34 research outputs found

    Variability Abstractions: Trading Precision for Speed in Family-Based Analyses

    Get PDF
    Family-based (lifted) data-flow analysis for Software Product Lines (SPLs) is capable of analyzing all valid products (variants) without generating any of them explicitly. It takes as input only the common code base, which encodes all variants of a SPL, and produces analysis results corresponding to all variants. However, the computational cost of the lifted analysis still depends inherently on the number of variants (which is exponential in the number of features, in the worst case). For a large number of features, the lifted analysis may be too costly or even infeasible. In this paper, we introduce variability abstractions defined as Galois connections and use abstract interpretation as a formal method for the calculational-based derivation of approximate (abstracted) lifted analyses of SPL programs, which are sound by construction. Moreover, given an abstraction we define a syntactic transformation that translates any SPL program into an abstracted version of it, such that the analysis of the abstracted SPL coincides with the corresponding abstracted analysis of the original SPL. We implement the transformation in a tool, that works on Object-Oriented Java program families, and evaluate the practicality of this approach on three Java SPL benchmarks

    Variability Abstractions: Trading Precision for Speed in Family-Based Analyses (Extended Version)

    Full text link
    Family-based (lifted) data-flow analysis for Software Product Lines (SPLs) is capable of analyzing all valid products (variants) without generating any of them explicitly. It takes as input only the common code base, which encodes all variants of a SPL, and produces analysis results corresponding to all variants. However, the computational cost of the lifted analysis still depends inherently on the number of variants (which is exponential in the number of features, in the worst case). For a large number of features, the lifted analysis may be too costly or even infeasible. In this paper, we introduce variability abstractions defined as Galois connections and use abstract interpretation as a formal method for the calculational-based derivation of approximate (abstracted) lifted analyses of SPL programs, which are sound by construction. Moreover, given an abstraction we define a syntactic transformation that translates any SPL program into an abstracted version of it, such that the analysis of the abstracted SPL coincides with the corresponding abstracted analysis of the original SPL. We implement the transformation in a tool, reconfigurator that works on Object-Oriented Java program families, and evaluate the practicality of this approach on three Java SPL benchmarks.Comment: 50 pages, 10 figure

    Statically analyzing the energy efficiency of software product lines

    Get PDF
    Optimizing software to become (more) energy efficient is an important concern for the software industry. Although several techniques have been proposed to measure energy consumption within software engineering, little work has specifically addressed Software Product Lines (SPLs). SPLs are a widely used software development approach, where the core concept is to study the systematic development of products that can be deployed in a variable way, e.g., to include different features for different clients. The traditional approach for measuring energy consumption in SPLs is to generate and individually measure all products, which, given their large number, is impractical. We present a technique, implemented in a tool, to statically estimate the worst-case energy consumption for SPLs. The goal is to reason about energy consumption in all products of a SPL, without having to individually analyze each product. Our technique combines static analysis and worst-case prediction with energy consumption analysis, in order to analyze products in a feature-sensitive manner: a feature that is used in several products is analyzed only once, while the energy consumption is estimated once per product. This paper describes not only our previous work on worst-case prediction, for comprehensibility, but also a significant extension of such work. This extension has been realized in two different axis: firstly, we incorporated in our methodology a simulated annealing algorithm to improve our worst-case energy consumption estimation. Secondly, we evaluated our new approach in four real-world SPLs, containing a total of 99 software products. Our new results show that our technique is able to estimate the worst-case energy consumption with a mean error percentage of 17.3% and standard deviation of 11.2%.This paper acknowledges the support of the Erasmus+ Key Action 2 (Strategic partnership for higher education) project No. 2020-1-PT01-KA203-078646: SusTrainable-Promoting Sustainability as a Fundamental Driver in Software Development Training and Education

    Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

    Get PDF

    Towards quality assurance of software product lines with adversarial configurations

    Get PDF
    International audienceSoftware product line (SPL) engineers put a lot of effort to ensure that, through the setting of a large number of possible configuration options, products are acceptable and well-tailored to customers’ needs. Unfortunately, options and their mutual interactions create a huge configuration space which is intractable to exhaustively explore. Instead of testing all products, machine learning is increasingly employed to approximate the set of acceptable products out of a small training sample of configurations. Machine learning (ML) techniques can refine a software product line through learned constraints and a priori prevent non-acceptable products to be derived. In this paper, we use adversarial ML techniques to generate adversarial configurations fooling ML classifiers and pinpoint incorrect classifications of products (videos) derived from an industrial video generator. Our attacks yield (up to) a 100% misclassification rate and a drop in accuracy of 5%. We discuss the implications these results have on SPL quality assurance
    corecore