further boost its learning speed. While this helped learning very small
models (<2M parameters), it did not meaningfully impact the performance of contrastive
pretraining or fine-tuning.

5.2. (RQ-3.1-2): Contrastive Zero-Shot Long-Tail Learning

Thanks to the unified learning objective for self-supervised and supervised learning,
CLESS enables zero-shot prediction of long-tail labels after self-supervised pretraining,
i.e. without prior training on any labels. Therefore, in this section, we analyze the impact
of using more model parameters (RQ-3.1) as well as using more pseudo labels (RQ-3.2)
during self-supervised contrastive pretraining.

Figure 4. Zero-shot pretraining data-efficiency: by model size, pseudo label amount and pretraining
text amount. Left: The zero-shot (data-efficiency) performance of the self-supervised pretraining
base model (3) is increased when, adding more self-supervision pseudo labels (3.PL+) and when
increasing model parameters (3.XL). Right: When only using only a proportion of the pretraining
input data texts to pretrain model (3), its zero-shot learning is slowed down proportionally, but still
converges towards the 100% for all but the most extreme pretraining data reductions.

5.2.1. (RQ-3.1): More Self-supervision and Model Size Improve Zero-Shot Long-Tail
Capture

In Section 4, we study how CLESSs’ zero-shot long-tail retention ability is impacted by:
(left) using more pseudo labels (learning signal) during pretraining; and (right) by using
only portions of unlabeled text data for pretraining. To do so, we pretrain CLESS variants
on pseudo labels and evaluate each variant’s zero-shot APmicro performance over all 1315
classes of the real-label test set from Section 4. As before, we show test score curves for the
models with the best APmicro dev set performance.

The left plot of Figure 4, shows the effect of increasing the number of self-supervision
pseudo label and model parameters. The CLESS 8M model (3), pretrained with 8 million
parameters and 150 pseudo labels, achieves around .10APmicro on the test real labels as
zero-shot long-tail performance. When increasing the pseudo label number to 500 in model
(3.PL+), the model gains zero-shot performance (middle curve), without requiring more
parameters. When additionally increasing the model parameters to 10M in (3.XL), the zero-
shot performance increases substantially (top curve). Thus, both increasing self-supervision
signal amount and model size boost zero-shot performance.
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5.2.2. RQ-3.2: Contrastive pretraining Leads to Data-Efficient Zero-Shot Long-Tail Learning

Further, in the right plot of Figure 4 we see the CLESS 8M model (3) when trained
on increasingly smaller portions (100%, . . . , 10%) of pretraining text. For all but the small-
est pretraining data portions (<25%) the model still converges towards the original 100%
performance. However, as expected, its convergence slows proportionally with smaller
pretraining text portions since each data reduction implies seeing less pseudo label self-
supervision per epoch. As a result, the data reduced setups need more training epochs,
so we allowed 5x more waiting-epochs for early stopping than in the left plot. Thus, our
contrastive self-supervised objective can pretrain data-effectively from very limited data.
Similar data-efficiency gains from using contrastive objectives were previously only ob-
served in computer vision applications by Zimmermann et al. [18], which confirms our
initial intuition that contrastive self-supervision is generally useful for self-supervised
learning from limited data.

Methods like Pappas and Henderson [15], Jiang et al. [36], Augenstein et al. [46]
required supervised pretraining on real labels to later predict other, unseen labels in a
zero-shot fashion. CLESS instead uses self-supervised pretraining to enable zero-shot
prediction without training on real labels. This ‘text-to-text’ prediction approach is in-
tentionally reminiscent of zero-shot prediction approaches in large PLMs like GPT-3 [47],
but is instead designed to maximize zero-shot, long-tail prediction for use cases that
strongly limit pretraining data amounts and model size. Hooker et al. [6] hypothesized
that long-tail prediction depends on the model capacity (parameter amount). Additionally,
Brown et al. [47] found that zero-shot prediction performance depends on model capacity,
but [48,49] experimentally showed or visualized how inefficiently model capacity is used by
common models, especially after fine-tuning. From the above observations, we can confirm
the impact of model size for the doubly challenging task of long-tail, zero-shot prediction, but
we can also confirm that contrastive pretraining allows a model to much more efficiently
use its capacity for long-tail capture, i.e., requiring 12.5x fewer parameters (capacity) than
common the RoBERTa model. Perhaps more encouragingly, we also observed that cheap,
contrastive in-domain pretraining boosts zero-shot prediction, even when pretraining data
is very limited—i.e. either by lack of large domain text data or due to data limitations
caused by a long-tail distribution.

Figure 5. (RQ-3.3) Few-shot label-efficiency: (1) RoBERTa. (2) CLESS without pretraining. (3) CLESS
with pretraining. (3.XL) CLESS pretrained with more pseudo labels and model parameter as described
in (Section 5.2). APmicro_test scores for few-shot portions: 100%, 50%, 10% of training samples with
real labels. CLESS 10M outperforms RoBERTa, and retrains 93.5% of its long-tail performance using
only 10% of fine-tuning label texts.
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5.3. (RQ-3.3): Few-Shot Long-Tail Learning

Since CLESS models allow direct transfer (reuse) of the pretrained prediction head
for supervised label prediction one would also expect the models’ few-shot long-tail
prediction performance to benefit from self-supervised pretraining. We thus study the
few-shot learning performances of both CLESS and RoBERTa, to understand differences in
large pretrained language models (PLMs) and small contrastive language model (CLM)
pretraining in more detail. For the few-shot setup, we use 100%, 50% and 10% of labeled
text instances for supervised training or fine-tuning of all models. This implies that if labels
were common in the 100% setup, they now become increasingly rare or few-shot in the 10%
setup, since the smaller label sets are still long-tail distributed. We again use APmicro test
set performance over all 1315 classes to compare models.

