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Abstract
Family-based (lifted) data-flow analysis for Software Product Lines (SPLs) is capable of analyz-
ing all valid products (variants) without generating any of them explicitly. It takes as input
only the common code base, which encodes all variants of a SPL, and produces analysis results
corresponding to all variants. However, the computational cost of the lifted analysis still depends
inherently on the number of variants (which is exponential in the number of features, in the
worst case). For a large number of features, the lifted analysis may be too costly or even infeas-
ible. In this paper, we introduce variability abstractions defined as Galois connections and use
abstract interpretation as a formal method for the calculational-based derivation of approximate
(abstracted) lifted analyses of SPL programs, which are sound by construction. Moreover, given
an abstraction we define a syntactic transformation that translates any SPL program into an
abstracted version of it, such that the analysis of the abstracted SPL coincides with the corres-
ponding abstracted analysis of the original SPL. We implement the transformation in a tool, that
works on Object-Oriented Java program families, and evaluate the practicality of this approach
on three Java SPL benchmarks.
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1 Introduction and Motivation

Software Product Lines (SPLs) are an effective strategy for developing and maintaining a
family of related programs. Any valid program (variant) of an SPL is specified in terms of
features selected. A feature is a distinctive aspect, quality, or characteristic from the problem-
domain of a system. SPLs have been adopted by the industry because of improvements in
productivity and time-to-market [7]. While there are many implementation strategies, many
industrial product lines are implemented using annotative approaches such as conditional
compilation; in particular, via the C-preprocessor #ifdef construct [17].

Recently, formal analysis and verification of SPLs have been a topic of considerable research
(see [23] for a survey). The challenge is to develop analysis and verification techniques that
work at the level of program families, rather than the level of individual programs. Given that
the number of variants grows exponentially with the number of features, the need for efficient
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Figure 1 Diagram illustrating the role and intended usage of the reconfigurator transformation.
Instead of abstracting an already existing (or derived) lifted analysis, our transformation allows
abstraction to be applied directly to the SPL. The resulting “abstracted SPL” can then be analyzed
using existing techniques. The two paths from SPL to “abstracted lifted analysis” are guaranteed to
produce the same abstracted lifted analysis.

analysis and verification techniques is essential. To address this, a number of so-called lifted
techniques have emerged, essentially lifting existing analysis and verification techniques to
work on program families, rather than on individual programs. This includes lifted type
checking [18], lifted data-flow analysis [5, 4], lifted model checking [6]. They are also known as
family-based (variability-aware or feature-sensitive) techniques. Lifted techniques are capable
of analyzing the entire code base (all variants at once), without having to explicitly generate
and analyze all individual variants, one at a time. Also, lifted techniques are capable of
pin-pointing errors directly in the product line, as opposed to reporting errors in an individual
product derived from the SPL.

There are two ways to speed up analyses: improving representation and increasing
abstraction. The former has received considerable attention in the field of family-based
analysis. In this paper, we investigate the latter. We consider a range of abstractions
at the variability level that may tame the combinatorial explosion of configurations and
reduce it to something more tractable by manipulating the configuration space of a program.
Such variability abstractions enable deliberate trading of precision for speed in family-
based analyses, even turn infeasible analyses into feasible ones, while retaining an intimate
relationship back to the original analysis (via the abstraction).

We organize our variability abstractions in a calculus that provides convenient, modular,
and compositional declarative specification of abstractions. We propose two basic abstrac-
tion operators (project and join) and two compositional abstraction operators (sequential
composition and parallel composition). Each abstraction expresses a compromise between
precision and speed in the induced abstracted analysis. We show how to apply each of
these abstractions to data-flow lifted analyses, to derive their corresponding efficient and
sound (correct) abstracted lifted analysis based on the calculational approach of abstract
interpretation developed in [9]. Moreover, we present a method for extracting data-flow
equations corresponding to each abstracted analysis. Note that the approach is applicable to
any analysis phrased as an abstract interpretation; in particular, it is not limited to data-flow
analysis.

We observe that for variability abstractions, analysis abstraction and analysis derivation
commute. Figure 1 illustrates how analysis abstraction is classically undertaken and how
we propose to optimize it. The top left corner shows a product line that we want to
analyze. A lifted analyzer will take an SPL as input and derive a “lifted analysis” (rightward
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arrow). We can then run that lifted analysis (next rightward dashed arrow) and obtain
our “precise lifted analysis information”. (Note that for some analyzers, the phases derive
analysis and subsequent run analysis may be so intertwined that they are not independently
distinguishable.) Since running the analysis might be too slow or infeasible, we may decide to
use abstraction to obtain a faster, although less precise analysis. Classically, an abstraction
is applied to the derived analysis before it is run (middle arrow down) which, after an often
long and complex process, produces an “abstracted lifted analysis”. When that analysis is
subsequently run, it will produce less precise analysis information, but it will do so faster
than the original analysis (i.e., there is a precision vs. speed tradeoff ).

Interestingly, for lifted analyses and variability abstractions, the analysis abstraction
(down) and derivation (right) commute and we may swap their order of application, as
indicated by the short double leftward arrow in the center. The implications are quite
significant. It means that variability abstractions can be applied before, and independently
of, the subsequent analysis. This also means that the same variability abstractions might be
applicable to all sorts of analyses that are specifiable via abstract interpretation; including, but
not limited to: data-flow analysis [10], model checking [12], type systems [8] and testing [15].

We exploit this observation to define a stand-alone source-to-source transformation, called
reconfigurator, for programs with #ifdefs. It takes an input SPL program and a variability
abstraction and produces an abstracted SPL program such for which the subsequent lifted
analysis agrees with “abstracted lifted analysis” of the original unabstracted SPL. Like a
preprocessor the reconfigurator is essentially unaware of the programming language syntax,
thus it can be used for any analysis. Many existing analysis methods that are unable to
abstract variability benefit from this work instantly. Almost no extension or adaptation is
required as the abstraction is applied to source code before analysis.

We evaluate our approach by comparing analyses of a range of increasingly abstracted
SPLs against their origins without abstraction, quantifying to what extent precision can be
traded for speed in lifted analyses.

In summary, the paper makes the following contributions:
C1: Variability abstraction as a method for trading precision for speed in family-based

analysis (based on abstract interpretation);
C2: A calculus for modular specification of variability abstractions;
C3: The observation that certain analysis derivations and analysis abstractions commute,

meaning that variability abstractions can be applied directly on an SPL before (and
independently of) subsequent lifted analysis;

C4: A stand-alone transformation, reconfigurator, based on the above ideas;
C5: An evaluation of the above ideas; in particular, an evaluation of the tradeoff between

precision and speed in family-based analyses.
We direct this work to program analysis and software engineering researchers. The method of
variability abstractions (C1–C3) is directed at designers of lifted analyses for product lines.
They may use our insights to design improved abstracted analyses that appropriately trade
precision for speed. Note that the ideas apply beyond the context of data-flow analyses (e.g.,
to model checking, type systems, verification, and testing). The reconfigurator (C4) and
the evaluation lessons (C5) are relevant for software engineers working on preprocessor-based
product lines and who would like to speed up existing analyzers.

We proceed by introducing the basics of lifting analyses in Section 2. Section 3 defines
a calculus for specification of variability abstractions. Section 4 explains how to apply
an abstraction to a lifted analysis. It uses constant propagation as an example. The
reconfigurator is described in Section 5 along with correctness for our example analysis.
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Section 6 presents the evaluation on three Java Object-Oriented SPLs. Finally, we discuss
the relation to other works and conclude.

2 Program Families and Lifted Analyses

In this section we summarize the prerequisites for presenting our work. We define features,
configurations, feature expressions, and a feature model which designates a set of valid
configurations. Hereafter, we describe a simple imperative language IMP for writing program
families. Finally, we briefly sketch a lifted constant propagation analysis for this language,
formally derived in [19]. We focus on constant propagation for presentation purposes; our
approach is generically applicable to any lifted analysis phrased as an abstract interpretation.

Features, Configurations, and Feature Expressions. Let F = {A1, . . . , An} be a finite set
of features, each of which may be enabled or disabled in a particular program variant. A feature
expression, FeatExp formula, is a propositional logic formula over F, defined inductively by:

ϕ ::= A ∈ F | ¬ϕ | ϕ1 ∧ ϕ2

A truth assignment or valuation is a mapping v assigning a truth value to all features. Every
feature expression evaluates to some truth value under the valuation v. We say that ϕ is
valid, denoted as |= ϕ, if ϕ evaluates to true for all valuations v. We say that ϕ is satisfiable,
denoted as sat(ϕ), if there exists a valuation v such that ϕ evaluates to true under v. We
say that the formula θ is a semantic consequence of ϕ, denoted as ϕ |= θ, if for all satisfiable
valuations v of ϕ it follows that θ evaluates to true under v. Otherwise, we have ϕ 6|= θ.

