18 research outputs found

    SNOMED2HL7: a tool to normalize and bind SNOMED CT concepts to the HL7 Reference Information Model

    Get PDF
    [Abstract] BACKGROUND: Current clinical research and practice requires interoperability among systems in a complex and highly dynamic domain. There has been a significant effort in recent years to develop integrative common data models and domain terminologies. Such efforts have not completely solved the challenges associated with clinical data that are distributed among different and heterogeneous institutions with different systems to encode the information. Currently, when providing homogeneous interfaces to exploit clinical data, certain transformations still involve manual and time-consuming processes that could be automated. OBJECTIVES: There is a lack of tools to support data experts adopting clinical standards. This absence is especially significant when links between data model and vocabulary are required. The objective of this work is to present SNOMED2HL7, a novel tool to automatically link biomedical concepts from widely used terminologies, and the corresponding clinical context, to the HL7 Reference Information Model (RIM). METHODS: Based on the recommendations of the International Health Terminology Standards Development Organisation (IHTSDO), the SNOMED Normal Form has been implemented within SNOMED2HL7 to decompose and provide a method to reduce the number of options to store the same information. The binding of clinical terminologies to HL7 RIM components is the core of SNOMED2HL7, where terminology concepts have been annotated with the corresponding options within the interoperability standard. A web-based tool has been developed to automatically provide information from the normalization mechanisms and the terminology binding. RESULTS: SNOMED2HL7 binding coverage includes the majority of the concepts used to annotate legacy systems. It follows HL7 recommendations to solve binding overlaps and provides the binding of the normalized version of the concepts. The first version of the tool, available at http://kandel.dia.fi.upm.es:8078, has been validated in EU funded projects to integrate real world data for clinical research with an 88.47% of accuracy. CONCLUSIONS: This paper presents the first initiative to automatically retrieve concept-centered information required to transform legacy data into widely adopted interoperability standards. Although additional functionality will extend capabilities to automate data transformations, SNOMED2HL7 already provides the functionality required for the clinical interoperability community.Instituto de Salud Carlos III; PI13/0202

    A semantic interoperability approach to support integration of gene expression and clinical data in breast cancer

    Get PDF
    [Abstract] Introduction. The introduction of omics data and advances in technologies involved in clinical treatment has led to a broad range of approaches to represent clinical information. Within this context, patient stratification across health institutions due to omic profiling presents a complex scenario to carry out multi-center clinical trials. Methods. This paper presents a standards-based approach to ensure semantic integration required to facilitate the analysis of clinico-genomic clinical trials. To ensure interoperability across different institutions, we have developed a Semantic Interoperability Layer (SIL) to facilitate homogeneous access to clinical and genetic information, based on different well-established biomedical standards and following International Health (IHE) recommendations. Results. The SIL has shown suitability for integrating biomedical knowledge and technologies to match the latest clinical advances in healthcare and the use of genomic information. This genomic data integration in the SIL has been tested with a diagnostic classifier tool that takes advantage of harmonized multi-center clinico-genomic data for training statistical predictive models. Conclusions. The SIL has been adopted in national and international research initiatives, such as the EURECA-EU research project and the CIMED collaborative Spanish project, where the proposed solution has been applied and evaluated by clinical experts focused on clinico-genomic studies.Instituto de Salud Carlos III, PI13/02020Instituto de Salud Carlos III, PI13/0028

    Analysis of the suitability of existing medical ontologies for building a scalable semantic interoperability solution supporting multi-site collaboration in oncology

    Get PDF
    Semantic interoperability is essential to facilitate efficient collaboration in heterogeneous multi-site healthcare environments. The deployment of a semantic interoperability solution has the potential to enable a wide range of informatics supported applications in clinical care and research both within as ingle healthcare organization and in a network of organizations. At the same time, building and deploying a semantic interoperability solution may require significant effort to carryout data transformation and to harmonize the semantics of the information in the different systems. Our approach to semantic interoperability leverages existing healthcare standards and ontologies, focusing first on specific clinical domains and key applications, and gradually expanding the solution when needed. An important objective of this work is to create a semantic link between clinical research and care environments to enable applications such as streamlining the execution of multi-centric clinical trials, including the identification of eligible patients for the trials. This paper presents an analysis of the suitability of several widely-used medical ontologies in the clinical domain: SNOMED-CT, LOINC, MedDRA, to capture the semantics of the clinical trial eligibility criteria, of the clinical trial data (e.g., Clinical Report Forms), and of the corresponding patient record data that would enable the automatic identification of eligible patients. Next to the coverage provided by the ontologies we evaluate and compare the sizes of the sets of relevant concepts and their relative frequency to estimate the cost of data transformation, of building the necessary semantic mappings, and of extending the solution to new domains. This analysis shows that our approach is both feasible and scalable