In Figure 5, we see that when using full supervision (100%), all models perform
similarly, with CLESS (3.XL) slightly outperforming RoBERTa (0.493 vs. 0.487) APmicro_test.
For few-shot learning (10%, 50%), we see that CLESS 3.XL retrains 0.461/0.493 = 0.935% of
its original performance when using only 10% of fine-tuning labels, while RoBERTa and
CLESS 8M each retain around 77%. This demonstrates that even a sightly larger contrastive
pretraining model, with increased self-supervision signal (3.XL), not only improves zero-
shot learning performance as was seen in Figure 4, but also markedly boosts few-shot
performance. Noticeably, the only non-pretrained model (2), performs much worse than
the others in the more restricted few-shot scenarios. Since models (2) and (3) use the
same hyperparameters and only differ in being pretrained (3) or not being pretrained
(2), this demonstrates that contrastive self-supervised pretraining largely improves label
efficient learning.

6. Conclusion

We introduce CLESS, a contrastive self-supervised language model (CLM), that uni-
fies self-supervised pretraining and supervised fine-tuning into a single contrastive ‘text
embedding to text embedding’ matching objective. Through three research questions (RQ-1
to RQ-3) we demonstrate that this model learns superior zero-shot, few-shot, and fully su-
pervised long-tail retention in small models without needing to compress large models. In RQ-1,
we first show that a fine-tuned, large pretrained language model like RoBERTa should not
implicitly be expected to learn long-tail information well. Then, in RQ-2, we demonstrate
that our contrastive self-supervised pretraining objective enables very text data-efficient
pretraining, which also results in markedly improved (label efficient) few-shot or zero-shot
long-tail learning. Finally, in RQ-3, we find that using more contrastive self-supervision
signals and increasing model parameter capacity play important roles in boosting zero
to few-shot long-tail prediction performance when learning from very limited in-domain
pretraining data. We also find that the very low compute requirements of our method
make it a viable alternative to large pretrained language models, especially for learning
from limited data or in long-tail learning scenarios, where tail data is naturally limited. In
future work, we envision applying CLESS to low-data domains like medicine [27] and fact-
checking [50], or to tasks where new labels emerge at test time, e.g. hashtag prediction [51].
Code and setup can be found at https://github.com/NilsRethmeier/CLESS (accessed on
30 August 2021).
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Appendix A

Text preprocessing details: We decompose tags such as ‘p-value’ as ‘p’ and ‘value’
and split latex equations into command words, as they would otherwise create many long,
unique tokens. In the future, character encodings may be better for this specific dataset,
but that is out of our current research scope. Words embedding are pretrained via fastText
on the training corpus text. 10 tag words are not in the input vocabulary and thus we
randomly initialize their embeddings. Though we never explicitly used this information,
we parsed the text and title and annotated them with ‘Html-like’ title, paragraph, and
sentence delimiters, i.e. </title>, </p>, and </s>.

Appendix B

Here we will discuss the time and transfer complexity of CLESS vs. Self-attention
models. We do so since time complexity is only meaningful if the data-efficiency of two
methods is the same, because the combination of convergence speed, computation speed,
and end-task performance makes a model effective and efficient.

Table A1. Time complexity O(Layer), data-efficiency, number of trainable parameters, number of all
parameters. The data-efficiency of Convolutions (*) is reported in various works to be superior to
that of self-attention models [28,30,52–56]. d is the input embedding size and its increase slows down
convolutions. n is the input sequence length and slows down self-attention the most [57]. There exist
optimizations for both problems.

Layer Type O(Layer) Literature Reported Data Requirements Trainable Parameters

Convolution O(n · d2) small (*) 8M-10M (CLESS)

Self-Attention O(n2 · d) large to web-scale (*) 125M (RoBERTa)

Time complexity: Our text encoder uses a single 1D CNN encoder layer which
has a complexity of O(n · k · d · f ) vs. O(n2 · d) for vanilla self-attention as outlined
in Vaswani et al. [57]. Here n is the input sequence length, k is the convolution filter
size, d is the input embedding dimension [d = 512 in [57] vs. d = 100 for us], and f
is the number of convolution filters (at maximum f = 3 · 100 for our (3.XL) pretraining
model). Since we use kernel sizes {1, 2, 3} we get for the largest configuration (3.XL) an
O(n · k = 6 · d = 1 · f = 3d) ≈ O(n · 3d2) vs. O(n2 · 5d) in a vanilla (2017) self-attention
setup where d = 512. Furthermore Transformer self-attention runs an n-way soft-max
computation at every layer (e.g. 16 layers), while we run g · b single-class predictions at the
final output layer using a noise contrastive objective NCE. We use NCE to undersample
both: true negative learning labels (label=0) as well as positive and negative pseudo labels
(input words). If the goal is to learn a specific supervised end-task, more informed sampling
of positive and negative pseudo labels can be devised. However, we did not intend to
overfit the supervised task by adding such hand-crafted human biases. Instead we use
random sampling to pretrain a model for arbitrary downstream tasks (generalization),
which follows a similar logic as random masking does in masked language modeling.