Feature Model. A feature model describes the set of valid configurations (variants) of a
product line in terms of features and relationships among them. For our purposes a feature
model can be equated to a propositional formula [2], say ψ ∈ FeatExp, as the semantic aspects
of feature models beyond the configuration semantics, are not relevant here. We write Kψ to
denote the set of all valid configurations described by the feature model, ψ; i.e., the set of
all satisfiable valuations of ψ. One satisfiable valuation v represents a valid configuration,
and it can be also encoded as a conjunction of literals: kv = v(A1) · A1 ∧ · · · ∧ v(An) · An,
where true · A = A and false · A = ¬A, such that kv |= ψ. The truth value of a feature
in v indicates whether the given feature is enabled (included) or disabled (excluded) in
the corresponding configuration. Let kv1 , . . . , kvn (1 ≤ n ≤ 2|F|) represent all satisfiable
valuations of ψ expressed as formulas, then Kψ = {kv1 , . . . , kvn}. For example, the set of
features, F = {A,B}, and the feature model, ψ = A ∨ B, yield the following set of valid
configurations: Kψ = {A ∧B,A ∧ ¬B,¬A ∧B}.

The Programming Language. IMP is an extension of the imperative language IMP [25]
often used in semantic studies. IMP adds a compile-time conditional statement for encoding
multiple variants of a program. The new statement “#if (θ) s” contains a feature expression
θ ∈ FeatExp as a condition and a statement s that will be run, i.e. included in a variant, iff
the condition θ is satisfied by the corresponding configuration k ∈ Kψ. The abstract syntax
of the language is given by the following grammar:

s ::= skip | x := e | s ; s | if e then s else s | while e do s | #if (θ) s
e ::= n | x | e⊕ e



A. S. Dimovski, C. Brabrand, and A. Wąsowski 251

where n ranges over integers, x ranges over variable names Var, and ⊕ over binary arithmetic
operators. The set of all generated statements s (respectively expressions e) is denoted by
Stm (respectively Exp). Notice that IMP is only used for presentational purposes as a well
established minimal language. Still, the introduced methodology is not limited to IMP or its
features. In fact, we evaluate our approach on Object-Oriented program families written in
Java.

The semantics of IMP has two stages. First, a preprocessor takes as input an IMP
program and a configuration k ∈ Kψ, and outputs a variant, i.e. an IMP program without
#if-s, corresponding to k. All “#if (θ) s” statements are appropriately resolved in the
generated valid product, i.e. s is included in it iff k |= θ. Then, the obtained variant is
executed (compiled) using the standard IMP semantics [25].

Analysis Framework. In the context of IMP lifting means taking a static analysis that
works on IMP programs, and transforming it into an analysis that works on IMP programs,
without preprocessing them (so on all the variants simultaneously).

Suppose that we have a monotone data-flow analysis framework for single programs, and
we want to lift the analysis to the family level setting. Let 〈X,v,t,u,⊥,>〉 be a complete
lattice with finite height, which represents a property domain suitable for performing a
computable analysis for single programs. By using variational abstract interpretation [19],
we can derive the corresponding lifted analysis for IMP, whose lifted property domain is
〈XKψ , v̇, ṫ, u̇, ⊥̇, >̇〉 where Kψ is the set of valid configurations. In the following, we use
constant propagation analysis as an example to demonstrate our approach for deriving
computationally cheap abstracted lifted analysis. Still, the approach is by no means limited
to constant propagation, but it is applicable to any static analysis from the monotone
data-flow analysis framework [20] that can be lifted.

Constant Propagation Analysis. We first define a constant propagation lattice 〈Const,vC〉,
whose partial ordering vC is given by:

>C

· · · -3 -2 -1 0 1 2 3 · · ·

⊥C

In this domain >C indicates a value which may be a non-constant, and ⊥C indicates
unanalyzed information. All other elements indicate constant values. The partial ordering
vC induces a least upper bound, tC , and a greatest lower bound operator, uC , on the lattice
elements. For example, we have 0 tC 1 = >C , >C uC 1 = 1, etc.

The constant propagation analysis is given in terms of abstract constant propagation
stores, denoted by a, essentially mappings of variables to elements of Const. Thus a(x)
informs whether the variable x is a constant, and, in this case, what is its value. We write
A = Var→ Const meaning the domain of all constant propagation stores. Since Const is a
complete lattice then so is 〈A,vA,tA,uA,⊥A,>A〉 obtained by point-wise lifting [25]. For
example, for a, a′ ∈ A we have a vA a

′ iff ∀x ∈ Var, a(x) vC a′(x). We omit the subscripts
C and A whenever they are clear in context.

Lifted Constant Propagation Analysis. For the lifted constant propagation analysis, we
work with the lifted property domain 〈AKψ , v̇, ṫ, u̇, ⊥̇, >̇〉, where AKψ is shorthand for the

ECOOP’15
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A[[skip]] = λa. a

A[[x := e]] = λa.
∏
k∈Kψ

(πk(a))[x 7→ πk(A′[[e]]a)]

A[[s0 ; s1]] = A[[s1]] ◦ A[[s0]]

A[[if e then s0 else s1]] = λa.A[[s0]]a ṫA[[s1]]a

A[[while e do s]] = lfpλΦ. λa. a ṫ Φ(A[[s]] a)

A[[#if (θ) s]] = λa.

∏
k∈Kψ

{
πk(A[[s]]a) if k |= θ

πk(a) if k 6|= θ

A′[[n]] = λa.
∏
k∈Kψ

n

A′[[x]] = λa.
∏
k∈Kψ

πk(a)(x)

A′[[e0 ⊕ e1]] = λa.

∏
k∈Kψ

πk(A′[[e0]]a) ⊕̂ πk(A′[[e1]]a)

Figure 2 Definitions of A[[s]] : (A→ A)Kψ and A′[[e]] : (A→ Const)Kψ .

|Kψ|-fold product
∏
k∈Kψ A, i.e. there is one separate copy of A for each valid configur-

ation of Kψ. The ordering v̇ is lifted configuration-wise; i.e., for a, a′ ∈ AKΨ we have
a v̇ a′ ≡def πk(a) vA πk(a′) for all k ∈ Kψ. Here πk selects the kth component of a tuple.
Similarly, we lift configuration-wise all other elements of the complete lattice A, obtaining
ṫ, u̇, ⊥̇, >̇. E.g., >̇ =

∏
k∈Kψ >A = (>A, . . . ,>A).

The lifted analysis A[[s]] should be a function from AKψ to AKψ . However, using a tuple
of |Kψ| independent simple functions of type A→ A is sufficient. Thus, the lifted analysis
is given by the function A[[s]] : (A → A)Kψ , which represents a tuple of |Kψ| functions
of type A → A. The k-th component of A[[s]] defines the analysis corresponding to the
valid configuration described by the formula k. Thus, an analysis A[[s]] transforms a lifted
store, a ∈ AKψ , into another lifted store of the same type. For simplicity, we overload the
λ-abstraction notation, so creating a tuple of functions looks like a function on tuples: we
write λa.

∏
k∈K fk(πk(a)) to mean

∏
k∈K λak.fk(ak). Similarly, if f : (A→ A)K and a ∈ AK,

then we write f(a) to mean
∏
k∈K πk(f)(πk(a)).

The equations for lifted analysis A[[s]] : (A → A)Kψ and A′[[e]] : (A → Const)Kψ that
analyse all valid configurations simultaneously are given in Fig 2. They are systematically
derived in [19] by following the steps of the calculational approach to abstract interpretation
[9]: define collecting semantics, specify a series of Galois connections and compose them with
the collecting semantics to obtain the resulting analysis, which is thus sound (correct) by
construction. Monotonicity of A[[s]] and A′[[e]] was shown in [19] as well.