    Business model for healthcare interoperability services

    Full text link
    En la situación actual donde los sistemas TI sanitarios son diversos con modelos que van desde soluciones predominantes, adoptadas y creadas por grandes organizaciones, hasta soluciones a medida desarrolladas por cualquier empresa de la competencia para satisfacer necesidades concretas. Todos estos sistemas se encuentran bajo similares presiones financieras, no sólo de las condiciones económicas mundiales actuales y el aumento de los costes sanitarios, sino también bajo las presiones de una población que ha adoptado los avances tecnológicos actuales, y demanda una atención sanitaria más personalizable a la altura de esos avances tecnológicos que disfruta en otros ámbitos. El objeto es desarrollar un modelo de negocio orientado al soporte del intercambio de información en el ámbito clínico. El objetivo de este modelo de negocio es aumentar la competitividad dentro de este sector sin la necesidad de recurrir a expertos en estándares, proporcionando perfiles técnicos cualificados menos costosos con la ayuda de herramientas que simplifiquen el uso de los estándares de interoperabilidad. Se hará uso de especificaciones abiertas ya existentes como FHIR, que publica documentación y tutoriales bajo licencias abiertas. La principal ventaja que nos encontramos es que ésta especificación presenta un giro en la concepción actual de la disposición de información clínica, vista hasta ahora como especial por el requerimiento de estándares más complejos que solucionen cualquier caso por específico que sea. Ésta especificación permite hacer uso de la información clínica a través de tecnologías web actuales (HTTP, HTML, OAuth2, JSON, XML) que todo el mundo puede usar sin un entrenamiento particular para crear y consumir esta información. Partiendo por tanto de un mercado con una integración de la información casi inexistente, comparada con otros entornos actuales, hará que el gasto en integración clínica aumente dramáticamente, dejando atrás los desafíos técnicos cuyo gasto retrocederá a un segundo plano. El gasto se centrará en las expectativas de lo que se puede obtener en la tendencia actual de la personalización de los datos clínicos de los pacientes, con acceso a los registros de instituciones junto con datos ‘sociales/móviles/big data’.---ABSTRACT---In the current situation IT health systems are diverse, with models varying from predominant solutions adopted and created by large organizations, to ad-hoc solutions developed by any company to meet specific needs. However, all these systems are under similar financial pressures, not only from current global economic conditions and increased health care costs, but also under pressure from a population that has embraced the current technological advances, and demand a more personalized health care, up to those enjoyed by technological advances in other areas. The purpose of this thesis is to develop a business model aimed at the provision of information exchange within the clinical domain. It is intended to increase competitiveness in the health IT sector without the need for experts in standards, providing qualified technical profiles less expensively with the help of tools that simplify the use of interoperability standards. Open specifications, like FHIR, will be used in order to enable interoperability between systems. The main advantage found within FHIR is that introduces a shift in the current conception of available clinical information. So far seen, the clinical information domain IT systems, as a special requirement for more complex standards that address any specific case. This specification allows the use of clinical information through existing web technologies (HTTP, HTML, OAuth2, JSON and XML), which everyone can use with no particular training to create and consume this information. The current situation in the sector is that the integration of information is almost nonexistent, compared to current trends. Spending in IT health systems will increase dramatically within clinical integration for the next years, leaving the technical challenges whose costs will recede into the background. The investment on this area will focus on the expectations of what can be obtained in the current trend of personalization of clinical data of patients with access to records of institutions with ‘social /mobile /big data’

    Development and Evaluation of an Ontology-Based Quality Metrics Extraction System

