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Abstract: Optimizing software to become (more) energy efficient is an important concern for the
software industry. Although several techniques have been proposed to measure energy consumption
within software engineering, little work has specifically addressed Software Product Lines (SPLs).
SPLs are a widely used software development approach, where the core concept is to study the
systematic development of products that can be deployed in a variable way, e.g., to include different
features for different clients. The traditional approach for measuring energy consumption in SPLs is
to generate and individually measure all products, which, given their large number, is impractical. We
present a technique, implemented in a tool, to statically estimate the worst-case energy consumption
for SPLs. The goal is to reason about energy consumption in all products of a SPL, without having to
individually analyze each product. Our technique combines static analysis and worst-case prediction
with energy consumption analysis, in order to analyze products in a feature-sensitive manner:
a feature that is used in several products is analyzed only once, while the energy consumption
is estimated once per product. This paper describes not only our previous work on worst-case
prediction, for comprehensibility, but also a significant extension of such work. This extension has
been realized in two different axis: firstly, we incorporated in our methodology a simulated annealing
algorithm to improve our worst-case energy consumption estimation. Secondly, we evaluated our
new approach in four real-world SPLs, containing a total of 99 software products. Our new results
show that our technique is able to estimate the worst-case energy consumption with a mean error
percentage of 17.3% and standard deviation of 11.2%.

Keywords: energy estimation; program analysis; software product lines

1. Introduction

The worldwide energy provision model is currently supported by unsustainable
sources. The evidence that is provided by recent reports [1] is that 81% of the energy
consumed in 2018 has been obtained from nonrenewable sources, while electricity con-
sumption has essentially doubled in the last 30 years. In addition, with the growing
investment interest on ICT infrastructures and applications, it does not come as surprise
that this sector, which is nowadays responsible for between 5% and 9% of the worldwide
energy consumption, could increase this number up to 20% of the world’s produced energy
in the next decade [2].

Energy is the limiting resource in a wide range of computing systems, from embedded
sensors, to mobile phones, IoT devices, or even data centers. When considering global data
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centers alone, these have used roughly 416 tera-watts in 2016 (4.16× 1014 watts, or about
3% of the total produced electricity) [3].

In addition, the software components supporting modern computing systems are
getting increasingly complex, supplying more and more business areas and running on
a wider variety of devices and system architectures. One example is found in Android-
based mobile devices, with the same base system being deployed in multiples devices, yet
adapted to better fit the devices needs and characteristics. In order to reduce the effort in
creating multiple software versions, it is important that shared components and assets are
reused in a controlled and systematic manner.

Software Product Lines (SPL) consist of an important software engineering discipline
that facilitates the development of software that shares a common set of features. Typically,
in this type of software, individual products target specific software features and computing
architectures/devices, while sharing common characteristics (i.e., core features). Through
the exploration of Dynamic Software Product Lines (DSPLs), this approach was adapted to
comprise mechanisms that are capable of managing variability at the runtime phase, in a
manual or automatic manner [4].

In practice, SPLs are widely used to create operational flight programs [5], software to
control gasoline system engines [6], medical systems for image-supported diagnosis [7],
or even television sets’ operating systems [8], among several other examples (more well-
known examples can be found in the SPLC Hall of Fame: https://splc.net/fame.html
(accessed on 14 March 2021)).

Although several techniques have been proposed to measure, reason about, and
improve the energy efficiency within software and language engineering [9–13], only
recently has there been an effort towards addressing this issue in SPLs [14,15]. In a nutshell,
a SPL development approach was presented in [15], which was mainly focused on building
a DSPL that can adapt itself with energy-saving capacities, through establishing a relation
between variability features and their energy impact and continuous monitoring the context
on which the SPL is used. Regarding energy analysis of all products within a SPL, we have
proposed in [14] the first approach to explore static analysis to reason about such products,
in order to obtain for each one accurate energy consumption estimations.

Using static analysis was already a clear improvement over a brute-force approach,
which would consist of generating all products within a SPL, and measure the energy
consumption of each product individually, even if it shares features with other products.
Indeed, this approach is often intractable in practice, since, for each product, it is necessary
to assess it at runtime, which can become unfeasible, depending on the size and complexity
of the SPL.

When analyzing highly complex SPLs, an approach frequently adopted by the com-
munity is to use sampling techniques [16]: only part of the existing products are built and
tested, assuring that all of the features are properly exercised. However, this approach is not
recommended when analyzing non-functional properties of SPLs, such as energy consump-
tion, due to the high impact that feature interactions have on such properties [17,18]. This
inadequacy of sampling techniques, and the "expensiveness” of the brute-force approach
discredits the whole dynamic approach of analyzing energy in SPLs. Hence, the alternative
should follow a static approach.

In this paper, we further explore static analysis techniques to reason about energy
efficiency in the context of SPLs. A distinctive contribution that we are now making
when compared to what we had already done in [14] is that we are now also exploring a
simulating annealing algorithm to improve the prediction accuracy.

Our goal is to provide energy-related information and tool support for SPL practi-
tioners, which is very much in line with the timely needs identified in [19]. Besides the
already-mentioned environmental goal of reducing the energy footprint of ICT systems,
our work is also motivated from a software quality point of view. Indeed, as described
in the ISO/IEC 20,510 standard [20], Performance Efficiency is one of the key characteris-
tics that a piece of software must hold; and, to characterize Performance Efficiency, one of
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the main aspects that must to be considered is Resource utilization. This means that the
functionality of software should be attained while respecting optimal usage of resources,
such as runtime or memory consumption, and, most relevant in the context of this paper,
energy consumption.

Our approach targets SPLs that are developed in C, using conditional compilation to
express variability. The ultimate goal of our technique is to accurately predict the energy
behavior of products within a SPL, as to reason about which ones are expected to be more
energy-efficient, and which features may be leading to higher consumptions. Our vision is
that developers can leverage our technique, at development (or re-engineering) time, in
order to pinpoint the features that can be improved regarding energy efficiency.

We analyze SPLs in a feature-sensitive manner, i.e., the code that is related to a
particular feature is only analyzed once, while the analysis result is reflected for every
product where such feature is included. To make this possible, we employ SPL static analysis
techniques [21] that work on a control-flow graph that represent a set of programs (the
SPL), and not just one. By doing so we are able to compute from the source code: (i) energy
related properties, such as hardware components usage information, and (ii) dataflow
information, such as loop upper bounds.

The properties that we compute are then used as input to a Worst-Case Execution
Time (WCET) prediction technique, where we compute the energy consumption per product
instead of its execution time. This is the single step where the analysis is product-oriented.
We use a constraint solver to estimate the consumption, where, for each product, we generate
a set of constraints. We call this technique the Worst-Case Energy Consumption (WCEC).

The WCEC technique that we propose for products in a SPL implies the existence
of an energy consumption model. This model abstractly describes the hardware where
the products will run, and the amount of energy that is needed to execute different types
of instructions. Using such model along with the previously computed properties, our
technique computes the energy consumption profile for each product and feature. Thus, it
allows the generation of the most energy efficient product that includes/excludes a set of
given features.

Another novel aspect when compared to [14] is that we have now performed an
evaluation for our technique using four real-world SPLs, which allowed for us to study, in
more detail, the general accuracy of our approach; this is described in detail in Section 4.
Upon doing so, we found that the accuracy of our energy model could be improved in
certain cases. We adapted a well-known optimization algorithm to find the best way to
improve the model, which is explained in detail in Section 4.3.

The final results of our assessment show that the energy predicted by our technique
and tool for each product is always, as expected, an overestimation of the real consumption,
diverging, on average, by 17.3% with a standard deviation of 11.2%.

The remaining of this paper is structured, as follows: Section 3 provides an introduc-
tion to static analysis in the context of SPLs. Section 3.4 presents, in detail, the worst-case
energy consumption analysis approach that we propose. Section 3.5 briefly describes the
concepts and architecture of the WCEC prototype that we developed. In Section 4, we
show the results of using the prototype to estimate the WCEC of real SPLs. We discuss the
threats to the validity of our technique and experiments in Section 4.5. Finally, we include
the conclusion of our work in Section 5.

2. Related Work

Energy consumption awareness has brought up an increasing interest in analyzing
the energy efficiency of software systems. Developers seem to now be more focused on
reducing energy consumption through software improvement [22], since it is the software
that triggers the hardware behavior. This principle guided several research works that
appeared in the last decade.

Studies have shown that the energy consumption of a software system can be signifi-
cantly influenced by a lot of factors, such as different languages [12], data structures [23–25],
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design patterns [26], and even refactorings [27–29]. Even in software testing, the decisions
made influence the consumption at the testing phase [11]. In the context of mobile devices,
more particularly when it comes to Android applications, there are other works that focus
on analyzing energy per software application [30], or even compare different usages of sim-
ilar applications [10], while others aimed at determining the energy impact of code blocks,
such as functions/methods [24,31], lines of code [32], or calls to the Android API [33].

Predicting the energy consumption of software is not a completely new and unex-
plored concept. Although it has been less studied and with more limited applications,
a few studies managed to define energy consumption as a property that can be model
checked in software [34,35], or estimated through combining static code analysis techniques
in Android applications [36] or desktop C-based applications [14,37]. The construction
and proper use of a detailed and source code oriented energy consumption model is the
common component in all such works. The outcome of such studies can be summed up to
an estimate of the energy that is consumed by a certain program in a specific scenario.

Regarding software product lines, several works have been developed with the goal
of accurately and, in a lightweight matter, analyzing products independently, and calculate
,for each one, properties such as correctness and performance. Nevertheless, the energy
consumption of software products is yet a narrowly explored concept [14,15]. In [14], an
initial approach for statically inferring energy estimations was presented. The strategy
that was followed in [15] was to create an approach to build Dynamic SPLs and, through
a dynamic analysis approach (involving continuous usage monitoring), the SPL could
adapt itself to avoid using features potentially leading to excessive consumptions. To the
best of our knowledge, these are the only research works performed for SPLs that target
energy analysis.

Thüm et al. survey analysis strategies [38], but they do not explore data-flow analysis
approaches, neither performance nor energy consumption estimation. Related work on
data flow analysis [21,39] and performance estimation [17,18,40] for SPLs share with the
surveyed work, and our work, the general goal of checking properties of a SPL with
reduced redundancy and efficiency.