Transfer complexity: Traditional transfer NLP approaches like RoBERTa [13] need to
initialize a new classification head per task which requires either training a new model per
task or a joint multi-task learning setup. CLESS however can train multiple tasks, even
if they arrive sequentially over time, while reusing the same classifier head from prior
pretraining or fine-tuning. Thus, there is no need to retrain a separate model each time
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as in current Transformer transfer models. Once pretrained a CLESS model can zero-shot
transfer to any new task since the match classifier is reused.

Appendix C

In this section, we describe the data and memory efficiency of the proposed method as
well as the hyperparameter tuning we conducted.

Data, sample and memory efficiency: We analyzed input data and label efficiency in
the main documents zero and few-shot learning sections. Regarding data-efficiency and
model design choices we were guided by the existing research and optimized for data-
efficient learning with inherent self-supervised zero-shot capabilities in order to facilitate
and study supervision-free generalization to unforeseen tasks. We explain the origins of
these design choices in more detail below. As mentioned in the related research section,
Transformers rely on large to Web-scale pretraining data collections ‘end-task external pre-
training data’ [52,53], which results in extensive pretraining hardware resources [58,59], con-
cerns about environmental costs [56,60] and unintended contra-minority biases [56,61,62].
CNNs have been found to be more data-efficient than Transformers, i.e., train to better per-
formance with less data, several works. For example in OPENAI’s CLIP model, see Figure
2 in [30], the authors find that replacing a Transformer language model backbone with a
CNN backbone increased the zero-shot data-efficiency 3 fold, which they further increased
by adding a supervised contrastive learning objective. Ref. [38] showed that adding a CNN
component to a vision Transformer model helps with data and computational efficiency,
see Figure 5 and text in [38]. When comparing works on small-scale data pretraining
capabilities between [54] (CNN, LSTM) with recent Transformer models Wang et al. [55],
one can see that Transformer encoders struggle to learn from small pretraining collections.
They also struggle to fine-tuning on smaller supervised collections [12,32,59]. For CLESS,
tuning the embedding layer made little difference to end-task performance, when starting
training with pretrained fastText word embedding. Thus embedding tuning the embedding
layer can be turned off to reduce gradient computation and memory. For example, when
not tuning embeddings, the CLESS 10M model has only 3.2M trainable parameters.

Parameter tuning + optima (2)-(3.XL) We provide detailed parameter configurations
as python dictionaries for reproducibility in the code repository within the /confs folder.
In Table A2 we see how the hyperparameters explored in CLESS—the optimal CLESS
3.XL parameters are marked in bold. The baseline CLESS configuration (2) hyperpa-
rameters were found as explained in the table, using the non-pretraining CLESS 8M (2)
model—its best parameters are italic. We found these models by exploring hyperparam-
eters that have been demonstrated to increase generalization and performance in [63,64].
To find optimal hyperparameter configurations for the baseline model (2) we ran a ran-
dom grid search over the hyperparameter values seen in Table A2. For the baseline
CLESS 8M model (2), without pretraining, we found optimal hyperparameters to be:
lr = 0.001 (lr=0.0005 works too), f ilter_sizes_and_number = {1 : 100, 2 : 100, 3 : 100},
match_classi f ier=two_layer_classifier, ’conf’:[{’do’: None|.2, ’out_dim’: 2048 | 4196 |
1024}, max_kpooling=7, bs=1536, etc.—see Table A2. Increasing the filter size, classifier
size, its depth, or using larger k in k-max pooling decreased dev set performance of the
non-pretrained model (i.e., CLESS 8M) due to increased overfitting. The largest pretrained
CLESS 10M (3.XL) model was able to use more: ‘max-k=10’, a larger ‘label’ and ‘text
sequence encoder’= one_layer_label_enc, ’conf’:[{’do’: .2, ’out_dim’: 300} while the batch
size shrinks to 1024 due to increased memory requirements of label matching. Note that
label and text encoder have the same output dimension in all settings—so text and label
embeddings remain in the same representation dimensionality R300. The label encoder
averages word embeddings (average pooling), while the text encoder uses a CNN with
filters as in Table A2. The model receives text word ids and label-word ids, that are fed to
the ‘text encoder’ and ‘label-encoder’. These encoders are sub-networks that are configured
via dictionaries to have fully connected layers and dropout, with optimal configurations
seen in the table. As the match-classifier, which learns to contrast the (text embedding,
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label embedding) pairs, we use a two_layerMLP which learns a similarity (match) function
between text embedding to label embedding combinations (concatenations).

Table A2. Explored parameters. We conducted a random grid search over the following hyperpa-
rameters while optimizing important parameters first to largely limit trials. We also pre-fit the filter
size, lr, and filters on a 5k training subset of samples to further reduce trails. Then, to further reduce
the number of trials, we tuned in the following order: learning rate lr, filter sizes f , max-k pooling,
tuning embeddings, batch size bs, and finally the depth of the matching-classifier MLP. This gave us
a baseline model, (2) CLESS 8M, that does not use pretraining to save trials and compute costs, but
could be used to build up into the self-supervised pretraining models (3) and (3.XL) by increasing
self-supervision and model size. Fortunately, RoBERTa has established default parameters reported in
both its code documentation (https://github.com/pytorch/fairseq/tree/master/examples/roberta)
(accessed on 30 September 2021) and the https://simpletransformers.ai (accessed on 30 September
2021) version, where we varied batch size, warmup, and learning rate around the default setting of
these sources. Below we give the search parameters for CLESS. For CLESS 8M (2,3) the best params
are italic and for CLESS 10M (3.XL) the best params are bold.

