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     ABSTRACT 

Despite the advancements in therapies, next-generation sequencing, and our 

knowledge, breast cancer is claiming hundreds of thousands of lives around the world 

every year. We have therapy options that work for only a fraction of the population due 

to the heterogeneity of the disease. It is still overwhelmingly challenging to match a 

patient with the appropriate available therapy for the optimal outcome. This dissertation 

work focuses on using biomedical informatics approaches to development of pathway-

based biomarkers to predict personalized drug response in breast cancer and assessment 

of feasibility integrating such biomarkers in current electronic health records to better 

implement genomics-based personalized medicine.  

The uncontrolled proliferation in breast cancer is frequently driven by 

HER2/PI3K/AKT/mTOR pathway. In this pathway, the AKT node plays an important 

role in controlling the signal transduction. In normal breast cells, the proliferation of cells 

is tightly maintained at a stable rate via AKT. However, in cancer, the balance is 

disrupted by amplification of the upstream growth factor receptors (GFR) such as HER2, 

IGF1R and/or deleterious mutations in PTEN, PI3KCA. Overexpression of AKT leads to 

increased proliferation and decreased apoptosis and autophagy, leading to cancer. Often 

these known amplifications and the mutation status associated with the disease 

progression are used as biomarkers for determining targeting therapies. However, 

downstream known or unknown mutations and activations in the pathways, crosstalk 
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between the pathways, can make the targeted therapies ineffective. For example, one 

third of HER2 amplified breast cancer patients do not respond to HER2-targeting 

therapies such as trastuzumab, possibly due to downstream PTEN loss of mutation or 

PIK3CA mutations. To identify pathway aberration with better sensitivity and specificity, 

I first developed gene-expression-based pathway biomarkers that can identify the 

deregulation status of the pathway activation status in the sample of interest. Second, I 

developed drug response prediction models primarily based on the pathway activity, 

breast cancer subtype, proteomics and mutation data. Third, I assessed the feasibility of 

including gene expression data or transcriptomics data in current electronic health record 

so that we can implement such biomarkers in routine clinical care.   



To my parents Arifur Rahman, and Roushan Akter 
And my mother-in-law, Rokeya Islam. 
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CHAPTER 1 

INTRODUCTION 

Breast cancer is a heterogeneous disease claiming approximately 450,000 lives every 

year worldwide (1). In 2014, 41,000 women died of the disease, accounting for 15% of 

cancer-related deaths in the United States. Traditionally, clinical-pathological markers are 

used for breast cancer treatments based on the size, grade, lymph node involvement, or 

metastasis status, known as the tumor, node, and metastasis (TNM) grading system (2). 

Additionally, three receptor-based biomarkers— estrogen, progesterone, and HER2 

receptor status have been used for clinical treatment decision-making. Hormone receptor 

positive patients receive estrogen modulator therapies, and HER2-amplified patients 

receive HER2-targeted therapies in addition to chemotherapy. Many patients relapse or 

do not respond to targeted therapies even with the presence of these 

immunohistochemically measurable biomarkers. More recently, with the advent of next-

generation sequencing technology, molecular profiling of tumors has identified complex 

genomic abnormalities or subtypes of cancer that can be of significant value to breast 

cancer management (3). These findings show the heterogeneity of breast cancer demands 

more careful determination of aberrant signaling in selecting personalized cancer therapy 

for better treatment outcome. Growth factor receptor pathways are recognized as one of 

the hallmarks of the cancer for their effects of a sustained proliferative signal in normal 
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cell proliferation and cell death. However, in cancer cells, this homeostasis is disrupted, 

and cells continue to proliferate uncontrollably, resisting cell death (4).   

 

1.1 Overview 

 AKT, also known as protein kinase B (PKB), is a protein that is critical for growth 

factor receptor signaling cascades important in various diseases such as cancer, type 2 

diabetes, and Alzheimer’s disease. AKT is frequently deregulated in many cancers via 

upstream growth factor receptors, activating mutations in PI3KCA and loss of function 

mutations in PTEN. Activated AKT increases cell proliferation, survival, transcription, 

tumor suppression, tissue invasion and chemo-resistance (5, 6). Therefore, AKT has been 

an appealing target in multiple cancer treatments. However, AKT inhibitors show 

therapeutic benefits only in a subset of patients, and it is often challenging to leverage the 

underlying genomic features that make someone sensitive to AKT inhibitors to predict 

therapy response (7, 8). Clinical trial results show that knowing the mutation status 

leading to activation of the target is insufficient to predict drug response (9). Failure to 

predict drug response is possibly due to the interaction between target and downstream 

deregulations and alternative pathways. Therefore, better approaches are needed to model 

AKT activity so that we can match patients with the right therapy. Gene expression 

signatures, sets of gene expression levels representing a biological phenomenon such as 

pathway activation, have been shown to be efficacious in predicting drug response. 

Previous studies showed that genomic analysis could identify pathway activation, which 

is important to tumor growth and response to therapy (10-13). Our approach to 

understanding drug response lies in identifying the aberrant signal to targeting the 
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aberration. If an aberrant AKT signaling genomic pattern or AKT signature could be 

identified, it would be possible to apply that signature to patients’ tumors to measure the 

level of AKT activation independent of the activation method. Because of the inherent 

interconnectedness or the crosstalk among pathways, it is fundamentally challenging to 

identify a particular genomic signature for a targeted therapy. My first goal in this 

dissertation is to identify the AKT signature accounting for crosstalks in growth factor 

receptor networks and to build a predictive model for AKT inhibitors’ 

sensitivity/resistance in an individual. 

   In addition, the complexity and the volume of gene expression data make it unrealistic 

for clinicians to use such data in routine clinical cases without any decision aids. 

Clinicians have little to no training in the usage of gene expression data. However, 

currently available standard information models used by electronic health record (EHR) 

systems fall short in representing, storing, and exchanging gene expression data so that 

data can be computable and usable for active clinical decision support (CDS) (14). 

Despite the proven benefits of using gene expression-based biomarkers, to date it is not 

feasible to integrate gene expression data in the EHR for routine clinical care. Therefore, 

my second goal here is to leverage and adapt currently available international standards 

and terminologies to design an information model for representing gene expression data.  

The promises of personalized medicine remain elusive to date due to challenges in 

matching specific genomic aberration in an individual to their drug response. Therefore, 

the goal of this dissertation is to take data produced at the bench, apply it to control 

dataset to identify biomarkers, and finally to study the feasibility of implementation of 

such biomarkers in electronic health record systems so that the gene-expression-based 
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biomarkers can be used in patient care decision-making. Specifically, development of 

pathway and drug response biomarkers falls in the translational biomedical informatics 

domain and assessment of feasibility of integrating gene expression data falls in the 

clinical informatics domain. Below is the specific significance of my work for this 

dissertation.  

 

1.2 Effects of AKT deregulation in cancer 

As noted above, the AKT signaling pathway, also known as the protein kinase B 

(PKB) pathway, has a major role in the development and progression of cancer. First, 

activated AKT promotes cell proliferation by inhibiting cell cycle inhibitors such as 

forkhead box proteins O 1, 3, 4 (FOXO1/3/4). Second, AKT activates protein synthesis 

and cell growth via mTOR, which ultimately leads to increased proliferation and loss of 

cell cycle control. AKT also regulates autophagy, autophagosomic lysosomal degradation 

of bulk cytoplasmic contents, via mTOR. Third, AKT can inhibit apoptosis by binding to 

pro-apoptotic proteins such as BAD and BAX. AKT can be activated by upstream growth 

factor receptors (GFR) such as HER2, IGF1R and G-protein coupled (GPC) receptors via 

phosphoinositde 3-kinase (PI3K) signaling. In addition, estrogen can activate the 

PI3K/AKT pathway in an estrogen receptor (ER) independent manner (15). Activated 

AKT has been shown to interfere with tamoxifen-induced apoptosis (16).  

 

1.3 Significance of targeting AKT deregulation 

Single gene-based biomarkers have shown promise as a biomarker in some cases. 

ERBB2 (also known as HER2) amplification has been a biomarker for first-line treatment 
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with HER2-targeted therapy such as trastuzumab (17). However, one third of the patients 

exhibiting amplification of HER2 do not respond to this drug, probably because of 

deregulation of downstream or parallel pathways such as PTEN or PI3K (18-21).  Sangai 

et al. (2012) described loss of function of PTEN and activating PIK3CA mutations as a 

clinical biomarker for MK2206, a small molecular inhibitor of AKT1 and AKT2 (22). 

Sommer et al. (2013) identified elevated serum and glucocorticoid regulated kinase 

(SGK1) to be predictive of resistance to AKT inhibitors in breast cancer (23). However, 

these studies do not address the fact that alternative pathways, for example, by HER2, 

IGF1R or RAS, can activate AKT. Thus, one or two gene-based biomarkers fail to 

predict drug response with high sensitivity and specificity. These findings demand further 

exploration of the effects of interactions among growth factor receptor pathway 

activation, mutation status and crosstalk in different networks to predict drug sensitivity 

in cancer patients. Previous efforts have shown that the multigene-based gene expression 

profile, a signature, is predictive of therapy responses by correctly identifying target 

deregulation (10-13). The approach here is to identify a representative multigene 

expression pattern of AKT deregulation, an AKT signature, to predict AKT pathway 

deregulation considering crosstalk. One of the ultimate goals of this proposal is to 

generate, validate and test drug-specific response prediction models targeting AKT 

deregulation based on the AKT signature in breast cancer patients. 
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1.4 Significance of gene expression data integration with the Electronic  

Health Record 

Since the advent of high-throughput genomic profiling technologies such as gene 

expression microarrays and RNA-Seq, biomarkers such as OncotypeDX and 

Mammaprint have been developed for guiding clinicians with disease diagnosis, 

prognosis and treatment decisions (10, 24-28). Nevertheless, there remains a significant 

gap between the scientific knowledge and routine use of gene expression data in clinical 

practice. The National Human Genome Research Institute initiated the Electronic 

Medical Records and Genomics (eMERGE) (29, 30) consortium to bridge this gap by 

developing interoperable systems that can integrate genomic data with the clinical 

workflow (Integrating Large-Scale Genomic Information into Clinical Practice, 2012). 

However, the eMERGE consortium so far has focused mainly on integrating gene 

variants and genetic testing reports in the EHR. In a recent publication, it was recognized 

that the “mechanism for long-term storage of genomic data as well as secure, 

generalizable, and interoperable data exchange between healthcare settings are needed to 

ensure continuity of care” (14). 

 

1.5 Challenges to integrating gene expression data with  

Electronic Health Record (EHR)  

Gene expression data offer many opportunities to improve clinical care, but many 

significant barriers hinder the effective use of such data. These barriers include an 

inadequate standardized laboratory reporting method; the complexity of the analysis; the 

relatively high cost; the lack of a standard storage format; physician training, 
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understanding of actionable clinical value, and insurance reimbursement for genomics 

testing; information overload; and continual updating of genomic knowledge. Due to 

these significant barriers, very little to no progress has been made to integrate gene 

expression data into the EHR. Biomarkers such as OncotypeDX and Mammaprint are 

outsourced to specialized companies as genomic tests. The companies performing gene-

expression-based tests send actionable scores back to the clinicians after performing the 

test. The scores frequently are not included into the EHR in computable format. Gene 

expression data used in clinical trials are stored outside the EHR in various formats. 

Therefore, significant work needs to be done to accommodate the integration of actual 

gene expression data from these clinical biomarker tests so that data computation and 

sharing of the data are feasible. 

Effective genomics data sharing and integration to the EHR is  key for the adoption of 

genomics information in routine clinical care. In addition, genomics data need to be 

represented in computable format and, hence, can be used in clinical decision support 

(CDS) for guiding clinicians, improving quality of care and reducing adverse drug events 

(31-35). CDS is recognized as necessary to help reduce information overload for 

clinicians and to facilitate appropriate up-to-date use of genomic information (36-38). To 

address data sharing and integration between clinical research data and the EHR, 

researchers have proposed detailed clinical modeling (DCM), a basis for retaining 

computable meaning when data are exchanged between heterogeneous computer systems 

across a variety of concepts, has been used (39). Among various international efforts, the 

openEHR Foundation has published a health information reference model, which consists 

of a language for building “clinical models” also known as “archetypes”(40). In addition, 
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the Clinical Information Modeling Initiative (CIMI), an international consortium, is 

dedicated to providing a common format for representation of health information content 

so that semantic interoperability can be assured through evolving standards for 

representing clinical information. If gene expression data were to present in the EHR 

using the reference model constraints, gene expression data could be (1) represented as 

both human readable for human cognition and machine readable for CDS 

implementation; (2) shared with different systems, retaining semantic and computable 

meaning; (3) updated regularly and more efficiently based on current knowledge; and (4) 

stored, accessed and used in a cost-effective way. In this dissertation, I have explored the 

feasibility of representing gene expression data with open standard health information 

modeling efforts. In cases where standards, terminology, or data models were 

unavailable, I proposed a preliminary data model integrating best practices. 
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Abstract

Motivation: Although gene-expression signature-based biomarkers are often developed for clinical
diagnosis, many promising signatures fail to replicate during validation. One major challenge is
that biological samples used to generate and validate the signature are often from heterogeneous
biological contexts—controlled or in vitro samples may be used to generate the signature, but pa-
tient samples may be used for validation. In addition, systematic technical biases from multiple
genome-profiling platforms often mask true biological variation. Addressing such challenges will
enable us to better elucidate disease mechanisms and provide improved guidance for personalized
therapeutics.
Results: Here, we present a pathway profiling toolkit, Adaptive Signature Selection and
InteGratioN (ASSIGN), which enables robust and context-specific pathway analyses by efficiently
capturing pathway activity in heterogeneous sets of samples and across profiling technologies.
The ASSIGN framework is based on a flexible Bayesian factor analysis approach that allows for
simultaneous profiling of multiple correlated pathways and for the adaptation of pathway signa-
tures into specific disease. We demonstrate the robustness and versatility of ASSIGN in estimating
pathway activity in simulated data, cell lines perturbed pathways and in primary tissues samples
including The Cancer Genome Atlas breast carcinoma samples and liver samples exposed to geno-
toxic carcinogens.
Availability and implementation: Software for our approach is available for download at: http://
www.bioconductor.org/packages/release/bioc/html/ASSIGN.html and https://github.com/wevan
johnson/ASSIGN.
Contact: andreab@genetics.utah.edu or wej@bu.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since the advent of high-throughput genomic profiling technologies

such as gene expression microarrays and RNA-Seq, many computa-

tional and statistical methods have been developed to derive gene

expression signatures for disease diagnosis, prognosis and treatment

decisions (Golub et al., 1999; Saeys et al., 2007; van de Vijver et al.,

2002). Gene expression signatures are often used as surrogate repre-

sentations of pathway activation or deactivation. The use of
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expression signatures to quantify pathway activation level has been

particularly important for dissecting the complexity of diseases and

providing guidelines of targeted therapeutics. To date, gene expres-

sion-based pathway analyses mainly face two sources of challenges:

(i) limited pathway annotations in curated databases and (ii) inef-

fective analysis tools.

In reference to the first limitation, many public databases

(Ashburner et al., 2000; Kanehisa et al., 2014; Liberzon et al., 2011)

provide manually curated pathways that associate genes lists with

pathway activity. However, genes in those predefined pathways are

not always associated with gene expression changes that differ

between disease states. For example, some genes in an annotated

pathway might be activated through changes in phosphorylation or

protein interaction status. Thus, pathway analysis approaches that

use patient gene expression profiles without careful selection for

expression-based signature genes with transcriptional change

may lead to incorrect results. An alternative way to infer pathway

activity is by experimentally perturbing the pathway of interest in

controlled settings and projecting the associated molecular signature

(e.g. changes in gene expression) onto patient or other target sam-

ples to estimate pathway activity levels (Bild et al., 2006; Gustafson

et al., 2010; Sweet-Cordero et al., 2005). For example, previous

efforts have generated gene expression signatures for growth factor

signaling pathways in human primary cells and then used the signa-

tures to predict disease prognosis and drug sensitivity in human can-

cer cohorts (Bild et al., 2006). Although, these pathway-profiling

approaches have been previously shown to generate empirical gene

expression-based pathway response signatures, the assumption of

homogeneity between in vitro (e.g. perturbation samples) and

in vivo (e.g. patient) biological conditions does not always hold due

to platform, tissue or disease deregulation status variations.

In effort to address the second concern, factor analysis

approaches have been used to identify latent factors (metagenes)

associated with pathways and clinical outcome (Bazot et al., 2013;

Bhattacharya and Dunson, 2011; West, 2003). However, it is often

difficult to interpret the biological meaning of the latent factors

identified by these unsupervised approaches or to estimate the abso-

lute activation level for pathways of interest. Supervised classifica-

tion approaches (Pirooznia et al., 2008) often model pathways one

at a time without accounting for pathway correlation or interaction

between related pathways. Moreover, supervised classification

approaches require expression data from pathway perturbation

experiments for building up models, thus often fail to work when

only pathway gene lists are available. So far, none of these existing

approaches adequately account for tissue, disease or context specifi-

city in assessing gene expression signatures regulated via pathway

activation or deactivation. Furthermore, none of them are designed

to profile genomic signatures across multiple genomic profiling

platforms.

To overcome these limitations, we propose a novel and flexible

pathway profiling toolkit called Adaptive Signature Selection and

InteGratioN (ASSIGN). ASSIGN relies on a sparse Bayesian factor

analysis method to estimate the activation status of pathways under

investigation, such as oncogenic pathways, immune response path-

ways or drug response pathways in individual samples of a genomic

dataset for predicting optimal treatment prior to any medication on

patients. Here, we use multiple simulated and real datasets to demon-

strate the validity and robustness of ASSIGN in estimating pathway

activation. In simulated data, the model correctly adapts the pathway

signature gene lists in specific biological contexts by excluding

irrelevant genes or including relevant genes into signatures. We used

five previously published oncogenic signaling pathway signatures to

demonstrate the advantages of modeling multiple pathways in concert

to account for crosstalk among the pathways. We also used the tumor

samples from The Cancer Genome Atlas (TCGA) to show that

ASSIGN can robustly combine in vitro signatures generated using

one profiling platform with tumor samples profiled using a different

platform. Finally, we used profiling data generated from liver tissues

exposed to genotoxic hepatocarcinogens to demonstrate the versatil-

ity of ASSIGN in identifying and adapting signatures from pre-

curated pathway gene lists. Overall, ASSIGN uses a semi-supervised

approach that results in more biologically interpretable pathway

activation profiles that are adapted to specific tissues or disease con-

texts, as opposed to more rigid and less interpretable profiles gener-

ated by previous approaches. Although, ASSIGN was initially

designed for pathway-based analysis from gene expression data,

it can easily be extended to other profiling data types such as DNA

variation or methylation data.

2 Approach

We define a ‘signature’ as a set of representative genes whose expres-

sion changes due to differences in disease status, exposure to a chem-

ical compound/drug or differential regulation of key pathway genes.