The (transfer) function A[[s]] captures the effect of analysing the statement s in an input
store a by computing an output store a′. For the skip statement, the analysis function is
an identity on lifted stores. For the assignment statement, x := e, the value of variable x is
updated in every component of the input store a by the value of the expression e evaluated in
the corresponding component of a. The if case results in the least upper bound (join) of the
effects from the two corresponding branches, and it abstracts away the analysis information
at the guard (condition) point. For the while statement, we compute the least fixed point
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of a functional1 in order to capture the effect of running all possible iterations of the while
loop. This fixed point exists and is computable by Kleene’s fixed point theorem, since the
functional is a monotone function over complete lattice with finite height [19, 10]. For the
#if (θ) s statement, we check for each valid configuration k 2 whether the feature constraint
θ is satisfied and, if so, it updates the corresponding component of the input store by the
effect of evaluating the statement s. Otherwise, the corresponding component of the store
is not updated. The function A′[[e]] describes the result of evaluating the expression e in a
lifted store. Note that, for each binary operator ⊕, we define the corresponding constant
propagation operator ⊕̂, which operates on values from Const, as follows:

v0 ⊕̂ v1 =


⊥ if v0 = ⊥ ∨ v1 = ⊥
n if v0 = n0 ∧ v1 = n1, where n = n0 ⊕ n1

> otherwise

We lift the above operation configuration-wise, and in this way obtain a new operation ˙̂⊕ on
tuples of Const values.

I Example 1. Consider the IMP program S1:
x := 0;
#if (A) x := x + 1;
#if (B) x := 1

with the set Kψ = {A ∧B,A ∧ ¬B,¬A ∧B}. By using the rules of Fig. 2, we can calculate
A[[S1]] for a store in which x is uninitialized, i.e. it has the value >. We assume a convention
here that the first component of the store corresponds to configuration A ∧B, the second to

A ∧ ¬B, and the third to ¬A ∧B. We write a0
A[[s]]7−→ a1 when A[[s]]a0 = a1. We have:(

[x 7→>],[x 7→>],[x 7→>]
) A[[x:=0]]7−→

(
[x 7→0],[x 7→0],[x 7→0]

)
A[[#if (A) x:=x+1]]7−→

(
[x 7→1],[x 7→1],[x 7→0]

) A[[#if (B) x:=1]]7−→
(
[x 7→1],[x 7→1],[x 7→1]

)
After evaluating S1, the variable x has the constant value 1 for all valid configurations. Observe
that in the above lifted stores many components are the same, i.e. many configurations
have equivalent analysis information. Such lifted stores can be more compactly represented
using sharing (e.g., bit vectors or formulae), which in effect will result in more efficient
implementation of the lifted analysis.

Let S2 be a program obtained from S1, such that #if (B) x := 1 is replaced with
#if (B) x := x− 1. Then, we have:

A[[S2]]
(
[x 7→>],[x 7→>],[x 7→>]

)
=
(
[x 7→0],[x 7→1],[x 7→−1]

)
We will use programs S1 and S2 as running examples throughout the paper. J

3 Variability Abstractions

When the set of configurations Kψ is large, calculations on the property domain AKψ become
expensive, even if using symbolic representations or sharing to avoid direct storage of |Kψ|-
sized tuples as done in [5]. We want to replace AKψ with a smaller domain obtained by
abstraction and perform an approximate, but feasible, lifted analysis.

1 The functional of the while rule is: λΦ. λa. a ṫ Φ(A[[s]] a).
2 Since any k ∈ Kψ is a valuation, we have that k 6|= θ and k |= ¬θ are equivalent for any θ ∈ FeatExp.

ECOOP’15
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3.1 Basic Abstractions
We describe a compositional way of constructing abstractions over the domain AK, where
K represents an arbitrary set of valid configurations, using two basic constructors, join and
projection, along with a sequential and parallel composition of abstractions. The set of
abstractions Abs is generated by the following grammar:

α ::= αjoin | αproj
ϕ | α ◦ α | α ⊗ α (1)

where ϕ ∈ FeatExp. Below we define the constructors and motivate them with examples.
For readability, we use the constant propagation lattice A however the results hold for any
complete lattice.

Join. Consider the following scenario. An analysis is run interactively, while a developer is
typing in a development environment. The analysis finds simple errors and warnings. In this
scenario, the analysis must be fast and it should consider all legal configurations K. It is not
problematic if some spurious errors are introduced, since, like previously, a more thorough
analysis is run regularly. Here, the precision with respect to configurations can be reduced
by confounding the control-flow of all the products, obtaining an analysis that runs as if it
was analyzing a single product, but involving code variants that participate in all products.

The join abstraction gathers the information about all valid configurations k ∈ K into
one value of A. We formulate the abstraction αjoin : AK → A{

∨
k∈K

k} and the concretization
function γjoin : A{

∨
k∈K

k} → AK as follows:

αjoin(a) =
(⊔

k∈K πk(a)
)

and γjoin(a) =
∏
k∈K

a (2)

We overload abstraction names (α) to apply not only to domain elements but also to
sets of features, sets of configurations, and, later, to program code. The new set of valid
configurations is αjoin(K) = {

∨
k∈K k}. Thus, we have only one valid configuration denoted

by the formula
∨
k∈K k. Observe that this means that the obtained abstract domain is

effectively A1, which is isomorphic to A. The proposed abstraction–concretization pair is a
Galois connection, which means that it can be used to construct analyses using calculational
abstract interpretation:

I Theorem 2. 〈AK, v̇〉 −−−−−→←−−−−−
αjoin

γjoin

〈Aαjoin(K), v̇〉 is a Galois connection 3 4.

I Example 3. Let us return to the scenario of using join for improving analysis performance.
Assume that the feature model is given by ψ = A ∨ B with valid configurations Kψ =
{A ∧ B,A ∧ ¬B,¬A ∧ B}. Now, the final stores we obtain by analyzing programs S1 and
S2 from Example 1 are aS1 =

(
[x 7→1],[x 7→1],[x 7→1]

)
and aS2 =

(
[x 7→0],[x 7→1],[x 7→−1]

)
.

Applying the join abstraction we obtain αjoin(aS1) =
(
[x 7→1]

)
and αjoin(aS2) =

(
[x 7→>]

)
.

In both cases the state representation has been significantly decreased. In the former case,
the abstraction promptly notices that x is a constant regardless of the configuration. In the
latter case, the abstraction looses precision by saying that x is not a constant in general,
even if it was a constant in each of the configurations considered. We will continue using
stores aS1 and aS2 in the subsequent examples. J

3 〈L,≤L〉 −−−→←−−−α
γ
〈M,≤M 〉 is a Galois connection between complete lattices L and M iff α and γ are total

functions that satisfy: α(l) ≤M m ⇐⇒ l ≤L γ(m) for all l ∈ L,m ∈M .
4 The proofs of all theorems in this section can be found in [14, App. A].
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Projection. In industrial practice the number of products actually deployed is often only a
small subset of K [3]. In such case, analyzing all legal (valid) configurations seems unnecessary,
and performance of analyses can be improved by abstracting many products away. This is
achieved by a configuration projection, which removes configurations that do not satisfy a
given constraint, for instance a disjunction of product configurations of interest. Projection can
be helpful in other similar scenarios; for instance, to parallelize the analysis—by partitioning
the product space using project and analyzing each partition separately.

Let ϕ be a formula over feature names. We define a projection abstraction mapping AK

into the domain A{k∈K|k|=ϕ}, which preserves only the values corresponding to configurations
from K that satisfy ϕ. The information about configurations violating ϕ is disregarded. The
abstraction and concretization functions between AK and A{k∈K|k|=ϕ} are defined as follows:

αproj
ϕ (a) =

∏
k∈K,k|=ϕ πk(a) (3)

γproj
ϕ (a′) =

∏
k∈K

{
πk(a′) if k |= ϕ

> if k 6|= ϕ
(4)

The new set of configurations is αproj
ϕ (K) = {k ∈ K | k |= ϕ}. Naturally, we also have a

Galois connection here:

I Theorem 4. 〈AK, v̇〉 −−−−−→←−−−−−
αproj
ϕ

γproj
ϕ

〈Aαproj
ϕ (K), v̇〉 is a Galois connection.

Notice that αproj
true is the identity function, since k |= true for all k ∈ K. On the other hand

αproj
false is the coarsest collapsing abstraction that maps any tuple into an empty one, since

k 6|= false, for all k.