Filter size: num filters
{1: 57, 2: 29, 3: 14}, {1:100, 2:100, 1:100},{1: 285, 2: 145, 3: 70},
{1:10, 10:10, 1:10}, {1:15, 2:10, 3:5}, {1:10}, {1:100}, {10:100}

lr 0.01, 0.0075, 0.005, 0.001, 0.0005, 0.0001

bs (match size) 1024, 1536, 4096

max-k 1, 3, 7, 10

match-classifier
two_layer_classifier, ’conf’:[{’do’: None|.2, ’out_dim’: 2048|4196|1024}, {’do’:None|0.2}]},
one_layer_classifier, ’conf’:[{’do’:.2}]}

label encoder
one_layer_label_enc, ’conf’:[{’do’: None|.2, ’out_dim’: 100},
one_layer_label_enc, ’conf’:[{’do’: .2, ’out_dim’: 300}

seq encoder
one_layer_label_enc, ’conf’:[{’do’: None|.2, ’out_dim’: 100},
one_layer_label_enc, ’conf’:[{’do’: .2, ’out_dim’: 300}

tune embedding: True, False

#real label samples: 20, 150, 500 (g positives (as annotated in dataset), b random negative labels—20 works well too)

#pseudo label samples: 20, 150, 500 (g positives input words, b negative input words)—used for self-superv. pretraining

optimizer: ADAM—default params, except lr

Parameter tuning + optima (2)-(3.XL) We provide detailed parameter configurations
as python dictionaries for reproducibility in the code repository within the /confs folder.
In Table A2 we see how the hyperparameters explored in CLESS—the optimal CLESS
3.XL parameters are marked in bold. The baseline CLESS configuration (2) hyperpa-
rameters were found as explained in the table, using the non-pretraining CLESS 8M (2)
model—its best parameters are italic. We found these models by exploring hyperparam-
eters that have been demonstrated to increase generalization and performance in [63,64].
To find optimal hyperparameter configurations for the baseline model (2) we ran a ran-
dom grid search over the hyperparameter values seen in Table A2. For the baseline
CLESS 8M model (2), without pretraining, we found optimal hyperparameters to be:
lr = 0.001 (lr=0.0005 works too), f ilter_sizes_and_number = {1 : 100, 2 : 100, 3 : 100},
match_classi f ier=two_layer_classifier, ’conf’:[{’do’: None|.2, ’out_dim’: 2048 | 4196 |
1024}, max_kpooling=7, bs=1536, etc.—see Table A2. Increasing the filter size, classifier
size, its depth, or using larger k in k-max pooling decreased dev set performance of the
non-pretrained model (i.e., CLESS 8M) due to increased overfitting. The largest pretrained
CLESS 10M (3.XL) model was able to use more: ‘max-k=10’, a larger ‘label’ and ‘text
sequence encoder’= one_layer_label_enc, ’conf’:[{’do’: .2, ’out_dim’: 300} while the batch
size shrinks to 1024 due to increased memory requirements of label matching. Note that
label and text encoder have the same output dimension in all settings—so text and label
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embeddings remain in the same representation dimensionality R300. The label encoder
averages word embeddings (average pooling), while the text encoder uses a CNN with
filters as in Table A2. The model receives text word ids and label-word ids, that are fed to
the ‘text encoder’ and ‘label-encoder’. These encoders are sub-networks that are configured
via dictionaries to have fully connected layers and dropout, with optimal configurations
seen in the table. As the match-classifier, which learns to contrast the (text embedding,
label embedding) pairs, we use a two_layerMLP which learns a similarity (match) function
between text embedding to label embedding combinations (concatenations).