The signature can also optionally contain the absolute direction

changes or expression magnitude changes due to an experimental

perturbation. ASSIGN is a pathway analysis toolkit with the flexibil-

ity to accommodate profiling analysis needs for a large number of

pathways or perturbation profiling scenarios. ASSIGN allows the

user the option of choosing either Bayesian regression (signatures

known) or factor analysis (signatures unknown) and accommodates

multiple signatures simultaneously within a set of samples. Key

innovations in ASSIGN allow for broad applicability of the method

(Table 1), whereas other existing approaches lack one or more of

these critical features. The specific advantages of ASSIGN are

described below.

2.1 Simultaneous profiling of multiple pathways
ASSIGN can account for pathways simultaneously, compared with

other approaches that only consider a single pathway at a time

[GSEA (Subramanian et al., 2005), ssGSEA (Barbie et al., 2009),

BFRM (West, 2003)]. This feature accounts for ‘cross-talk’ between

pathway components by directly modeling correlations and inter-

actions in the pathway signature components that might reduce de-

tection sensitivity and specificity.

2.2 Context specificity in baseline gene expression
Baseline gene expression levels (i.e. expression level when a pathway

is inactive) may vary widely due to differences in tissue types or

disease status, or across different measurement platforms and can

contribute to heterogeneity between in vitro perturbation samples

and patient samples. ASSIGN can adaptively estimate background

gene expression levels across a set of samples, giving it the unique

ability to estimate absolute pathway activity levels or drug efficacy in

clinical samples before the samples have received a treatment, even

when the signature was generated using a different profiling platform.

2.3 Context specific signature estimation
Many existing signature-based profiling approaches require input

signatures in the form of a gene list [GSEA, FacPad (Ma and Zhao,

2012)] or a gene list with static expression magnitude changes

(BFRM). While BFRM provides a direct and supervised approach

for pathway profiling, it requires the signature to be generated in the

1746 Y.Shen et al.
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same biological context as the patient samples. FacPad allows for

the adaptation of signature profiles, but cannot integrate magnitude

change information. In addition, FacPad is highly impacted by out-

liers in the dataset and often suffers from the lack of identifiability

of the direction of the signature magnitude. ASSIGN provides the

flexibility to use either a signature-based or gene list-based approach

and can also use input magnitudes as prior information, thus provid-

ing a compromise that allows for adaptive signature refinement

while reducing signature over-fitting and direction ambiguity.

2.4 Regularization of signature strength estimates
ASSIGN regularizes signature strength estimates using Bayesian

ridge regression (Hsaing, 1975), which ‘shrinks’ signature strength

estimates toward zero, especially for signatures with a weak

presence or anecdotal correlations in the sample. In addition, ridge

regression has well-established benefits in handling correlated

covariates (Hsiang, 1975), thus making it advantageous for the

simultaneous modeling of correlated signatures.

3 Methods

3.1 Formal definition of ASSIGN model
To define the model formally, suppose a gene expression assay pro-

files G genes on N patient samples of a certain disease type, and let

Y be a G ! N matrix of observed expression values. Each entry in Y

is a gene expression value after data normalization. We apply a

Bayesian sparse factor model to decompose the Y matrix as:

YG!N ¼ BG!11
0

1!N þ SG!KAK!N þ EG!N (1)

Each column of Y represents all the genes for one patient

sample. We model the measured expression values of each

patient sample in a vector form: Y$;j % NðBþ SA$;j; RÞ;
where R ¼ diagðs(1

1 ; . . . ; s(1
G Þ for j ¼ 1; . . . ;N. Figure 1 contains a

visual representation of the ASSIGN model.

B is a G-vector of the baseline gene expression levels for all

genes. We define the prior distribution of B as B % NðlB; SBÞ. The

prior parameters lB and SB can be set as non-informative or inform-

ative from control samples in a pathway perturbation experiment.

Matrix S is the G ! K factor loading matrix, with each column

representing the gene expression signature of a specific biological

pathway. In whole-genome expression profiling, we expect that the

majority of genes will not show differential expression in associ-

ation with any particular factor, and each individual factor

will be associated with only a few genes. Thus, the columns k

of S will be sparse. The hierarchical spike-and-slab prior

distribution of S is: Sg;kjdg;k % ð1( dg;kÞNð0;x2
0Þ þ dg;kNð0;x2

1Þ;
where dg;k % Bernoulliðpg;kÞ; for g ¼ 1; . . . ;G; k ¼ 1; . . . ;K. dg;k

is a Bernoulli-distributed binary indicator for Sg;k (dg;k ¼ 0: the gene

is excluded from the signature; dg;k¼1: the gene is included in the

signature). dg;k is sampled with probability pg;k. Sg;k has a diffuse

prior (x1¼1) when dg;k¼1, and a highly precise prior (x0¼0.1)

when dg;k¼0. The choice of prior pg;k depends on the prior infor-

mation of pathway signatures (see Section 3.2 for details).

Matrix A is the K!N factor score (pathway activity) matrix,

with each column A.,j representing activation scores of the K path-

ways for each individual patient sample. Since tumors often rely on

the activation of one or two pathways, such as via an ‘oncogene ad-

diction’ (Weinstein, 2002), not all of the K pathways will necessarily

be activated in all the individual patient samples. Therefore, any col-

umn of A will likely be sparse. Thus, we model the matrix A using a

hierarchical spike-and-slab prior similar to the formulation for S.

To overcome the ‘sign-flipping’ phenomenon (e.g. non-identifiabil-

ity) that commonly occurs in factor analysis, we used a truncated

normal distribution (0, 1 range) in a modified slab normal prior:

Ak;jjck;j % ð1( ck;jÞNð0;x2
0Þ þ ck;j

1
x1

Nð0; 1Þ

U 1
x1

! "
( Uð0Þ

leading to better interpretability of absolute pathway activation lev-

els. In this prior, U is the cumulative function of the standard normal

Fig. 1. Visual representation of ASSIGN model

Table 1. Comparison of ASSIGN with existing pathway-profiling methods

GSEA ssGSEA BFRM

(Binary regression)

BFRM

(Factor analysis)

FacPad ASSIGN

Software input

Predefined gene list x x x x

Magnitude changes x x

Perturbation expression profiling data x x

Advanced model features

Multiple signatures x x x

Context-specific background x

Context-specific signature x x x

Pathway activity regularization x x

Method output

Biologically interpretable pathways x x x x x

Pathway activity estimates x x x x x

Pathway significance estimates x x x

ASSIGN offers a more comprehensive set of features compared with other existing approaches.

ASSIGN: context specific genomic profiling 1747
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perturbation experiments that do not fully represent the pathway

signatures in a disease environment and (iii) when one or more of

the pathways are deregulated, thus requiring significant adaptation

of the gene list, signature magnitudes and background expression

profile. Detailed descriptions of data generation and the results are

given in the Supplementary Materials.

3.6 Software implementation and application
ASSIGN is available as a Bioconductor package, written in the R

programming language and is freely available for download at

http://www.bioconductor.org/packages/release/bioc/html/ASSIGN.html.

As input, ASSIGN requires gene expression data from patient/test

samples, and a signature perturbation dataset or signature gene list.

When perturbation data are given, ASSIGN automatically generates

pathway signatures based on the raw gene expression data from one

or more perturbations. When signature perturbation datasets are un-

available, the user can provide predetermined signature gene lists

(e.g. from public databases, prior differential expression experi-

ments). ASSIGN outputs a matrix of signature strengths for each

sample and the prior/posterior signature gene lists and magnitude

changes. The software also provides the user with output from a

complete internal cross-validation on the perturbation data, MCMC

posterior convergence diagnostics and an evaluation of classification

accuracy when patient labels are provided by the user. The user can

specify model parameters/features such as background adaptation,

signature adaptation and regularization of signature strength. The

model specification options for the analyses in this study are listed in

Supplementary Table S3.

4 Results

To overcome challenges from pathway ‘cross-talk’ and heterogen-

eity from biological and technical sources, we developed the

ASSIGN toolkit that allows for flexible profiling of multiple corre-

lated signatures into specific disease, tissue and patient contexts.

Here, we demonstrate the features of ASSIGN using simulation,

cross validation and several publicly available genomic datasets. In

Section 4.1, we use three simulated scenarios to evaluate the model’s

abilities to estimate pathway-activation status and filter irrelevant

genes. In Sections 4.2 and 4.3, we illustrate ASSIGN’s ability to

account for context-specific background levels and to crosstalk

among multiple pathways. In Section 4.4, we evaluate the effective-

ness of ASSIGN to overcome cross-tissue and cross-platform obs-

tacles to estimates pathway activity in a large breast carcinoma

dataset. In Section 4.5, we adapt curated signatures of DNA damage

response pathways to estimate pathway signature strength in liver

profiling samples. In these sections we compare ASSIGN in multiple

contexts with existing methods such as GSEA, ssGSEA, BFRM and

FacPad and demonstrate a general advantage of ASSIGN over these

existing approaches.

4.1 Simulation studies
We conducted a simulation study to evaluate the performance of

ASSIGN under three scenarios to test the ability of ASSIGN to ef-

fectively estimate background, signature and activity profiles.

Details regarding data generation for each scenario are given in

Supplementary Materials. In the first simulation scenario, we eval-

uated ASSIGN’s ability to estimate a pathway’s activity when path-

way signatures are known a priori. ASSIGN accurately estimated

the activation level of the pathways (Supplementary Table S4A). In

the second simulation scenario, we attempted to estimate signatures

obtained from pathway perturbation experiments that require con-

text-specific adaptation. ASSIGN was able to closely estimate the

posterior mean of the activation levels and accurately estimate the

correct posterior means of the background and the signature

(Supplementary Table S4B). Here, we observed that 91% of the

insignificant genes and 98% of the significant genes were respect-

ively dropped from or added to the posterior (Supplementary

Fig. S2). In the third simulated scenario, we showed that ASSIGN

was capable of detecting more than one activated pathway

(Supplementary Table S4C). Furthermore, we discovered that know-

ledge of the regulation status of only 10 genes out of 250 total

significant genes was sufficient to overcome the sign-flipping issue

and correctly estimate a pathway activation status.

4.2 Profiling of interconnected oncogenic pathways
Many pathway analysis methods use a single-pathway approach

where the pathways are profiled independently. However, because

pathways interact with each other as part of complex biological sys-

tems, analyzing multiple pathways simultaneously provides better in-

sight into pathway function and activity. We validated our multiple-

pathway-based model by predicting activity of five previously pub-

lished oncogenic pathways (b-catenin, E2F3, MYC, RAS, SRC) in

human cell lines (Bild et al., 2006). In these signatures, about 17% of

the genes exhibit significant expression changes in more than one

pathway and also exhibit high correlation across the pathway gene

expression signatures (Supplementary Table S5). We used ASSIGN to

estimate pathway activity profiles for all five pathway sets via cross

validation. ASSIGN consistently predicted pathway activity profiles

accurately in all of these samples (Fig. 2A). In contrast, the single-

pathway BFRM approach (West, 2003) and FacPad incorrectly esti-

mated pathway activity profiles for four of the five pathways (Fig.

2B, C). Consequently, the false-positive pathway activation profiles

from these approaches could interfere with clinical decisions for se-

lecting the appropriate targeted therapies for cancer patients.

4.3 Adapting background levels across heterogeneous
samples
To further evaluate the importance of correcting for context-specific

baseline expression levels, we estimated pathway activity for the

EGFR and MEK co-activated RNA-Seq samples using the EGFR

and MEK pathway signatures profiled using RNA-Seq. We also

included a previously published PI3K signature that was generated

in a different cell type (lung epithelial cells compared with mammary

epithelial cells) using a microarray profiling technology. To validate

the adaptive background feature of ASSIGN, we compared three

ASSIGN model settings: (i) background (i.e. expression levels when

no pathways are active) fixed to the observed values in the control

samples of the EGFR/MEK pathway coactivated experiment; (ii)

background fixed to the value in the control samples of the PI3K

activation experiment; (iii) background fixed as in (ii) but allowing

for ASSIGN background estimation. We observed that the pathway

activation level was correctly estimated in model (i), which included

the correct background and (iii) with the ASSIGN adapted back-

ground, but not in (ii) with a non-adaptive incorrect background

(Supplementary Fig. S3). The posterior mean of B estimated in

model (iii) converged almost exactly to the true values (Cor.¼0.99),

whereas the background values used in model (ii) deviate from

the true values (Cor.¼0.60). Thus, the ASSIGN model (iii) with

adaptive background correctly estimates EGFR and MEK pathway

activity in EGFR and MEK co-activated samples even when the

background is unknown (Fig. 3). In these samples, we observed that

ASSIGN: context specific genomic profiling 1749
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the EGFR signature is strong in the EGFR-only samples and the

MEK signature is strong in the MEK-only samples. Both EGFR and

MEK are upregulated in the EGFRþMEK samples, with EGFR sig-

nal being overall lower, potentially due to stronger negative feed-

back on the pathway with concurrent activation of EGFR and MEK

(Avraham and Yarden, 2011; Klinger et al., 2013). For the sake of

comparison across methods, we applied the FacPad and BFRM

methods to these scenarios. FacPad requires a baseline level for each

sample and takes the ratio of treated samples and control samples as

input. When true baseline information of the EGFR and MEK coac-

tivated samples was not available, FacPad failed to estimate the

correct pathway activation level (Fig. 3). BFRM correctly estimated

the EGFR and MEK pathways in the EGFR and MEK coactivated

samples when the background in the patient samples perfectly

matched the training samples, albeit slightly less significantly than

ASSIGN. However, BFRM does not adjust for the background

expression level across platforms, and thus estimated elevated PI3K

levels in the EGFR and MEK samples (Fig. 3).

4.4 Cross-platform and cross-tissue pathway profiling
We examined activity levels for our RNA-seq based EGFR and

MEK pathways combined with a previously published PI3K signa-

ture generated on a different cell type and on a microarray profiling

technology. We used ASSIGN to estimate pathway activation status

in RNA-seq data from breast carcinomas and matched adjacent nor-

mal breast samples from TCGA. In addition, we compared pathway

activation in the breast carcinomas based on four molecular sub-

types: basal-like, luminal A, luminal B and Her2 (Supplementary

Fig. S4). For all three pathways, ASSIGN consistently found known

pathway-molecular subtype relationships confirmed by other studies

and outperformed BFRM and FacPad (Cheang et al., 2008; Hoeflich

et al., 2009; López-Knowles et al., 2010; Moestue et al., 2013). All

approaches estimated significantly higher EGFR activity in tumor

samples in general as well as in all four subtypes of breast cancer

compared with normal tissue (Table 2A). ASSIGN correctly pre-

dicted MEK activity to be higher in the basal-like subtype and PI3K

activity to be higher both in basal-like and Her2 subtype than nor-

mal tissues (Table 2B, C). BFRM failed to recognize higher MEK ac-

tivity and higher PI3K activity in basal-like subtypes (Table 2B, C).

FacPad incorrectly predicted MEK activities to be significantly lower

than normal tissue (Table 2B; Supplementary Fig. S4).

4.5 Context-specific signature predictions in individual
samples
To evaluate ASSIGN’s signature adaptation features and single sam-

ple prediction abilities, we investigated pathway activation status in

liver samples from Rattus norvegicus exposed to genotoxic or

non-genotoxic carcinogens. We estimated how well we could use

curated pathway signatures from existing databases to predict geno-

toxicity of the carcinogenic compounds. For validation purpose,

we used the outcome of an Ames Salmonella test as a proxy for

genotoxicity (Mortelmans and Zeiger, 2000) available through

CPDB (Fitzpatrick, 2008) for the carcinogenic compounds under con-

sideration. In this study, we focused on the association of the activity

Fig. 2. Oncogenic pathway activity prediction via cross-validation. Predicted

pathway activity for (A) ASSIGN, (B) BFRM and (C) FacPad. Activation levels

of two oncogenic pathways (Bcat, Src) were estimated for cell lines with one

of five pathways activated (b-catenin, E2F3, MYC, RAS, SRC). The ASSIGN

and BFRM values range between zero (inactive pathway) and one (active

pathway). FacPad was designed for relative pathway activation comparisons

and activation levels can range from negative infinity to infinity

Fig. 3. Pathway activity prediction using cross-platform generated pathway

signatures. Comparison of ASSIGN, BFRM and FacPad predicted EGFR (A),

MEK (B) and PI3K (C) pathway activity in EGFR, MEK and EGFRþMEK acti-

vated RNA-Seq samples. EGFR and MEK pathway signatures were profiled

via RNA-Seq, whereas PI3K pathway signature was profiled via microarray.

ASSIGN detected two pathways (EGFR and MEK) activated at the same time

in the EGFRþMEK samples and correctly predicted that the PI3K pathway

was inactive, whereas BFRM and FacPad estimated PI3K pathway activation

incorrectly. FacPad also estimated active pathways as inactive and inactive

pathways as active (so called ‘sign-flipping’. See Section 3)
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level of DNA damage response/repair pathways with genotoxic car-

cinogen exposures. Among DNA damage response/repair pathways

from the MSigDB database, 9 pathways were identified as differen-

tially activated between the two groups (genotoxic versus non-geno-

toxic) by at least two of four approaches: ASSIGN, GSEA, ssGSEA

and FacPad (Table 3). BFRM was not included in this analysis be-

cause it requires gene expression profiling data from pathway per-

turbation experiments to train its model (these are not available here).

We applied GSEA, ssGSEA and FacPad to test the enrichment of

DNA damage/repair pathways in genotoxic group and to validate

ASSIGN predictions. FacPad yielded results largely inconsistent with

the other methods; FacPad often produced mean differences between

two groups that were in opposite directions than the other

approaches. Although GSEA and ssGSEA approaches yielded results

similar to ASSIGN, we note that ASSIGN did not require genotoxic

status to estimate the pathway activation level. Furthermore, in con-

trast to GSEA, ssGSEA and FacPad, ASSIGN is able to estimate abso-

lute pathway activity for each individual sample (Supplementary

Table S6). ssGSEA outputs an enrichment score for each sample, but

this score is on a relative (not absolute) scale. Therefore, pathway en-

richment/activation can only be determined in contexts containing

multiple control samples (Supplementary Table S7). The ASSIGN pre-

dictions of genotoxic carcinogen exposure using the KEGG P53 sig-

naling pathway in rat samples closely matched the genotoxicity labels

from the bacterial assays with AUC¼0.91 (Figure 4-A and 4-B).

4.5.1 Context-specific signatures

We further examined the adaptive pathway KEGG P53 signature

estimated by ASSIGN. The predefined signature of the KEGG P53

signaling pathway from MSigDB is a curated gene set for Homo

sapiens. ASSIGN adapts this signature to R. norvegicus when

predicting the pathway activity level in rat samples. For the adaptive

signature of this pathway, we observed that 65% of the genes in the

KEGG P53 signaling pathway were dropped out from the significant

gene list (posterior probability <0.90) (Supplementary Table S7).

In addition, for the genes retained in the list, although the magnitude

of gene expression level is not provided in the predefined signature, it

was estimated and adapted to the rat samples (Supplementary Table

S7). We plotted a heatmap, ordering the samples by the activity level

of the context-specific R. norvegicus KEGG P53 signaling pathway.

The gene expression profiles of those 36 rat samples were naturally

clustered by pathway activity predicted by ASSIGN (Fig. 4C).