Similar to the initial phases of our approach, the data flow analysis works and a
number of approaches covered by the survey adopt a family-based analysis strategy, only
manipulating family artifacts, such as code assets and feature model. Contrasting, a fully
product-based strategy, such as the generate-and-analyze approach that we use as baseline,
manipulates products and, therefore, might be too expensive for product lines having a
large number of products. We reduce risks and part of the performance penalty by only
requiring a per product analysis in the final phase of our approach. To avoid this kind
of deficiency, the mentioned performance estimation work opts for a sampling approach,
which is more efficient, but does not guarantee the obtained results apply for all products.

3. Material and Methods

The goal of our work is to develop a methodology for statically predicting the energy
consumption of products in a SPL. Hence, the introduction/explanation of a few concepts
on which we based our approach on is deemed to be necessary.

In this section, we outline and explain the research steps that we followed, the material
we reused, which ultimately lead us to the methodology that we propose. In fact, each
subsection refers to one of its steps, namely:

1. first, we start by explaining the inherent concepts of SPLs (Section 3.1);
2. subsequently, we introduce the static program analysis concepts, which can be used

to infer energy-related properties from the source code of a program (Section 3.2);
3. next, we describe the integrating all the previously presented concepts in order to

perform static analysis in SPLs (Section 3.3);
4. after that, we fully explain our proposed technique: we detail how the static analysis

technique in SPLs is used in combination with energy modeling (Section 3.4); and,
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5. finally, we provide an workflow of our methodology (Figure 8) and a brief overview
of the Serapis tool: the tool that we developed that implements the proposed method-
ology (Section 3.5).

We must refer that the concept on which we based our approach, and are included in
this section, are mostly inspired in the contents of [21].

3.1. Software Product Lines: Basic Concepts

In order to illustrate the essential aspects of SPLs, let us consider the purchase of a
car. In such a scenario, even when considering a particular car model, it often comprises
several configurations that can affect the final product, and make it quite different from cars
of the same model. Such configurations are selected/adjusted according to preferences
and budget, and they are quite diverse, such as choosing the engine type, entertainment
system, etc.

Let us consider that the following (simplified) configurations are possible for a given
car: basic versions cannot have turbo engines; when choosing air-conditioning, a turbo
engine is mandatory. In the context of SPLs, the Basic version, Turbo, and air-conditioning
(Air) are referred to as the SPL features.

Thus, a product (e.g., a concrete car that respects the possible configurations) is iden-
tified by the set of features that it includes (e.g., {Car, Basic, Air, Turbo}). This set is
called the product configuration, and it can be used to generate products with the same char-
acteristics.

The available set of product configurations is often restricted by a so-called feature
model. This model, typically expressed as a propositional logic formula, is used to manage
situations where (for instance) two or more features are mutually exclusive, or where
including a given feature implies that others are also required.

For instance, when considering our running example, the feature model here would
be: Ψ = Car ∧ (Basic⇔ ¬ Turbo) ∧ (Air⇒ Turbo). Thus, the complete set of product
configurations would be:

{{Car, Basic}, {Car, Turbo}, {Car, Air, Turbo}}

The are different mechanisms to state that a given code block belongs to a particular
features. One such way is by using conditional compilation [41]. In essence, this technique
provides a mechanism to mark the beginning and end of a code block belonging to a given
feature, by introducing preprocessor instructions to delimit it. The initial instruction if an
#ifdef Φ, where Φ is a propositional logic formula over feature names:

Φ ::= f ∈ F|¬Φ|Φ ∧Φ|Φ ∨Φ

Here, f is a feature, drawn from a finite alphabet of feature names F. This mechanism
can also be used to indicates which features should exclude certain code blocks. With our
work, we focus on this type of preprocessor-based SPLs.

3.2. Static Dataflow Analysis Concepts

The following code snippet will be used throughout this section, where we will
provide illustrations that are based on it to briefly review classic static program analysis
concepts:

In this example, we have two features: A and B. The conditional compilation primitives
that are included in lines 4 and 5 indicate that the instructions x*=2 and x-- are, respectively,
part of features A and B.

Every classic static dataflow analysis consists of three components:

A a control-flow graph (CFG), a directed graph which expresses how instructions in a
program are connected among them;

B a lattice, representing the values of interest for the analysis; and,
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C transfer functions, which are used to simulate the program execution, by assigning to
a given CFG node (i.e., instruction) a valid value from the lattice.

The CFG is the only component that needs to be generated for each program to analyze.
These three components are combined and passed to a fixed-point computation function. This
function is the “core” element of the analysis mechanism: it uses all transfer functions to
assign lattice values on each CFG node, which is the fixed point of the transfer functions at
that point.

Next, we will briefly explain the concepts of each one of these components, while
illustrating the example from Listing 1.

1 void m() {
2 int i = 0; int x = 0;
3 x = input (); // 1..100
4 #ifdef (A) x*=2;
5 #ifdef (B) x--;
6 while(i < x){ i++; }
7 }

Listing 1: Example of a SPL method

Control Flow Graph (CFG)

A CFG is an abstract representation of a program. It is a directed graph, with the state-
ments of the program to be analyzed as nodes, and the edges representing the execution
flow. A boolean expression can be assigned to an edge, which reflects the condition that
is to be verified in order for the program to follow the path lead by the edge. Figure 1
represents the CFG for the product derived from the SPL expressed Listing 1, when both
features are included.

x = 0;x = 0;

x*=2;x*=2;

i = 0;i = 0;

x = input();x = input();

(i<x)?(i<x)?

i++;i++;
F

x;x;

T

Figure 1. Control-Flow Graph for the example in Listing 1.

Lattice

When performing static dataflow analysis, the information that can be inferred for
each CFG node is arranged in a lattice, L = (D,v), where D is a set of elements and v is a
partial-order on the elements.

Each element represents information that is relevant for the analysis to be performed.
For example, when analyzing the signal of a variable (called a sign analysis) the element “+”
indicates that a value is always positive, while the element “0/+” represents zero or positive.
Figure 2 represents a lattice for the sign analysis.



J. Low Power Electron. Appl. 2021, 11, 13 7 of 34

/0 /+ 0/+/0

0 +

⊤

⊥

Figure 2. Lattice for Sign Analysis.

Two special elements are always included in the lattice: ⊥, at the bottom of the
lattice, which means that the node was not yet analyzed, and >, at the top of the lattice,
usually meaning that it is not possible to deterministically infer any other lattice element
for that node.

The partial order induces a least upper bound operator, represented by t. This operator
provides a way to combine information during the analysis, when a node has more than
one entry point (for example when there is a loop or an if ). It is required to define the
operator’s behavior when considering all possible combinations of two lattice elements. In
sign analysis, for instance, these would be some of those scenarios:

• ⊥t 0 = 0
• 0t+ = 0/+
• −t 0/+ = >
• ...

Transfer/Update Functions

The previously described concepts provide a mechanism to associate relevant analysis
information with source code instructions. Nevertheless, it is still necessary to consider
how the execution flow influences the information on each CFG node, i.e., how the state of
a given node is influenced by its predecessors. This is achieved using transfer functions.

A transfer function simulates the execution of an instruction, with respect to what is
being analyzed. For instance, in sign analysis, this function would simulate, for a given
CFG node, how executing the statement on that node would reflect on the sign of the
variable(s) being analyzed. By definition, this function needs to be monotone.

For each statement, a transfer function needs to be defined. This function receives a
lattice element (or several, depending on the analysis performed), which represents the
execution state of the previous node(s). This is then used to compute a new element, which
reflects the execution of that statement. Once again, if we want to perform, for instance,
the sign analysis for the example in Figure 1, the statement i++ would have the following
transfer function associated to it:

fx−−(l) =


> : l ∈ {−/+, 0/+,>}
− : l ∈ {−,−/0, 0}
0/+ : l = +
⊥ : l = ⊥

In this case, the input value to the function (l) represents the lattice element of the only
predecessor of x--, which can either be x *= 2 or x = input(), depending on the selected
features. If the value of l is, for example, +, it means that the value of x was positive before
entering the statement. Hence, if we decrement x, the resulting value could either be 0
(if x = 1) or a positive value (if x > 1)). Given these scenarios, the result of this transfer
function is then 0/+.

Once we have all the transfer functions defined, the first step of the actual analysis
process is to take the previously created CFG and transform it into what is called a whole-
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program transfer function, T. Essentially, this function gathers the transfer functions for all
of the program statements, in the order on which they appear in the program. Figure 3a
depicts the whole-program transfer function constructed for performing sign analysis on the
example in Figure 1.

The next and final step of the analysis consists of calculating the fixed point of this
function. The result of this calculation will indicate what can be safely assumed regarding
the analysis performed, on each of the considered statements. For sign analysis, the fixed
point computation will reflect what are the possible values for the analyzed variables after
the execution of each statement. Figure 3b shows the result of such computation for the
example in Figure 1.

T



a
b
c
d
e
f
g


=



fi=0(⊥)
fx=0(a)

fx=input(b)
fx∗=2(c)
fx−−(c)
(d t f )
fi++(e)


(1)

(a) Whole-program Transfer Function

a ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
b ⊥ 0 0 0 0 0 0
c ⊥ > > > > > >
d ⊥ ⊥ > > > > >
e ⊥ ⊥ ⊥ > > > >
f ⊥ ⊥ ⊥ ⊥ > > >
g ⊥ ⊥ ⊥ ⊥ ⊥ > >

T0 T1 T2 T3 T4 T5 = T6

(b) Fixed-point Computation

Figure 3. The whole-program transfer function and sign analysis (as fixed point computation) for the
example in Figure 1.

3.3. Static Analysis in Software Product Lines

Up until now, we have reviewed well-known and thoroughly studied static analysis
concepts, and we discussed how a to combine them to perform a standard static program
analysis. Nevertheless, these concepts cannot be applied to SPLs in a straightforward
manner, due to the underlying variability in SPLs. In practice, this means that, in order
to successfully perform any static analysis to SPLs, it is required to adapt it to be feature-
sensitive, so that we can compute the results for all of the products at once.

The subject of feature-sensitive static analysis has been already documented in the
literature [21], and different approaches can be followed. For both efficiency and ease of
implementation, we focus our own approach in Simultaneous Feature-Sensitive Analysis,
which we will explain in detail next, describing exactly how this technique manages to
combine static dataflow analysis with feature awareness.

Simultaneous Feature-Sensitive Analysis

A brute-force approach for any type of analysis in SPLs is often unfeasible. Building
all the possible products, and then analyzing each one individually is a tedious and highly
time consuming approach, as a realistic SPL will have a considerable number of features
and, consequently, a large number of products. A feature-sensitive analysis can tackle these
challenges. In any case, this can only be achieved if we first adapt several components of
static dataflow analysis.