During self-supervised pretraining, the models (3) and (3.XL) optimize for arbitrary
unforeseen long-tail end-tasks, which allows zero-shot prediction without ever seeing real
labels, but also uses a very diverse learning signal by predicting sampled positive and
negative input word embeddings. If the goal is to solely optimize for a specific end-task,
this self-supervision signal can be optimized to pretrain much faster, e.g. by only sampling
specific word types like nouns or named entities. With specific end-task semantics in mind,
the pseudo label and input manipulations can easily be adjusted. This allows adding new
self-supervision signals without a need to touch the model’s network code directly, which
helps ease application to new tasks and for less experienced machine learning practitioners.
Finally, we mention implementation features, that can safely be avoided to reduce com-
putation and optimization effort, so that following research needs not explore this option.
When training the supervised and self-supervised loss at the same time (jointly), CLESS
rescales both batch losses to be of the same loss value as using a single loss. This makes
it easy to balance (weight) the two loss contributions in learning, and allows transferring
hyperparameters between self-supervised and supervised pretraining. We also allow re-
weighting the loss balance by a percentage, so that one loss can dominate. However, we
found that in practice: (a) using the self-supervised loss along with the supervised one
does not improve quality, but slows computation (2 losses). (b) We also found that, if one
decides to use joint self and supervised training, loss re-weighting had no marked quality
effects, and should be left at 1.0 (equal weighting), especially since it otherwise introduces
further, unnecessary hyperparameters. For pretraining research, hyperparameter search is
very involved, because we deviate in common practice by introducing a new architecture,
a new loss variation, an uncommon optimization goal and metrics as well as a new dataset.
Thus we ended up with 205 trails for small test set, RoBERTa, CLESS variants, zero-shot
and few shot hyperparameter search. On the herein reported dataset, we have not yet
tested further scaling up model parameters for pretraining as this goes against the goal of
the paper and is instead investigated in followup work. Furthermore, when we ran such
parameter scale-up experiments, to guarantee empirical insights, these created a significant
portion of trails, meaning that, now that sensible parameters are established, we can use
much fewer trials, as is the case with pretrained transformers. The work at hand suggest
that, once sensible parameters are established, they are quite robust, such that doubling the
learning rate, batch size and loss weighting only cause moderate performance fluctuations.
Finally, the above reported pretraining hyperparameters seem to work well on currently
developed followup research, that uses other, even much larger, datasets. This makes the
205 hyperparameter trials a one time investment for initial pretraining hyperparameter
(re)search for this contrastive language model (CLESS).
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Abstract: Why is there disparity in the miss rates of pedestrian detection between different age
attributes? In this study, we propose to (i) improve the accuracy of pedestrian detection using our
pre-trained model; and (ii) explore the causes of this disparity. In order to improve detection accuracy,
we extend a pedestrian detection pre-training dataset, the Weakly Supervised Pedestrian Dataset
(WSPD), by means of self-training, to construct our Self-Trained Person Dataset (STPD). Moreover,
we hypothesize that the cause of the miss rate is due to three biases: (1) the apparent bias towards
“adults” versus “children”; (2) the quantity of training data bias against “children”; and (3) the scale
bias of the bounding box. In addition, we constructed an evaluation dataset by manually annotating
“adult” and “child” bounding boxes to the INRIA Person Dataset. As a result, we confirm that the
miss rate was reduced by up to 0.4% for adults and up to 3.9% for children. In addition, we discuss
the impact of the size and appearance of the bounding boxes on the disparity in miss rates and
provide an outlook for future research.

Keywords: computer vision; pedestrian detection; fairness

1. Introduction

Recently, research has frequently explored approaches to pedestrian detection which
is expected to be applied in various fields. The remarkable progress that has been made in
this area is partly due to the large-scale collection of human images from the Web.

However, there are still concerns about the safety of utilizing pedestrian detection
in areas such as automated driving. One of these concerns is the disparity in detection
rates based on human age and race; specifically, a disparity in detection rates between
“adults” and “children” has been reported when using classical human detection methods.
Brando [1] affirmed that the difference in the quantity of adult versus child data in the
person detection dataset is a problem that naturally arises from demographics. There are a
small number of “children” in the existing pedestrian dataset, which we assume is respon-
sible for a sample bias and a detection rate disparity between “adults” and “children.”

In this paper, we constructed our Self-Trained Person Dataset (STPD) by extending
the Weakly Supervised Pedestrian Dataset (WSPD) [2] to improve the accuracy of person
detection. We studied the effect of each age attribute on detection performance using each
pre-trained model generated by the WSPD and STPD. The INRIA Person Dataset [3] is used
to evaluate the detection performance. We re-annotated both the training and test data
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of the INRIA Person Dataset to rigorously investigate the effect of age on the accuracy of
pedestrian detection. For this re-annotation, we added the age attribute and the bounding
box (bbox). In this way, we constructed a dataset for pedestrian detection validation with
the age attribute. In addition, we studied the reason for the disparity in detection rate by
age. Specifically, we examined the age gap in the detection rate using three experiments:
(i) we clarify whether there is a difference in appearance between “adults” and “children”;
(ii) we study the impact of the data augmentation of children’s learning data alone on the
missed rate; and (iii) finally, we compare the miss rate for each age attribute when the scale
of the input image is changed. Our contributions are as follows:

• The STPD was constructed by extending the pedestrian dataset, WSPD, using self-training.
• In order to rigorously evaluate the detection performance for “adults” versus “chil-

dren,” we constructed a new evaluation dataset.
• The person detector with STPD pre-training reduced the miss rate of “adults” and

“children” compared to the detector with WSPD pre-training. Furthermore, we ob-
served a mitigating effect of self-training on the detection rate gap.

• We studied three aspects to investigate the cause of the gap in detection rates by age:
(i) the appearance of “adults” and “children”; (ii) the quantity of data for “children”;
and (iii) the scale of the input images.

2. Related Work

2.1. Detector

In recent years, approaches to detection have been dramatically improved with the
rise of deep neural networks (DNNs). In the literature, a two-step region identifier and
DNN-based classification have been proposed [4]. The basic approach, called R-CNN,
follows three steps when generating bounding boxes: (i) detecting areas in the image that
may contain objects (region proposal); (ii) extracting CNN features from region candidates;
and (iii) classifying objects based on the extracted features. Fast R-CNN [5] also generates
region proposals, but it is more efficient than R-CNN because Fast R-CNN pools the CNN
features corresponding to each region proposal. Faster R-CNN [6] adds a region proposal
network (RPN) to generate a region proposal in the network. Current research focuses on
widely divided one-shot detectors such as single-shot multi-box detector (SSD) [7] and you
look only once (YOLO) [8].

Recent works have also focused on high-performance detectors, such as M2Det [9],
RetinaNet [10] and instance segmentation with Mask R-CNN [11]. In this paper, we applied
SSD as a method of detecting people in a dataset. Here, we used a WSPD pre-trained model
for self-training.