5 Conclusions and Discussion

We have developed the ASSIGN approach for simultaneously

determining the strengths of multiple molecular signatures in patient

samples. Our ASSIGN framework is specifically designed for cases

where the signatures or relevant signature gene lists are known

a priori. ASSIGN does not accommodate situations where signatures

are completely unknown. ASSIGN uses sparse Bayesian regression

and factor analysis approaches to simultaneously profile multiple

pathway signatures. ASSIGN is a flexible toolkit that allows for sig-

natures in the form of gene sets, gene sets with direction and magni-

tudes or signatures extracted directly from profiling data. ASSIGN

also allows for adapting the background and the signatures to better

accommodate specific tissues, biological systems or disease contexts.

We have demonstrated the usefulness of our approach in mul-

tiple simulated and real-data examples and showed that ASSIGN

performs favorably in these datasets compared with other existing

approaches. For example, because ASSIGN evaluates multiple path-

way signatures simultaneously, it accounts for confounding events

between interactive pathways. Here, we applied ASSIGN to five

highly correlated oncogenic pathways and compared results with

BFRM, a single pathway-based approach. Although, BFRM

achieves similar sensitivity to ASSIGN, BFRM has much lower spe-

cificity. In addition, ASSIGN can use either curated pathway signa-

ture gene lists or perturbation signatures in a flexible way. Most

supervised learning methods, such as BFRM, require perturbation

datasets as input. GSEA and FacPad can only use curated pathway

gene lists. For pathway signature profiling, the selection of multiple

pathways is based on the biological knowledge of pathway

Table 2. Comparison of predicted pathway activity in breast carcin-
oma and adjacent normal tissue by ASSIGN, BFRM and FacPad

A. EGFR pathway

ASSIGN Mean

diff (P-values)

BFRM Mean

diff (P-values)

FacPad Mean

diff (P-values)

Tumor versus

Normal

0.20 (<0.001) 0.13 (<0.001) 1.81 (<0.001)

Basal versus

Normal

0.28 (<0.001) 0.13 (<0.001) 1.68 (<0.001)

Her2 versus

Normal

0.23 (<0.001) 0.11 (<0.001) 1.54 (<0.001)

Luminal A versus

Normal

0.09 (<0.001) 0.07 (<0.001) 0.98 (<0.001)

Luminal B versus

Normal

0.20 (<0.001) 0.22 (<0.001) 1.81 (< 0.001)

B. MEK pathway

ASSIGN Mean

diff (P-values)

BFRM Mean

diff (P-values)

FacPad Mean

diff (P-values)

Tumor versus

Normal

"0.02 (0.695) "0.00 (0.426) 0.92 (<0.001)

Basal versus

Normal

0.04 (0.009) 0.00 (0.308) "0.64 (<0.001)

Her2 versus

Normal

0.03 (0.069) "0.00 (0.518) 0.53 (<0.001)

Luminal A

versus

Normal

"0.01 (0.703) "0.00 (0.613) 0.91 (<0.001)

Luminal B

versus

Normal

"0.02 (0.089) "0.00 (0.103) 0.92 (<0.001)

C. PI3K pathway

ASSIGN Mean

diff (P-values)

BFRM Mean

diff (P-values)

FacPad Mean

diff (P-values)

Tumor versus

Normal

0.02 (0.013) "0.02 (0.219) 0.23 (<0.001)

Basal versus

Normal

0.12 (<0.001) 0.01 (0.178) 1.06 (<0.001)

Her2 versus

Normal

0.06 (<0.001) "0.03 (0.028) 0.85 (<0.001)

Luminal A

versus

Normal

0.00 (0.763) "0.02 (0.101) 0.25 (0.049)

Luminal B

versus

Normal

0.02 (0.094) "0.02 (0.115) 0.30 (0.033)

Pathway activity comparison between breast carcinoma and normal tissues,

and breast carcinoma subtypes (Basal, Her2, Luminal A, Luminal B) and nor-

mal tissues using two-sample t-test. P-values of t-tests are listed in the table.
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interaction. However, we recommend a maximum of about a dozen

of correlated pathways in ASSIGN to avoid multicollinearity and

unidentifiability issues of the model.

The adaptive background feature of ASSIGN allows for the esti-

mation of absolute pathway activity levels in a biologically interpret-

able manner (ranging between 0 and 1). No existing factor analysis

approach or supervised learning approach accommodates this feature,

and thus can only achieve relative activation status. The enrichment

scores estimated by ssGSEA do not have biological meaning unless

compared with control samples for relative pathway strength. GSEA

estimates one overall enrichment score, but does not predict for indi-

vidual samples. Furthermore, ASSIGN allows for the refinement and

adaptation of pathway signatures within a dataset, in contrast to

other regression-based or supervised learning algorithms in which the

predetermined pathway signature is static (Pirooznia et al., 2008;

Ringnér et al., 2002). This unique feature not only reduces the bias of

pathway strength estimation, but also curates pathway signatures to

be cell- or tissue-specific future applications.

In addition to pathway activation level estimation, ASSIGN can

be used to predict patients’ drug response, carcinogen exposure,

pathogen immune response on the basis of gene expression signature

strength. The input data of ASSIGN is assumed to follow a normal

distribution. To accommodate to different types of omic data such as

methylation microarray data or SNP array data, a more generalized

model may need to be developed in the future. In addition, in future

work we plan to allow for multiple background profiles in the patient

dataset, whereas the current version of ASSIGN only allows for a sin-

gle baseline expression profile. We also hope to evaluate extensions of

ASSIGN to integrate multi-omic data types and to better accommo-

date the discrete nature of sequencing data. Overall, ASSIGN results

in more biologically interpretable pathway activation profiles that are

adapted to specific tissues or disease contexts, as opposed to more

rigid and less interpretable profiles from previous approaches.

Acknowledgements

The authors thank the Linux Clusters for Genetic Analysis and the Shared

Computing Cluster at Boston University for computational support for this

project. The authors thank Marc E. Lenburg and Paola Sebastiani for critical

reading of their manuscript.

Funding

This research was supported by funds from the NIH (U01CA164720) and

(T15LM007124).

Table 3. Comparison of pathway activity between genotoxic and non-genotoxic groups reported in P-values

Pathways ASSIGN GSEA ssGSEA FacPad

AMUNDSON_DNA_DAMAGE_RESPONSE_TP53 <0.001 0.027 <0.001 0.279

AMUNDSON_GENOTOXIC_SIGNATURE 0.032 0.074 0.002 0.290

KEGG_P53_SIGNALING_PATHWAY <0.001 0.077 <0.001 0.464

KYNG_DNA_DAMAGE_BY_4NQO 0.041 0.198 0.027 0.159

KYNG_DNA_DAMAGE_BY_4NQO_OR_GAMMA_RADIATION 0.695 0.054 0.014 0.001

KYNG_DNA_DAMAGE_BY_GAMMA_AND_UV_RADIATION 0.002 0.042 0.001 0.024

KYNG_DNA_DAMAGE_BY_UV 0.024 0.117 0.023 0.320

KYNG_DNA_DAMAGE_DN 0.014 0.002 <0.001 0.221

KYNG_DNA_DAMAGE_UP 0.009 0.058 0.038 0.703

Pathway activity compared between genotoxic and non-genotoxic groups (two sample t-test for ASSIGN, FacPad and ssGSEA; Kolomogorov–Smirnov test

for GSEA). The results were mostly consistent among the ASSIGN, GSEA and ssGSEA approaches, but mostly inconsistent with FacPac approach. DNA damage

response/repair pathways were significantly differentially activated (P-value) between two groups for at least two approaches.

Fig. 4. KEGG P53 signaling pathway signature in tissues exposed to carcino-

gens. (A) ASSIGN predicted pathway activity in rat liver tissues exposed to

non-genotoxic or genotoxic carcinogens. The boxplot exhibits an association

between genotoxic carcinogen exposure and P53 signaling pathway activa-

tion. (B) ROC curve for ASSIGN predicted signature strengths of the KEGG

P53 signaling pathway. The corresponding area under the curve (AUC) is

0.911, suggesting an excellent model predictive ability. (C) Heatmap of 43

predefined P53 signaling pathway genes in 36 rat liver samples. Each row

represents a gene and each column represents a sample. The color bar above

the heatmap represents the treatment labels for each corresponding sample

(orange: genotoxic; grey: non-genotoxic). The bar plot above the heatmap is

the ASSIGN predicted signature strength for each corresponding sample.

The bar plot on the left is the ASSIGN predicted posterior signature (green:

gene included in the posterior signature; grey: gene not included)
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Abstract

Motivation: The Cancer Genome Atlas (TCGA) RNA-Sequencing data are used widely for research.
TCGA provides ‘Level 3’ data, which have been processed using a pipeline specific to that resource.
However, we have found using experimentally derived data that this pipeline produces gene-
expression values that vary considerably across biological replicates. In addition, some RNA-
Sequencing analysis tools require integer-based read counts, which are not provided with the
Level 3 data. As an alternative, we have reprocessed the data for 9264 tumor and 741 normal sam-
ples across 24 cancer types using the Rsubread package. We have also collated corresponding clin-
ical data for these samples. We provide these data as a community resource.
Results: We compared TCGA samples processed using either pipeline and found that the
Rsubread pipeline produced fewer zero-expression genes and more consistent expression levels
across replicate samples than the TCGA pipeline. Additionally, we used a genomic-signature ap-
proach to estimate HER2 (ERBB2) activation status for 662 breast-tumor samples and found that
the Rsubread data resulted in stronger predictions of HER2 pathway activity. Finally, we used data
from both pipelines to classify 575 lung cancer samples based on histological type. This analysis
identified various non-coding RNA that may influence lung-cancer histology.
Availability and implementation: The RNA-Sequencing and clinical data can be downloaded from
Gene Expression Omnibus (accession number GSE62944). Scripts and code that were used to pro-
cess and analyze the data are available from https://github.com/srp33/TCGA_RNASeq_Clinical.
Contact: stephen_piccolo@byu.edu or andreab@genetics.utah.edu
Supplementary information: Supplementary material is available at Bioinformatics online.

1 Introduction

The Cancer Genome Atlas Research Network has profiled thou-

sands of human tumors to discover various types of molecular-level

aberrations that occur within tumors. Researchers have used these

data to derive new insights about tumorigenesis and to validate and

inform experimental findings (The Cancer Genome Atlas Research

Network et al., 2013). To facilitate such analyses, The Cancer

Genome Atlas (TCGA) provides ‘Level 3’ RNA-Sequencing
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(RNA-Seq) data, which have been aligned to the reference genome

using MapSplice (Wang et al., 2010), quantified at the gene and

transcript levels using RSEM (Li and Dewey, 2011) and standar-

dized using upper-quartile normalization (Bullard et al., 2010; Li

and Dewey, 2011; Wang et al., 2010). However, the use of these

data comes with some caveats. First, some analytic tools designed

specifically for RNA-Seq data—for example, DESeq2 (Love et al.,

2014)—require the user to input integer-based read counts, yet

Level 3 read counts are represented as non-integer numbers. Second,

the upper-quartile normalization method scales gene counts by the

upper-quartile value of the non-zero distribution; however, when a

sample has a relatively high number of zero counts or genes with ex-

tremely high read counts, the value distributions may vary consider-

ably across samples (Dillies et al., 2013). Third, when researchers

seek to compare the TCGA Level 3 data against clinical covariates

and outcomes, additional processing steps are necessary to match

RNA-Seq identifiers to the clinical data. Users without computa-

tional training may face difficulty performing these steps, and scien-

tists may duplicate each other’s efforts.

The TCGA consortium also provides the RNA-Seq data in raw

form. Thus it is possible for researchers to reprocess the data using

alternative computational pipelines. We obtained raw sequencing

data for 9264 tumor samples and 741 normal samples across 24

cancer types (Table 1) and reprocessed the data using the Subread al-

gorithm (Liao et al., 2014), which shows high concordance with

other existing methods regarding assignment of reads to genes but

takes a relatively short time for processing (SEQC/MAQC-III

Consortium, 2014). RNA transcripts often span multiple exon-exon

junctions, making it challenging for aligners to map reads that are

smaller than the transcript length. Rsubread’s ‘vote-and-seed’ read-

mapping technique addresses this problem by breaking the reads

into relatively small segments, mapping the segments to the refer-

ence genome and identifying locations where adjacent segments map

to different exons. This approach has been shown to be more accur-

ate in mapping junction reads than other aligners, including

MapSplice (Liao et al., 2013). The Rsubread package, which imple-

ments the Subread algorithm, is convenient for this task because: (i)

it can be applied to both single- and paired-end reads; (ii) it is con-

siderably faster and requires less computer memory than many other

methods and (iii) it requires no external software packages for pro-

cessing, whereas many other packages require a series of steps that

span multiple packages.

We used the featureCounts function within the Rsubread pack-

age to summarize the data to integer-based, gene-level read counts,

and we calculated two types of normalized value: fragments per

kilobase of exon per million reads mapped (FPKM) and transcripts

per million (TPM) (Li and Dewey, 2011; Mortazavi et al., 2008;

Wagner et al., 2012). In this pipeline, the FPKM and TPM values

are calculated using the total number of mapped reads and the total

number of non-overlapping exonic basepairs. Both FPKM and TPM

methods account for the length of genomic features. FPKM corrects

for the number of reads that have been sequenced, and TPM ac-

counts for the average number of mapped bases per read. FPKM val-

ues are used widely, whereas TPM values have been shown to meet

the invariant average criterion and thus may be more comparable

across samples (Wagner et al., 2012). Importantly, FPKM and TPM

are calculated using only data from an individual RNA-Seq sample;

thus adding new samples to the dataset will not require changes to

the existing expression values; such an approach is crucial for preci-

sion-medicine applications and for integrating data across technol-

ogy platforms (Piccolo et al., 2012, 2013). Furthermore, because we

have provided raw counts, it is possible for others to normalize the

data using other methods with relative ease. We have made these

data publicly available along with all clinical variables provided by

TCGA for these samples. We have also aligned the RNA-Seq sample

identifiers with the clinical identifiers.

Table 1. Cancer types and total number of samples

Cancer name Abbreviated cancer name Samples included

Adrenocortical carcinoma ACC 79

Bladder urothelial carcinoma BLCA 414

Breast invasive carcinoma BRCA 1119

Cervical squamous cell carcinoma and endocervical adenocarconoma CESC 306

Colon adenocarcinoma COAD 483

Lymphoid neoplasm diffuse large B-cell lymphoma DLBC 48

Glioblastoma multiforme GBM 170

Head and neck squamous cell carcinoma HNSC 504

Kidney chromophobe KICH 66

Kidney renal clear cell carcinoma KIRC 542

Kidney renal papillary cell carcinoma KIRP 291

Acute myeloid leukemia LAML 178

Brain lower grade glioma LGG 532

Liver hepatocellular carcinoma LIHC 374

Lung adenocarcinoma LUAD 541

Lung squamous cell carcinoma LUSC 502

Ovarian serous cystadenocarcinoma OV 430

Prostate adenocarcinoma PRAD 502

Rectum adenocarcinoma READ 167

Skin cutaneous melanoma SKCM 472

Stomach adenocarcinoma STAD 420

Thyroid carcinoma THCA 513

Uterine corpus endometrial carcinoma UCEC 554

Uterine carcinoma UCS 57

A total of 9264 tumor samples across 24 cancer types are included in the database.
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2 Methods

2.1 HER2 gene-expression profiling data
Before analyzing TCGA data, we generated an experimental dataset

that represented the effects of HER2 (ERBB2) overexpression in

breast cancer cells. Using human mammary epithelial cells

(HMECs), we produced five replicates, in which the HER2 protein

had been experimentally activated, and 12 control green fluorescent

protein (GFP) replicates. We used recombinant adenovirus to over-

express HER2 (Vector Biolabs) and GFP in the HMECs. The

HMECs were grown in serum-free WIT-P media (Stemgent) and

were starved of growth factors for 36 h prior to infection. HER2-ex-

pressing or GFP-expressing adenovirus (MOI 500) were added to

HMEC cells in conditioned media and incubated with the cells for

18 h. Cells were washed with phosphate buffered saline, scraped

into RNAlater (Ambion), and RNA was extracted from pelleted

cells using an RNeasy kit (Qiagen) with DNase. To ensure that com-

ponents were being expressed, we created lysates of HER2-adeno-

virus-vector and GFP-adenovirus-vector infected HMEC cells and

analyzed these lysates for expression of HER2-pathway protein

components by sodium dodecyl sulphate–polyacrylamide gel elec-

trophoresis/Western blot. HER2 overexpression and activity was

confirmed by Western blotting for HER2 and for activated HER2

(phospho-Tyr1173-HER2, Supplementary Fig. S1). cDNA libraries

were prepared from the extracted RNA using the Illumina Stranded

TruSeq protocol and then sequenced with the Illumina HiSeq 2000

sequencing platform with six samples per lane. Single-end reads of

101 base pairs were generated. This dataset is available on Gene

Expression Omnibus via accession number GSE62820.

2.2 TCGA data acquisition
We downloaded TCGA Level 3 data via the Synapse portal for

12 cancer types (https://www.synapse.org/#!Synapse:syn1695324).

This included 3468 samples that had been preprocessed using

TCGA’s standard pipeline.

To reprocess TCGA data with Rsubread, we downloaded

FASTQ formatted files for all available TCGA tumor samples via

the National Cancer Institute’s Cancer Genomics Hub (Wilks et al.,

2014). This included a total of 9264 tumor samples across 24 cancer

types (Table 1). Some patient samples were sequenced multiple

times; in these cases, we included each replicate.

We downloaded TCGA clinical data in ‘Biotab’ format on May

20, 2015 from the TCGA data portal (https://tcga-data.nci.nih.gov/

tcga/dataAccessMatrix.htm) and extracted all reported clinical vari-

ables from the nationwidechildrens.org_clinical_patient_[cancer

TypeAbbreviatedInLowerCase].txt files. In these files, 12-character

patient identifiers were used, whereas the RNA-Seq sample identi-

fiers were longer. To make it easier to integrate these two data sour-

ces, we converted the short IDs to full IDs by matching the

‘bcr_patient_barcode’ values in the clinical files. For patients who

had multiple RNA-Seq replicates, we provide multiple columns in

the clinical data file. We set values as ‘NA’ when no information

was reported in the clinical files for a given patient. If there were

multiple sequences available for a tumor sample, we duplicated the

clinical variables available for that sample. In total, we included 548

clinical variables.