I Example 5. Let us revisit our scenario, where a set of deployed configurations is much
smaller than the set of configurations defined by the feature model ψ. Let us consider the store
aS2 with the set of valid configurations Kψ from Example 3. The set of deployed products is
defined by formula ϕ = A (so all possible programs with featureA are marketed). By definition
of projection (3), we have: αproj

A (aS2) =
(
πA∧B(aS2), πA∧¬B(aS2)

)
=
(
[x 7→0], [x 7→1]

)
, and

αproj
¬A (aS2) = (π¬A∧B(aS2)) = ([x 7→−1]). The state representation is effectively decreased to

two, respectively one, components. J

An attentive reader, might discount the idea of the projection abstraction as being overly
heavy. In the end, it appears to be equivalent to running the original analysis, just with a
strengthened feature model (ψ∧ϕ). However, as we shall see in the subsequent developments,
projection is indeed useful. Thanks to the composition operators it can enter intricate
scenarios, which cannot be expressed using a simple strengthening of a global feature model.

Sequential Composition. We use composition to build complex abstractions out of the
basic ones, which also allows us to keep the number of operators in the framework and in
the implementation low.

Recall that a composition of two Galois connections is also a Galois connection [11]. Let
〈AK, v̇〉 −−−→←−−−

α1

γ1 〈Aα1(K), v̇〉 and 〈Aα1(K), v̇〉 −−−→←−−−
α2

γ2 〈Aα2(α1(K)), v̇〉 be two Galois connections.
Then, we define their composition as 〈AK, v̇〉 −−−−−−→←−−−−−−

α2◦α1

γ1◦γ2 〈A(α2◦α1)(K), v̇〉, where

(α2 ◦ α1)(a) = α2(α1(a)) and (γ1 ◦ γ2)(a′) = γ1(γ2(a′)) (5)

for a ∈ AK and a′ ∈ A(α2◦α1)(K). Also (α2 ◦ α1)(K) = α2(α1(K)).
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I Example 6. Now consider the process of deriving an analysis, which only considers products
actually deployed described by a formula ϕ (see previous example), but which should trade
precision for speed, by confounding their execution. Such an analysis is derived using the
composed abstraction: αjoin ◦αproj

ϕ .
Let ϕ = A. Configurations A ∧ B and A ∧ ¬B satisfy ϕ, whereas ¬ϕ is satisfied only

by ¬A ∧ B. We have: αjoin ◦ αproj
A (aS2) = (πA∧B(aS2) t πA∧¬B(aS2)) = ([x 7→ >]) and

αjoin ◦αproj
¬A (aS2) = (π¬A∧B(aS2)) = ([x 7→−1]). J

Parallel Composition. Consider a product line where two disjoint groups of products share
the same code base: one group is correctness critical, the other comprises correctness non-
critical products. The former should be analyzed with highest precision possible to obtain
the most precise analysis results, the latter can be analyzed faster. We can set up such
analyses by using a projection abstraction to analyze the correctness critical group precisely,
and the join abstraction to analyze the non-critical group. However running the analyses
twice, ignores the fact that the code is shared between the groups. We can combine two
separate analyses by creating a compound abstraction: a product of the two. The product
abstraction will correspond exactly to executing the projection on the correctness critical
products, and join on the non-critical ones. But since the product creates a single Galois
connection of the two, it can be used to derive an analysis which will deliver this in a single
run, which is more efficient overall, due to reuse of the states explored.

Galois connections 〈AK, v̇〉 −−−→←−−−
α1

γ1 〈Aα1(K), v̇〉 and 〈AK, v̇〉 −−−→←−−−
α2

γ2 〈Aα2(K), v̇〉 over the same
domain AK can be composed into one that combines the abstraction results "side-by-side".
The result is a new compound abstraction, α1 ⊗ α2, of the domain AK obtained by applying
the two simpler abstractions in parallel. The parallel composition of abstractions is defined
using a direct tensor product. For the resulting Galois connection, we have α1 ⊗ α2(K) =
α1(K) ∪ α2(K). Given a1 ∈ Aα1(K) and a2 ∈ Aα2(K), we first define a1 × a2 ∈ α1(K) ∪ α2(K)
as:

a1 × a2 =
∏

k∈α1(K)∪α2(K)


πk(a1) if k ∈ α1(K) \ α2(K)
πk(a1) t πk(a2) if k ∈ α1(K) ∩ α2(K)
πk(a2) if k ∈ α2(K) \ α1(K)

(6)

The direct tensor product is given as 〈AK, v̇〉 −−−−−−→←−−−−−−
α1⊗α2

γ1⊗γ2 〈A(α1⊗α2)(K), v̇〉, where

(α1 ⊗ α2)(a) = α1(a)× α2(a) (7)
(γ1 ⊗ γ2)(a′) = γ1(πα1(K)(a′)) u γ2(πα2(K)(a′)) , where (8)

πα1(K)(a′)=
∏
k∈α1(K)πk(a′) and πα2(K)(a′)=

∏
k∈α2(K)πk(a′), for a′∈A(α1⊗α2)(K).

I Theorem 7. 〈AK, v̇〉 −−−−−−→←−−−−−−
α1⊗α2

γ1⊗γ2 〈A(α1⊗α2)(K), v̇〉 is a Galois connection.

I Example 8. Let us assume that for products with feature A we need precise analysis results,
and for products without this feature we do not need so precise results. We are interested in
analyzing products with A thoroughly, while the analysis of the products without A can be
speeded up. To this end we build the following abstraction: αproj

A ⊗ (αjoin ◦αproj
¬A ). J

3.2 Derived Abstractions
We shall now discuss three more abstractions that can be derived from the above basic
constructors.
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Join-Project. Recall the construction of Example 6, where we combined projection with a
join in order to confound a subset of legal configurations. This pattern has occurred so often
in our exercises that we introduced a syntactic sugar for it. For a formula ϕ over features, the
abstraction αjoin

ϕ gathers the information about all valid configurations k ∈ K that satisfy ϕ,
i.e. k |= ϕ, into one value of A, whereas the information about all other valid configurations
k ∈ K that do not satisfy ϕ is disregarded. We define

αjoin
ϕ = αjoin ◦αproj

ϕ and γjoin
ϕ = γproj

ϕ ◦ γjoin (9)

where 〈AK, v̇〉 −−−−−→←−−−−−
αproj
ϕ

γproj
ϕ

〈Aαproj
ϕ (K), v̇〉 and 〈Aαproj

ϕ (K), v̇〉 −−−−−→←−−−−−
αjoin

γjoin

〈A(αjoin◦αproj
ϕ )(K)), v̇〉 are

Galois connections. Now the compositions in Example 6 can be written simply as αjoin
A and

αjoin
¬A .

Ignoring features. Consider a scenario, where a configurable third-party component is
integrated into a product line. The code base is large, and a static analysis does not scale to
this size. In a compile-analyze-test cycle errors appear most often in the newly written code,
and are thus relatively little influenced by how the features of the third party component are
configured. Lowering precision on analyzing external components can allow finding errors
faster. This scenario can be realized using a feature projection, which simplifies feature
domains by confounding executions differing only on uninteresting features.

Before defining feature projection, let us consider a simpler case of ignoring a single
feature A ∈ F that is not directly relevant for current analysis. The ignore feature abstraction
merges any configurations that only differ with regard to A, and are identical with regard to
remaining features, F\{A}. We write k\A for a formula obtained by eliminating the feature
A from k. The new set of configurations is given by αfignore

A (K) = {
∨
k∈K,k\A≡k′ k | k′ ∈

{k\A | k ∈ K}}. The abstraction αfignore
A : AK → Aαfignore

A
(K) and concretization functions

γfignore
A : Aαfignore

A
(K) → AK are:

αfignore
A (a) =

∏
k′∈αfignore

A
(K)
⊔
k∈K,k|=k′ πk(a) (10)

γfignore
A (a′) =

∏
k∈K πk′(a′) if k |= k′ (11)

It turns out that ignoring features can be derived from the above basic abstractions as
shown in the following theorem:

I Theorem 9. Let αfignore
A (K) = {k′1, . . . , k′n}. Then:

αfignore
A = αjoin

k′
1
⊗ · · · ⊗αjoin

k′
n

and γfignore
A = γjoin

k′
1
⊗ · · · ⊗ γjoin

k′
n

.