2.2. Pedestrian Detection

In the past decade, approaches to person detection have dramatically improved. Re-
cent work has proposed configurations to improve recognition and localization, including
DNNs, semantic segmentation, combined methods and small image and cloud analysis.
However, in order to train these models, it is necessary to prepare a large dataset and
fine-tune its architecture (e.g., SSD or M2Det). Wilson et al. tested whether an object
detector can correctly detect pedestrians with different skin colors [12]. In addition, they
found that it is problematic to accurately detect children because their miss rate is higher
than that of adults [1]. In this study, we were able to detect pedestrians more reliably than
in previous studies.

3. Self-Training

3.1. Problem

A number of datasets for pedestrian detection have been proposed to date. However,
as shown in Table 1, their scale is small compared to those used for object detection.
Minoguchi et al. proposed a weakly supervised learning method that eliminates false
positives using existing pre-trained models by referring to bounding boxes and SVM and
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by constructing a labeled dataset called the Weakly Supervised Person Dataset (WSPD) [2],
which far exceeds the scale of previous pedestrian detection datasets. To the best of our
knowledge, the WSPD is the largest existing pedestrian dataset. Minoguchi et al. revealed
the detection performance of the pre-trained model on that dataset but did not mention the
disparity in the miss rate for each age attribute. Table 2 shows the attribute distribution of
some bounding boxes in the WSPD. This distribution is based on our random selection of
5000 bounding boxes from the WSPD and their classification by attribute. The “Noise” label
indicates that there is no person in the bounding box, while the “Multiple” label indicates
that the bounding box contains multiple people. As such, we can see that the existing
pedestrian dataset has a large bias in the distribution of the quantity of data; in particular,
the data for children are excessively limited. Therefore, it is necessary to check whether
this bias in the quantity of data contributes to the disparity in detection performance.

Table 1. Comparison of object detection and person detection datasets.

Dataset Image Bounding Box Class

Pascal VOC 11,530 27,450 20
MS COCO 123,287 896,782 80
OpenImages v5 1,743,042 14,610,229 600

CityPersons 5000 35,016 2
EuroCity Persons 47,300 238,200 17
Caltech Pedestrian 250,000 350,000 2
WSPD 2,822,421 8,716,461 2
STPD (Ours) 3,461,024 9,739,996 1
FA-INRIA (Ours) 902 2993 2

Table 2. The age attribute statistics for people in bounding boxes in 5000 randomly sampled images
from the WSPD dataset. The “Noise” label indicates that there is no person in the bounding box,
whereas “Multiple” label means that one bounding box contains multiple people. In this paper,
images labeled “Multiple” are not considered.

Annotation Type Images %

(i) Adult 2687 53.7
(ii) Children 169 3.4
(iii) Noise 536 10.7
(iv) Multiple 1608 32.2

3.2. Solution

As previously mentioned, we can see that the WSPD contains the largest number of
images and bounding boxes among the available person detection datasets. Furthermore,
the WSPD contains a wide variety of person images collected from various locations around
the world. The semi-automatically collected dataset has millions of bounding boxes which
may be useful for pre-training. We used a WSPD pre-trained model to apply self-training
to another dataset to collect high-quality bounding boxes and to investigate the impact of
each age attribute on the miss rate. Our self-training pipeline is shown in Figure 1. First,
we input images from the Places365 dataset [13] to the SSD, a detector pre-trained with
the WSPD, to estimate the location of the bounding box. We assigned a pseudo-label of
“person” to the predicted bounding box. The determination of the location of the bounding
box when generating the pseudo-label is expressed by the following equation:

(y′, b′box) = D(x; θ), (1)

where y’ and b’ represent the predicted values of the object category and bounding box,
respectively, and θ represents the learned parameters of the detector. Our self-training
approach allows us to automatically extend the dataset. We refer to the WSPD and the gener-
ated pseudo-labeled Places365 dataset together as the Self-Trained Person Dataset (STPD).
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Figure 1. The self-training approach. We used a model pre-trained using the WSPD dataset with the
SSD to infer the location of bounding boxes for unlabeled images from the Places365 dataset. We then
gave each predicted bounding box a “person” attribute label. By combining these pseudo-labels with
the WSPD labels and pre-training them with the SSD, we were able to build a larger model to verify
miss rates.

Furthermore, we pre-trained the constructed STPD and compared its detection perfor-
mance with the model pre-trained using the WSPD. In order to examine the disparity in
the miss rate among age attributes, it is essential to add an age attribute to the bounding
box. Then, in order to evaluate the miss rate for each age attribute, we assigned “adult”
and “children” labels to the INRIA Person Dataset, which is commonly used for person
detection, using the models pre-trained with the WSPD and STPD, respectively. We also
re-annotated the location of the bounding box. These two age attributes follow the age
categories defined by the Statistics Bureau of the Ministry of Internal Affairs and Commu-
nications in Japan for (i) children (0–14 years) and (ii) adults (15 years and older). As a
result, we constructed a pedestrian detection dataset consisting of 902 images and 2993
bounding boxes for training and evaluation. We named this dataset the Fairness-Aware
INRIA Person Dataset (FA-INRIA). An example of the annotations and the breakdown of
the dataset attributes are shown in Figure 2 and Table 3, respectively.

Figure 2. Examples of age attribute annotation in Fairness-Aware INRIA Person Dataset (FA-INRIA).