2.3 Data processing and normalization
For our HER2 expression-profiling data, we calculated gene-level

values using the same steps that the TCGA consortium uses to pro-

duce ‘Level 3’ values. The reference data, Perl scripts and parameters

used in this pipeline are described here: https://cghub.ucsc.edu/docs/

tcga/UNC_mRNAseq_summary.pdf. In some cases, the software

versions specified in the above document were unable to handle sin-

gle-end reads. In these cases, we used the latest versions of these soft-

ware tools that were able to handle single-end reads. Below we list

these versions:

• MapSplice v 12_07 (Wang et al., 2010)
• RSEM v1.2.12 (Li and Dewey, 2011)
• UBU v1.2 (https://github.com/mozack/ubu/)
• Picard-tools v1.82 (http://picard.sourceforge.net)
• BedTools v2.17.0 (Quinlan and Hall, 2010)

For our HER2 data and for the samples from TCGA, we used

the Rsubread package (version v1.14.2; Liao et al., 2014) to align

the reads and to produce gene-level summarized values. We used the

UCSC hg19 reference for alignment and the corresponding gene an-

notation format file available from http://support.illumina.com/

sequencing/sequencing_software/igenome.html. Within this pipeline,

we obtained integer-based gene counts using the featureCounts func-

tion in the Rsubread package (Liao et al., 2014). We used the limma

(version 3.20.9; Smyth, 2004) and edgeR (version v3.6.8;

Nikolayeva and Robinson, 2014; Robinson et al., 2010) packages to

calculate FPKM values (Li and Dewey, 2011) and a custom script to

convert FPKM to TPM values (Li and Dewey, 2011; Wagner et al.,

2012). We used R version 3.1.0 and Bioconductor version 2.14

(Gentleman et al., 2004; R Core Team, 2014; http://www.R-project.

org/). When evaluating pre-normalized gene counts, we used the

‘expected_count’ column in the ‘.genes.results’ files generated by

RSEM, and Rsubread’s raw, integer-based gene counts. All pro-

cessed TCGA data can be accessed on Gene Expression Omnibus

via accession number GSE62944. This includes integer-based gene

counts and FPKM and TPM values as well as clinical data.

2.4 Statistical procedures
When comparing gene-expression values between groups in this

study, we calculated the standardized mean difference using Hedges’

formula (Hedges, 1981, 1985). We used the coefficient of variation

(CV) to assess variability. We used the Random Forests classifica-

tion algorithm implemented in the caret package (Kuhn, 2008).

The data-processing pipelines and analysis scripts that we used

for this manuscript are available from https://github.com/srp33/

TCGA_RNASeq_Clinical.

3 Results

3.1 Evaluation of biological replicates
Our initial goal was to generate a gene-expression signature repre-

senting HER2 activation and to use that signature to identify breast

tumors in TCGA where the HER2 pathway was active. For consist-

ency with TCGA, we initially processed the RNA-Seq signature data

using the same pipeline used by the TCGA consortium (see

Materials and Methods). However, upon examining these data, we

observed inconsistencies across our biological replicates. For ex-

ample, as illustrated in Figure 1, we found that some replicates ex-

hibited considerably different patterns of expression for genes that

showed the greatest differences in expression between HER2-active

cells and GFP controls. Concerned that such inconsistencies could

reduce the effectiveness of our signature-based predictions, we

examined the data further and explored the Rsubread pipeline as an

alternative.

We hypothesized that the inconsistencies we observed in our bio-

logical replicates may have resulted from differences in the total
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number of mapped reads, from genes expressed at extremely high

levels or from differences in the number of zero-count genes per

sample. Others have described these factors as potential limitations

of the upper-quartile normalization step used in the TCGA Level 3

processing pipeline (Dillies et al., 2013). Accordingly, we repro-

cessed the data using Rsubread and performed various analyses to

understand the effects of these variables for data processed using ei-

ther pipeline. In addition, we performed various analyses to com-

pare the performance of the two datasets in various biomedical

research contexts (Supplementary Table S1).

3.2 Raw gene count analysis
Initially, we compared raw (non-normalized) gene counts between

the TCGA Level 3 and Rsubread processing pipelines for our HER2

(n¼5) and control (n¼12) replicates. The TCGA Level 3 pipeline

produces expected counts as floating point (non-integer) numbers,

whereas Rsubread produces integer-based gene counts, which repre-

sent the number of mapped reads per gene. For both pipelines, the

HER2 gene counts were significantly overexpressed in HER2 acti-

vated cells relative to control samples (Supplementary Fig. S2).

However, the difference in expression between HER2-activated cells

and controls was greater for the Rsubread data (standardized mean

difference for TCGA: 10.0; Rsubread: 23.8).

To explore these differences further, we compared the total num-

ber of mapped reads per sample between the two pipelines. For

HER2-activated samples, the total number of mapped reads was

much more variable for the TCGA Level 3 data than for the

Rsubread data (Fig. 2). Two of the HER2-activated samples—the

same samples (2 and 4) that showed visual differences in Figure 1—

had a considerably smaller number of total mapped reads when the

TCGA pipeline was used. Upon plotting the empirical cumulative

distribution of the total mapped reads per sample (Fig. 3 and

Supplementary Fig. S3), we observed that the same HER2-activated

samples showed different overall expression patterns, due to a rela-

tively high number of genes with zero read counts. These

observations suggest that Rsubread is less sensitive to differences in

library size and that it more consistently identifies genes expressed

at extremely low levels.

3.3 Normalized gene expression analysis
We observed similar findings for the normalized values produced

using either pipeline. The empirical cumulative distribution of total

normalized expression was more consistent for the Rsubread data

(FPKM and TPM) than for the TCGA Level 3 data (Supplementary

Fig. S4). HER2 gene-expression levels were less variable across the

replicates for the Rsubread values than for the Level 3 data (CV for

FPKM¼0.09; TPM¼0.06; Level 3¼0.30). Differences in expres-

sion between HER2 activated cells and controls were also greater

for the Rsubread data (standardized mean difference for

FPKM¼66.9; TPM¼67.2; Level 3¼25.8; see Supplementary Fig.

S4). In addition, across all genes for the control and HER2-activated

Fig. 1. Heat maps of normalized expression values for the 200 genes most differentially expressed between HER2-activated HMECs (n¼5) and GFP-treated

controls (n¼12). Each column in the heat maps represents data for a given HMEC replicate. Each row represents data for a given gene

Fig. 2. Total mapped reads per sample for data processed using the TCGA

Level 3 and Rsubread pipelines. For the TCGA Level 3 pipeline, the number of

mapped reads varied widely for the HER2 samples, and samples 2 and 4 (see

Fig. 1) had a considerably lower number of mapped reads. In contrast, the

number of mapped reads for Rsubread was consistent across the samples

4 M.Rahman et al.
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replicates, the coefficients of variation were smaller for the Rsubread

processed data than for the TCGA Level 3 data (Supplementary Fig.

S5). These observations remained consistent, even if we excluded the

two HER2 replicates that showed different gene-count distributions in

the TCGA Level 3 data (Supplementary Table S2).

We calculated the number of zero-expression genes per GFP sam-

ple using the genes that overlap between the TCGA Level 3

and Rsubread TPM data. The Level 3 data contained a higher number

of zero-expressing genes per GFP replicate (Level 3 median: 4452;

Rsubread TPM: 4174). For each gene that had at least one zero value

across the replicates, we calculated the number of samples that had a

zero value for a given gene. The average was 7.50 (out of 12) for

TCGA Level 3 and 8.92 for Rsubread. Although the Level 3 samples

had a higher overall number of zero values across all genes

(Supplementary Fig. S6), these values were less consistent for a given

gene. These findings suggest that the alignment, count estimation and/

or upper-quartile normalization steps used in the Level 3 pipeline lead

to variability across the replicates and that the Rsubread FPKM and

TPM values are more consistent across replicates.

Having observed these patterns in our replicates, we processed

9264 RNA-Seq samples from TCGA using the Rsubread package.

We performed various comparative analyses using the samples that

overlapped with the Level 3 data that had been distributed via the

Pan Cancer 12 project (The Cancer Genome Atlas Research

Network et al., 2013). We limited our comparative analyses to the

genes (n¼19 584) and samples (n¼3380) that overlapped between

these datasets. Across all samples, the number of zero-count genes

was significantly higher in the TCGA Level 3 data than in the

Rsubread data, (t-test P value<0.001; Level 3 median¼2742.5;

Rsubread TPM¼1910.0; see Supplementary Fig. S7). In addition,

we calculated Pearson’s correlation coefficients between replicates

for the 13 patients that were common between TCGA PANCAN12

and our Rsubread TPM data (Supplementary Table S3 and Fig. S8).

Across the replicates, the Pearson’s correlation coefficients were

higher for the Rsubread processed replicates (median¼0.86) than

for the TCGA Level 3 replicates (median¼0.79).

3.4. Downstream analyses
Next, we used a sparse binary factor regression method (West et al.,

2001) to derive a gene-expression signature that would predict

whether the HER2 pathway was active in a given TCGA breast-

tumor sample. This technique results in a probabilistic estimate

for each tumor sample that indicates whether the pathway is active.

We applied this approach to data from both processing pipelines

and compared the estimates of HER2 pathway activity be-

tween tumor samples that had been confirmed via immunohisto-

chemistry to be HER2 positive (n¼149) or negative (n¼513).

For both data-processing pipelines, the probabilistic estimates of

HER2 pathway activity were significantly higher for HER2-positive

versus HER2-negative samples (see Supplementary Fig. S9

and Table S4). However, the predictions for the Rsubread data

were less variable than for the TCGA Level 3 data (see

Supplementary Table S5), and the standardized mean difference be-

tween the groups was greater for the Rsubread data (TCGA Level 3:

0.44; Rsubread FPKM: 0.52; Rsubread TPM: 0.59). This finding

was robust to the exclusion of HER2 samples 2 and 4

(Supplementary Table S2). Thus, using an empirical approach to es-

timate HER2 pathway activity, the Rsubread data resulted in more

reliable and consistent conclusions when validated against

traditional methods.

As an additional test, we examined how well we could distin-

guish between lung adenocarcinoma (LUAD) and lung squamous

cell carcinoma (LUSC) samples in TCGA. This classification is clin-

ically important to guide personalized therapy based on the molecu-

lar subtypes (The Cancer Genome Atlas Research Network, 2012,

2014). We used the Random Forests classification algorithm

(Breiman, 2001) to identify gene-expression patterns that differ be-

tween these cancer types, and we performed 10-fold cross-validation

to estimate how accurately tumors of either cancer type could be

identified. For this analysis, we used TCGA Level 3 data and

Rsubread normalized (TPM) data for 575 tumor samples that over-

lapped between these datasets. We used receiver operating charac-

teristic (ROC) curves to assess classification accuracy and the

balance between sensitivity and specificity in making these predic-

tions. With the area under ROC curves (AUC) as a comparison met-

ric and a probability threshold of 0.5, both datasets resulted in

highly accurate predictions of lung-cancer histological type

(AUC¼0.999 for Rsubread; AUC¼0.985 for TCGA Level 3); how-

ever, the TCGA Level 3 data resulted in 28 (out of 575) incorrect

predictions, whereas the Rsubread data resulted in only 9 incorrect

predictions (Fig. 4).

Using the TCGA Level 3 data, Cline et al. (2013) suggested that

a subset of the LUSC samples were ‘discordant’ with the remaining

LUSC samples and exhibited ‘LUAD-like’ properties. Our Random

Forests predictions for the Level 3 data led to similar conclusions. In

contrast, when we use the Rsubread data, the ‘LUSC Discordant’

samples are classified mostly as ‘LUSC’. One difference between the

two datasets is that the TCGA Level 3 data contain values for

20 217 genes (after excluding genes that have zero variance across

all samples), whereas the Rsubread data contain values for 22 833

genes. Accordingly, we repeated the Random Forests classification

analysis and limited each dataset so that it included only the 19 453

genes that overlap between the two datasets. With this approach,

both datasets resulted in virtually identical results: most ‘LUSC

Discordant’ samples were classified as ‘LUAD’. We examined the

genes present in the Rsubread data but not in the TCGA Level 3

data and found various genes that show strong and consistent ex-

pression similarity between ‘LUSC Discordant’ and LUSC samples

(Supplementary Fig. S10). Expression patterns for these genes are

consistent and strong enough that they alter the Random Forests

classification results for the ‘LUSC Discordant’ samples. Although

these samples do exhibit expression patterns characteristic of LUAD

Fig. 3. Empirical cumulative distribution of total mapped reads using raw

gene counts. In all cases, the cumulative distributions were more consistent

for Rsubread than for the TCGA pipeline produced gene counts data. The ab-

errantly expressed samples in the TCGA data are the same samples (GFP

sample 4, HER2 samples 2 and 4) that showed visually different expression

patterns in the heat maps (see Fig. 1). GFP samples (n¼12) are represented

in blue and HER2 samples (n¼5) are represented in brown color
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for many genes, this analysis indicates that these samples should not

necessarily be classified as LUAD tumors. We observed this differ-

ence because the Rsubread data were processed using relatively re-

cent gene definitions; thus researchers who work with these data

may have a more complete picture of tumor biology.

4 Discussion

To our knowledge, this compendium of RNA-Seq tumor data is the

largest compiled to date. It includes 9264 tumor samples and 741

normal samples across 24 cancer types. These data offer an alterna-

tive to the lone pipeline used by the TCGA consortium. In contrast

to the TCGA data portal, which provides the RNA-Seq data in indi-

vidual files for each sample, we have compiled the Rsubread tumor

data into aggregate data files; thus it will be easier for researchers to

analyze the data and compare across cancer types. We have matched

these data to clinical variables to ease the process of examining rela-

tionships between these variables and gene-expression levels.

Different RNA-Seq processing pipelines differ considerably in

accuracy for quantifying gene-level expression values (Fonseca et al.,

2014). However, our goal was not to perform an exhaustive bench-

mark comparison across the many tools available for processing

RNA-Seq data, although others have shown that Rsubread performs

quite well in such benchmarks at quantifying gene-expression levels

(SEQC/MAQC-III Consortium, 2014). Rather our goals were to

provide a new community resource and to provide evidence that this

alternative dataset is of high quality and performs better in various

downstream analyses than the standard TCGA data. We have dem-

onstrated that Rsubread produces more consistent values across bio-

logical replicates, and we have provided evidence that our data lead

to more biologically relevant conclusions. Tens of thousands of

hours of computational processing time were necessary to compile

this dataset. Thus we also hope to prevent the need for other scien-

tists to invest similar resources.

Our dataset will be most useful to researchers who wish to com-

pare gene-level expression values across samples. Researchers who

wish to work with transcript- or exon-level values or who wish to

identify splice junctions may find the TCGA Level 3 data useful for

this purpose. Various Web-based portals exist for visualizing and

analyzing TCGA data. These include cBioPortal for Cancer

Genomics (Cerami et al., 2012; Gao et al., 2013) and the UCSC

Cancer Genomics Browser (Zhu et al., 2009). Our data could be

incorporated into these portals as an additional option for users

who wish to analyze raw gene counts or to use the FPKM and TPM

values that we provide.

We plan to update the data as more cancer types and tumor sam-

ples become available. We used open-source software to align and

normalize the data and have made our processing code publicly avail-

able. In addition, we used single-sample normalization techniques to

process the data. Thus, one can add new samples as they become

available without affecting the existing data. However, we emphasize

that it may still be necessary for researchers to correct for inter–sample

variation when comparing data across batches and cancer types.
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Fig. 4. Receiver operating characteristics (ROC) curves (in black) showing the balance between sensitivity and specificity in classifying TCGA lung adenocarci-

noma (LUAD) and lung squamous carcinoma (LUSC) samples using TCGA Level 3 and Rsubread pipeline processed RNA-Seq data. The gray shaded areas de-

note the confidence intervals associated with the ROC curve. The Rsubread data resulted in more accurate predictions than the TCGA Level 3 data when all the

genes for the respective pipelines were used
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Supplementary figures 
 

 

Figure S1: Western blots showing expression levels for HER2-activated and GFP-

control cells. Lysates of HER2-adenovirus-vector (HER2) and green fluorescent protein 

(GFP) infected HMEC cells (18 hour infection) were generated, and expression of HER2 

protein components were visualized by SDS-PAGE/Western blot.  Western blots are 

shown for HER2 and phospho-Tyr1173-HER2 (P-HER2).  GAPDH signal is used as an 

indication of loading equivalency. 
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Figure S2: ERBB2 (HER2) raw gene counts produced using the TCGA and Rsubread 

pipelines. Log-transformed gene counts for the ERBB2 gene are shown for HER2-

activated human mammary epithelial cells (n=5) and for GFP-treated control cells 

(n=12). For HER2-activated cells, the values were much more variable for the TCGA 

pipeline processed gene counts data (coefficient of variation = 0.53) than for the 

Rsubread data (coefficient of variation = 0.15). For the GFP-treated cells the coefficients 

of variation were similar for both methods (TCGA  = 0.14, Rsubread = 0.18). In addition, 

the standardized mean difference between HER2-activated levels and GFP levels was 

greater for the Rsubread data (23.8) than for the TCGA data (10.0). 
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Figure S3: Empirical cumulative distribution of total mapped reads using normalized 

gene counts. In all cases, the cumulative distributions were more consistent for the 

Rsubread data than for the TCGA Level 3 data. The outlier samples for the TCGA Level 

3 data are the same samples (GFP sample 4, HER2 samples 2 and 4) that showed visually 

different expression patterns in the heat maps (see Figure 1). GFP samples (n=12) are 

represented in blue and HER2 samples (n=5) are represented in brown color.  
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Figure S4: ERBB2 (HER2) normalized expression levels produced using the TCGA 

Level 3 and Rsubread pipelines. For HER2-activated cells, the values were more highly 

variable for the TCGA Level 3 data (coefficient of variation = 0.30) than for the 

Rsubread data (coefficient of variation for FPKM = 0.09,  coefficient of variation for 

TPM = 0.06). In addition, the standardized mean difference between HER2-activated 

level and control levels was greater for the Rsubread data (FPKM = 66.9, TPM = 67.2) 

than for the TCGA Level data (25.8). 
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A. 

B. 

 
Figure S5: Histogram of coefficients of variation across (A) control and (B) HER2 

overexpressed samples using 19584 common genes across the normalized gene 

expression datasets. In all cases there were some genes with high coefficient of variation 

in expression values. However, Rsubread FPKM and TPM normalized data had a higher  
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Figure S5(continued): number of genes and a lower median coefficient of variation than 

the TCGA Level 3 upper quartile normalized data. 
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Figure S6: Distribution of number of zero expressing genes per HMEC GFP sample 
(n=12) for the TCGA Level 3 (median: 4452) and Rsubread TPM (median: 4174) 
methods.  
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Figure S7: The number of genes per sample that each pipeline determined to have zero 

expression. We limited this analysis to the TCGA tumor samples (n=3380) and genes 

(n=19,584) that were common between the TCGA Pan-Cancer 12 dataset and our Rsubread 

processed dataset. The TCGA Level 3 samples had a higher number of zeroes per sample than 

the Rsubread samples (p-value<0.001). Vertical lines show the median value for each pipeline 

(TCGA Level 3 = 2742.5, Rsubread TPM =1910). In addition, the TCGA Level 3 data 

contained more extreme outliers. 

 
 
 
 



 
 

 

49 

  

 

 
Figure S8: Scatter plots for two biological samples from patient TCGA-50-5946. 
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Figure S9:  Signature-based estimates of HER2 activation in TCGA breast-cancer 

samples (n = 662). We compared samples that had been identified via 

immunohistochemistry as either HER2 positive or negative. The standardized mean 

difference between HER2+ and HER2− samples was higher for the Rsubread processed 

data (FPKM = 0.52, TPM = 0.59) than for the TCGA Level 3 data (0.44). For visual 

consistency across the comparisons, we converted the signature predictions to rank-based 

values (a higher rank indicates that a given sample was more likely to be HER2 positive).  
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A.       B.      
 