I Example 10. We consider the lifted store aS2 with Kψ = {A∧B,A∧¬B,¬A∧B}. Then,
we have αfignore

A (Kψ) = {(A ∧ B) ∨ (¬A ∧ B), A ∧ ¬B} and αfignore
A (aS2) = (πA∧B(aS2) t

π¬A∧B(aS2), πA∧¬B(aS2)) = ([x 7→>], [x 7→1]). On the other hand, we have αfignore
B (Kψ) =

{(A∧B)∨ (A∧¬B),¬A∧B} and αfignore
A (aS2) = (πA∧B(aS2)tπA∧¬B(aS2), π¬A∧B(aS2)) =

([x 7→>], [x 7→−1]). J

Feature Projection. Now, if we need to ignore a larger number of features (say features
outside a certain component of interest), we can do it using a feature projection operator
which simply ignores a set of features {A1, . . . , Ak} ⊆ F:

αfproj
{A1,...,Ak} = αfignore

A1
◦ · · · ◦αfignore

Ak
and γfproj

{A1,...,Ak} = γfignore
Ak

◦ · · · ◦ γfignore
A1
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(α ◦ A[[#if (θ) s]] ◦ γ)(d) = α(A[[#if (θ) s]](γ(d))) = (by def. of ◦)

= α

( ∏
k∈Kψ

{
πk(A[[s]]γ(d)) if k |= θ

πk(γ(d)) if k 6|= θ

)
(def. of A in Fig. 2)

v̇
∏

k′∈α(Kψ)


πk′ (α(A[[s]]γ(d))) if k′ |= θ

πk′ (α(γ(d))) t πk′ (α(A[[s]]γ(d))) if sat(k′∧θ) ∧ sat(k′∧¬θ)

πk′ (α(γ(d))) if k′ |= ¬θ
(by Lemma2 in [14, App. C])

v̇
∏

k′∈α(Kψ)


πk′ (Dα[[s]]d) if k′ |= θ

πk′ (d) t πk′ (Dα[[s]]d) if sat(k′∧θ) ∧ sat(k′∧¬θ)

πk′ (d) if k′ |= ¬θ

(by IH and α ◦ γ reductive)

= Dα[[#if (θ) s]] d

Figure 3 Calculational derivation of Dα[[#if (θ) s]], the abstraction of A[[#if (θ) s]]. The ‘reductive’
property of all Galois connections is (α ◦ γ)(d) v d for all d.

It follows from the theorems of Section 3.1 that all the derived pairs of abstraction and
concretization functions are Galois connections.

4 Abstracting Lifted Analyses

We will now demonstrate how to derive abstracted lifted analyses using the operators of
Section 3, using the case of constant propagation for IMP programs as an example. Recall
that this analysis has been specified by: 1) the domain AKψ ; 2) the statement transfer
function A[[s]] : (A→ A)Kψ ; and 3) the expression evaluation function A′[[e]] : (A→ Const)Kψ.
Let 〈AKψ , v̇〉 −−−→←−−−α

γ
〈Aα(Kψ), v̇〉 be a Galois connection constructed using the abstractions

presented in Section 3. We will also write (α, γ) ∈ Abs to denote a Galois connection obtained
in such way.

Any function f defined on the concrete domain of a Galois connection can be abstracted to
work on the abstract domain by applying concretization to its argument and an abstraction
to its value, i.e. by the function F = α ◦ f ◦ γ, where ◦ denotes the usual composition
of functions. In fact, any monotone over-approximation of the composition α ◦ f ◦ γ is
sufficient for a sound analysis. Even fixed points can be transferred from a concrete to an
abstract domain of a Galois connection. If both domains are complete lattices and f is a
monotone function on the concrete domain, then by the fixed point transfer theorem (FPT
for short) [10]: α(lfpf) v lfpF v lfpF#. Here F = α ◦ f ◦ γ and F# is some monotone,
conservative over-approximation of F , i.e. F v F#. The calculational approach to abstract
interpretation [9] used in this work, advocates simple algebraic manipulation to obtain a
direct expression for the function F (if it exists) or for an over-approximation F#.

In our case, for any lifted store a ∈ AKψ , we calculate an abstracted lifted store by
α(a) = d ∈ Aα(Kψ). Now, we use a Galois connection to derive an over-approximation of
α ◦ A[[s]] ◦ γ obtaining a new abstracted statement transfer function Dα[[s]] : (A→ A)α(Kψ).
Similarly, one can derive an abstracted analysis for expressions D′α[[e]], approximating
α ◦ A′[[e]] ◦ γ. These approximations are derived using structural induction on statements
(respectively on expressions), in a process that resembles a simple algebraic calculation,
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(α ◦ A′[[e0 ⊕ e1]] ◦ γ)(d)

= α
( ∏
k∈Kψ

πk(A′[[e0]]γ(d)) ⊕̂πk(A′[[e1]]γ(d))
)

(by def. of ◦, and A′ in Fig. 2)

= α
( ∏
k∈Kψ

πk(A′[[e0]]γ(d) ˙̂⊕A′[[e1]]γ(d))
)

(by def. of πk and ˙̂⊕)

=
∏

k′∈α(Kψ)

πk′ (α
(
A′[[e0]]γ(d) ˙̂⊕A′[[e1]]γ(d)

)
) (by def. of α)

v̇
∏

k′∈α(Kψ)

πk′ (α(A′[[e0]]γ(d)) ˙̂⊕α(A′[[e1]]γ(d))) (by Lemma 3 in [14, App. C])

v̇
∏

k′∈α(Kψ)

πk′ (D′
α[[e0]]d ˙̂⊕D′

α[[e1]]d) (by IH, twice)

v̇
∏

k′∈α(Kψ)

πk′ (D′
α[[e0]]d) ⊕̂πk′ (D′

α[[e1]]d) (by def. of πk′ and ˙̂⊕)

= D′
α[[e0 ⊕ e1]]d

Figure 4 Calculational derivation of Dα[[e0 ⊕ e1]].

deceivingly akin to equation reasoning.
Let us consider the derivation steps for the static conditional statement (#if (θ) s) in

detail. Our inductive hypothesis (IH) is that for statements s′ that are structurally smaller
than (#if (θ) s) the (yet-to-be-calculated) Dα[[s′]] soundly approximates α◦A[[s′]]◦γ, formally:
α◦A[[s′]]◦γ v̇ Dα[[s′]]. The derivation in Fig. 3 begins with composing the concretization and
abstraction functions with the concrete transfer function and then proceeds by expanding
definitions. An (inner) induction on the structure of the abstraction α follows, delegated to
the Appendix for brevity. In the last step we apply the inductive hypothesis, to obtain a
closed representation independent of A. This representation, just before the final equality, is
the newly obtained (calculated) definition of the abstracted analysis Dα. Interestingly, the
derivation is independent of the structure of the abstraction α, so this form works for any
abstraction specified using our operators. We give derivational steps for e0 ⊕ e1 in Fig. 4.

The derivations for other cases are similar and can be found in [14, App. B]. The process
results in the definitions of Dα[[s]] and D′α[[e]] presented in Fig. 5. Soundness of the abstracted
analysis follows by construction; more precisely the complete calculation constitutes an
inductive proof of the following theorem:

I Theorem 11 (Soundness of Abstracted Analysis). We have that:

(i) ∀e ∈ Exp, (α, γ) ∈ Abs, d ∈ Aα(Kψ) : α ◦ A′[[e]] ◦ γ(d) v̇ D′α[[e]] d
(ii) ∀s ∈ Stm, (α, γ) ∈ Abs, d ∈ Aα(Kψ) : α ◦ A [[s]] ◦ γ(d) v̇ D α[[s]] d

Monotonicity of the abstracted analysis is shown in [14, App. D].

I Theorem 12 (Monotonicity of Abstracted Analysis). For all s ∈ Stm and e ∈ Exp, Dα[[s]]
and D′α[[e]] are monotone functions.

I Example 13. Consider the program S1 from Example 1, with Kψ = {A∧B,A∧¬B,¬A∧B}.
We calculate Dα1 [[S1]] for α1 = αjoin

A . Following the rules of Fig. 5, we obtain the following
confounded abstract execution off all configurations containing the feature A:(

[x 7→>]
) Dα1 [[x:=0]]
7−→

(
[x 7→0]

) Dα1 [[#if (A) x:=x+1]]
7−→

(
[x 7→ 1]

) Dα1 [[#if (B) x:=1]]
7−→

(
[x 7→1]

)
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Dα[[skip]] = λd. d

Dα[[x := e]] = λd.
∏

k′∈α(Kψ)

(πk′ (d))[x 7→ πk′ (D′
α[[e]]d)]

Dα[[s0 ; s1]] = Dα[[s1]] ◦ Dα[[s0]]

Dα[[if e then s0 else s1]] = λd.Dα[[s0]]d ṫ Dα[[s1]]d

Dα[[while e do s]] = lfpλΦ. λd. d ṫ Φ(Dα[[s]] d)

Dα[[#if (θ) s]] = λd.
∏

k′∈α(Kψ)


πk′ (Dα[[s]]d) if k′ |= θ

πk′ (d) t πk′ (Dα[[s]]d) if sat(k′∧θ) ∧ sat(k′∧¬θ)

πk′ (d) if k′ |= ¬θ

D′
α[[n]] = λd.