    Get PDF
    The Institute of Medicine reports a growing demand in recent years for quality improvement within the healthcare industry. In response, numerous organizations have been involved in the development and reporting of quality measurement metrics. However, disparate data models from such organizations shift the burden of accurate and reliable metrics extraction and reporting to healthcare providers. Furthermore, manual abstraction of quality metrics and diverse implementation of Electronic Health Record (EHR) systems deepens the complexity of consistent, valid, explicit, and comparable quality measurement reporting within healthcare provider organizations. The main objective of this research is to evaluate an ontology-based information extraction framework to utilize unstructured clinical text for defining and reporting quality of care metrics that are interpretable and comparable across different healthcare institutions. All clinical transcribed notes (48,835) from 2,085 patients who had undergone surgery in 2011 at MD Anderson Cancer Center were extracted from their EMR system and pre- processed for identification of section headers. Subsequently, all notes were analyzed by MetaMap v2012 and one XML file was generated per each note. XML outputs were converted into Resource Description Framework (RDF) format. We also developed three ontologies: section header ontology from extracted section headers using RDF standard, concept ontology comprising entities representing five quality metrics from SNOMED (Diabetes, Hypertension, Cardiac Surgery, Transient Ischemic Attack, CNS tumor), and a clinical note ontology that represented clinical note elements and their relationships. All ontologies (Web Ontology Language format) and patient notes (RDFs) were imported into a triple store (AllegroGraph?) as classes and instances respectively. SPARQL information retrieval protocol was used for reporting extracted concepts under four settings: base Natural Language Processing (NLP) output, inclusion of concept ontology, exclusion of negated concepts, and inclusion of section header ontology. Existing manual abstraction data from surgical clinical reviewers, on the same set of patients and documents, was considered as the gold standard. Micro-average results of statistical agreement tests on the base NLP output showed an increase from 59%, 81%, and 68% to 74%, 91%, and 82% (Precision, Recall, F-Measure) respectively after incremental addition of ontology layers. Our study introduced a framework that may contribute to advances in “complementary” components for the existing information extraction systems. The application of an ontology-based approach for natural language processing in our study has provided mechanisms for increasing the performance of such tools. The pivot point for extracting more meaningful quality metrics from clinical narratives is the abstraction of contextual semantics hidden in the notes. We have defined some of these semantics and quantified them in multiple complementary layers in order to demonstrate the importance and applicability of an ontology-based approach in quality metric extraction. The application of such ontology layers introduces powerful new ways of querying context dependent entities from clinical texts. Rigorous evaluation is still necessary to ensure the quality of these “complementary” NLP systems. Moreover, research is needed for creating and updating evaluation guidelines and criteria for assessment of performance and efficiency of ontology-based information extraction in healthcare and to provide a consistent baseline for the purpose of comparing alternative approaches

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe

    Doctor of Philosophy

    Get PDF
    dissertationDespite the advancements in therapies, next-generation sequencing, and our knowledge, breast cancer is claiming hundreds of thousands of lives around the world every year. We have therapy options that work for only a fraction of the population due to the heterogeneity of the disease. It is still overwhelmingly challenging to match a patient with the appropriate available therapy for the optimal outcome. This dissertation work focuses on using biomedical informatics approaches to development of pathwaybased biomarkers to predict personalized drug response in breast cancer and assessment of feasibility integrating such biomarkers in current electronic health records to better implement genomics-based personalized medicine. The uncontrolled proliferation in breast cancer is frequently driven by HER2/PI3K/AKT/mTOR pathway. In this pathway, the AKT node plays an important role in controlling the signal transduction. In normal breast cells, the proliferation of cells is tightly maintained at a stable rate via AKT. However, in cancer, the balance is disrupted by amplification of the upstream growth factor receptors (GFR) such as HER2, IGF1R and/or deleterious mutations in PTEN, PI3KCA. Overexpression of AKT leads to increased proliferation and decreased apoptosis and autophagy, leading to cancer. Often these known amplifications and the mutation status associated with the disease progression are used as biomarkers for determining targeting therapies. However, downstream known or unknown mutations and activations in the pathways, crosstalk iv between the pathways, can make the targeted therapies ineffective. For example, one third of HER2 amplified breast cancer patients do not respond to HER2-targeting therapies such as trastuzumab, possibly due to downstream PTEN loss of mutation or PIK3CA mutations. To identify pathway aberration with better sensitivity and specificity, I first developed gene-expression-based pathway biomarkers that can identify the deregulation status of the pathway activation status in the sample of interest. Second, I developed drug response prediction models primarily based on the pathway activity, breast cancer subtype, proteomics and mutation data. Third, I assessed the feasibility of including gene expression data or transcriptomics data in current electronic health record so that we can implement such biomarkers in routine clinical care
    corecore