 
 

Figure S10: A. Gene expression patterns for four genes (non-coding RNA) that are 
consistent with LUAD and LUSC histological classification. The “Discordant LUSC” 
samples were identified by Cline et al. as exhibiting LUAD-like properties; however, 
expression levels for these genes, which are not included in the TCGA Level 3 data, are 
consistent with histological classification. B. Histograms showing expression levels for 
MIR320A gene in LUAD, LUSC and discordant LUSC samples. Expression levels for 
“LUSC Discordant” samples are highly concordant with LUSC samples. 
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1. Supplementary Tables 
Table S1: Analyses scenarios, datasets and number of samples used in comparing TCGA 
Level 3 and Rsubread FPKM/TPM pipeline. 
Analysis Name Goal Datasets used Number of 

samples used  

Gene counts and 
normalized 
expression  

To compare gene level 
differences before and after 
normalization for the HER2 
gene 

Our experimental 
HMEC dataset  

17 

Effect of upper 
quartile 
normalization 

To compare the number of 
zero-expressed genes in the 
dataset with common genes 
and samples 

Common samples 
between TCGA 
PanCan 12 Level 3 
and Rsubread TPM 
dataset 

3380 

HER2 gene 
expression 
signature  

To compare gene expression 
based signatures with 200 
genes 

Our experimental 
HMEC dataset  

17 

HER2 status 
prediction using 
HER2 signatures 

To predict HER2 status in 
TCGA BRCA samples where 
the HER2 status is known 
from immunohistochemistry 

TCGA BRCA 
dataset and clinical 
dataset 

662 

Classifying 
TCGA lung 
samples  

To compare accuracy in 
classifying gene expression 
based lung adeno (LUAD) 
versus lung squamous 
carcinoma (LUSC) samples  

TCGA LUAD and 
LUSC RNA-Seq 
datasets  

575 
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Table S2: Comparison of standardized means 
Comparison of Hedge’s standardized mean differences with all HMEC samples and with 
2 HMEC outlier samples removed. For the Rsubread data, we used TPM values. 
 All samples included 

[GFP n=12 and 
HER2 n=5] 

Outlier samples removed 
[GFP n=12 and HER2 n=3] 

 TCGA 
Level 3 

Rsubread TCGA 
Level 3 

Rsubread 

Normalized 
HER2 expression 

25.8 67.2 64.77 81.86 

HER2 predictions 0.44 0.59 0.40 0.55 
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Table S3: Comparison of Pearson’s correlation coefficients for biological replicates 

Pearson correlation coefficients for 13 samples that had been profiled twice with RNA-

Seq in our data set and in the PANCAN12 data set. 

 
Replicate_1 Replicate_2 TCGA  

Level 3 
Rsubread 

TPM 
TCGA-06-0125-01A-01R-1849-01 TCGA-06-0125-02A-11R-2005-01 0.89 0.88 
TCGA-06-0190-01A-01R-1849-01 TCGA-06-0190-02A-01R-2005-01 0.72 0.88 
TCGA-06-0210-01A-01R-1849-01 TCGA-06-0210-02A-01R-2005-01 0.79 0.83 
TCGA-06-0211-01B-01R-1849-01 TCGA-06-0211-02A-02R-2005-01 0.89 0.88 
TCGA-14-1034-01A-01R-1849-01 TCGA-14-1034-02B-01R-2005-01 0.75 0.78 
TCGA-19-4065-01A-01R-2005-01 TCGA-19-4065-02A-11R-2005-01 0.63 0.82 
TCGA-50-5066-01A-01R-1628-07 TCGA-50-5066-02A-11R-2090-07 0.68 0.80 
TCGA-50-5946-01A-11R-1755-07 TCGA-50-5946-02A-11R-2090-07 0.65 0.89 
TCGA-BH-A18V-01A-11R-A12D-07 TCGA-BH-A18V-06A-11R-A213-07 0.80 0.89 
TCGA-BH-A1FE-01A-11R-A13Q-07 TCGA-BH-A1FE-06A-11R-A213-07 0.69 0.65 
TCGA-E2-A15A-01A-11R-A12D-07 TCGA-E2-A15A-06A-11R-A12D-07 0.90 0.93 
TCGA-E2-A15E-01A-11R-A12D-07 TCGA-E2-A15E-06A-11R-A12D-07 0.83 0.86 
TCGA-E2-A15K-01A-11R-A12P-07 TCGA-E2-A15K-06A-11R-A12P-07 0.79 0.85 
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Table S4: Coefficients for HER2 signature genes  
 
This table lists the 200 HER2-signature genes, along with coefficients identified using the 

two pipelines. Among these genes, 91-92 (~46%) genes were common between the 

TCGA Level 3 pipeline and Rsubread processed (FPKM and TPM) datasets, and 188 

(94%) were common between FPKM and TPM data processed by Rsubread. 

 
 

TCGA RNA-Seq Level 3 

Rsubread  

FPKM TPM 

Name Coefficien

t 

Intercept 4.524853 

ERBB2 0.164782 

HSPA7 -0.125612 

GDF6 -0.111343 

HSPA6 -0.097087 

CCL2 -0.093873 

CXCL10 -0.092074 

LOC338651 0.079326 

TNFSF14 -0.07371 

CD248 -0.059249 

IFIT1 -0.057644 

DNAJA4 -0.053322 

GNAO1 -0.050292 

CRHR1 0.048706 

EEF1A2 0.045896 

HSPA1B -0.045632 

CCL20 -0.044527 

TNFAIP2 -0.04433 

LOC91948 0.042751 

ATP6V0A4 0.038768 

CFB -0.03783 

Name Coefficien

t 

Intercept 0.168851 

ERBB2 0.257577 

HSPA7 -0.187866 

HSPA6 -0.136333 

GDF6 0.09874 

DNAJA4 -0.080598 

KPRP 0.074612 

EEF1A2 0.069003 

TNFAIP2 -0.06772 

PDGFB 0.066514 

TSPAN18 0.066512 

HSPA1A -0.062749 

ATP6V0A4 0.058443 

CFB -0.058034 

HSPA1B -0.057605 

EPGN -0.057545 

CALB2 0.054193 

PNMA2 0.048449 

SAA2 -0.047311 

CRYAB -0.046179 

KRT80 0.045195 

Name Coefficien

t 

Intercept -0.504928 

ERBB2 0.305527 

HSPA6 -0.15878 

HSPA7 -0.151412 

CCL2 -0.106984 

DNAJA4 -0.09334 

TNFAIP2 -0.075825 

HSPA1A -0.073306 

EEF1A2 0.07144 

PDGFB 0.06787 

EPGN -0.067303 

HSPA1B -0.066745 

ATP6V0A4 0.062446 

CFB -0.060075 

CALB2 0.05829 

CRYAB -0.054796 

SAA2 -0.050794 

PNMA2 0.0504 

KRT80 0.050203 

TNFRSF11

B 

0.048283 
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TCGA RNA-Seq Level 3 

Rsubread  

FPKM TPM 

CALB2 0.036782 

PADI1 0.035659 

PDGFB 0.034971 

LOC285629 -0.034876 

CRYAB -0.032468 

GABRA2 0.030593 

SOD2 -0.028653 

ULBP1 -0.028346 

KRT18 0.028246 

GPR1 -0.027639 

CXCL5 -0.027617 

EPHA3 -0.026868 

IL8 -0.025943 

EPHA4 -0.025735 

TLR3 -0.025646 

HSPB8 -0.025054 

RPSAP52 0.02498 

RGS2 -0.024874 

SLC2A12 -0.024861 

KRT19 0.024626 

TRANK1 -0.024277 

MGP 0.023918 

SAA1 -0.023534 

SHC4 0.022446 

KITLG -0.022152 

KRT8 0.022084 

CGNL1 -0.021984 

MYCL1 -0.021942 

ANGPTL4 0.02165 

SRMS 0.043627 

GPR1 -0.04332 

UCA1 0.041757 

TNFRSF11

B 

0.041583 

FAM83A 0.040141 

EPHA3 -0.039923 

CXCL5 -0.039762 

RGS2 -0.039724 

DDAH1 0.039198 

ULBP1 -0.038466 

AKAP12 0.038418 

SOD2 -0.037183 

KRT19 0.036641 

TLR3 -0.035985 

SHC4 0.035642 

PPP1R3C -0.035295 

PTK6 0.034658 

SPON1 0.034473 

MYADM 0.034361 

BST2 -0.034136 

GRAMD2 -0.034067 

SAA1 -0.033523 

HSP90AA1 -0.032999 

KRT18 0.032801 

EPHA4 -0.032767 

PIK3C2B -0.032631 

KLK6 0.032407 

CXCR1 0.031954 

UCA1 0.046302 

CXCL5 -0.045923 

ANGPTL7 -0.04499 

KPRP 0.044522 

SOD2 -0.044234 

SYTL5 0.043949 

KRT19 0.043441 

AKAP12 0.043351 

SRMS 0.042485 

PADI1 0.042177 

GPR1 -0.041418 

RGS2 -0.041195 

MYADM 0.040819 

SHC4 0.04055 

BST2 -0.039644 

EPHA3 -0.0395 

KLK6 0.038871 

KRT18 0.038599 

SAA1 -0.038474 

SPON1 0.038178 

HSP90AA1 -0.038082 

TSPAN18 0.037454 

EPHA4 -0.037243 

ANGPTL4 0.036491 

PAQR7 -0.036256 

ULBP1 -0.035505 

HSPH1 -0.035296 

PGM2L1 0.035069 

CRHR1 0.034918 
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TCGA RNA-Seq Level 3 

Rsubread  

FPKM TPM 

PARP9 -0.021303 

DNAJB4 -0.021262 

SPON1 0.021236 

PIK3C2B -0.021143 

PARP14 -0.021042 

SERPINB1 0.020839 

CXCL2 -0.020713 

SERPINB13 -0.020613 

SNX9 0.020262 

TRIM22 -0.020121 

DNAJB1 -0.019926 

KANK4 -0.019885 

GBP6 -0.019667 

MLPH 0.019478 

APOL6 -0.019334 

OAS3 -0.019302 

HSP90AA1 -0.019165 

KRT81 0.019156 

GM2A -0.019126 

ENGASE -0.017973 

KRT75 0.017856 

CBLC 0.017765 

CCNA1 0.017623 

FERMT2 0.017321 

CEACAM1 0.01713 

SLC13A5 0.017066 

MTSS1L -0.017003 

TCF4 -0.016884 

PLAUR 0.016528 

PGM2L1 0.031133 

ANGPTL4 0.031075 

PAQR7 -0.031038 

DAPK1 -0.030705 

FAM198B -0.03023 

SERPINB1

3 

-0.030208 

GBP6 -0.030003 

VWA1 0.029805 

SLC1A1 0.029764 

HSPH1 -0.029464 

KITLG -0.028275 

GPRC5A 0.027836 

HSPB8 -0.027616 

SNX9 0.027574 

DNAJA1 -0.026591 

C10orf10 0.026544 

SREK1IP1 0.026213 

GM2A -0.026028 

C8orf84 0.025904 

CCNA1 0.025808 

TRIM22 -0.025731 

APOL6 -0.025483 

KRT8 0.025158 

DNAJB4 -0.025018 

TCF4 -0.024505 

NOTCH1 -0.024433 

ALDH1A3 0.024322 

MAFF 0.023981 

SERPINB1

3 

-0.03484 

PIK3C2B -0.034825 

PTK6 0.034722 

CXCR1 0.034384 

FAM198B -0.034254 

GRAMD2 -0.034033 

DDAH1 0.033964 

GPRC5A 0.033659 

DAPK1 -0.03362 

SLC1A1 0.033565 

VWA1 0.033251 

DNAJA1 -0.032433 

SNX9 0.032379 

KITLG -0.032252 

HSPB8 -0.032155 

GBP6 -0.031284 

C10orf10 0.030517 

CCNA1 0.03031 

GM2A -0.030108 

C8orf84 0.029972 

ALDH1A3 0.02968 

TRIM22 -0.029548 

SREK1IP1 0.029351 

KRT8 0.029074 

NOTCH1 -0.028721 

DNAJB4 -0.028676 

FERMT2 0.027438 

EMP1 0.027141 
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TCGA RNA-Seq Level 3 

Rsubread  

FPKM TPM 

GPR110 0.01633 

TP53AIP1 -0.016244 

APAF1 0.016161 

HSPH1 -0.016115 

RAB6B 0.016005 

LOXL4 0.015594 

OSBP2 0.015384 

HSPA8 -0.015298 

UNC5B -0.015048 

RASA3 0.014898 

KCNN4 0.014783 

ANPEP 0.014734 

AMACR -0.01448 

ZC3HAV1 -0.01428 

COBLL1 -0.014277 

ECT2 0.014259 

SMURF2 0.014218 

CBR1 -0.014049 

TUFT1 0.013455 

C1R -0.013313 

SESN2 -0.013303 

TWF2 0.013165 

INPP4B 0.013134 

SMO -0.013129 

ITGB3 0.013106 

CAST 0.013084 

FBXW7 -0.013061 

VASP 0.012979 

SASH1 -0.012828 

PARP14 -0.023917 

FERMT2 0.023615 

IL7R -0.023182 

LOC644961 0.023169 

KHDRBS3 0.022993 

EMP1 0.022449 

KMO -0.022438 

PLAUR 0.022023 

DNAJB1 -0.022019 

IFIT5 -0.021954 

RAPH1 0.02169 

KANK4 -0.021458 

DUSP10 0.020861 

SMO -0.020834 

DFNB31 -0.020759 

MTSS1L -0.020665 

PLAU 0.020509 

KCNN4 0.020505 

PMP22 0.02033 

STX2 0.020322 

VASP 0.02023 

IGFL3 -0.020208 

POU2F1 0.020096 

WWTR1 0.01976 

FAM176A 0.019732 

PGF 0.019637 

ARRDC4 -0.019625 

TNS3 -0.019394 

CBR1 -0.019365 

MAFF 0.026901 

TCF4 -0.02667 

DNAJB1 -0.02646 

PARP14 -0.026319 

PLAUR 0.026168 

LOC644961 0.026082 

KHDRBS3 0.02565 

PLAU 0.025228 

KANK4 -0.02509 

ESR1 -0.02467 

APOL6 -0.024617 

KCNN4 0.024463 

IGFL3 -0.024452 

MTSS1L -0.02421 

RAPH1 0.024168 

IFIT5 -0.024094 

DUSP10 0.024043 

PMP22 0.023801 

VASP 0.023373 

ARRDC4 -0.023118 

SMO -0.023104 

FAM176A 0.022803 

CBR1 -0.022764 

WWTR1 0.022599 

PGF 0.022576 

STX2 0.022286 

ZPLD1 0.022175 

KMO -0.022123 

FAM214B 0.021843 
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TCGA RNA-Seq Level 3 

Rsubread  

FPKM TPM 

MT2A 0.012725 

NAV3 0.012684 

NET1 0.012572 

CGN 0.012481 

SYTL2 -0.01244 

CYBASC3 -0.012341 

ST3GAL4 0.012295 

TNS3 -0.012073 

BCAR3 0.011678 

SEC24D 0.011623 

DTX4 -0.011553 

PYGB 0.011389 

MYO1E 0.011297 

PTPRE 0.011089 

GFPT1 0.011087 

ACTB 0.011033 

STIM2 -0.011012 

XPC -0.011008 

MFI2 0.01095 

NFATC3 -0.010879 

C19orf66 -0.010511 

PDZD2 -0.010452 

ARHGEF2 0.010354 

TRIOBP 0.010316 

SLC34A2 -0.010288 

FRMD4A -0.010219 

MAP3K2 -0.010081 

NPAS2 0.010074 

IGFL3 -0.009956 

RASA3 0.019126 

APAF1 0.01874 

HERC3 0.018697 

HMGB3 0.018691 

ZXDB 0.01865 

ST3GAL4 0.018588 

HS6ST1 -0.018541 

IGF2BP3 0.018523 

TUFT1 0.018493 

FAM214B 0.018467 

NET1 0.017866 

XPC -0.017726 

FBXO22 -0.017678 

MR1 -0.017472 

CYBASC3 -0.017218 

KCNJ5 -0.017167 

IER3 0.017056 

NME7 0.016958 

PYGB 0.016808 

NAV3 0.016742 

BRMS1 -0.016648 

ARV1 -0.016434 

BCAR3 0.016403 

ARHGAP1

2 

0.016383 

PPP3CC 0.016377 

PODXL2 0.016365 

PDZD2 -0.016253 

TWF2 0.016132 

TUFT1 0.021717 

TNS3 -0.021558 

MAP6 0.021499 

ST3GAL4 0.021422 

HMGB3 0.021401 

HS6ST1 -0.021304 

DLC1 -0.021275 

POU2F1 0.021216 

APAF1 0.021057 

STOX2 -0.020845 

RASA3 0.020767 

HERC3 0.020487 

DFNB31 -0.020337 

FBXO22 -0.02015 

BRMS1 -0.020097 

IER3 0.020017 

NET1 0.019989 

CYBASC3 -0.019984 

PYGB 0.01983 

XPC -0.019811 

BCAR3 0.019647 

ZXDB 0.019586 

CELF2 0.019402 

IGF2BP3 0.019325 

TIMP1 -0.019048 

ARHGAP1

2 

0.01901 

NME7 0.018951 

ARV1 -0.018928 
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TCGA RNA-Seq Level 3 

Rsubread  

FPKM TPM 

ARHGAP12 0.009927 

SH2D3A 0.009911 

NAV2 -0.009866 

SMOC1 0.009764 

HERPUD1 0.009567 

WDR1 0.009562 

RASA1 0.009529 

MBD4 -0.009337 

PLEK2 0.009276 

BCAP29 0.00927 

ATG16L1 0.009237 

LDB1 -0.009222 

NCDN -0.009177 

NEK9 -0.009083 

CSGALNACT

2 

0.009018 

ATP1B1 -0.008895 

APBB2 -0.008881 

CAPN2 0.00888 

CALM2 0.008674 

TRAFD1 -0.008589 

PGM1 0.008555 

FGFR2 -0.008354 

DOPEY1 -0.008331 

NISCH -0.008191 

PI4KB -0.008141 

TOR3A -0.007819 

LRIG3 0.007766 

POLR2A -0.007749 

RBMS2 0.016093 

CASP1 -0.015992 

TIMP1 -0.015829 

LRRC8C 0.015828 

SH3KBP1 0.015714 

CAST 0.015525 

TP53AIP1 -0.0153 

DAB2 0.015248 

FGFR2 -0.01521 

INPP4B 0.015146 

HMGN3 -0.01512 

SESN1 -0.014994 

TRIOBP 0.01497 

GFPT1 0.014771 

ARHGEF2 0.014671 

TNS4 0.014658 

MFI2 0.014631 

CROT -0.014554 

KIAA1671 -0.013946 

ZNFX1 -0.013815 

DNAJB9 0.013602 

NFE2L1 -0.013277 

PIK3R1 -0.013264 

FBXW2 -0.013023 

RASSF1 0.012832 

MICALCL 0.01279 

SLC20A2 0.012767 

LDB1 -0.012706 

IGFBP4 -0.012603 

CASP1 -0.018873 

MR1 -0.018826 

KCNJ5 -0.018762 

LRRC8C 0.018716 

TWF2 0.018592 

PPP3CC 0.018547 

ANKRD33

B 

-0.018542 

CAST 0.018294 

SH3KBP1 0.017947 

PODXL2 0.017847 

INPP4B 0.017676 

TNS4 0.01766 

DAB2 0.017551 

MFI2 0.01754 

RBMS2 0.017501 

FGFR2 -0.017469 

GFPT1 0.017427 

TP53AIP1 -0.017304 

NAV3 0.017121 

ARHGEF2 0.017063 

SESN1 -0.016845 

DNAJB9 0.016278 

NFE2L1 -0.016229 

TRIOBP 0.016197 

KIAA1671 -0.016057 

ZNFX1 -0.015835 

CROT -0.015664 

SLC20A2 0.015334 
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TCGA RNA-Seq Level 3 