For once, the control flow graph needs to be altered in such a way that it is possible
to know whether a statement is feature dependent or not. This is done by associating to
each CFG node a set of features whose implementation uses the statement corresponding
to that node. As a consequence, each node will then have a pair (S,F ), where S (e.g.,
x *= 2) is the source code statement, and F (e.g., JAK) is the list of features, whose imple-
mentation uses S. Unconditional statements will have the list of all configurations, which is
represented as J TRUE K.

The lattice also needs to change, since we now need to know, for every instruction,
which products are affected by its execution. For this purpose, we will use a lifted-lattice,
which will maintain for every node one lattice element per valid product configuration. This
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way, it is possible to know the result of the analysis on all products. In a similar way, the
transfer functions will also be lifted, i.e., they will only be applied to the product configurations,
which include the statement being analyzed.

In Figure 4, we present the annotated (partial) CFG of the fixed point computation,
performed for the sign analysis using the Simultaneous Feature-Sensitive approach, for the
example given in Listing 1. We can see that, at the exit of each node, there is a lifted lattice
with an element that is associated to each possible product of the SPL, where each element
is the result of the transfer function that is associated to the node.

⟦TRUE⟧ : x=input();

⟦A⟧ : x*=2;

⟦B⟧ : x;

∀c  {{A}, {B}, {A, B}}:∈

({A} → 0, {B} → 0, {A, B} → 0)

({A} → , {B} → , {A, B} → )⊤ ⊤ ⊤

({A} → , {B} → , {A, B} → )⊤ ⊤ ⊤

({A} → , {B} → , {A, B} → )⊤ ⊤ ⊤

({A} → , {B} → , {A, B}→ )⊥ ⊥ ⊥

...

...

Figure 4. Sign analysis for the example in Listing 1 using Simultaneous Feature-Sensitive analysis.

3.4. Static Energy Analysis in SPLs

In the previous section, we described a valid approach, which was obtained from
the literature, used to perform static analysis in SPLs, in a feature-sensitive manner. This
approach combines well established state-of-the-art techniques for program analysis, with
SPL-related concepts and components.

Nevertheless, all of the techniques previously presented, as well as the concepts that
they are based on, were introduced solely for the purpose of predicting whether a property
is true or maintained after a certain instruction is executed. In other words, static analysis
for SPLs, as presented until now, is suitable for of predicting the behavior of all products in
a SPL, through an in-depth analysis of their code.

As our goal is to perform static energy consumption analysis in SPLs, it is necessary
to determine such behavior, as well as to understand how it can affect energy consumption.
A more thorough analysis, similar to the worst case execution time (WCET) analysis, is
deemed to be necessary. For that kind of analysis, the essential procedure is based to giving
an upper bound for each instruction, determine how they are all related, and calculate an
accurate estimation for the worst case execution scenario.

In this section, we present the strategy we developed for inferring an energy consump-
tion estimation for the worst case scenario, based on the classic WCET analysis [42]. This
strategy is composed of four phases:

A. use fixed-point computation to gather information about how instructions’ execution
influences the hardware energy consumption behavior;

B. use a data-flow analysis to determine loop upper bounds;
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C. at each program point, an energy model calculates an energy-bound for every product
of the SPL; and,

D. finally, use all of the information from previous steps, a constraint solver computes a
global energy-bound for all the products of the SPL.

We want to clarify that, although our strategy in based on a well established and
formally verifiable worst-case analysis approach [42], which follows all principles of static
program analysis [43], our own approach does not yet obey these principles. We will
describe next in detail each phase of our analysis, while exposing why our approach
(specifically the data-flow analysis and the energy model definition steps) cannot be
formally verified and, as such, should not be interpreted as a fully compliant adaptation
to WCET. Nevertheless, the technique still serves our purpose of having a technique
that is capable of inferring accurate overestimations of the observed worst case energy
consumption.

3.4.1. Static Prediction of Energy Behavior

When using a classic approach to predict the worst case execution time of a program,
the first step consists of determining how the processor behaves when executing every
statement of the program under analysis [42]. In fact, this analysis determines how it
behaves for that particular statement in a specific context: the statements that were executed
before. This analysis is known as Processor Behavior Analysis.

The main idea of this step is to build an abstract model of the processor specifying the
behavior of every possible program statement, when considering all processor’s states that
may influence its energy consumption. Thus, the abstract model is a finite lattice, whose
elements are the processor states. Monotone transfer functions define the conditions to move
from one state to another one.

After computing such a prediction model of the energy behavior of the processor, the
(static) data-flow properties hold, as presented next. In fact, this was shown in [44]. In the
context of our work, we adapt this approach, so that it models every hardware component,
executing in any possible state that does influence the processor’s energy consumption.

To obey the requirements of static program analysis, the behavior of each component
must be independent of all others. However, the behavior analysis must only be done once.
To formalize our approach, we define the prediction model, P, which specifies how the
processor components behave when executing a program’s statement. Thus, P consists of a
set of transfer functions. The prediction model P gets, as input, a list of n lattice elements,
S: one lattice per hardware component. The output of the prediction model, S′, contains
the list of newly created lattice elements. Thus, the lattices in S′ define the state of the
components after executing the statement.

The analysis performed within a SPL must hold for the products in the line, as we
have discussed on Section 3.3. As a consequence, we have to guarantee that: firstly, for
every node/program point there must be a list of lattice elements for each product in the
SPL. Secondly, the lattice elements of a product p are updated (by the transfer functions), if
and only if instruction in the node is part of product p.

Figure 4 shows such a prediction anlysis, where, at each node, we associate a mapping
from product configurations to lists of n lattice elements (assuming n hardware components),
instead of one lattice element only.

3.4.2. Data-Flow Analysis

When performing WCET estimation, the goal of including a data-flow analysis is
to gather information regarding the possible values that a given variable can obtain at
different program points [42]. This is also an important component for our approach, as it
enables us to estimate the variables’ values before/after the execution of each loop iteration.
This information can then be used to test the loop condition on every iteration and, thus,
determine, under such conditions, the maximum number of iterations. This is frequently
referred to as the loop upper bound.
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In WCET analysis, it is required that an upper bound must be provided for all loops.
However, it is often impossible to accurately determine such a bound, due to scenarios
where a program requires input from the user. In order to address this challenge, is is
frequent that additional information can be provided by the programmer (or the analyst
that will examine the energy consumption): a range of values that input variables may have.

Assuming that such information is provided, we developed a technique that is capable
of determining the upper bound of any loop. This technique is the result of combining
static program analysis to determine the variables’ values at each program point [44], and
abstract execution to automatically derive loop bounds [45].

Figure 5 expresses the result of our technique in Example 1 at every program point
until the first iteration of the loop concludes. We can see that the analysis is feature sensitive,
i.e., the propagation of a variable’s abstract value in an assignment is only considered for
products that include such an assignment.

⟦TRUE⟧ : x=input();

⟦A⟧ : x*=2;

⟦B⟧ : x;

∀c  {{A}, {B}, {A, B}}:∈

({A} → [(i,0)], {B} → [(i,0)], {A, B}→ [(i,0)])

({A} → [(i,0), (x,[1..100])], {B} → [(i,0), (x,[1..100])], 
{A, B}→ [(i,0), (x,[1..100])])

({A} → [], {B} → [], {A, B}→ [])

⟦TRUE⟧ : (i<x)?

... ⟦TRUE⟧ : i++;

T

⟦TRUE⟧ : i = 0;

⟦TRUE⟧ : x = 0;

({A} → [(i,0), (x,0)], {B} → [(i,0), (x,0)], 
{A, B}→ [(i,0), (x,0)])

F

({A} → [(i,1), (x,[2,4..200])], {B} → [(i,0), (x,[0..99])], 
{A, B}→ [(i,0), (x,[1,3..199])])

({A} → [(i,0), (x,[2,4..200])], {B} → [(i,0), (x,[1..100])], 
{A, B}→ [(i,0), (x,[2,4..200])])

({A} → [(i,0), (x,[2,4..200])], {B} → [(i,0), (x,[0..99])], 
{A, B}→ [(i,0), (x,[1,3..199])])

({A} → [(i,0), (x,[2,4..200])], {B} → [(i,0), (x,[0..99])], 
{A, B}→ [(i,0), (x,[1,3..199])])

VarsVars ValuesValues

xx [1..100][1..100]

...... ......

M

Figure 5. Example 1 data-flow analysis (loop’s first iteration).

Our approach follows the forward analysis principle [44]. It begins at the program’s
first instruction and, once it reaches an assignment, the abstract value for the variable is
updated. The result is propagated to the following instructions, and so on. Considering, for
example, that the instruction being analyzed is an assignment of the value 5 to a variable a.
The abstract value for a will be 5, and the successor instructions will consider that value for
variable a.

Our technique requires a map structure, M, which relates the variables and a range of
possible values for them. Every time an instruction is found that assigns an input value
to a variable, the map structure M is consulted and the variable gets an abstract value
representing its range of possible values. If there is no entry in the map, the variable obtains
the abstract value >, which will be considered as the maximum possible value.
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If a given program point has more than one predecessor instruction (e.g., at the end
of if structures), it means the variable abstract values must be joined. We defined a join
operator that merges the possible variable values. For example, if the instruction a++ has
two predecessors that propagated the abstract values 1 and 5 for variable a, then the join
operator transforms those values in a single one: [1, 5]. This means that variable a can have
two different values at that entry point, which is, in fact, true. The propagated result after
the instruction a++ will then be [2, 6].

Once the analysis reaches a loop, it knows all the possible abstract values for those
variables, and it tries to symbolically execute such loop with them. For every iteration of
the loop the stop condition is verified, and if it fails for all possible values of the variables,
then we have reached the upper bound of that loop.

In order to ensure that this analysis will finish, it is necessary to provide an exaggerated
upper bound, for the case that the loop condition never fails for the possible abstract values
(when the map structure M does not have an entry to every variable with input values
assigned to it). This value can be parameterized, according to the program under analysis.
For example, for a program calculating the length of a word, this value should be the
maximum length of any word under consideration.

3.4.3. Combining SPL Static Analysis with Energy Estimation

In Section 3.4.1, we explained how to predict the behavior of hardware components in
a feature-oriented manner. This analysis allows for us to predict how the hardware will
behave after executing every statement, and for every valid product in the SPL.