∏
k′∈α(Kψ)

n

D′
α[[x]] = λd.

∏
k′∈α(Kψ)

πk′ (d)(x)

D′
α[[e0 ⊕ e1]] = λd.

∏
k′∈α(Kψ)

πk′ (D′
α[[e0]]d) ⊕̂ πk′ (D′

α[[e1]]d)

Figure 5 Definitions of Dα[[s]] : (A→ A)α(Kψ) and D′
α[[e]] : (A→ Const)α(Kψ).

In the last step we used Dα1 [[#if(B) x := 1]]([x 7→ 1]) = ([x 7→ 1]) ṫ Dα1 [[x := 1]]([x 7→ 1])
since ((A ∧ B) ∨ (A ∧ ¬B)) ∧ B and ((A ∧ B) ∨ (A ∧ ¬B)) ∧ ¬B are both satisfiable.
The final result shows that the value of x is the constant 1 for every configuration that
satisfies A. On the other hand, for the program S2 and the same abstraction we obtain
Dα1 [[S2]]([x 7→>]) = ([x 7→>]), so the value of x is lost (approximated) by Dα1 . J

We may implement the abstracted analysis in Fig. 5 directly by using Kleene’s fixed point
theorem to calculate fixed points of loops iteratively. But, we can also extract corresponding
data-flow equations, and then apply the known iterative algorithms to calculate fixed-
point solutions. We assume that the individual statements are uniquely labelled with
labels `. Given an abstraction α, for each statement s` we generate two abstracted stores
[[s`]]αin, [[s

`]]αout : Aα(Kψ), which describe the input and output abstract store for all configurations
before and after executing the statement s`. They are related with the definitions for
abstracted analysis Dα given in Fig. 5 as follows: for each statement s the input store
[[s`]]αin is substituted for the parameter d, and the output store [[s`]]αout for the value of the
corresponding function. The complete list of data-flow equations are given in Fig 6. We can
derive data-flow equations for expressions as well, but for brevity we refer directly to D′α[[e]]
function. The obtained data-flow equations are provably sound as shown in [14, App. E].

I Theorem 14 (Soundness of Abstracted Data-Flow Equations). For all s ∈ Stm and α ∈ Abs,
such that [[s`]]αin and [[s`]]αout satisfy the data-flow equations in Fig. 6, it holds:

Dα[[s`]]([[s`]]αin) v̇ [[s`]]αout

5 Variability Abstraction with Syntactic Transformation

The analyses A and Dα can be implemented either directly by using definitions of Figs. 2
and 5, or by extracting the corresponding data-flow equations. An entirely different way
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[[skip`]]αout = [[skip`]]αin

∀k′ ∈ α(Kψ): πk′ ([[x :=` e`0 ]]αout) = πk′ ([[x :=` e`0 ]]in)α[x 7→ πk′ (D′
α[[e`0 ]][[x :=` e`0 ]]αin )]

[[s`00 ;` s`11 ]]αout = [[s`11 ]]αout

[[s`11 ]]αin = [[s`00 ]]αout

[[s`00 ]]αin = [[s`00 ;` s`11 ]]αin

[[if` e then s`00 else s`11 ]]αout = [[s`00 ]]αout ṫ [[s`11 ]]αout

[[s`00 ]]αin = [[if` e then s`00 else s`11 ]]αin
[[s`11 ]]αin = [[if` e then s`00 else s`11 ]]αin

[[while` e do s`0 ]]αout = [[s`0 ]]αin
[[s`0 ]]αin = [[while` e do s`0 ]]αin ṫ [[s`0 ]]αout

∀k′ ∈ α(Kψ): πk′ ([[#if` (θ) s`0 ]]αout) =


πk′ ([[s`0 ]]αout) if k′ |= θ

πk′ ([[#if` (θ) s`0 ]]α
in

) t πk′ ([[s`0 ]]αout) if sat(k′∧θ)∧sat(k′∧¬θ)

πk′ ([[#if` (θ) s`0 ]]α
in

) if k′ |= ¬θ

∀k′ ∈ α(Kψ): πk′ ([[s`0 ]]αin ) = πk′ ([[#if` (θ) s`0 ]]αin ) if sat(k′ ∧ θ)

Figure 6 Data-flow equations for abstracted constant propagation.

to implement Dα is to execute the abstraction on the source program, before running the
analysis, and then running the previously existing analysis A on this transformed program.
We take this route as it allows to completely reuse the effort invested in designing and
implementing A.

Any IMP program s with sets of features F and valid configurations K is translated
into a corresponding abstract program α(s) with corresponding set of features α(F) and
set of valid configurations α(K). We define the translation recursively over the structure
of α. The function α copies all basic statements of IMP , and recursively calls itself for all
sub-statements of compound statements other than #if. For example, α(skip) = skip and
α(s0 ; s1) = α(s0) ; α(s1). We discuss the rewrites for #if statements below.

In the rewrite, we associate a fresh feature name Z /∈ F, with every join abstraction
αjoin (consequently written αjoin

‘Z ’ ). The new feature Z is an abstract name (renaming) of
the compound formula

∨
k∈K k. It denotes the single valid configuration obtained from αjoin.

The new feature name is used to simplify conditions in the transformed code. The αjoin
‘Z ’

rewrite is defined as follows:

αjoin
‘Z ’ (F) = {Z}, αjoin

‘Z ’ (K) = {Z}

αjoin
‘Z ’ (#if (θ) s) =



#if (Z) αjoin
‘Z ’ (s) if

∨
k∈K k |= θ

#if (Z) lub(αjoin
‘Z ’ (s), skip) if sat(

∨
k∈K k∧θ)∧

sat(
∨
k∈K k∧¬θ)

#if (¬Z) αjoin
‘Z ’ (s) if

∨
k∈K k |= ¬θ

In effect of applying the αjoin
‘Z ’ transformation to any program s we obtain a single variant pro-

gram, i.e. a SPL with only one valid product where the feature Z is enabled. It can be analyzed
with existing single-program analyses. Note that it enables performing family-based analyses
with implementations of single-program analyses, albeit with loss of precision. The newly in-
troduced statement lub(s0, s1) represents the least upper bound (join) of the results obtained
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by executing s0 and s1. This is the only language-dependent aspect of reconfigurator. It
can have different implementations depending on the programming language and the analysis
we work with. In our case, we exploit the fact that A[[if e then s0 else s1]] ignores the
branching condition (cf. Fig. 2) and use lub(s0, s1) = if (n) then s0 else s1 for some fixed
integer n. Finally, observe that #if (¬Z) αjoin

‘Z ’ (s) is equivalent to skip, however it is useful
to keep the statement in the program, which makes it easy to merge programs when we use
compound abstractions (below).

The rewrite for projection only changes the set of legal configurations:

αproj
ϕ (F) = F, αproj

ϕ (K) = {k∈K | k |=ϕ}, αproj
ϕ (#if (θ) s) = #if (θ) αproj

ϕ (s)

Note that the general scheme for the basic rewrites of #if statements can be summarized as
α(#if (θ) s) = #if (α(θ)) α(s, θ), where α are functions transforming the condition θ and
the statement s. It is easy to extract α(θ) and α(s, θ) from the above rewrites for αjoin

‘Z ’ and
αproj
ϕ . We will use them in defining transformations for binary operators.
Now, for the case of parallel composition α1 ⊗ α2, recall that the set α1 ⊗ α2(K) is the

union of α1(K) and α2(K). However in the rewrite semantics, we are sometimes modifying
the set of features. If α1(F) 6= α2(F) then some of valid configurations in α1(K) ∪ α2(K)
will not assign truth values to all features in α1(F) ∪ α2(F). To take a meaningful union
of configurations, we need to first unify their alphabets. To achieve this aim, each valid
configuration can be extended by information that the missing features are excluded from it
(negated). Now the rewrite rules for parallel composition are given by:

α1⊗α2(F)=α1(F) ∪ α2(F)

α1⊗α2(K)={k1∧
∧
f∈α2(F)\α1(F)

¬f |k1∈α1(K)} ∪ {k2∧
∧
f∈α1(F)\α2(F)

¬f |k2∈α2(K)}

α1 ⊗ α2(#if (θ) s) =
{

#if
(
α1(θ) ∨ α2(θ)

)
α1(s, θ) if α1(s, θ) = α2(s, θ)

α1(#if (θ) s);α2(#if (θ) s) otherwise

Observe that the second case of the parallel composition transformation can only appear if
the second case of a join transformation has been used somewhere in recursive rewriting of s
(perhaps deep). All the other rewrites leave s intact. However, in such case the branches
have disjoint feature alphabets, as every join is using a fresh feature name as parameter.
This ensures that only one of the sequenced copies of s, α1(s, θ) and α2(s, θ), will actually
be executed (and the other will amount to skip) in any given configuration of the product.