Rsubread  

FPKM TPM 

NEU1 -0.007665 

KPNA4 0.007656 

PIK3CD 0.007606 

ANKRD13A -0.007496 

TBRG1 -0.007462 

EPS15 0.007458 

TRIM5 -0.007361 

PCSK7 -0.007332 

ANKFY1 -0.00732 

C20orf194 0.007244 

C19orf42 -0.007162 

ITGA5 0.007095 

ARHGEF12 -0.006996 

STK40 -0.006932 

MLLT6 -0.006786 

C1orf85 -0.006767 

PTPN12 0.00648 

MAP2K4 -0.006351 

ZNF532 -0.006134 

AFAP1L2 0.006103 

ARID1B -0.005924 

SEC14L1 0.005811 

PLEKHA6 -0.005776 

ELOVL1 0.005764 

CLASP1 -0.005727 

SMEK1 -0.005478 

NUMA1 -0.005168 

ZMYND8 0.005151 

PDXK -0.005071 

SEC24D 0.012592 

B2M -0.012511 

CCDC50 0.012451 

SLC41A1 -0.012315 

TOR3A -0.01228 

HERPUD1 0.012254 

TRAFD1 -0.012195 

MYO1E 0.012108 

MEF2D 0.012092 

FRMD4A -0.011928 

LRRFIP1 0.011781 

ANKRD13

A 

-0.011763 

PI4KB -0.011583 

PRRC1 0.011518 

UBB -0.011513 

FAM129B 0.011441 

PNMAL1 -0.010498 

LPP 0.010416 

APBB2 -0.010189 

PRDM4 -0.010085 

ADAR -0.010018 

SEC14L1 0.009938 

CAPN2 0.009793 

ASAP2 0.009678 

PPP2R5B 0.00955 

NFATC3 -0.009429 

PRPSAP2 -0.009416 

DCAF7 0.009216 

B2M -0.015314 

UBB -0.015001 

FBXW2 -0.014918 

LDB1 -0.014863 

SEC24D 0.014746 

MICALCL 0.014702 

MYO1E 0.014521 

RASSF1 0.014486 

TOR3A -0.01446 

PIK3R1 -0.014459 

TRAFD1 -0.014282 

ANKRD13

A 

-0.014195 

SLC41A1 -0.014065 

MEF2D 0.013983 

PI4KB -0.013683 

LRRFIP1 0.013638 

PRRC1 0.013535 

FRMD4A -0.012667 

PNMAL1 -0.012235 

LPP 0.011861 

CAPN2 0.011646 

ADAR -0.011625 

PRDM4 -0.011432 

APBB2 -0.01135 

SEC14L1 0.011315 

UBP1 -0.010824 

ASAP2 0.010731 

PRPSAP2 -0.010671 
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TCGA RNA-Seq Level 3 

Rsubread  

FPKM TPM 

MYO10 0.004929 

UBP1 -0.00478 

RCC2 0.004742 

SGK1 0.004731 

RFWD3 -0.004666 

C20orf3 -0.004354 

WDR91 -0.004333 
 

MEX3C 0.009174 

AFAP1 0.009148 

UBP1 -0.008794 

ARHGEF12 -0.008606 

SDC1 0.008466 

ADCY9 -0.008152 

STAT3 -0.008103 

ANKRD27 0.007958 

IFFO2 0.007081 

GTF2I -0.006848 
 

PPP2R5B 0.010646 

NFATC3 -0.010535 

AFAP1 0.010482 

DCAF7 0.010296 

MYL12A 0.009901 

ARHGEF12 -0.009895 

STAT3 -0.009518 

ANKRD27 0.008986 

IFFO2 0.008553 

GTF2I -0.008151 

CYB561 0.00765 
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Table S5: Coefficients of variation for HER status predictions in TCGA breast cancer 
samples. 
HER2 status Method used Coefficient of variation 
HER2 (-) TCGA 0.62 

Rsubread FPKM 0.21 
Rsubread TPM 0.30 

HER2 (+) TCGA 0.72 
Rsubread FPKM 0.14 
Rsubread TPM 0.20 

 



CHAPTER 4 

PATHWAY-BASED DRUG RESPONSE BIOMARKER 

IN BREAST CANCER 

4.1 Introduction 

Despite advancements in molecular characterizations of cancer patients and 

availability of better treatment options, breast cancer remains challenging to treat and is 

one of the leading causes of cancer related deaths in women (1, 2). Intertumor and intra-

tumor genomic heterogeneity of breast cancer contributes to the challenges in selecting 

optimal treatments for personalized medicine (3, 4). Accurate biomarker development is 

necessary to identify breast cancer molecular phenotypes to match patients. Here, we take 

a novel approach by profiling gene expression-based pathway activity in breast cancer to 

predict response to AKT targeted therapies.  

Breast cancer is a complex molecular disease characterized by multiple genomic 

alterations. Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) 

techniques are used to determine common protein alterations such as estrogen receptor 

(ER), progesterone receptor (PR), and HER2 receptor (ERBB2) status. In addition to the 

receptor status,  gene expression based “intrinsic subtypes” can be determined to guide 

therapy (5-9). While there are variations in subtyping breast cancer, the major 

transcriptional subtypes consist of luminal, ERBB2-enriched, basal-like, and claudin low 

(10, 11). Breast cancer patients are known to have different prognosis, survival and drug 
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response based on the subtypes (3, 5, 10, 11). Nonetheless, the clusters of genes defining 

the subtypes lack biological significance and there are instances that cannot beclassified 

into any specific subtypes (12). Although chemotherapies are frequently used in clinics, 

combination of chemotherapy and targeted therapy is used in some cases for improved 

outcomes (13). Unfortunately, only a fraction of the patients harboring specific 

alterations in their genomes respond to the targeted treatments (2). For example, ERBB2 

(HER2) overexpression has been effective for predicting response to HER2-targeted 

therapies such as trastuzumab (14, 15). However, one third of patients overexpressing 

HER2 do not respond or become resistant, likely due to deregulation of downstream or 

parallel pathways. Clinical trial results show that knowing the mutation status leading to 

activation of the target is insufficient to predict drug response (16). The use of subtypes 

and single gene biomarkers has improved breast cancer treatment, but oversimplifies the 

true heterogenic nature of cancer in patients and does not capture pathway-level aberrant 

signaling (15). These biomarkers also do not address the inherent interconnectedness and 

crosstalk among pathways, and alternative mechanisms of pathway deregulation. As an 

alternative, biological pathway-level aberration could be leveraged to assess drug 

response. Previous efforts have shown that the multigene-based gene expression profile 

of a pathway, a signature, is predictive of therapy response by correctly identifying 

targeted pathway deregulation linked to the therapy (17-20). However, biomarkers that 

account for pathway interactions are currently unavailable. Therefore, there is a strong 

need for the development of pathway-based biomarkers that accurately identify specific 

deregulation and account for the crosstalk among different networks to predict drug 

sensitivity in cancer patients. 
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Cells must acquire multiple genomic alterations to grow uncontrollably and survive to 

become cancerous (1). The growth factor receptor network (GFRN) pathways play a 

critical role in cellular growth and survival in the normal cell and they are frequently 

deregulated in cancer (21).  Growth factor receptors such as EGFR, HER2, and IGF1R 

can become hyperactive due to genomic aberrations, while others are activated by protein 

modifications such as phosphorylation(21). The GFRN pathways that have been shown to 

be important in breast cancer development and survival are the HER2-PI3K-AKT 

pathway and the RAF-MEK-ERK pathway (22). Both pathways can result in subsequent 

tumor growth, proliferation, survival, and metastasis (23).When HER2 or IGF1R are 

amplified or overexpressed, PI3K mediated AKT activation leads to increased cellular 

survival by inhibiting BAD (Bcl2-Associated death promoter) (24). BAD is a pro-

apoptotic protein, and leads to apoptotic induction in normal cells (25). By inhibiting 

BAD, tumors with activated AKT escape apoptosis (24, 26). Similar to HER2/IGF1R, 

EGFR mutations or amplification leads to increased cellular proliferation, survival and 

motility via extracellular signal-related kinase (ERK) (22, 27, 28). While we currently 

have drugs that target specific aberration in these two pathways available for patient care 

or under development, complex mechanisms of pathway activation and signaling 

interactions have made effective use of these targeted drugs challenging in patients (29, 

30). 

Previously, we developed and validated ASSIGN, a novel statistical approach and 

pathway profiling toolkit that provides context-specific pathway activity estimates in 

patient samples considering the pathway crosstalk (30).  Using ASSIGN,  we generate 

and validate the AKT, BAD, HER2, IGF1R, EGFR, RAF and KRAS signatures 
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accounting for the pathway interaction among the signature genes. We hypothesize that 

these signatures will provide a differential spectrum of HER2/IGF1R/AKT/BAD and 

EGFR/KRAS/RAF activity with high sensitivity and specificity in breast cancer that can 

be leveraged for drug response biomarker development. In this study, we validate our 

signature predictions in silico using breast cancer cell lines and TCGA breast cancer 

patient data by testing the ability of pathway predictors to predict a gene’s activity in 

these datasets. Next, we characterize the spectrum of pathway activity across the cancer 

cell lines and patient tumor datasets. From these analyses, we discovered a robust and 

consistent inverse relationship between the two signaling arms in breast cancer cell lines 

and in patients: HER2/IGF1R/AKT and EGFR/RAS/RAF/BAD. We show that actual 

response to drug correlates to our multipathway biomarkers with high significance. These 

results were further tested in independent lab experiments, in which we 

pharmacologically inhibited pathways of interest in an additional panel of breast cancer 

cell lines to test our predictions. To examine the importance of different types of omic 

data in prediction of drug response, we included genomic pathway-level and phenotypic 

subtypes, as well as variant and proteomic data to perform a comparative analysis of the 

models. AKT inhibitor drug response was more accurately predicted using multipathway 

activity than single pathway activity or using subtype alone. Multipathway activity 

combined with subtype information performed the best for drug response predictions. 

Finally, when multiomic data are added, for the AKT-targeted therapies, pathway activity 

based on the transcriptional pathway-level biomarker contributed the most to drug 

response predictions, but was complementary to other omic data. We modeled pathway 

activity and interactions among multiple pathways in breast cancer, and have generated a 
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multiomic biomarker to predict response to AKT targeted therapies. This biomarker has 

the potential to contribute to patient selection for AKT targeted therapies, and to provide 

personalized prediction for AKT-targeted therapy response.  

 

           4.2 Methods 

4.2.1 in vitro signature generation 

We used adenovirus to overexpress genes of interest in human primary mammary 

epithelial cell cultures (HMECs) in order to develop pathway-based gene expression 

signatures. HMECs were isolated from normal epithelial tissue taken from breast 

reduction surgeries for noncancer related reasons, and reflect normal epithelial cell 

signaling.  HMECs were grown in serum-free MEBM plus addition of a “bullet kit” 

(Lonza), and supplemented with 5mg/ml transferrin and 10-5M isoproterenol at 5% CO2. 

We used recombinant adenoviruses to overexpress AKT1, IGF1R, BAD, HER2, KRAS, 

GFP (Vector Biolabs), RAF1 (Cell Biolabs), and EGFR (Duke University) individually 

in HMECs in order to isolate the transcriptional profile reflective of each gene's 

overactive state. Recombinant adenoviruses were amplified and tittered using previously 

published protocols (31). HMECs were brought to quiescence by low serum growth 

conditions for 36 hours (0.25% MEGM, no EGF). Adenovirus (MOI 500) was added to 

HMEC conditioned media until the amplified protein from the overexpressed gene could 

be detected. Total protein levels of AKT, BAD, HER2, IGF1R, RAF, and EGFR were 

significantly overexpressed after 18 hours of virus incubation compared to control 

samples. For KRAS, 36 hours of viral incubation was necessary. Following virus 

incubation, protein was collected by washing cells with PBS, scraping on ice into PBS, 
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pelleted by centrifugation, lysed for 15 minutes, and centrifuged at 13,000 x g for 15 

minutes. We validated protein overexpression and their downstream targets by standard 

Western Blotting technique (Figure 4.1). HER2, IGF1R, AKT, EGFR, BAD, RAF1, 

phospho-IGF1R, and phospho-AKT antibodies were used for protein detection (Cell 

Signaling). RNA was stored in RNAlater (Ambion), DNase treated, and extracted using 

an RNeasy kit (Qiagen). We generated RNA replicates for each overexpression status: six 

for AKT, BAD, IGF1R, and RAF1each; five for HER2; and twelve for control (GFP) 

status. Previously, we generated the EGFR signature and its corresponding control GFP 

samples with six replicates of each. Additionally, nine replicates of KRAS (G12V), 

(Q61H), and control (GFP) samples were generated. cDNA libraries were prepared from 

the extracted RNA using the Illumina Stranded TruSeq protocol and RNA-sequencing 

(RNA-Seq) using the Illumina HiSeq 2000 was performed.  

 

4.2.2. Data processing and normalization 

cDNA libraries were sequenced at Oregon Health and Sciences University using the 

Illumina HiSeq 2000 sequencing platform with six samples per lane. Single-end reads of 

101 base pairs were generated. The R package “Rsubread” was used to align and 

summarize reads to the UCSC hg19 reference genome and annotations (32, 33). EGFR 

and HER2 mRNA overexpression datasets were obtained from Gene Expression 

Omnibus via accession numbers GSE59765 and GSE62820, respectively. We processed 

and normalized HMEC signature datasets, TCGA breast cancer data (GSE62944) and 

ICBP breast cancer RNA-Seq dataset (GSE48213) using the  data processing pipeline 

found at (https://github.com/srp33/TCGA_RNASeq_Clinical) (34). Signature datasets for 



 
 

 

70 

AKT, BAD, IGF1R, RAF1, and RAS will soon be available on the Gene Expression 

Omnibus database. 

 

4.2.3 Single pathway optimum gene-set selection  

We generated genomic signatures, a gene-set that best describes pathway activation, 

with our HMEC RNA-Seq data and we applied these signatures to estimate the pathway 

activation status of 55 ICBP breast cancer cell lines using the ‘ASSIGN’ R package  (34). 

First, we analyzed the HMEC and ICBP data for batch effects using principle component 

analysis.  Batch effects between the two datasets were adjusted using the R package 

‘ComBat’ (35). Next, we used associated GFP control and overexpressed gene of interest 

HMEC data as training datasets for signature generation. In order to determine the 

optimal number of genes in the signature, we generated signatures with a variable number 

of genes (25, 50, 75, 100, 150, 200, 250 and 300 gene) using ASSIGN’s single pathway 

settings (36). For each signature and different gene number, we tested the predictive 

ability of the pathway estimates using (1) adaptive background alone 

(adaptive_B=TRUE, adaptive_S=FALSE) and (2) adaptive background plus adaptive 

signature features (adaptive_B=TRUE, adaptive_S=TRUE in all cases, and 

S_zeroPrior=TRUE in breast cancer cell lines only) in ASSIGN. We used default settings 

for all other parameters. The adaptive_B=TRUE parameter enables ASSIGN to adjust for 

background baseline gene expression differences between in vitro HMECs and test 

samples (i.e., cell lines), and the adaptive_S=TRUE feature enables ASSIGN to consider 

the variation in magnitude and direction of signature relevant-gene expression between in 

vitro HMECs and test samples (i.e., cell lines).  In all cases, the signatures that passed the 
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internal cross validations were included for further analysis. In order to validate that 

signatures accurately reflected pathway activation, we calculated pairwise Spearman 

correlation with p-value between pathway predictions and reverse phase protein array 

(RPPA) data in cell lines (34, 37). We used upstream and downstream proteins of the 

pathway of interest for the signature validations process and inconclusive RPPA data 

were excluded from the validation analysis. To determine the optimum number of genes 

for each signature, we used the p-values for each correlation. Based on the ICBP RPPA 

protein data, we found EGFR and HER2 signatures perform better with a smaller number 

of genes. Therefore, we additionally generated 5,10,15 and 20 gene signatures for EGFR 

and HER2 pathways.  For all the signatures that passed internal leave-one-out-cross-

validation, pathway estimates were included for further validation in proteomics data. A 

list of optimum gene numbers determined for each signature, the associated protein, the 

Spearman correlation and p-values used for validation are listed in Table 4.1. 

 

4.2.4. Multipathway optimal combination selection 

Using ASSIGN’s multipathway feature, optimized single pathway signatures were 

then used in various combinations with all other signatures to estimate pathway activity 

in the cell lines. In contrast to single pathway estimation where a pathway is profiled 

independently, multipathway approach considers interactions to provide a more 

biologically relevant estimation of pathway activity. Identification of multipathway 

combination that can best consider crosstalk among the signature pathways is important 

for providing the most refined pathway activity estimation (36). To determine the optimal 

multipathway combinations, pathway estimations from these various combinations of 



 
 

 

72 

pathway were correlated with RPPA protein data in the breast cancer cell lines. Pairwise 

Spearman correlations and associated p-values were used to select the most significant 

multipathway combination for rest of the analyses. 

 

4.2.5. Statistical analyses 

We used ASSIGN, a semisupervised pathway profiling toolkit for generating 

signatures and estimating pathway activity in the test samples. Details about the 

parameters used in ASSIGN generating prediction in cell lines are listed in section 4.3.2. 

To generate pathway activation estimations in TCGA breast cancer samples, we used the 

optimized signature gene list in cell lines along with the HMEC training data with 

adaptive background and adaptive signature features (adaptive_B=TRUE, 

adaptive_S=TRUE). The baseline and signature-associated gene expression can vary 

significantly between in vitro HMEC training and patient samples. Therefore, adaptive 

ASSIGN features are expected to be beneficial in this scenario by providing ‘absolute’ 

pathway activity allowing for signature refinement (36). We used Spearman rank-based 

pairwise correlation methods for pathway prediction ands protein level correlations. The 

“cor.test” function from the “stats” R package was used to calculate p-values for each 

correlation (38, 39). Student’s t-tests were performed to find the differences in pathway 

activity based on mutation status and drug sensitivity differences based on pathway 

activity. Bonferoni corrections were applied to address multiple comparisons of p-values 

for pathway activity and protein correlations. The ‘heatmap.2’ function from the 

“ggplots” R package was used for generating pathway activity and pathway activity-drug 

response correlation heatmaps (40). The “mclust” R package was used to identify the cell 
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lines with high and low pathway (41, 42).  All analyses were conducted in R (43). 