Similarly to SPL static analysis, the result will be stored in a CFG with a lifted lattice L
in each node, representing the hardware components states for each product, as shown in
Figure 6. Here, every Li represents a list of n lattice elements, one for each of the n hardware
components considered. For example, {A} → L1 (where L1 = {l1, ..., ln}) means that L1
holds the states of the n hardware components after the execution of x=input(), for the
product with the configuration {A}. After executing x*=2, the lifted lattice L1 will change to
L2 for products with configuration {A} and {A, B}, since that instruction is only included
in products with feature A.

⟦TRUE⟧ : x=input();

⟦A⟧ : x*=2;

⟦B⟧ : x;

∀c  {{A}, {B}, {A, B}}:∈

({A} → , {B} → , {A, B}→ )⊥ ⊥ ⊥

({A} → L
1
, {B} → L

1
, {A, B}→ L

1
)

({A} → L
2
, {B} → L

1
, {A, B}→ L

2
)

({A} → L
2
, {B} → L

3
, {A, B}→ L

4
)

...

...

EB1 = ({A} → J1, {B} → 0, {A,B} → J1)

Energy Model

J1

...

...

Figure 6. Calculating local energy bounds for each node in the control-flow graph (CFG).

The information in every node represents only the state of the machine before exe-
cuting the instruction in that node. In order to obtain an energy estimation, and following
the WCET principle, we need to match the states (lattice elements) with an energy model, E,
where the consumption per state is specified. E can be described as a function that takes as
argument a tuple (i, C, s), where i is the node instruction, C is the hardware component,
and s is the component state (i.e., the lattice element), and returns a consumption value
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reflecting the work made by the hardware component C to execute i while in the state s.
With n hardware components, this function must be invoked n times for each node.

The energy model will give a local energy bound for each node in the CFG, which
will serve as input to a constraint solving system that is capable of predicting the energy
consumption of the entire program in the worst case scenario based on such local bounds.
This will be further explained in Section 3.4.4. For the purpose of validating our work, we
created a specific energy model, which we will present in Section 4.1. However, our analysis
can use different energy models provided by, for example, hardware manufacturers.

After matching all of this information with the aforementioned energy model the CFG
will have, for every node i, a set of local energy bounds EBi. Each element j of every EBi
will be the local energy bound for a valid product configuration j. If the instruction in the
node is not included in the product configuration j, then its local bound will be 0.

Figure 6 represents part of the CFG of Example 1, where it is possible to see the energy
model assigning an energy value to all product configurations in a node. In the example,
because the instruction is only included in products {A} and {A, B}, they both receive
the value J1, while the product {B} gets 0. Additionallu, the value J1 reflects the combined
consumption of all hardware components, and so it depends on the list of lattice elements
that are represented by L1.

3.4.4. Worst Case Prediction

The primary goal of our work, as we said before, is to determine the energy consumed
by every product in a worst case execution scenario. Until now, we have shown how
to determine the energy consumption of each statement individually, concerning the
context in which it executes. However, we need to estimate the overall consumption of a
product, when considering that not all statements have the same impact, for example, loop
statements will probably execute more frequently, and if branches may not always execute.

There is a widely used approach in WCET prediction called IPET-Implicit Path Enu-
meration Technique [46]. This technique consists of translating the CFG into a system of
constraints. Such constraints are a result of combining program flow and CFG node
execution time bounds, with the program WCET estimation being the result.

From static analysis, each node i has a local execution time upper bound, ti, expressing
the contribution of the node’s statement to the total execution time, when executed once.
IPET considers a new variable, xe, where e is an entity that can be a node or an edge between
two nodes. This variable represents the number of times e is expected to execute, and all
of these count variables are subject to constraints reflecting the program’s structure and
possible flows.

The constraints for IPET must follow a basic but strong principle: the number of times
an entity e is accessed, xe, must be equal to the sum of the number of times each of its
predecessors are accessed, while also being equal to the sum of the number of times that
each of its successors are accessed. In other words, for every entity e,

xe = ∑ xi = ∑ xj

for all entities i and j that are predecessors and successors of e.
For our purpose, the local upper bound for each node (ti) will be the one determined

by using the method that is described in Section 3.4.3, i.e., the energy consumption local
bound. IPET will take care of determining the values for every xi, in a way in which
it maximizes the overall energy consumption. In other words, the worst case energy
consumption WCEC (just as WCET) is calculated by maximizing a function that is defined
as the sum of all ti multiplied by its corresponding xi. In other words, with N instructions
in a program, the WCEC function for a product is defined as:

WCEC = max(
N

∑
i=0

xi ∗ ti)
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Figure 7 shows how the constraints for the product {A} of Example 1 would look like.
Note that the loop bound constraint indicates that the loop will execute at most 200 times,
since the loop is upper bounded by the value of the variable x, and its maximum value at
that point is 200. For product {B}, this constraint would be xF ≤ 99.

(A)    i=0;    

(B)    x=0;    

(C)  x=input();

(D)    x*=2;    

(E)    x;    

(G)    i++;    (F)   (i<x)?   
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exit
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Hexit

Constraints for product {A}
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H
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H
)

Figure 7. Implicit Path Enumeration Technique (IPET) constraints for product {A} of Example 1.

The IPET technique could already be used to determine the worst case energy con-
sumption scenario of a product. However, we have to provide information about statements
to be included/excluded in the product, since we do not want to consider the energy con-
sumption influence of statements from excluded features. For this, we can set a few extra
restrictions that will assure the exclusion of feature-dependent statements not included in
the product being analyzed. This will be a restriction, such as xe = 0, for all entities e, which
are instructions and not part of the product being analyzed.

Using this strategy, we may then calculate the worst case energy consumption scenario
for each product in a SPL. When considering the four products included in Example 1 (with
configurations {A}, {B}, and {A, B}), our technique determines the product with configu-
ration {B} is the most energy efficient. This is due to the fact that the loop for this product
is bounded to 99 iterations, roughly 50% less than the loop bound for {A} (200 iterations)
and {A, B} (199 iterations). This causes the amount of work to be substantially less in {B},
thus the energy consumption will also be lower.

3.5. Overview of the Prototype Tool

In order to validate our technique, we developed a prototype tool, named Serapis,
which is thoroughly described in Section 4.4.2. This tool is able to, given the source code of
a SPL, statically reason about the energy consumption of its products. Its overall workflow
is depicted in Figure 8.

SPLSPL
Source CodeSource Code

CCCCCCCCCCCC

ASTAST CFGCFG

CILCIL

ParserParser

Static Analysis:Static Analysis:
  - Machine Behavior- Machine Behavior
  - Dataflow- Dataflow
  - Type- Type

SolutionSolution

IPETIPET

SolverSolver

ProductProduct ConsumptionConsumption

PCPC11 114.745 J114.745 J

PCPC22 100.726 J100.726 J

PCPC33 100.723 J100.723 J

...... ......

GraphGraph

ConstructionConstruction

Energy ModelEnergy Model

Figure 8. The Serapis Workflow.
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The workflow of Serapis is divided in three steps. The first step consists of creating the
feature-sensitive CFG for the SPL, following the principles presented in Section 3. Our ap-
proach in this step was to create the CFG from the Abstract Syntax Tree (AST) representing
the analyzed SPL. In order to simplify the source code analysis, we considered a simplified
intermediate representation of the C language, called C Intermediate Language-CIL (more
information can be found here: https://people.eecs.berkeley.edu/~necula/cil/ (accessed
on 14 March 2021)). Hence, we parse CIL code into an AST representation, and then
transform it into a CFG.

Every node in the CFG must contain information about a source code statement
and the features that implement it, as explained in Section 3.3. This means that, when
parsing the CIL code, we need to use the preprocessor references as context management
directives. Hence, when one such reference appears, we know if a new feature must be
included/excluded from the next node.

The second step is the static analysis step, which corresponds to the first three phases
of the strategy presented in Section 3.4. Here, the CFG is given as input to a series of
functions, each one responsible for a specific type of analysis:

• Energy behavior analysis: determines the machine state of hardware components
after each statement execution, using the fixed-point computation technique.

• Flow analysis: determines the variable types and values before each loop execution,
and symbolically executes each loop to determine its upper bound.

• Local energy bounds: considering the result of the two previous analysis, the energy
model calculates a local energy bound value for each product, on each node.

The result of this analysis is passed to the third and final step: the overall energy pre-
diction. In this step, the CFG and the loop upper bounds are used to create the constraints
and the maximization function needed by IPET (as described in Section 3.4.4). Using an
integer linear programming (ILP) solver, we can then obtain the output for this final step:
the WCEC predictions for all existing products.

4. Results

This section describes the experiments that we designed and conducted to validate
the methodology that we have proposed in Section 3.4 to statically predict the energy
consumption of products in a SPL.

In order to support further experiments, we searched the literature for C-based SPLs
with public source code. As a result, we managed to gather four SPLs suitable to be
analyzed by our prototype tool, from two different sources: (i) one SPL from the disparity
benchmark of the San Diego Vision Benchmark Suite [47] (the products’ source code is
available at http://specs.fe.up.pt/publications/array16.zip (accessed on 14 March 2021)),
and (ii) three from SPL2go (obtained from http://spl2go.cs.ovgu.de/projects (accessed on
14 March 2021)), which is a repository of SPL case studies.

The disparity benchmark SPL consists of seven products, all of which are designed to
calculate the disparity between two images: given a pair of images for a scene, taken from
slightly different positions, the disparity map algorithm computes the depth information
for objects jointly represented in the two pictures. This can be used to detect the depth of
objects in an image. All of its seven products share most of the source code, but differ on the
algorithm to compute the disparity between 2 images.

The SPLs obtained from the second source are called Elevator, MinePump, and Email
System, which have been used in several other SPL-related research works [48–50]. As
the name suggests, Elevator simulates a control system for an elevator, with its variability
being expressed with features, such as the inclusion of a weight detector or a priority
floor; MinePump describes an interface for operating a mine pump system, where it is
possible to have variations with/without, for instance, a methane alarm or a high/low
water sensor; Email System is comprised of a solution for simulating sending/receiving
emails, with the possibility of including, for instance, encryption/decryption features, or a
forward functionality.

https://people.eecs.berkeley.edu/~necula/cil/
http://specs.fe.up.pt/publications/array16.zip
http://spl2go.cs.ovgu.de/projects


J. Low Power Electron. Appl. 2021, 11, 13 16 of 34

Table 1 depicts an overview of the four SPLs (Minepump has features with no associ-
ated code, which for our tool meant considering only 32 of the 64 possible products). For
each SPL, we include the number of features, the number of products that are possible to
generate, and the total number of lines of code in that SPL.

Table 1. Overview of Software Product Lines (SPLs) used in the experiment.