170



CSFM 2022, 3, 11

Table 3. The age attributes in the Fairness-Aware INRIA Person Dataset (FA-INRIA).

Age Images Bounding Boxes

Adult 870 2672
Children 151 321

All 902 2993

3.3. Experimental Settings

In this paper, we compared the results under the same pre-training conditions. The
batch sizes for pre-training the SSD were set to 64, 128 and 256, the number of epochs
was set to 10, and the learning rate was set to 0.0005. When we conducted fine-tuning
with the FA-INRIA using the pre-trained models on each dataset, the batch size was set
to 4, the number of iterations was set to 12,000, and the learning rate was set to 0.0005.
Furthermore, the training and test datasets were used with the same configuration as the
original INRIA Person Dataset. The experimental settings described below also conform to
these conditions.

3.4. Evaluation Metric

We only used the miss rate as an evaluation metric to assess the detection performance
for adults and children. In person detection, the relationship between the miss rate and
false positives is often evaluated for each image. However, our goal is to detect all ground
truth bounding boxes. Therefore, we calculated the miss rate by examining the breakdown
of the age attributes of the bounding boxes that could not be detected. The miss rate M is
derived by the following equation:

MR = 1 − Recall (2)

In this paper, we calculated the standard deviation to represent the miss rate disparity
among age attributes:

MRstd =
1
n

n

∑
i=1

(MRi − M̄R)2, (3)

where n refers to the number of classes of attributes, which in this study was two (“Adult”
and “Children”).

3.5. Results

Table 4 shows the miss rate in the FA-INRIA Person Dataset using each of the pre-
trained models. Compared to the model pre-trained with the WSPD, the model pre-trained
with STPD reduced the miss rate by up to 0.4% for adults and up to 3.9% for children. In
the WSPD pre-trained model, the disparity between the miss rates of adults and children
was a maximum standard deviation of 4.6% and a minimum of 3.1%. In contrast, the STPD
pre-trained model had a maximum standard deviation of 2.9% and a minimum standard
deviation of 2.1%.

Table 4. Detection performance comparisons for our FA-INRIA. We use standard deviation to describe
the disparity in detection rates between attributes. It is clear that our approach reduces the miss rate
for all attributes.

Dataset Batch Size, Epochs MRadult MRchild MRstd

64, 10 13.9 23.1 4.6
WSPD 128, 10 13.8 21.2 3.2

256, 10 13.1 19.2 3.1

64, 10 13.8 19.2 2.7
STPD (ours) 128, 10 13.4 19.2 2.9

256, 10 13.1 17.3 2.1
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Then, the detection results of fine-tuning with the FA-INRIA using the pre-trained
detectors on each dataset are shown in Figure 3, illustrating that the STPD pre-trained
model is able to detect people that the WSPD pre-trained model misses.

Figure 3. Comparison of detection results of WSPD and STPD.

4. Analysis and Discussion

4.1. The Relationship between the Bias in the Quantity of Data and the Miss Rate

In the aforementioned results, we successfully generated a pseudo bounding box
containing a person from the Places365 dataset. In Figure 1, we present a visualization
of the location of a person’s bounding box that was predicted during the process of self-
training. This method was implemented based on the success of self-training in object
detection [14] and was found to reduce the miss rate for adults and children, respectively.
Moreover, it is effective in collecting data on pedestrians regardless of their age attributes,
and not only on children for whom the number of data is small. If the bias in the quantity of
data between age attributes is the primary cause of the disparity in detection performance,
then it is only the bounding boxes for children that need to be more efficiently collected.
However, manual annotation is very costly and impractical. Therefore, we applied data
augmentation to the children’s bounding boxes in the FA-INRIA training data to investigate
the effect on the miss rate for adults and children. In our work, we tried to augment the
children’s bounding boxes by applying horizontal flip.

Table 5 shows the detection performance when data augmentation is applied to the
children’s bounding boxes. It can be seen that when the batch size is 256, the miss rate
for both attributes decreases. However, when the batch size is 64 or 128, the miss rate
for children does not change, while the miss rate decreases for adults. These results
indicate that applying data augmentation is effective in improving the overall detection
performance. On the other hand, when we focus on the standard deviation, we must not
forget that the disparity in detection performance between age attributes is expanding.
First and foremost, a “person” can be an adult or a child. If the detection performance for
adults is improved solely by increasing the data of children, we would consider that the
bias in the quantity of data between classes is not directly relevant.

Table 5. The impact of applying data augmentation (horizontal flip) only to the bounding boxes of
the children in the training data. The results show that applying data augmentation is effective in
improving the overall detection performance. On the other hand, it may increase the disparity in
detection performance among age attributes.

Batch Size, MRadult MRchild MRstd
Epochs w/o Aug. w/ Aug. w/o Aug. w/ Aug. w/o Aug. w/ Aug.

64, 10 13.8 12.6 19.2 19.2 2.7 3.3
128, 10 13.4 12.1 19.2 19.2 2.9 3.6
256, 10 13.1 10.7 17.3 15.4 2.1 2.4
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4.2. The Relationship between the Size of a Person’s Bounding Box and the Miss Rate

Detecting small objects is a difficult task in object and person detection research
because of the limited information that can be obtained from a bounding box with a small
image size. It is clear that children have smaller bodies than adults. Therefore, the bounding
boxes of children tend to be smaller than those of adults. Thus, we thought it would be
important to investigate the size of bounding boxes in the FA-INRIA.