 

4.2.6. Development of multiple regression drug 

response prediction biomarkers  

We used simple multiple regression models using predicted pathway activity in ICBP 

breast cancer cell lines to predict drug response. In order to train the models, we used the 

“MASS” R package using the ‘StepAIC’ function (44). This function selects the most 

informative variables for the dependent variable (i.e., drug response in our model) using a 

stepwise forward selection method from the list of dependent variables. First, we build 

models that only used estimated single pathway estimations or multipathway estimations 

as independent variables. Second, we used only the subtypes as independent variables. 

Finally, we used a combination of both pathway activity and subtypes together as 

independent variables. The predicted response from each model was compared to actual 

drug response to explain the variability in response by the model and reported as R2. In 

addition to pathway and subtype, we also identified the most correlated single nucleotide 

polymorphism (SNP) or insertion and deletion (indel)-containing genes and proteins from 

proteomics (RPPA) data. We built our final models and included multipathway activity, 

subtypes, SNP genes and proteins for predicting drug response and measured the R2 for 

models as we added each genomic data type into the models. The contribution from each 

type of genomics data for each drug was then measured using a residual R2 approach, 

namely by subtracting the R2 of a ‘reduced’ model from the R2 of the more inclusive 

model. For example, contribution of protein data in the multiomic model was calculated 

by R2 of (pathway + subtype + protein  model) – (R2 of pathway + subtype model) for 
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each drug. Thus we can see the additional benefit of including proteomics data to the 

model. 

4.3 Results 
 

4.3.1. Pathway models for phenotypic characterization of  

breast cancer 

4.3.1.1. Signature generation and validation in breast  

cancer cell lines  

We used human primary mammary epithelial cell cultures (HMECs) to develop 

pathway-based gene expression signatures. In vitro signature generation method for 

HER2, IGF1R, AKT, BAD, RAF1 and KRAS is detailed in 4.2.1. Briefly, Western Blot 

analyses of these experiments demonstrating protein overexpression and pathway 

activation versus control (green fluorescent protein, GFP) are shown in Figure 4.1. 

Following expression of our gene of interest for 18-36 hours, replicates for each 

pathway’s activation state were processed for RNA, and RNA-sequencing using the 

Illumina HiSeq 2000 was performed. We processed the RNA-Seq data using methods 

described in 4.2.2. From these data, we identified those genes that best discriminate 

activation of each pathway, a pathway signature, and this signature was used as our 

pathway-level predictor. Our overall method for single and multipathway signature 

validation process is shown in Figure 4.2. 

We used the R package “ASSIGN” to generate gene-expression signatures Figure 4.3 

(A), and also for estimating single and multipathway activity in the test data (see 

Methods 4.3.2-4). Multipathway profiling approach accounts for pathways 

simultaneously and captures the crosstalk among pathways, whereas single pathway 
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approach considers one pathway at a time and interactions among the pathways are not 

accounted. Therefore, our multipathway profiling approach provides a more biologically 

meaningful estimation of pathway activity for our downstream analysis (36). We 

validated our single  (Table 4.1) and multipathway (Figure 4.3(B)) gene-expression 

signatures using ICBP breast cancer cell line gene expression data and RPPA protein data  

(34, 37). For the AKT signature validation, we correlated AKT pathway predictions with 

upstream protein phospho-PDK1 (p241), PDK1, and total AKT protein levels (45). As 

expected, pathway activity levels were positively correlated with AKT signature 

predicted activity (r=0.51, p-value=0.001 for 75 gene single pathway AKT signature). 

For the BAD signature, we used the same proteins but using negative correlations since 

AKT and BAD are known to have opposing effects (46). Using this approach, we found 

the 200-gene signature to best represent the BAD pathway(r=-0.48, p-value=0.004). 

Similarly, the EGFR signature with 25 genes had the highest correlations with EGFR, 

phospho-EGFR (p1068) and a downstream protein, MEK and MAPKp. The 15-gene 

HER2 signature was optimized using HER2 and HER2 (p1248) protein levels. The 75-

gene IGF1R signature provided the highest correlation with PDK1 and phospho-PDK1 

protein levels(47, 48). We selected the 100-gene RAF1 signature based on the fact that it 

provided the best correlation with PKCalpha, PKCalpha657, MAPKp and MEK1 protein 

levels (49).  The two mutant KRAS signatures with 300 genes each were also validated 

against the phospho-EGFR protein score since EGFR activates KRAS, and the mutant 

KRAS signatures are expected to capture KRAS-activated signaling. A summary of 

single pathway activity-protein correlation is listed in Table 4.1 and multipathway 

activity-protein correlation validations are shown in Figure 4.3(B).    
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In order to test the accuracy of the pathway-based signatures, we validated each 

signature in TCGA breast cancer data using patient sample RPPA protein data or 

mutation data (Figure 4.4). We applied our signatures to TCGA breast cancer RNA-Seq 

data (n=1082) in addition to ICBP breast cancer cell line data (of 55 breast cancer cell 

lines). For the AKT signature, we used the correlation of predicted AKT pathway with 

total AKT protein and saw a significant correlation. In addition, we correlated AKT 

pathway activity in differentiating TCGA breast cancer patient samples with PIK3CA 

mutations. As expected, AKT pathway activity was significantly higher in patients with 

the PIK3CA mutation (p-value <0.001). The opposite was expected for BAD signature 

validation. Indeed, BAD pathway activity was low in patients with the PIK3CA mutation 

(p-value <0.001). EGFR, HER2, IGF1R, and RAF pathway activities were significantly 

correlated with EGFR, HER2, IRS1 and S6 proteins, respectively (p-value <0.001)(50). 

Both the KRAS mutant signatures were able to predict high KRAS activity in patients 

with KRAS mutations (p-value: 0.01 and 0.04 for G12V and Q61H mutant KRAS 

signatures, respectively). 

 

4.3.1.2. Pathway activity in breast cancer patients 

After signature validation in cell lines and in patient tumors, we clustered pathway 

activity in 52 cell lines and 517 breast cancer samples with the intrinsic subtypes 

information available. First, our hierarchical clustering shows an intriguingly simple 

pathway activity pattern in the samples from the two datasets . This pattern is consistent 

and demonstrates that HER2, IGF1R, AKT and EGFR, KRAS, RAF, BAD  predictions 

are two distinct clusters that are anticorrelated. Figure 4.5 (A) and (B) demonstrate the 

consistent pathway relationships in both 52 ICBP breast cancer  cell lines and 517 TCGA 
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breast cancer patient samples. Using the intrinsic subtypes, which reflect different breast 

cancer phenotypes together with ERBB2-amplification status, we demonstrate that our 

signatures show a distinct pattern of pathway activation in breast cancer cell lines that 

extends beyond any one subtype (10, 11, 51, 52),. This pathway activity pattern extends 

beyond any one subtype. For example, AKT activity is higher in ERBB2-amplified and 

luminal subtypes whereas BAD activity is higher in basal and claudin-low 

subtypes.  Also, AKT, HER2, IGF1R pathways are upregulated together, versus EGFR, 

RAS, RAF, and BAD. These findings suggest that there is a pathway level 

dichotomization of the growth factor receptor networks. In general, either 

HER2/IGF1R/AKT or EGFR/RAS/RAF pathway is on with only minimal overlap. 

Knowing this, we can hypothesize target therapy would also show dichotomous 

sensitivity pattern based on the driving pathway characterization.  

 

4.3.2. Drug response is consistent with pathway activity 

spectrum in breast cancer 

To test our pathway activity and drug sensitivity dichotomous relationships, we 

correlated the estimated pathway activity and sensitivity of 90 drug responses in ICBP 

breast cancer from Daemen et al. (2013). Drug sensitivity was defined as negative log-10 

base logarithm of 50% growth inhibitory drug molar concentration (GI50). Indeed, our 

Spearman correlation-based hierarchical clustering shows drug response correlates with 

the pathway activity patterns discussed in the results section 4.4.1.2. Specifically, 

HER2/IGF1R/AKT and EGFR/RAS/RAF/BAD show contrasting pathway activity 

dictates drug response. Figure 4.6 shows the pathway-activity spectrum is also consistent 
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with drug response in breast cancer cell lines. In general, HER2, AKT, PI3K, mTOR, and 

IGF1R inhibitors showed a strong positive correlation with HER2, IGF1R, AKT pathway 

activity indicating increased sensitivity to drug as the target pathways are activated. 

Alternatively, EGFR, MEK inhibitors, and chemotherapies show a high correlation with 

EGFR, BAD, RAF, and KRAS pathway activity suggesting higher sensitivity as this arm 

of the pathway is activated. This analysis suggests that the pathway activity is an 

important indicator of drug response and potentially important variable for building drug 

response prediction models, and that the two pathway-level phenotypes in breast cancer 

track with drug response. 

 

4.3.3. Independent validation of pathway 

activity-based drug response 

To further test our hypothesis that high pathway activity predicts drug response to 

targeted therapy specific to that pathway, we conducted a pharmacological drug 

inhibition assay using  23 breast cancer cell lines. In particular, we tested neratinib, a dual 

EGFR/HER2 inhibitor in cell lines with high HER2 and AKT activity.  Cell lines with 

high HER2 and AKT activity were significantly more sensitive to neratinib (HER2: p-

value<0.01; AKT: p-value=0.04)(Figure 4.7 (A), 4.7(B)). We also tested a commonly 

used breast cancer chemotherapeutic drug, doxorubicin, to show its efficacy in cell lines 

with high BAD, EGFR and RAF activity (Figure 4.7 (C), 4.7(D)). Cell lines with high 

BAD, EGFR and RAF activity were preferentially more sensitive to doxorubicin (p-

value=0.04, 0.03, 0.07, respectively). Additionally, we used an EGFR specific drug, 

erlotinib, to test pathway specific inhibition of KRAS and EGFR pathway (Figure 4.7 
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(E), 4.7(F)). Although erlotinib was more sensitive in cell lines with high EGFR activity, 

the sensitivity difference between high and low EGFR activate cell lines was not 

statistically significant (p-value=0.15). However, significant sensitivity to erlotinib was 

observed between high and low KRAS pathway active breast cancer cell lines (p-

value=0.05). These results validated that our multipathway predictions are capable of 

predicting drug response in cell lines in an independent drug assay with additional drugs.  

 

4.3.4. Pathway models as biomarker for response 

4.3.4.1. Multipathway predictions are more predictive   

than single pathway predictions 

We used a stepwise, forward-selection, multiple regression modeling approach to 

build predictive drug response models. We hypothesize that  drug response prediction 

models will perform better than the subtypes alone for predicting response to  targeted 

therapies.  We used pathway (AKT, BAD, HER2, EGFR, KRAS (GV), KRAS(QH), and 

RAF activity) predictions only, subtype only (ERBB2-amplified, basal, luminal, claudin-

low and normal-like), and pathway plus subtype together as independent variables to 

build the models to predict sensitivity for each drug in a similar manner as described in 

section 4.3.6. For pathway predictions in the model building process, we used both single 

and multipathway predictions and contrasted the resulting R2 as outlined previously. 

Table 4.2 lists comparative analysis and additional contributions for explaining drug 

response models for AKT, PI3K, HER2/EGFR targeting, and chemotherapeutics drugs 

using single pathway predictions, multipathway predictions and multiomics data. We 

found that for the AKT targeting drugs, the pathway prediction-based model performed 
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significantly better than the subtype only model, thus demonstrating the value of our 

combined pathway-subtype approach.   In general, improvement in predictive ability is 

observed with multipathway slightly and significantly when used with subtype 

data.  Figure 4.8(A) shows the variability of Sigma AKT 1/2 inhibitor response explained 

by our model in terms of R2. R2 is 0.57, 0.53 and 0.75 with multipathway predictions 

only, subtype only and multipathway plus subtypes, respectively. In multipathway 

prediction-based Sigma AKT1/2 inhibitor model, AKT, HER2 and IGF1R pathway 

predictions have been included providing slight improvement over single pathway-based 

model where only AKT and IGF1R pathways have been included. Similarly, 

improvement was seen for BIBW2992, a HER2, EGFR dual inhibitor with pathway and 

pathway with subtypes in predicting response (Figure 4.8(B)).  Although we did not have 

a PI3K signature, we were able to predict the response using upstream HER2, IGF1R and 

downstream AKT activity for GSK1059868, a PI3K-targeting drug (Figure 4.8 (C)). 

Doxorubicin’s response was also improved using the pathway activity rather than the 

subtype (Figure 4.8 (D)). For the multiomics model, we have used multipathway 

estimations of pathway activity, single nucleotide, insertion/deletion, and proteomics 

data. Overall, pathway activity-based model had the most contribution in prediction AKT 

targeted drug response (Figure 4.9). 

 

4.4 Discussion 

In this study, we characterized pathway activation status in breast cancer cell lines 

and patient data using multipathway gene-expression signatures, and generated a multi-

omic biomarker for predicting response to AKT targeted therapies. Western Blots 

validated protein overexpression, and gene expression signatures were validated with 
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RPPA protein data in both breast cancer cell lines and TCGA patient RRPA data.  These 

validated gene expression signatures were brought together to create, to the best of our 

knowledge, the first multipathway gene expression signatures. Multipathway models 

were able to predict drug response to targeted therapies in ICBP cell lines, and in an 

independent drug screen. With this approach we found intriguing inverse relationship 

between HER2/IGF1R/AKT and EGFR/KRAS/RAF/BAD pathways. We also found 

pathway activation was usually exclusive to one of the two major pathways and pathway 

activity dictates drug response. 

Using a multiple regression-based stepwise model selection approach, we have 

developed drug response biomarker for AKT therapies in breast cancer cell lines. We 

compared pathway predictions alone, subtypes alone, pathway and subtypes together, and 

with multiomics data in order to determine the best predictors of drug response. For the 

targeted therapies for which we had signatures, we demonstrated that pathway alone 

could explain significant variability in predicting drug response. Inclusion of subtypes, 

proteomics and variant data further improves the predictive power of the response 

prediction models.  

Adding additional growth factor receptor pathway nodes could increase the predictive 

power of our models. Our multipathway gene-expression signatures could also be used to 

interrogate other cancers, and measure pathway activity with ASSIGN’s adaptive 

features. However, pathway contributions in predicting drug response may vary across 

cancer types. Therefore, pathway predictions may need to be revalidated in each cancer 

type for better reliability before drawing conclusions. Multiple regression models using a 

stepwise model selection approach are intended for hypothesis-driven model building, 
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but this approach has many limitations. An important assumption in the model selection 

method is that all included independent variables are relevant, and that no colinearity 

exists among these variables. In biology, there are redundancies in pathway regulations 

and activities. Therefore, our included pathways may show colinearity and falsely 

increase the predictive power of the model. For the AKT inhibitors modeled in this study, 

we may have missed other relevant pathways, important rare variants, protein changes 

that could have impacted the response. In the future, we plan to include more growth 

factor receptor pathway nodes for improved refinement of the signaling pathway 

characterization. We will improve our models for response prediction by accounting for 

interaction in mRNA, proteomics, variant and methylation data to lower the risk of over-

fitting. We will also test our response models in patient cells in vitro. Overall, our newly 

generated multipathway/mutliomic characterization for pathways could be helpful in 

selecting the appropriate patients for clinical trial designs to test response and efficacy of 

the targeted therapies. These pathway-based models are useful for drug response 

biomarker development, and for implementing personalized medicine. Pathway-based 

multiomic drug response models, however, need to be validated in prospective clinical 

trials as biomarkers for appropriate personalized breast cancer treatment. 
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Table 4. 1: Spearman’s correlation between pathway activity and proteomics data 
for optimum signatures in ICBP cell line proteomics data 
Signature Gene 

number 
Protein Spearman’s 

correlation 
p-value 

AKT 75 AKT 0.51 0.002 
BAD 200 AKT -0.48 0.004 
EGFR 25 EGFR 0.41 0.02 
HER2 15 HER2 0.62 <0.001 
IGF1R 75 PDK1 0.53 0.001 
KRAS 
(G12V) 

300 EGFR 0.46 0.01 

KRAS(Q61H) 300 EGFR 0.45 0.01 
RAF 100 MAPKp 0.44 0.008 
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Table 4. 2: Pathway-based biomarker model comparative analysis 
Drugs 
(Target) 

Single pathway 
prediction 
models: R2 
 

Multipathway 
prediction models: R2 

Multiomics based 
prediction model 
(with multipathway 
predictions):R2 

Sigma AKT 1/2 
inhibitor 
(AKT) 

pathway 
only:0.55 
Subtype only: 
0.53 
pathway + 
subtypes: 0.71 

pathway only:0.57 

Subtype only: 0.53 

pathway + subtypes: 
0.75 

pathway + subtype + 
protein + snps/indels: 
0.82 

pathway + subtype + 
protein: 0.78 

GSK2141795 

(AKT) 

pathway 
only:0.44 

Subtype only: 
0.25 

pathway + 
subtypes: 0.44 

pathway only:0.43 

Subtype only: 0.25 

pathway + subtypes: 
0.43 

pathway + subtype + 
protein + snps/indels: 
0.82 

pathway + subtype + 
protein: 0.58 

BIBW2992 
(HER2/EGFR) pathway 

only:0.10 

Subtype only: 
0.17 

pathway + 
subtypes: 0.42 

pathway only:0.34 

Subtype only: 0.17 

pathway + subtypes: 
0.90 

pathway + subtype + 
protein + snps/indels: 
0.77 

pathway + subtype + 
protein: 0.77 

CPT-11 
(Topoisomerase 
I) 

pathway 
only:0.46 

Subtype only: 
0.13 

pathway + 
subtypes: 0.46 

pathway only:0.51 

Subtype only: 0.13 

pathway + subtypes: 
0.51 

pathway + subtype + 
protein + snps/indels: 
0.80 

pathway + subtype + 
protein: 0.64 
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Table 4.2 (continued) 

Drugs 
(Target) Single pathway 

prediction 
models: R2 

Multipathway 
prediction models: 
R2 

Multiomics based 
prediction model 

(with multipathway 
predictions):R2 

Everolimus 
(mTOR) pathway 

only:0.29 

Subtype only: 
0.38 

pathway + 
subtypes: 0.38 

pathway only:0.36 

Subtype only: 0.36 

pathway + 
subtypes: 0.38 

pathway + subtype + 
protein+ snps/indels: 
0.70 

pathway + subtype+ 
protein: 0.61 

Doxorubicin 
(Topoisomerase I1) pathway 

only:0.38 

Subtype only: 
0.15 

pathway + 
subtypes: 0.45 

pathway only:0.36 

Subtype only: 0.15 

pathway + 
subtypes: 0.36 

pathway + subtype+ 
protein+ snps/indels: 
0.55 

pathway + subtype+ 
protein: 0.48 

GSK1059868 
(PI3K) pathway 

only:0.37 

Subtype only: 
0.18 

pathway + 
subtypes: 0.48 

pathway only:0.37 

Subtype only: 0.18 

pathway + 
subtypes: 0.53 

pathway +subtype + 
protein+ snps/indels: 
0.70 

pathway +subtype + 
protein: 0.60 
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Figure 4. 1: Western blot protein overexpression validation. (A) IGF1R, (B) HER2 
(ERBB2), (C) KRAS, (D) BAD, and (E) RAF1 signatures generated in human mammary 
epithelial cells (HMECs).  
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Figure 4. 2: Signature generation and validation. We overexpressed gene of interest in 
human mammary epithelial cells using Adenovirus.  Signature HMEC data and all test 
data are processed and normalized using the same pipeline. Then ASSIGN was used to 
generate single and multipathway signatures and these signatures were used in test 
datasets such as ICBP breast cancer cell lines and TCGA breast cancer patients. 
Estimated pathway activities from ASSIGN were validated against proteomics and 
mutation data for the test samples. 
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Figure 4. 3: Gene expression signatures and validation in ICBP43 dataset. (A) 9 gene 
expression signatures are shown with variable number of genes. (B) Signature predictions 
using RNA-Seq data were validated in the reverse phase protein array (RPPA) data in 
breast cancer cell line data from Daemen et al. (2013). 75 gene AKT, 200 gene BAD, 25 
gene EGFR, 250 gene ERK, 15 gene HER2, 75 gene IGF1R, 300 gene KRAS-GV, 300 
gene KRAS-QH, 100 gene RAF signatures were validated with total AKT, total AKT, 
phospho-EGFR, phospho-PKCalpha, phosphoHER2, total PDK1, phospho-EGFR, 
phospho-EGFR and phospho-MAPK, respectively. Scatter plots and Spearman’s 
correlation with significant p-values used for optimized signature are shown. 
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Figure 4. 4:  Pathway prediction validation in TCGA BRCA dataset. AKT, BAD, EGFR, 
HER2, IGF1R, RAF, KRAS (G12V) and KRAS (Q61H) signature validations in TCGA 
breast cancer patient samples. Mutation data from 417 patients and RPPA protein data 
from 500 patients were used for validation of these pathways. 
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Figure 4. 5: Analysis of pathway activity and intrinsic subtypes. (A) 52 breast cancer cell 
lines and (B) 517 breast cancer patient samples show a similar pathway-activity 
clustering pattern that is not limited in one subtype. 
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Figure 4. 6: Correlation heatmap of Pathway-drug response .Pathway-drug response 
correlation demonstrates pathway specific drug response in 52 breast cancer cell lines and 
across 90 drugs. 
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Figure 4. 7: Pathway dichotomy validation in an independent drug assay. Cell lines with 
high  AKT (A), and HER2 (B)  activity are significantly more sensitive  to neratinib (p-
value=0.04, p-value<0.001, respectively);  BAD (C) and EGFR (D)  activity are 
significantly more sensitive to doxorubicin (p-value=0.04, 0.03, 0.07, respectively); 
KRAS (E) and EGFR (F) activity are more sensitive to  erlonitib (p-value=0.05, 0.15, 
respectively). 
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Figure 4. 8: Predicted versus actual drug responses. Variability explained by the stepwise 
multiple regression models is shown for (A) Sigma AKT 1/2 inhibitor (B) BIBW2992 
(C) GSK1059868 (D) doxorubicin for pathways only, subtypes only and pathways with 
subtype models.  For all cases, pathways only models were better than the subtypes alone 
models and pathways with subtype models were the best.  