SPL LOC Features Products

San Diego 2938 7 7
Elevator 877 6 20

MinePump 279 7 64
Email System 258 9 40

We should emphasize that we are aware of the existence of other C-based SPLs also
used in research works [51]. Nevertheless, the examples that we selected were the ones
that, to the best of our knowledge, fit the requirements to be analyzed by our prototype
tool: (i) they are real-world software systems, widely used for research purposes, (ii) they
avoid using features that somehow limit static analysis (e.g., recursive functions), and (iii)
their code can be interpreted as CIL code (i.e., the intermediate C language that consider),
so it can be parsed and transformed into a CFG.

For our analysis, we implemented a custom made tool for dynamically measuring
the energy consumption of a product, in addition to the tool implementation that we
described in Section 3.5. Subsequently, we assess our technique by comparing the observed
consumptions against our static predictions.

Our technique needs an energy model with energy consumption values predicted for
single instructions, as we described in Section 3.4.3. Accordingly, in Section 4.1, we start by
describing our approach to generate an energy model which can be used by our technique.

All of the studies were conducted on a desktop with the following specifications:
Linux Ubuntu 14.04 LTS operating system, kernel version 4.4.0-59-generic, with 6 GB of
RAM, a Ivy Brigde Intel(R) Core(TM) i5-3210 CPU@2.50GHz

4.1. Static Model Creation

The energy and machine behavior models are crucial components that are needed
by our technique. The results’ accuracy can in fact be enhanced with a robust hardware
behavior model, but more than anything else they depend on the energy values’ precision
in the energy model.

These kind of models are always hardware and language dependent, which means
that we need to follow a modeling approach previously presented and build our own
models. In fact, modeling the hardware behavior requires exhaustive knowledge about
it: how it was programmed, what are the possible execution states, what is necessary
to transition to/from a state, etc. Because there is not, to the best of our knowledge, an
adequate study showing the influence of hardware behavior on the energy consumption
of independent instructions, for now we were only able to create a machine with a single
state per hardware component.

Poperly modeling the machine state behavior is the adequate mechanism for increas-
ing the prediction accuracy. Still, we argue that it is possible to obtain accurate estimations
without such model. In fact, a similar, yet not entirely static approach has been used before,
which considered such model for a simplistic and controlled hardware [37,52], and with
highly accurate results.

Taking these aspects into consideration, we define the consumption of each instruction
on the single machine state will be an average of several measurements. This will result in
a lattice with only one element and, therefore, the transfer function is the identity function,
since the lattice element will not change.
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We developed a dynamic framework, called C-LEM, capable of inferring estimations
for each provided instruction. It was used to build and energy model that considers all
instructions in the CIL language. A more in-depth explanation of how the tool operates
and how it was developed is included in Section 4.4.1. C-LEM supports two types of
instructions: (i) single-cost operations and (ii) API/function calls. At the time being, it
provides energy estimations that are based only on the consumption of the CPU hardware
component, but can easily be extended to consider other components. For the purpose of
our evaluation, we modeled the energy consumption for 18 functions from the C library,
which is the set of functions used in all analyzed SPLs referred before.

4.2. Experimental Methodology

In order to evaluate the accuracy and performance of WCEC and Serapis, we have
used them to analyze the energy consumption with the four previously described SPLs.

The first step of the evaluation process consisted of determining the actual worst-
case energy consumption value for each product. In order to do this, we followed a
brute-force approach: for a given SPL, we generated all of its products, instrumented their
source code with energy measurement calls, and then executed each product 200 times.
This was performed by our dynamic energy measuring framework, which is responsible
for executing the products with the same input and measure the energy consumption.
Since our goal is to determine the energy consumed in the worst case, we retrieved the
highest value for every product in the 200 measurements obtained (the 200 measurements
always had similar consumptions, with small standard deviation). Just like for the energy
model creation, we used RAPL to obtain the actual measurements, which minimizes the
instrumentation overhead by simply measuring the energy before and after the program
execution.

The aforementioned procedure was repeated for all four SPLs, which lasted for over
9 h. Once it finished, we obtained the observed energy consumption in the worst-case
scenario for each of the 99 analyzed products (the complete set of results is available online
in https://marcocouto.gitlab.io/serapis (accessed on 14 March 2021)). The next step was
to compare these values with the estimation for each one. By combining the created
energy model, as described in Section 4.1, with our technique (implemented in a tool,
as described in Section 3.5), we were able to compute accurate estimates for the worst
case energy consumption of every product. The complete set of results are included in
Tables A1–A4 (in the appendix), where we included, for each product in a given SPL, the
observed WCEC value, the estimated one, and the difference between them (both in Joules
and in percentage).

Table 2 depicts a summary of these values. For each SPL, we calculated the 1st (Q1),
2nd (Q2), and 3rd (Q3) quartile values, along with the maximum value, for both the
difference between estimated and observed WCEC and the estimation error percentage.

Table 2. Study Results.

Difference (J) % Error

Q1 Q2 Q3 Max Q1 Q2 Q3 Max

San Diego Bench. 3.620 6.060 10.09 12.79 5.61% 10.29% 12.74% 18.06%
Elevator 0.001 0.003 0.003 0.004 3.96% 18.28% 22.96% 27.45%
Mine Pump 0.018 0.023 0.030 0.042 13.08% 17.23% 22.31% 30.81%
Email System 1.181 1.686 1.866 2.549 81.46% 115.4% 129.8% 182.0%

WCEC Performance

Our static analysis technique works at the source code level. Thus, it can be seen as
an interpreter, which, at execution time, parses the code, builds data structures (ASTs and
CFGs), and performs complex computations. As expected, inferring the WCEC analysis of

https://marcocouto.gitlab.io/serapis
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a specific product will always take more time than executing its compiled (and optimized)
code. Nevertheless, performing an adequate energy analysis dynamically implies that
(i) each analyzed product needs to be generated, (ii) its code instrumented with energy
monitoring code, and (iii) it must be exercised several times, in order to have a statistically
conclusive analysis.

By following a static approach, our technique avoids this dynamic analysis "overhead”
time. In fact, the importance of reducing this time is more notorious with a high number
of products to be analyzed. For our case study, the SPLs dynamic analysis step, which
consisted of executing each product 200 times and collecting energy measurements each
time, took over 9 h. Comparatively, it took ≈3 h to perform a complete WCEC analysis
for all 4 SPL: ≈14 min. for the San Diego benchmark SPL, ≈80 min. for Elevator, ≈1 min.
for MinePump, and ≈95 min. for Email System. As such, it is easy to understand how one
could benefit (in terms of time saving) from using our technique to analyze SPLs with a
high variability level.

Nevertheless, we are aware that our technique can still go through a few performance
improvements. For instance, regarding static analysis, the technique that we propose
assures that the source code of every feature is analyzed only once, contrary to the use of
traditional static analysis techniques. The exception is the worst case prediction technique
that is shown in Section 3.4.4, which works at the product level. This means the solver will
run once per product and thus repeat the calculations for shared features. In the future, we
intend to improve the performance of Serapis by encoding a SPL in the solver in a different
way so it does not unnecessarily recalculate the constraints for shared features.

WCEC Accuracy

Having a reliable and accurate estimation was our main goal for WCEC. As we can
see, the consumption values that were estimated by the technique were always higher
then the measured ones, which is a crucial property to be maintained, since we want to
predict the worst case. Upon examining the results for the first three SPLs, we see that
the difference between the estimated and observed values is, in percentage, considerably
low. If we consider the median value (Q2 column), this is always below 20%, and only one
SPL had a maximum error percentage of 30%. Moreover, the Q3 values for these SPL are
always below 23%, which means that, for 75% of the analyzed products, the estimation
was quite accurate. These are promising results, especially if we consider that this is the
first approach for energy consumption prediction in SPLs, and that this proof-of-concept
approach still has a few naive components and, therefore, potential for improvements.

Nevertheless, the results for the last SPL (Email System) revealed that our technique
inferred an excessive WCEC overestimation. When considering all of its 40 products,
the estimated WCEC is expected to be 66.5% higher than the observed one in the best
case scenario, and it can be up to 182% higher in the worst case scenario. These values
revealed that, although the main property is still maintained (an overestimation in favor of
underestimation), there is a significant lack of precision by the technique in this specific
case. Therefore, a high margin for improvement was exposed here, which we thoroughly
addressed and will explain in the next section.

4.3. Accuracy Enhancements

After examining the obtained results for the Email System SPL, we sought to under-
stand what was causing the excessive overestimated WCEC values. In order to systemat-
ically address the high error percentages observed previously, we have conjectured two
possible causes for it: (i) that our technique was inferring an execution path for the products
that was entirely not the path that such products followed when being tested/executed
and (ii) that our model overestimated the energy consumption for some instructions.
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Tool Extension and Assessment

In order to assess the first conjecture, we extended Serapis. This extension was achieved
in such a way that, for each product, not only the estimated WCEC value is provided as
output, but also a full characterization of the WCEC execution path, containing the number
of times each modeled instruction, is executed in it. For EmailSystem, an example of
such output for a product containing the features ENCRYPT, DECRYPT, and KEYS is partially
depicted in Listing 2.

1 "features": [
2 "ENCRYPT",
3 "DECRYPT",
4 "KEYS"
5 ],
6 "estimated" : 3.139435 ,
7 "instructions": {
8 "ARR_POS_LOAD" : 9700025 ,
9 "ASS_VAR_VAR_CHAR": 3600006 ,

10 "ASS_VAR_ADDR" : 1800010 ,
11 "FUN_sprintf" : 200000 ,
12 "FUN_fputs" : 600000 ,
13 ...
14 }

Listing 2: WCEC execution path output

We can see that this product had an estimated WCEC of around 3.14 J, and among
the instructions responsible for such consumption were ≈9.7 M memory loads of array
elements, 3.6 M assignments from/to variables of type char, 1.8 M pointer assignments,
200k calls to the sprintf functions, and 6000 k calls to the fputs function.

Having extended Serapis, we conducted a systematic code inspection procedure, in
which we have manually collected the expected modeled instructions for a product’s
WCEC execution path. These instructions were then compared against the (new) output
from Serapis, an exercise that was performed for five randomly selected products within
EmailSystem.

We believe that the results from our analysis provided enough evidence for us to
refute our first conjecture, and to further explore the second.

Model Refinement

As our WCEC prediction provided accurate results for all of the considered SPLs,
except EmailSystem, we followed the assumption that instructions with overestimated
energy consumptions are only present in EmailSystem. This led us to delve deeper into
its 40 products: for each product, we have inspected its execution path in search for
instructions that were being considered in all 40 products, and which were not considered
in any of the products of Elevator and MinePump.