For sequential composition of abstractions α2 ◦ α1 we use the following rewrites:
α2 ◦ α1(F) = α2(α1(F)), α2 ◦ α1(K) = α2(α1(K)), and for the #if statement we have
α2 ◦ α1(#if (θ) s) = #if

(
α2(α1(θ))

)
α2(α1(s, θ), α1(θ)).

I Example 15. Consider the program S′1: #if(A) x := x + 1; #if (B) x := 1
with F = {A,B}, ψ = A ∨B, and Kψ = {A ∧B,A ∧ ¬B,¬A ∧B}. Then

αjoin
‘Z ’ ◦αproj

A (S′1) = #if (Z) x := x + 1; #if (Z) lub(x := 1, skip) (12)

The set of valid configurations after projection is changed to {A ∧ B,A ∧ ¬B}, and after
join again to just {Z}. The obtained program has only one configuration, the one that
satisfies Z. The projection does not change the statements of the program. The join
rewrite however, simplifies the first #if (it is statically determined; cf. the first case of
αjoin
‘Z ’ transformation), and joins the second statement with skip as it is unknown whether

it will be executed or not, in the lack of information about the assignment to B in the
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α(s) : IMP

(abstracted SPL)

A
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// Dα[[s]] : (A→ A)Kψ
(abstracted lifted analysis)

γ

II

Figure 7 Illustration of derive vs abstract: Dα[[s]] = A[[α(s)]].

abstracted program. Note that since Z is the only one valid configuration, the obtained
program is equivalent to: x := x + 1; lub(x := 1, skip). Similarly, we can calculate:
αjoin
‘Z ’ ◦αproj

B (S′1) = #if (Z) lub(x := x + 1, skip); #if (Z) x := 1.
Now consider ((αjoin

‘Z ’ ◦ αproj
A ) ⊗ αproj

B )(S′1). The new set of features is {Z,A,B}. The
subset {A,B} is retained from the right projection component, and {Z} comes from the
left join-project component. After extending the configurations of both components with
negations of absent feature names we get the following set of valid configurations: K′ =
{Z ∧¬A∧¬B,¬Z ∧A∧B,¬Z ∧¬A∧B}. The result of the left join-project operand is the
program (12), and the right rewrite (projection) never changes the statements, so its result is
identical to S′1. Thus we are composing programs (12) and S′1 using the parallel composition
rewrites. Then ((αproj

Z ◦αjoin
A )⊗αproj

B )(S′1) is:

#if (Z ∨A) x := x + 1; #if (Z) lub(x := 1, skip); #if (B) x := 1

The first #if has been unified using the first case of the transformation for ⊗, and the second
#if is transformed into two copies of the statement with different guards, using the second
case of the rewrite definition. For any legal configuration in K′ at most one of them does not
reduce to skip. J

Now the analysis A[[α(s)]] and Dα[[s]] coincide up to renaming of valid configurations. So
the reconfigurator together with an existing implementation of A gives us the abstracted
analysis Dα. The above equality is illustrated by Fig. 1.

I Theorem 16.
∀s ∈ Stm,α : AKψ → Aα(Kψ) ∈ Abs, d ∈ Aα(Kψ) : Dα[[s]] d = A[[α(s)]] d 5.

I Example 17. Consider the program S1 from Example 1 with Kψ = {A∧B,A∧¬B,¬A∧B}.
We have calculated in Example 13 that Dαjoin

A
[[S1]]([x 7→>]) = ([x 7→1]). We now calculate

A[[αjoin
A,‘Z ’(S1)]]([x 7→>]) (here αjoin

A,‘Z ’ = αjoin
‘Z ’ ◦αproj

A ):

(
[x 7→>]

) A[[x:=0]]7−→
(
[x 7→0]

) A[[#if (Z) x:=x+1]]7−→
(
[x 7→ 1]

) A[[#if (Z) lub(x:=1,skip)]]7−→
(
[x 7→1]

)
J

6 Evaluation

Recall that there are two ways to speed up lifted analyses: improving representation and
increasing abstraction. First, we will compare the performance of the two using an unoptimized

5 The proof of this theorem is in [14, App. F].
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Benchmark avg. |Kψ| |F| LOC max variab. mth |Kψ| |F| LOC
Prevayler N=1.3 5 8,000 P’F’.publisher() N=8 3 10
BerkelyDB N=1.6 42 84,000 DBRunAct.main() N=40 7 165
GPL N=3.9 18 1,350 Vertex.display() N=106 9 31

Figure 8 Characteristics of our three SPL benchmarks (average #configurations in all methods
in SPL, total #features, and LOC) along with, for each SPL, its method with maximum variability
(#configurations, local #features, and LOC).

lifted analysis as a baseline. Then, we demonstrate that abstraction may be used to turn
previously infeasible analysis into feasible ones. Finally, we consider example scenarios that
use projection and join and show that abstraction may be applied to an entire product line
or when just analyzing a single method.

For our experiments, we use an existing implementation of lifted data-flow analyses for
Java Object-Oriented SPLs [5]. The implementation is based on SOOT’s intra-procedural
data-flow analysis framework [24] for analyzing Java programs. It uses CIDE (Colored
IDE) [16] to annotate statements using background colors rather than #ifdef directives.
Every feature is thus associated with a unique color.

We will consider an unoptimized lifted intra-procedural analysis, known as A2 (from [5]),
that uses |Kψ|-tuples of analysis information, one analysis value per configuration. Also, we
consider A3 (from [5]) which is the same analysis as A2, but with improved representation
via sharing of analysis-equivalent configurations using a high-performance bit vector library
[22]. So A3 is an optimized version of A2 where shared representation is used for representing
sets of configurations (i.e. components of tuples) with equivalent analysis information. Note
that A2 corresponds to A in Fig. 2 and we will thus refer to it as A, while we will use S
for the analysis with sharing (A3 in [5]). The performance of abstracted analyses depends
on the size of tuples they work on. Therefore as variability abstractions, we have chosen
Dαjoin which joins together (confounds) information from all configurations down to just one
abstracted analysis value, and Dαproj

N/2⊗αjoin
N/2

(where N = |Kψ|) which is a parallel composition
of a projection of 1/2 (randomly selected) configurations and a join of the remaining 1/2
configurations. We abbreviate them as D1 and DN/2 in the following. We have chosen
those variability abstractions because they represent the coarsest abstraction D1 that works
on 1-sized tuples, and the medium abstraction DN/2 that works on N/2-sized tuples. Any
other abstraction will have a speed up anywhere between A (no abstraction), DN/2 (medium
abstraction) and D1 (maximum abstraction). It thus quantifies the potential of abstractions.

For our experiment, we have chosen two analyses: reaching definitions and uninitialized
variables, for which we derived the corresponding definitions of abstracted lifted analysis.
We use three SPL benchmarks [16]: Graph PL (GPL) is a small desktop application with
intensive feature usage; Prevayler is a slightly larger product line with low feature usage;
and BerkelyDB is a larger database library with moderate feature usage. Fig. 8 summarises
relevant characteristics for each benchmark: the average number of valid configurations in all
methods in the SPL, the total number of features in the entire SPL, the total number of lines
of code (LOC). Also, for each SPL, the figure details information about the method with the
highest variability (most configurations): its number of valid configurations, features, and
lines of code.

Performance. Fig. 9 shows the time it takes to run each of our three maximum variability
methods, as a relative comparion between A (baseline) and S (sharing) vs DN/2 (medium
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Figure 9 Analysis time for reaching definitions (above) and uninitialized variables (below): A
(baseline) and S (sharing) vs. DN/2 (medium abstraction) and D1 (maximum abstraction).

abstraction) and D1 (maximum abstraction). The experiments are executed on a 64-bit
IntelrCoreTM i5 CPU with 8 GB memory. All times are reported as averages over ten runs
with the highest and lowest number removed. For each benchmark method, we give the
speed up factor relative to the baseline (normalized with factor 1) and recall the number of
configurations, N.