Figure 4 presents the distribution of the size of the bounding boxes for adults and
children. Adults are shown in red and children are shown in blue. This distribution
indicates that most of the bounding boxes that exceed the size of 600 pixels × 300 pixels
in height and width, respectively, are for adults. In other words, the difference in the size
distribution of the bounding boxes may be one of the factors affecting the disparity in the
miss rate. Figure 5 also shows the distribution of the size of the bounding boxes in the
image for the FA-INRIA (test set): the bounding boxes that could be detected are shown in
red and the missed bounding boxes are shown in blue. As you can see in these figures, most
of the missed bounding boxes are biased towards the smaller image size. In other words,
in order to further mitigate the disparity in the miss rate, it is necessary to use detectors
that can detect small persons.

In this paper, we investigated the effect of changing the image size of the input on the
miss rate of each attribute. The SSD resizes the input image to a set size regardless of the
size of the original image. This process is likely to result in the missing details of the image.
In order to detect small bounding boxes, we thought that increasing the size of the input
image would suppress the missing information. We examined three patterns of input image
sizes: (i) 150 pixels × 150 pixels; (ii) 300 pixels × 300 pixels; and (iii) 600 pixels × 600 pixels.
The default size for the SSD is 300 pixels × 300 pixels. For more accurate validation, we
also used a sub-dataset with the same number of bounding boxes for adults and children
in the training data.

Figure 4. Distribution of bounding boxes for adults and children in the FA-INRIA Person Dataset.
Children’s bounding boxes tend to be relatively smaller than those of adults.
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Figure 5. Whether bounding boxes can be detected in test data (red: detected, blue: missed).

Table 6 shows the miss rate when the input image size of the SSD is changed. It can be
seen that increasing the size of the input image is a major factor in reducing the miss rate.
On the other hand, when the input size is small (150 pixels × 150 pixels), the miss rate for
children is very poor. We consider that this is because image information is also missing
due to the relatively smaller bounding box. As shown in Figure 4, children’s bounding
boxes are more difficult to detect when the input size is small because children have a
relatively higher proportion of small bounding boxes than adults. Based on this result
and Figures 4 and 5, we conclude that the unbalanced distribution of the bounding box
sizes is one of the main reasons for the disparity in detection performance between adults
and children.

Table 6. The effect of changing the input size of the image to the SSD on the detection performance
for each age attribute. The results show that increasing the input size decreases the miss rate. In
addition, children are more strongly affected by changes in the size of the input. We conclude that
the bias in the size of the bounding box is a major factor in the disparity in detection performance.

Batch MRadult MRchild MRstd

Size, Input size of the image (pixels × pixels)
Epochs 150 300 600 150 300 600 150 300 600

64, 10 14.9 14.1 14.4 17.3 15.4 15.4 1.2 0.7 0.5
128, 10 15.2 14.6 13.9 21.2 17.3 15.4 3.0 1.4 0.8
256, 10 14.1 14.7 13.4 21.2 17.3 15.4 3.6 1.3 1.0

4.3. Appearance Difference

We considered two aspects: the bias in the quantity of data between classes and the
size of the bounding boxes. However, as shown in Figure 5, we can see that some people are
not detected even though the bounding box is relatively large. Moreover, as mentioned in
Section 4.1, we found that the bias in the quantity of data between classes is most likely not
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relevant. These results suggest that there might be other factors that generate disparities in
detection performance between age attributes. Subsequently, we hypothesized that there
would be apparent differences between the distributions of bounding box sizes of adults
and children as they differ significantly in size.

Figure 6 shows the compression of the image features using t-SNE and the visualization
of the distribution. It is difficult to imagine that there is a disparity in detection performance
based on the appearance of the distribution which is not clearly divided by age attribute
and is evenly distributed. This result supports the fact that applying data augmentation
to the children’s bounding boxes was more effective in improving the detection rate for
adults than for children. Since there is no apparent difference between adults and children,
we reiterate that we do not need to consider the bias in the quantity of data between classes
to reduce the miss rate for children.

Figure 6. Data visualization of bounding boxes using t-SNE (blue: adults, red: children). There is no
apparent significant difference between the bounding boxes of children and adults. As mentioned
in Section 4.1, when data augmentation was applied to children’s bounding boxes, the miss rate
was strongly affected for adults but not for children. This data visualization supports the consid-
eration that the bias in the quantity of data between classes has little to do with the disparity in
detection performance.

5. Conclusions

In this paper, we investigated and examined various perspectives on the causes of
disparity in the detection performance between adults and children in the task of pedestrian
detection. As a first experiment, we confirmed that self-training extends the pre-training
model and improves the overall detection performance. Then, we found that applying data
augmentation to the bounding boxes of children—for whom there is less data available than
for adults—significantly improves the detection performance for adults but not children.
We also visualized the feature distribution of the bounding boxes using t-SNE and found
that there was no apparent difference between adults and children. These results indicate
that it is not necessary to consider the bias in the quantity of data in terms of age attributes
in pedestrian detection.

On the other hand, when we looked at the size of the bounding boxes in our FA-
INRIA, we observed that the distribution was biased toward a smaller size for children
than for adults. In addition, we found that changing the input size of the image fed to the
detector had a significant impact on detection performance for children. In other words,
we concluded that the disparity in the size of the bounding boxes was a major factor in the
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disparity in detection performance among age attributes. In the future, focusing on the
detection of small bounding boxes will help mitigate the bias between attributes.
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