We found six function calls (puts, sprintf, strcmp, strcpy, fprintf, and strcat),
along with three other instructions (casting to a char, casting to a pointer, and assigning a
char variable to another variable) that fit this criteria.

Our analysis also revealed that these nine instructions represented between ≈30%
and 40% of the WCEC execution path, depending on the product.

We then analyzed whether these instructions were being considered in the WCEC
execution path of any of the 7 = seven products from the San Diego Benchmark SPL. We
found that these instructions only represented ≈1% of the WCEC execution path, in any
of the seven products. From this observation, and following the issues in Section 4.1
that arise from modeling functions that depend on their arguments length/size, we can
correctly assume that: (i) there was a clear overestimation for each of the nine instructions;
and, (ii) updating the estimation for them will not compromise the predicting ability of
the model.

In order to decide which values to update, and by how much, we used a well-known
optimization technique called Simulated Annealing [53]. This technique is an iterative
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method, used with the purpose of finding an accurate approximation of the global optimum
of any function. This technique expects a list of variables to update, a function to randomly
update the variable’s values, and a cost function, which, for each iteration, determines
whether the ideal solution is closer or not after updating the variables. Our update and cost
functions are shown in Listing 3.

1 def update(vars):
2 frac , default = rand(2, 10), 1E-12
3 new_vars = vars
4 # how many changes per iteration? random.
5 # between one and half the length of vars.
6 num_changes = rand(1, len(vars )/2)
7 for i in range(num_changes ):
8 # which var to update? random.
9 var = new_vars[rand(0, len(vars) -1)]

10 old_val = max(var.value(), default)
11 # how much should it increase/decrease? random.
12 sig = rand([-1, 1])
13 delta = (rand() % (old_val/frac)) * sig
14 var.set_value(old_val + delta)
15 return new_vars
16
17 def cost(model , products ):
18 cost = 0, threshold = 0.05
19 for p in products:
20 p.estimate_energy(model) # update estimation
21 est , obs = p.get_estimation (), p.get_observed ()
22 error = (est - obs) / obs
23 if error >= 0:
24 cost += max(0, error - threshold) ** 2
25 else:
26 cost += (error * 10) ** 2
27 return cost

Listing 3: The update and cost functions used by Simulated Annealing

In every iteration of our Simulated Annealing algorithm, the update function receives the
nine energy model variables (corresponding to the nine overestimated instructions), and
randomly decides how many of them it will update. Then, for each time, it will randomly
decide which variable will suffer an increment/decrement, and how big this delta value
should be. As line 15 in Listing 3 demonstrates, the delta value comes from the result of a
modulo operation between random value inside the interval [0, 1], and variable’s previous
value divided by a number between 2 and 10. The variable’s last value can be converted
to a default value (10−12, which in this case is 1/100 of the lowest value in the energy
model), in order to assure that a given variable’s value never reaches 0 or less. With this
approach, we ensure that: (1) the decision on whether update a variable or not is fully
random and (2) a variable will always suffer a small, yet completely random, increment or
decrement. These criteria are necessary requirements of the Simulated Annealing technique.

Simulated Annealing decides, on every iteration, whether or not the computed values
should be used to update the energy model, or reject them and keep the old model. This
decision will be mainly influenced by the result of the cost function. If the new model
has a lower cost, it will replace the old one. If not, a probabilistic method will be used to
determine whether the model should be replaced or not. To fit our needs, we defined the
cost function, as seen in Listing 3: (1) for each product, we use the new model to compute a
new WCEC estimation; (2) we calculate the error percentage between the estimated and
observed WCEC; (3) if it is positive, it means that the estimation exceed the observation,
and we add to the overall cost the square of the error percentage minus a 5% threshold (to
benefit models with similar lower errors among products), or zero if the error is below 5%;
and, (4) if the error is below 0, the cost should be much higher, because we never want the
estimation to be lower than the observation.

Improved Results
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The Simulated Annealing algorithm took about 5 min. to execute, and we have reached
a new energy model, which we have applied to all four SPLs.

As expected, the estimations for all products within Elevator and MinePump suffered
no alterations whatsoever. However, for EmailSystem, the results were significantly better,
and, for San Diego Benchmark, the results were marginally better, as shown in Figure 9.

.

(a) Energy model comparison-EmailSystem SPL (b) Energy model comparison-San Diego SPL

Figure 9. Accuracy comparison: Original model vs Simulated annealing-improved model.

Every quartile threshold, as well as the max/min observed values for difference (in
Joules) and error percentage, is lower for the improved model. In fact, the highest accuracy
error that was observed with the improved model is lower that the lowest accuracy error
obtained with the old model. Moreover, the San Diego Benchmark SPL, whose results had
already been shown to be accurate, also revealed overall improvements, since all quartile
thresholds, as well as the maximum value, decreased with the improved model.

Nevertheless, the minimum value increased a little, which tells us that there was
one product whose predicted WCEC was actually less precise using the improved model.
We found it to be the first product, which had an error percentage of ≈0.5%, and with
the improved model it is ≈1.55%. It reflects a difference increase of ≈1 J, in a product
with an observed WCEC of 114 J, and it was the only product among the examined 99,
which WCEC estimation accuracy has decreased. Hence, we consider this to be a negligible
precision loss.

The results presented and discussed up until now, regarding both accuracy and
performance, allow for us to assess the general usefulness of our technique. This usefulness
is targeted mainly for SPL developers which need to understand how their SPLs/products
behaves in terms of energy consumption. Hence, for those developers, the main benefit
of this technique is the fact that energy can be analyzed in large (or highly complex) SPLs
in an effective manner and trustworthy manner. There is an inevitable relation of inverse
proportionality to consider, between accuracy of estimations and required analysis time,
and we believe that our technique provides an adequate trade-off between the two.

4.4. Tooling

As pointed out in several studies, software practitioners have reported not only a
lack energy-aware methods and techniques—like the ones we presented in the previous
chapters—but also the support of tools to steer them in energy-saving decision making.

Throughout the previous sections of this paper, we have referred to the two tools
developed by us, in order to aid us with the implementing and validating our approach.
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With this section, we provide a more in-depth explanation of each tool, addressing not
only implementation decisions, but also explaining how and in what circumstances can the
tools be used.

We should refer that, although these tools are still prototypes under development, we
strongly believe that they already present powerful solutions to tackle the challenge of
analyzing energy in software. They are mainly targeted for developers to use in order to
examine the energy aspects of their code, and to help them understand how the code can
be improved.

The source code of both tools is publicly available, so it can be further enhanced and
extended by developers and other researchers, and also used in the context on which
they see fit.

4.4.1. C-LEM: Energy Model Creator for the CIL language

C-LEM is an energy model builder, which is currently capable of providing an en-
ergy estimation value for each instruction supported in the CIL language (the source
code is available in https://gitlab.com/MarcoCouto/c-lem (accessed on 14 March 2021)).
Figure 10 shows the overall process for energy modeling of both single instructions and
functions.

200 loop200 loop200 loop200 loop Intruc.Intruc. DescriptionDescription Cons.Cons.

a   Int←a   Int← Assign int to varAssign int to var 8.34E98.34E9
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Execution
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Figure 10. Workflow of C-LEM: the Energy Model Creator.

All of the energy measurements reported by C-LEM are obtained using the RAPL
(Running Average Power Limit) [54,55] tool, which is know for providing highly accurate
energy estimations [56]. At the moment, only CPU-related energy consumption is taken
into consideration. In other words, all of the energy models created by this tool are actually
CPU-based instruction-level energy models.

Modeling Process

The energy modeling process of single instructions varies between instruction types.
Following the approach for energy modeling presented in [36], source code instructions are
basically of two types: (1) single-cost operations or (2) API/function invocations. Single-
cost operations are source code instructions, where its energy cost is constant, and it only
depends on the type of their operands. Arithmetic and logic operations, such as a division
or an dependsexclusive or, are examples of such instructions. The cost of such an operation
consists of a function that maps the type of the involved operands to a constant value C.

Estimating the energy cost of an API/function invocation requires a different approach.
In most cases, we do not have access to the source code of an API/function, so we must have
an estimation for its energy cost, which may depend on several things. First, it inevitably
depends on the number of arguments of the function, as they need to be pushed to the call
stack before the function call. Second, it can depend on the value of the arguments, since
there might be a loop in the function that is parameterized by the arguments, or it may
have a premature return instruction included, which can be triggered, depending on one

https://gitlab.com/MarcoCouto/c-lem
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or more arguments. The type of the arguments may also play a role in the energy cost (ex.
reading and storing a double is different than reading and storing an integer).

We had to look at each one individually in order to address these problems. For
functions with a variable number of arguments or types (such as scanf), we tested them
several times, each time with an increasing number of arguments, and with different types.
After obtaining the consumption values, the tool tries to detect whether there is a relation
between the number of arguments (of the same type) and the energy consumed, i.e., if
dividing the consumption for the number of arguments results in an equal value C, or
in values with a negligible difference between them. If so, the consumption value for
that function will then be the constant value C multiplied by the number of arguments.
If the consumption of a function is proportional not to the number of arguments, but to
the length of one or more arguments (e.g., the strlen function will behave differently for
strings with different sizes), than we take the highest consumption observed, regardless of
the argument. We do so since it is not possible to estimate the length of data structures,
such as arrays of matrices, through static analysis, and so we have chosen a conservative
approach that fits our needs.

The workflow for estimating the energy cost of both single-cost and API/function
calls is identical. For a given instruction i, the tool executes it 20 million times. This
ensures a measurement of a sufficiently long duration that exceeds the sampling interval
of our energy measurement tool (RAPL). We repeated this process 200 times, in order to
reduce the impact of cold starts, cache effects, or background processes, and we obtain the
energy consumption for each time. Using these values, we calculate the average value,
after removing the outliers (five highest and lowest values).

In most cases, single-cost instructions (or even functions) depend on other instructions.
For example, the instruction a = b * 2 is an assignment to the variable a of a multiplication
between the variable b and the constant value 2. In order for this to work, the variable
b needs to be already declared and have some value assigned to it, but we only want
to know the cost of a = b * 2. To address this problem, we have assigned, to each
instruction/function, the list of independent instructions that they depend on. Therefore,
after measuring the energy consumed by each instruction/function, we subtract to it
the previously obtained consumption for each dependency. Hence, the final value will
reflect the energy consumption for the instruction/function only. Once again, this is in full
compliance with the modeling approach that is presented in [36].