Our experiment confirms previous results that sharing is indeed effective and especially
so for larger values of N [5]. On our methods, it translates to speed ups (i.e., A vs S)
anywhere between 3% faster (for N=8) and slightly more than twice as fast (for N=106).
We also observe that abstraction is not surprisingly significantly faster than unabstracted
analyses (i.e., D vs A and S); i.e., abstraction yields significant performance gains, especially
for benchmarks with higher variability. For GPL with N=106, we see a dramatic 47 and
28 times speed up depending on the analysis (i.e., D1 vs A). Also, we note that increased
abstraction is up to 26 times faster than improved representation (i.e., D1 vs S). In general,
it is obviously possible to combine the benefits from representation and abstraction to yield
even more efficient analyses.

From Infeasible to Feasible Analysis. Of course, for very large values of N, analyses
may become impractically slow or infeasible. As an experiment, we took a large method
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void main(..) {
1 .. int doAction = 0; ..
2 #ifdef Cleaner
3 if (..) doAction = CLEAN;
4 #endif
5 #ifdef INCompresser
6 if (..) doAction = COMPRESS;
7 #endif
8 if (..) doAction = CHECKPOINT;
9 #ifdef Statistics
10 if (..) doAction = DBSTATS;
11 #endif
12 .. switch (doAction) { .. } ..
}

Figure 10 Code fragment extracted from BerkeleyDB::main() with N=40.

(processFile() from BerkeleyDB) and kept adding unconstrained variability manually. For
N=213=8,192 configurations, the analysis A took 138 seconds. For N=214=16,384, it ran
more than ten minutes until it eventually produced an out-of-memory error. In contrast,
variability abstraction D1 analyses the same high variability method in less than 8 ms (albeit
less precisely). Hence, abstraction can not only speed up analyses, but also turn previously
infeasible analyses feasible.

Projection on Entire SPL. GPL is a family of classical graph applications with variability
on its representation and algorithms. For instance, the features Directed and Undirected
control whether or not graphs are directed; Weighted and Unweighted control whether or
not the graphs are weighted; and, the features BFS and DFS control the search algorithm used
(breadth-first search or depth-first search). It is common industrial practice, to ship products
with a subset of configurations, and thereby functionality. Here, we may use projection to
disable features BFS and Undirected, along with any features that only work on undirected
graphs: (Connected, MSTKruskal, and MSTPrim for implementing connected components
and minimum spanning trees algorithms) which can be obtained from GPL’s feature model,
detailing such feature dependencies. With this projection (abstraction), the configuration
space of GPL is reduced from 528 to 370 valid configurations. This, in turn, cuts analysis
time of reaching definitions in half (from 90ms to 49ms). For 123 out of 135 methods, the
abstracted analysis computes the exact same analysis information. For larger product lines
and projections, lots of time may be saved in this way.

Join on One Method. Figure 10 shows a fragment extracted from BerkeleyDB’s main()
method with N=40 valid configurations. A local variable, doAction is defined and initialized
to zero, after which it is conditionally assigned three times in statements guarded by #ifdefs.
(Actually, there are two more similar #ifdefs involving features Evictor and DeleteOp, but
we have omitted those for brevity in the code fragment.) We can use a join abstraction of
the reaching definitions analysis to compute what are the possible values (definitions) that
reach the condition of the switch statement in line 12. An abstracted analysis would be able
to determine that these are the assignments in lines 1, 3, 6, 8, and 10, by analyzing only one
crudely over-approximated configuration instead of all (N=40) configurations. In general, by
inspecting the structure of the code and the features used, we can tailor abstactions that can
analyze individual methods much faster than analyzing all configurations.
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7 Related Work

Static analyses can be accelerated by devicing more efficient representations or by intro-
ducing abstraction. In family-based analysis for software product lines the representation
improvements primarily rely on sharing state information for variants with analysis-equivalent
information (which implies reducing redundant computation). This can optimize the analyses
considerably [5, 6, 18]. However, in the worst case, the number of variants that a lifted
analysis has to consider is still inherently exponential in the number of features, |F|. Thus
with a large number of features lifted analyses may become impractical or even infeasible. In
this work we have taken the alternate route of using abstraction. Our experiments show that
abstraction introduces speed-ups independently of representation gains. Thus our results
can be beneficially combined with efficient representations.

An efficient implementation of lifted analysis formulated within the IFDS framework [21]
for inter-procedural distributive environments was proposed in SPLLIFT [4]. It uses binary
decision diagrams to represent shared feature constraints. The authors have found that the
running time of analysing all variants in a family is close to the analysis of a single-program.
In such case, further benefit of applying abstraction, as presented in this paper, is unlikely to
bring any significant improvement. However, notice that the method of SPLLIFT is limited
only to distributive data-flow analysis encoded within the IFDS framework. Many analyses,
including constant propagation, are not distributive and hence cannot be expressed in IFDS.
Let alone static analyses that are not expressible as data-flow analyses (including type
checking, model-checking, etc).

The formal developments in this paper are based on variational abstract interpretation, a
formal methodology for systematic derivation of lifted analyses for #ifdef-based product
lines, proposed in [19]. The method is based on the calculational approach to abstract
interpretation of Cousot [9], applied and contextualized to product lines. In that work [19],
calculations are used to derive a directly operational lifted analysis which is correct by
construction. In the present paper, we assume that lifted analyses exist (possibly obtained
using the methodology of [19]), and focus on abstracting variability using them. We devise
an expressive calculus for specifying abstraction operators. Also, all abstractions specifiable
in our calculus are now automatically executable. Implementing abstractions as program
transformations looks similar to the framework defined in [13] for designing source-to-source
program transformations by abstract interpretation of program semantics.

A good collection of analyses that have been lifted manually is presented in the survey
[23]. We should remark, that the join operation αjoin allows applying single program analyses
to program families, even if with precision loss. In that sense, the our approach is the first
ever method that can automatically lift single program analyses to work on program families.
Besides the family-based strategy, the survey [23] identifies a sampling strategy as a suitable
way of analyzing product lines (see also [1]). In the sampling strategy only a random subset
of products is analyzed. We remark that once the sample is selected, our projection operator
αfproj
ϕ can be used to realize the sampling strategy in a simultanous way by exploiting an

existing family-based analysis.
In fact, the abstraction specification framework of Section 3 allows specifying any analysis

in the spectrum between a fully family-based analyses, and a single variant, single product-
based, analysis. We can specify abstractions that select (sample) any subsets of configurations
and then analyze this subset with selected choice of precision, either all variants precisely,
like in sampling, or confounding some executions for efficiency. In this sense, we show how to
design analyses placed anywhere in the design spectrum painted in [23]. Consider, the feature-
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based analysis strategy as an example. In this strategy an analysis explores the program
code feature-by-feature (as opposed to configuration-by-configuration). Analyses following
this strategy can now be systematically obtained using our abstractions, by projecting away
(ignoring) all but one feature and running a single program analysis on the result. This is
quite remarkable. It has been well recognized that designing such analyses is very difficult,
yet now there exists a systematic way of doing that, so it is no longer an impenetrable art.

8 Conclusion

We have defined variability-aware abstractions given as Galois connections, and used them
to derive efficient and correct-by-construction abstract analyses of program families. We
have designed a calculus for the abstractions, and shown how abstractions specified in this
language can be applied not only on analyses, but also on programs, obtaining a convenient
implementation strategy of the abstractions in form of a source-to-source reconfigurator
transformation.

We have proved the main results (Theorem 11 and Theorem 16) for constant propagation
analysis and extracted a general proof methodology that holds for any other monotone and
computable analysis that can be lifted. We have derived the abstracted definition of #if
with the lowest precision. Improvements of the precision are possible once the analysis is
known.

The reconfigurator transformation presently requires that the programming language
is able to express sequential composition (e.g., “;” in IMP) and join of statements (i.e., lub
as in “t”) with respect to the analysis in question. It would be interesting to consider lifting
those assumptions in future, and apply this method to more modeling and programming
languages.

We evaluated the method on three Java-based product lines. We found that the ab-
stractions improve performance of analyses independently of improvements in the data
representations used in the implementations of these analyses. This indicates that the
proposed abstraction strategies will be instrumental in tackling error finding analysis in
large configurable software systems, like the Linux kernel. Indeed we have developed these
techniques with the intention of scaling error finding tools to such challenging cases in future.
Besides this, we would like to experiment with applying these abstraction techniques to
alternative quality assurance methods including model checking, and testing.
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