Given the average value for each instruction/function i, calculated after the 200 mea-
surements, we subtract the average value of each of the dependencies. The final consump-
tion will be the resulting value.

Tool Inputs and Workflow

C-LEM requires two components to be defined beforehand. The first one is the test
controller file, which is where the code for all instructions to be tested are included. Each
one must be implemented in its own function. The main function of this file must act as
a controller, compiling only the function of the instruction to be tested. This is done by
including conditional compilation directives for each function, where the macro identifier is
unique for each one. The following snippet shows one such example, where the instruction
to be tested is the assignment of an constant integer value to a variable.

1 ...
2 #ifdef ASS_VAR_INT
3 val = assign_var_int ();
4 #endif
5 ...

The second required component is the list of instructions/functions to analyze. Each
element on this list is a JSON object, where three attributes must be defined:

• the ’code’: a unique value, to identify the instruction/function;
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• the ’cpp’ code: the macro identifier to be used by the test controller to compile the
correct instruction’s source code; and,

• the ’dependencies’ list: since some instructions depend on others, the ’codes’ in-
cluded in this list will tell C-LEM what consumption values from other instructions
must be subtracted after testing and measuring.

The following example shows the definition of two instructions, where the second
depends on the first one (all instructions have a dependency code 0, which translates to the
energy cost of the test controller calling the instruction’s function).

1 ...
2 {
3 "code" : 4,
4 "cpp" : "ASS_VAR_INT",
5 "dependencies" : [0]
6 },
7 ...
8 {
9 "code" : 16,

10 "cpp" : "ASS_ADD_VAR_INT",
11 "dependencies" : [0,4]
12 }
13 ...

For API/function calls, three additional attributes are required: the name of the
functions, the list of header files required to be included, and the types of the arguments.
C-LEM will use this information to include necessary dependencies and define different
function call instructions. The arguments will always be automatically and randomly
generated, according to the types definitions.

Once these two components are defined, C-LEM will start executing and measuring
the energy that is consumed by all instructions in the order provided, starting with single-
cost operations and then moving to functions. After all of the instructions are tested, it
will subtract the consumption of dependencies, as explained before. Finally, the obtained
values are saved and stored in a file.

4.4.2. Serapis: Estimate WCEC through Program Analysis and Energy Models

Serapis is a prototype implementation of our WCEC technique (the source code is
available at https://gitlab.com/MarcoCouto/serapis (accessed on 14 March 2021)). All the
core functionalities are implemented in Haskell, and it is directly dependent on the energy
model provided by C-LEM. Next, we explain the implementation decisions and challenges
we faced, and we explain its workflow.

Preparing the Code

In this step, Serapis prepares a bundle file with all the code relative to a SPL, making it
compatible with the CFG transformation function. We should point out that, as previously
discussed, our approach to build the CFG representing a SPL and its products is based
on parsing the code to an AST representation and then transforming it to a CFG. An
AST representation that is based on traditional C code would result in a highly complex
CFG transformation procedure, which is not desirable for a prototype. Hence, in order
to simplify this process, we considered an intermediate representation of the C language,
called C Intermediate Language-CIL (more information can be found in https://people.
eecs.berkeley.edu/~necula/cil/ (accessed on 14 March 2021)). This language works as a
subset of the C language, making it possible to have all the functionalities allowed by the C
language, but reducing the syntactic structure to the minimum (for example, for loops and
variable initialization at declaration time are not allowed).

To start the code bundling and treatment procedure, Serapis requires the SPL code
directory and the path to the main file. With these two arguments provided, it then bundles
all of the code inside the main file. By examining the include statements on each file,
starting from the main one and using a recursive strategy, we guarantee that only the

https://gitlab.com/MarcoCouto/serapis
https://people.eecs.berkeley.edu/~necula/cil/
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required local dependencies are included. This file is then passed to the feature-based
preprocessor, which will handle the conditional compilation directives that restrict code to
certain features.

The preprocessor references to features (as explained in Section 3.1) also need to be
included in order to identify code blocks belonging to specific features. Because such
references are not parsable by CIL, we developed a domain specific preprocessor capable
of transforming such references into parsable statements. Basically, it transforms every
#ifdef <feature> primitive in a function call, in the form __feature_<feature>(), and
every #endif in a function call in, the the form __endFeature(). At the CFG construction
phase, every function call is initially checked to determine whether it restricts the following
code to certain features or if it is code shared by all products.

Using an existing interface that supports CIL code analysis (the CIL package: https:
//hackage.haskell.org/package/cil (accessed on 14 March 2021)), Serapis is then able to
load the CIL code bundle file, parse it, and create the AST representing the file (the CIL
file AST). The next task consists of looking for the AST subtree that represents the main
function, and then transform it into a whole program AST. This is done by recursively
finding and replacing function calls’ nodes with the AST representation of their respective
source code, whenever it is possible (e.g., for system calls, like printf it will not find the
code, and it will maintain the statement as it is). The name of the function parameters is
replaced with the corresponding argument name passed to the function call, once again
following a recursive strategy.

The resulting AST can then be transformed into a feature-sensitive CFG, while using a
top-down approach. If a function call appears in the form __feature_feature-A(), the
AST nodes which follow will result in CFG nodes with feature-A included in the list of
features, where the node must be considered. Once the corresponding __endFeature() call
appears in the AST, feature-A will stop being included in the following nodes. The CFG
creation function was developed using an Haskell library for graph creation and manipula-
tion (available in https://hackage.haskell.org/package/fgl (accessed on 14 March 2021)).

Figure 11 depicts the overview of the preprocessing and CFG construction steps.
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Figure 11. Overview of the Preprocessing and CFG Creation Steps.

Performing WCEC Estimation

The generated CFG from the previous step is the input to the WCEC estimation step.
Here, Serapis performs all of the required static analysis with the CFG (machine behavior,
dataflow, loop bounding, etc). Each node will then contain the result of each static analysis
until that point. Finally, a function is applied to each node on the CFG, called the local
energy bounding function. It uses the computed state on each node, and determines the
maximum energy consumption that the node would consume. Naturally, this value also

https://hackage.haskell.org/package/cil
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depends on the predecessor nodes, since, for some dataflow analysis, the result of a node is
propagated to their successors (commonly referred to as forward analysis [44]).

Once all of the local energy bounds are computed, the resulting CFG is passed to
the WCEC prediction function. Here, the CFG and the loop upper bounds are used to
create the constraints and the maximization function that is needed by IPET (as described
in Section 3.4.4). For the maximization function, the cost of each statement is given by
the energy model, along with the information from the other analysis. To implement
this, we used an integer linear programming (ILP) library for Haskell (available in https:
//hackage.haskell.org/package/hmatrix-glpk-0.5.0.0 (accessed on 14 March 2021)), which
supports the creation of a maximization function along with a set of constraints, and it has
an implemented algorithm to compute the solution for such a problem.

Serapis reports, for each product within the analyzed SPL, the WCEC estimation, the
features that characterize the product, and the expected instructions to execute in the
WCEC execution path. The following code snippet shows an example of this report for
two products that are part of the MinePump SPL:

1 [{
2 "WCEC": 0.16637651085850022 ,
3 "features": [
4 "HIGH_WATER_SENSOR",
5 "LOW_WATER_SENSOR"
6 ],
7 "instructions": {
8 "ASS_VAR_INT": 1850027 ,
9 "ASS_ADD_VAR_INT": 300003 ,

10 "FUN_printf": 500010 ,
11 "ASS_SUB_VAR_INT": 500008 ,
12 "ASS_VAR_VAR_INT": 7000078 ,
13 "CMP_VAR_INT": 1500017
14 }
15 },
16 {
17 "WCEC": 0.1561803833997386 ,
18 "features": [
19 "HIGH_WATER_SENSOR"
20 ],
21 "instructions": {
22 "ASS_VAR_INT": 1150019 ,
23 "ASS_ADD_VAR_INT": 300003 ,
24 "FUN_printf": 500010 ,
25 "ASS_SUB_VAR_INT": 500008 ,
26 "ASS_VAR_VAR_INT": 4200046 ,
27 "CMP_VAR_INT": 1150013
28 }
29 },
30 ...

Our tool shares all of the the advantages of the monotone framework for static analy-
sis [44], thus the correctness properties are maintained. Its accuracy can only be increased
by improving both the energy and machine behavior models. Nevertheless, it also has the
same limitations. The real unavoidable limitation of static analysis is the fact that recursive
functions cannot be considered. Therefore, only SPLs without any recursive functions can
be evaluated by it.

Moreover, the dataflow analysis process, which is used to determine the loop upper
bounds, is very costly in terms of execution time and memory usage. For an example
with around 500 loops and 1500 variables, our tool gave accurate upper bounds, but it did
not end in an acceptable time (took almost two days to finish), so it was not convenient
to use this approach while testing and refining the tool. As a consequence, we inspected
all of the loops in the analyzed SPLs to see what was the worst case scenario in terms of
number of executions, and we manually assigned that value to each loop. However, we
have designed some improvements to implement in the dataflow analysis step, in order to
significantly reduce the time that it takes to obtain the upper bounds. Such improvements
include memoization and exclusion of variables not used in the loop conditions.

https://hackage.haskell.org/package/hmatrix-glpk-0.5.0.0
https://hackage.haskell.org/package/hmatrix-glpk-0.5.0.0


J. Low Power Electron. Appl. 2021, 11, 13 27 of 34

Currently, Serapis has around 2330 lines of Haskell code, structured in 11 modules.

4.5. Threats to Validity

Our work is focused on developing a technique for static energy consumption pre-
diction of SPLs, and then validate it with as a solid proof-of-concept. Nevertheless, we
identified a few aspects that may affect the validity of our work, and the applicability of
our technique.

As explained in previous sections, the current version of our tool requires that the
complexity of the SPLs analyzed is somehow limited: recursive functions are not sup-
ported, and the code must be compliant with the CIL syntax. We should emphasize that
these limitations are not technique dependent, but rather tool dependent. Because this
work is focused on developing a proof-of-concept, rather than a fully generic tool, not
addressing recursions and choosing CIL as supported language helped us to minimize
the implementation effort, while still enabling us to test our technique on real-world SPLs.
However, this ultimately meant that we were also limited in the number of SPLs that could
be used for the validation process.

It is necessary to provide support for a C-based AST representation of SPLs in order to
address the CIL limitation. Such representation would inevitably be much more complex, it
would require an additional effort to transform it into a CFG, and the energy model should
also be extended. Recursive functions, on the other hand, would need to be expressed
as loops in the CFG; this requires an extra step to detect such functions, and properly
include them as loops in the CFG. With these enhancements, the general applicability
of our technique would, in fact, be increased, although we argue that the results for the
potentially new SPLs would still be at least as accurate as the ones we obtained.

Our target was a proof-of-concept technique that could deliver accurate estimations,
as we described before. As such, we endowed the technique with mechanisms for potential
additional accuracy enhancements, such as the machine behavior model. Although their
impact on the estimations accuracy in not fully addressed in this work, we believe that,
with the highly complex hardware components used nowadays, studying and building
such mechanisms would require a work of its own. Moreover, a few works have proved
that using similar mechanisms for static energy analysis, although applied in different
contexts, can only help to improve the accuracy of the estimations [37,52]. Hence, we
argue that including them in our technique, regardless of their simplicity, is deemed to
be relevant.

5. Conclusions

This paper described a methodology for statically predicting the energy consumed
by all products within a SPL, in their worst-case execution scenario. The initial approach
mainly relied on static program analysis applied to worst-case prediction, combined with
an energy consumption model. We explained the full methodology for (i) creating the
energy consumption model, as well as (ii) how to perform WCEC-tailored static analysis
for SPLs, in both ways following existing state-of-the-art approaches.

Our approach provides developers with mechanisms to accurately reason about
energy efficiency of SPL products. Up until now, they would have to rely on a brute-
force approach (i.e., generate all products, and perform an energy analysis on each one
individually), which can be very costly. The impact that feature interactions have on
non-functional properties (such as energy) the usage of sampling techniques an approach
to avoid. With our technique, we addressed both of these challenges, and we discuss the
trade-off between accuracy and performance when considering a static analysis approach.

The preliminary evaluation produced promising results for a real-world SPL, showing
that it is possible to statically estimate how high the energy consumption of a product
would be, given a particular usage scenario. Building on these findings, we further assessed
our approach using three new SPLs widely used in research. For two of them, the results



J. Low Power Electron. Appl. 2021, 11, 13 28 of 34

still showed a high prediction accuracy. Nevertheless, the WCEC values for the remaining
SPL were quite overestimated.

After an update to Serapis, as well as a thorough analysis procedure, we were able to
understand that the energy model was overestimated for some instructions, which were
extensively used in the products with overestimated WCEC. We adapted an optimization
algorithm called Simulated Annealing in order to automatically decide how to update the
overestimated values. The obtained model revealed to be effective, resulting in improve-
ments for two of the four analyzed SPLs. When considering the 99 products distributed
through the four SPLs, we obtained a mean error percentage of 17.31% and a standard
deviation of 11.19%.

The initial results that were obtained for the EmailSystem SPL revealed that the energy
model, which is a crucial component of our technique, could be subject to additional
improvements. We observed that, for an instruction with a variable type or number of
arguments, overestimating the consumption to the highest observed value can, in fact,
result in significant accuracy losses. Hence, it might be worthy to redefine how these
instructions are expressed in the energy model. When considering the static analysis and
IPET limitations, the most adequate way to do that would be to provide, for each of such
instructions, multiple entries in the model, one for each variation that could be detectable
in the static analysis steps.

In our studies, we have considered all of the realistic CIL supported SPLs with publicly
available source code that we could find in the literature. While we argue that this is a
representative set, we admit that other SPLs may potentially provide evidence of other
improvement opportunities.

The accuracy of our technique mostly relies on the energy and machine behavior
models, rather than the remaining static analysis components. Therefore, the models
that we provide are generic to any target device on which an C-based SPL could execute,
yet quite simplistic. The machine behavior model does not reflect the real behavior of
state-of-the-art CPUs, and considering a different behavior model would imply that the
energy model should be not only instruction oriented, but also machine state oriented.

Nevertheless, we do believe that more complex and detailed models could be built and
in other widely used contexts, particularly in the embedded systems realm. Here, C-based
projects and SPLs are very common and, as such, we aim at applying our technique is
this scope.
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Abbreviations
The following abbreviations are used in this manuscript:

AST Abstract Syntax Tree
CFG Control Flow Graph
CIL C Intermediate Language
CPU Central Processing Unit
DSPL Dynamic Software Product Line
ICT Information and Communication Technology
IPET Implicit Path Enumeration Technique
RAPL Running Average Power Limit
SPL Software Product Line
WCEC Worst Case Energy Consumption
WCET Worst Case Execution Time

Appendix A. Full Study Results

Table A1. Study Results for San Diego Benchmark SPL.

Product Observed (J) Estimated (J) Difference (J) % Error

#1 114.170 114.75 0.5800 0.51%
#2 90.800 100.73 9.9300 10.94%
#3 87.930 100.72 12.7900 14.55%
#4 64.910 66.54 1.6300 2.51%
#5 64.470 70.08 5.6100 8.70%
#6 58.870 64.93 6.0600 10.29%
#7 56.800 67.06 10.2600 18.06%

Table A2. Study Results for Elevator SPL.

Product Observed (J) Estimated (J) Difference (J) % Error

#1 0.0139 0.0141 0.0002 1.34%
#2 0.0146 0.0155 0.0010 6.56%
#3 0.0149 0.0166 0.0017 11.24%
#4 0.0149 0.0149 0.0000 0.12%
#5 0.0148 0.0167 0.0019 12.57%
#6 0.0148 0.0151 0.0003 1.93%
#7 0.0155 0.0156 0.0001 0.50%
#8 0.0151 0.0152 0.0001 0.82%
#9 0.0149 0.0157 0.0008 5.55%
#10 0.0150 0.0178 0.0028 18.28%
#11 0.0149 0.0183 0.0034 22.96%
#12 0.0151 0.0186 0.0035 23.09%
#13 0.0150 0.0191 0.0041 27.45%
#14 0.0150 0.0177 0.0027 17.82%
#15 0.0151 0.0181 0.0030 20.20%
#16 0.0156 0.0185 0.0029 18.69%
#17 0.0149 0.0190 0.0041 27.28%
#18 0.0149 0.0154 0.0005 3.47%
#19 0.0157 0.0158 0.0001 0.88%
#20 0.0150 0.0156 0.0006 3.96%
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Table A3. Study Results for EmailSystem SPL.

Product Observed (J) Estimated (J) Difference (J) % Error

#1 1.4832 2.4707 0.9875 66.58%
#2 1.4769 2.6124 1.1355 76.89%
#3 1.4818 2.4769 0.9950 67.15%
#4 1.4472 2.6185 1.1713 80.93%
#5 1.4865 2.4883 1.0018 67.40%
#6 1.4342 2.6299 1.1958 83.38%
#7 1.4750 2.4944 1.0195 69.12%
#8 1.4436 2.6361 1.1925 82.60%
#9 1.4427 2.4707 1.0280 71.25%
#10 1.4172 2.6124 1.1952 84.33%
#11 1.4637 3.1394 1.6758 114.49%
#12 1.4511 3.2811 1.8300 126.11%
#13 1.3988 3.1395 1.7407 124.44%
#14 1.4977 3.2811 1.7835 119.08%
#15 1.4399 3.8082 2.3683 164.48%
#16 1.4006 3.9498 2.5492 182.00%
#17 1.4702 2.4769 1.0067 68.47%
#18 1.4112 2.6185 1.2074 85.56%
#19 1.4541 3.1456 1.6914 116.32%
#20 1.4462 3.2872 1.8410 127.29%
#21 1.4343 3.1456 1.7113 119.31%
#22 1.4565 3.2873 1.8308 125.70%
#23 1.4816 3.8143 2.3328 157.45%
#24 1.4397 3.9560 2.5163 174.78%
#25 1.4232 2.4883 1.0651 74.84%

Table A3. Cont.

Product Observed (J) Estimated (J) Difference (J) % Error

#26 1.4423 2.6299 1.1876 82.34%
#27 1.4775 3.1570 1.6795 113.67%
#28 1.4180 3.2986 1.8806 132.63%
#29 1.4935 3.1570 1.6635 111.38%
#30 1.4769 3.2987 1.8218 123.36%
#31 1.4473 3.8258 2.3784 164.33%
#32 1.4283 3.9674 2.5391 177.76%
#33 1.4957 2.4944 0.9987 66.77%
#34 1.4513 2.6361 1.1848 81.64%
#35 1.4303 3.1631 1.7329 121.16%
#36 1.4438 3.3048 1.8610 128.90%
#37 1.4910 3.1632 1.6722 112.16%
#38 1.4036 3.3048 1.9012 135.45%
#39 1.4287 3.8319 2.4032 168.20%
#40 1.4435 3.9735 2.5300 175.27%
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Table A4. Study Results for Minepump SPL.

Product Observed (J) Estimated (J) Difference (J) % Error

#1 0.1340 0.1464 0.0123 9.19%
#2 0.1336 0.1562 0.0225 16.87%
#3 0.1348 0.1566 0.0217 16.11%
#4 0.1355 0.1550 0.0195 14.42%
#5 0.1346 0.1468 0.0121 9.02%
#6 0.1348 0.1473 0.0124 9.22%
#7 0.1364 0.1664 0.0300 21.97%
#8 0.1452 0.1648 0.0196 13.53%
#9 0.1396 0.1566 0.0170 12.18%
#10 0.1371 0.1571 0.0200 14.58%
#11 0.1374 0.1652 0.0278 20.19%
#12 0.1380 0.1570 0.0190 13.78%
#13 0.1411 0.1574 0.0164 11.61%
#14 0.1388 0.1554 0.0166 11.94%
#15 0.1395 0.1559 0.0164 11.73%
#16 0.1356 0.1477 0.0121 8.91%
#17 0.1344 0.1750 0.0406 30.24%
#18 0.1369 0.1668 0.0299 21.86%
#19 0.1361 0.1673 0.0312 22.92%
#20 0.1405 0.1652 0.0247 17.59%
#21 0.1366 0.1657 0.0291 21.31%
#22 0.1389 0.1575 0.0186 13.38%
#23 0.1381 0.1656 0.0276 19.96%
#24 0.1347 0.1661 0.0313 23.26%
#25 0.1342 0.1579 0.0236 17.60%

Table A4. Cont.

Product Observed (J) Estimated (J) Difference (J) % Error

#26 0.1339 0.1563 0.0224 16.72%
#27 0.1401 0.1754 0.0353 25.19%
#28 0.1356 0.1759 0.0403 29.73%
#29 0.1354 0.1677 0.0323 23.82%
#30 0.1346 0.1661 0.0316 23.46%
#31 0.1364 0.1665 0.0301 22.11%
#32 0.1348 0.1763 0.0415 30.81%
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