A.          B.  

  
C.          D. 
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Figure 4. 9:  Performance of the multiomic drug response model. Multiomic model 
explained R2 for drug response across all 90 drugs using 52 breast cancer cell lines 
ordered by pathway contribution. The pathway-based models (red bars) explain the 
variability in the drug response for the most drugs. 
 

4.5 References 

1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 
2011;144(5):646-74. 
 
2. Raguz S, Yague E. Resistance to chemotherapy: new treatments and novel 
insights into an old problem. British Journal of Cancer. 2008;99(3):387-91. 
 
3. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. 
Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of Clinical 
Oncology : Official Journal of the American Society of Clinical Oncology. 
2009;27(8):1160-7. 
 
4. Reis-Filho JS, Pusztai L. Gene expression profiling in breast cancer: 
classification, prognostication, and prediction. Lancet. 2011;378(9805):1812-23. 

 



 
 

 

98 

5. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, et 
al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. 
Clinical Cancer Research. 2005;11(16):5678-85. 
 
6. Jorgensen CL, Nielsen TO, Bjerre KD, Liu S, Wallden B, Balslev E, et al. 
PAM50 breast cancer intrinsic subtypes and effect of gemcitabine in advanced breast 
cancer patients. Acta Oncol. 2014;53(6):776-87. 
 
7. Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T, et al. A 
comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical 
prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin 
Cancer Res. 2010;16(21):5222-32. 
 
8. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. 
Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast 
cancer. Breast Cancer Res. 2010;12(5):R68. 
 
9. De Abreu FB, Schwartz GN, Wells WA, Tsongalis GJ. Personalized therapy for 
breast cancer. Clinical Genetics. 2014;86(1):62-7. 
 
10. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. 
Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-52. 
 
11. Perou CM. Molecular stratification of triple-negative breast cancers. The 
Oncologist. 2010;15 Suppl 5:39-48. 
 
12. Green AR, Powe DG, Rakha EA, Soria D, Lemetre C, Nolan CC, et al. 
Identification of key clinical phenotypes of breast cancer using a reduced panel of protein 
biomarkers. British Journal of Cancer. 2013;109(7):1886-94. 
 
13. Faivre S, Djelloul S, Raymond E. New paradigms in anticancer therapy: targeting 
multiple signaling pathways with kinase inhibitors. Seminars in Oncology. 
2006;33(4):407-20. 
 
14. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et 
al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-
overexpressing metastatic breast cancer. Journal of Clinical oncology : Official Journal of 
the American Society of Clinical Oncology. 2002;20(3):719-26. 
 
15. Patani N, Martin LA, Dowsett M. Biomarkers for the clinical management of 
breast cancer: international perspective. International Journal of Cancer Journal 
International du Cancer. 2013;133(1):1-13. 
 
16. Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR Signaling in Cancer. 
Frontiers in Oncology. 2014;4:64. 
 



 
 

 

99 

17. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, et al. Oncogenic 
pathway signatures in human cancers as a guide to targeted therapies. Nature. 
2006;439(7074):353-7. 
 
18. Gustafson AM, Soldi R, Anderlind C, Scholand MB, Qian J, Zhang X, et al. 
Airway PI3K pathway activation is an early and reversible event in lung cancer 
development. Science Translational Medicine. 2010;2(26):26ra5. 
 
19. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, et al. 
Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. 
Cancer Cell. 2006;10(6):529-41. 
 
20. Cohen AL, Soldi R, Zhang H, Gustafson AM, Wilcox R, Welm BE, et al. A 
pharmacogenomic method for individualized prediction of drug sensitivity. Molecular 
Systems Biology. 2011;7:513. 
 
21. Perona R. Cell signalling: growth factors and tyrosine kinase receptors. Clinical & 
Translational Oncology : Official Publication of the Federation of Spanish Oncology 
Societies and of the National Cancer Institute of Mexico. 2006;8(2):77-82. 
 
22. Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M, et al. 
Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast 
cancer. Cancer Treatment Reviews. 2013;39(8):935-46. 
 
23. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-
talk and compensation. Trends in Biochemical Sciences. 2011;36(6):320-8. 
 
24. Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human 
cancer. Oncogene. 2005;24(50):7455-64. 
 
25. Letai AG. Diagnosing and exploiting cancer's addiction to blocks in apoptosis. 
Nature Reviews Cancer. 2008;8(2):121-32. 
 
26. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and 
therapy. Oncogene. 2007;26(9):1324-37. 
 
27. Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, et al. 
Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth 
and sensitivity to therapy-implications for cancer and aging. Aging. 2011;3(3):192-222. 
 
28. Adeyinka A, Nui Y, Cherlet T, Snell L, Watson PH, Murphy LC. Activated 
mitogen-activated protein kinase expression during human breast tumorigenesis and 
breast cancer progression. Clinical Cancer Research : An Official Journal of the 
American Association for Cancer Research. 2002;8(6):1747-53. 
 
29. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto 



 
 

 

100 

G, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how 
mutations can result in therapy resistance and how to overcome resistance. Oncotarget. 
2012;3(10):1068-111. 
 
30. Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, et 
al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance 
to inhibiting these pathways in human health. Oncotarget. 2011;2(3):135-64. 
 
31. Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, et al. A protocol for rapid 
generation of recombinant adenoviruses using the AdEasy system. Nature Protocols. 
2007;2(5):1236-47. 
 
32. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program 
for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923-30. 
 
33. Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read 
mapping by seed-and-vote. Nucleic Acids Research. 2013;41(10):e108. 
 
34. Heiser LM, Sadanandam A, Kuo WL, Benz SC, Goldstein TC, Ng S, et al. 
Subtype and pathway specific responses to anticancer compounds in breast cancer. 
Proceedings of the National Academy of Sciences of the United States of America. 
2012;109(8):2724-9. 
 
35. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression 
data using empirical Bayes methods. Biostatistics. 2007;8(1):118-27. 
 
36. Shen Y, Rahman M, Piccolo SR, Gusenleitner D, El-Chaar NN, Cheng L, et al. 
ASSIGN: context-specific genomic profiling of multiple heterogeneous biological 
pathways. Bioinformatics. 2015. 
 
37. Daemen A, Griffith OL, Heiser LM, Wang NJ, Enache OM, Sanborn Z, et al. 
Modeling precision treatment of breast cancer. Genome Biology. 2013;14(10):R110. 
 
38. Roberts DJBaDE. Algorithm AS 89: The Upper Tail Probabilities of Spearman's 
Rho,. Journal of the Royal Statistical Society Series C (Applied Statistics). 
1975;24(3):377-9. 
 
39. Wolfe M, Hollander DA. Nonparametric Statistical Method. 3rd ed. New York: 
John Wiley & Sons; 2014. 
 
40. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 
2009. 
 
41. Raftery AE. Enhanced Model-Based Clustering, Density Estimation, and 
Discriminant Analysis Software: MCLUST. Journal of Classification. 2003;20(2):263-86. 
 



 
 

 

101 

42. Raftery AE. MCLUST: Software for Model-Based Cluster Analysis. Journal of 
Classification. 1999;16(2):297. 
 
43. R Developing Core Team. R:  A language and environment for statistical 
computing. 3.1.1. ed. Vienna, Austria: R Foundation for Statistical Programming; 2014. 
 
44. Ripley BD,Venables WN. Modern Applied Statistics with S. 4th ed. New York: 
Springer; 2002. 
 
45. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 
2002;296(5573):1655-7. 
 
46. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation 
of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 
1997;91(2):231-41. 
 
47. Taguchi A, White MF. Insulin-like signaling, nutrient homeostasis, and life span. 
Annual Review of Physiology. 2008;70:191-212. 
 
48. Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. 
Biochimica et Biophysica Acta. 2011;1813(11):1978-86. 
 
49. Corbit KC, Trakul N, Eves EM, Diaz B, Marshall M, Rosner MR. Activation of 
Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory 
protein. The Journal of Biological Chemistry. 2003;278(15):13061-8. 
 
50. Lenormand P, McMahon M, Pouyssegur J. Oncogenic Raf-1 activates p70 S6 
kinase via a mitogen-activated protein kinase-independent pathway. The Journal of 
Biological Chemistry. 1996;271(26):15762-8. 
 
51. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene 
expression patterns of breast carcinomas distinguish tumor subclasses with clinical 
implications. Proceedings of the National Academy of Sciences of the United States of 
America. 2001;98(19):10869-74. 
 
52. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, et al. Breast 
cancer classification and prognosis based on gene expression profiles from a population-
based study. Proceedings of the National Academy of Sciences of the United States of 
America. 2003;100(18):10393-8. 
 



CHAPTER 5 

TRANSCRIPTOMICS DATA INTEGRATION WITH ELECTRONIC 

HEALTH RECORD USING OPENEHR 

5.1 Introduction 

The healthcare industry has become profoundly information intensive. In this 

information era, healthcare professionals cannot afford manual information processing. 

Further, the current amount of data needed for effective patient care already exceeds 

human cognitive capacity (1, 2). The recent emphasis on precision healthcare will lead to 

an increase in the size and scope of the information available for decisions (3, 4). Thus, a 

systematic approach to information management and integration is needed for efficient 

and effective clinical care (5).  Gene expression data pose additional challenges for 

human comprehension at the point of care. Effective genomic data sharing and 

integration with electronic health record (EHR) systems is key for the adoption of 

genomics data in routine clinical care and secondary use (6). The perceived value of 

genomic information at the point of care is highlighted by the adoption of active clinical 

decision support for pharmacogenomics by several oncologic and academic medical 

centers (7).   

Transcriptomics data, also known as gene expression profiling data, are cellular 

RNA-level data. RNA-levels provide a more direct measurement of what is physically 
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happening in a cell at a specific time as a consequence of various genetic variants as well 

as environmental and disease-specific molecular alterations. Thus, unlike DNA-level 

variant information, which mostly remains unchanged over a lifetime, transcriptomics 

data provide time-dependent, disease-specific surveillance and predictive insights.  

Transcriptomics data offer many opportunities to improve clinical care by providing 

insights about disease phenotypes, prognosis, and drug sensitivity at the time of 

assessment (8-14). Currently, gene-expression-based assays such as OncotypeDX, 

MammaPrint, Rotterdam signature, and PAM50 are being used in clinical decision-

making (15-18). These tests are usually outsourced to Clinical Laboratory Improvement 

Amendments (CLIA)-certified laboratories, and the actionable results are sent back to 

clinicians as narrative reports in static formats such as portable document format (PDF), 

fax, or mail. Although these reports are often uploaded to EHR systems, they are not 

available in a computable format that could be readily used in applications such as 

Clinical Decision Support (CDS) systems (19). 

Despite the clinical use of transcriptomics-based biomarkers in clinical care and in 

clinical trials, to our knowledge no study has investigated the feasibility of addressing 

this clinical information need with a computable and sharable format compatible with 

EHR systems. To guide clinicians with genomics data with CDS, data are required to be 

represented in computable format and accessible to CDS (20-24). In addition, these data 

must be interoperable to provide continuity of care, disease surveillance, and secondary 

use, such as in research. Here we propose a platform-independent data model for a 

computable and interoperable representation of transcriptomics data. We demonstrate the 

use of our model with transcriptomics data from a breast cancer patient. Additionally, we 
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propose an architecture for the flow of transcriptomics data to addresses some of the key 

challenges of integrating genomics data within EHR. Our goal in this study is not to 

implement the transcriptomics data instances in the current EHRs yet. Our goal here is to 

assess the current feasibility to create instances of gene expression data, not gene-variant 

data or genetic testing data, leveraging and adapting available standards and open-source 

resources plausible for integrating and sharing such data across EHRs in a platform-

independent manner.  

 

5.2 Background 

Access to next-generation sequencing together with available genomic-targeted 

therapeutics is particularly interesting for selecting patients for relevant clinical trials and 

has been shown to be feasible in recent studies (25). There are already drugs available or 

under development in clinical trials to target some of the genomic abnormalities. 

Heterogeneity of diseases such as cancers has made patient selection extremely 

challenging for appropriate therapeutic intervention when the genomic feature is not very 

common (26). Integrated genomic data with the EHR not only can help with patient 

selection for appropriate therapeutic intervention or clinical trial recruitment, but also 

enlighten us further on possible mechanisms of response and hypothesis generation.  

Studies have explored how genome sequence variant data could be integrated for 

CDS computations (20, 27-30). In general, the challenges to integrating genomics data in 

the EHR include inadequate standardized laboratory reporting methods; the relatively 

high cost of sequencing; and the lack of a standard data representation format, physician 

training, understanding of actionable clinical value, and insurance reimbursement for the 
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genomics testing (19). Transcriptomics data are more complex than the much more 

studied gene-variant data because (1) our understanding of transcriptomics data is rapidly 

evolving and the interpretation of knowledge changes more frequently than the gene-

variant data; (2) transcriptomics data are numbers that must be computable for CDS use 

unlike the categorical variant data; (3) no reference value has been established for normal 

expression for each gene. Usually, the data are compared to a set of reference gene 

expression levels established as a biomarker in clinics or a potential biomarker in a 

clinical trial setting. In addition, the unit of measure can vary with the analysis pipeline. 

Therefore, there is a need for investigating the feasibility of representing computable 

transcriptomics data, specifically with emerging electronic healthcare data standards.  

 

5.2.1 Previous efforts to integrate genomics information 

The display of genetic information influences a clinician’s ability to use that 

information appropriately (31). The National Institutes of Health (NIH) have sponsored 

initiatives such as Clinical Sequencing Exploratory Research (CSER) and the electronic 

Medical Records and Genomics (eMERGE) network with a vision of incorporating 

genomic information in routine clinical care.  The CSER consortia explore the storage 

and display of genomics data in the EHR, and the eMERGE network focuses on 

implementing pharmacogenetics and other genetic medicine initiatives using the EHR. 

Since 2007, the eMERGE network has made significant advancements in integrating 

genetic test results and clinically important variants in the EHR. However, these genetic 

test results are often not computable as required in applications such as CDS, which are 

necessary for enabling the use of genomic information in patient care (29-31). Recent 
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collaborative studies across the CSER and eMERGE sites have shown that genetic 

information has many overlapping clinical use-case scenarios and have stressed the 

importance of developing an effective decision support knowledge-base and CDS for 

genetic results to recommend appropriate actions for medically actionable genetic 

information (32). Despite the support, genetic information is displayed as PDFs or as 

paragraphs of texts in more than 50% of the sites, and none of the sites currently have 

automated mechanisms of capturing disease-defining genetic information in the EHR. 

The same study also identified the need to link genetic information of genetic knowledge-

base that place the genetic information in an appropriate context in the EHRs. The 

integration of genomic data linked with phenotype data is not only necessary to 

implement current medical-genomics knowledge but also imperative for syncing with the 

evolving genomic knowledge-base, discovery of new genomics knowledge, and 

validation of knowledge in large sample sizes and diverse populations (34). Nevertheless, 

a survey of informatics approaches to whole-exome and whole-genome clinical reporting 

in the EHR shows that six eMERGE sites use PDF documents for genetics diagnostic 

reporting and interpretation (34). For genomic medicine to be successful, discrete and 

computable genomic data are required in the EHR (35). Raw genetic data are not feasible 

to store in the EHR because of the large volume of the data and the lack of clinical 

meaning without further processing (36). Although raw unprocessed data are not feasible 

to store in the EHR, the EHR should have the capability to store and display post-

processed genomics information in a computable manner appropriate for clinical decision 

support (20, 30, 32).  In addition, the required minimal functionalities specified by 

Marsolo et al. are (1) genetic test results suitable for EHR interoperability; (2) a 
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phenotype-genotype relationship; (3) whenever possible, EHR systems with decision 

rules using the discrete data to trigger CDS recommendations and assessments; and (4) 

EHR systems able to retrieve external provider reference and patient education content 

(37). These are considered to be the ‘minimal functional requirements’ for basic genomic 

data integration; yet, no EHR has met these required functionalities (37).  

 

5.2.2 Data modeling approaches, standards, and terminologies 

Various international organizations have dedicated their efforts to developing 

standards, terminologies, and clinical models for interoperability and implementation. 

Health Level Seven International (HL7), a standards developing organization, is 

dedicated to providing a comprehensive framework and standards for interoperable 

electronic health information (37-40). HL7 standards provide comprehensive framework 

to exchange, integrate, share, and retrieval of electronic health information. HL7’s 

Version 2 (V2) messaging standards are the most widely implemented standards for data 

exchange for healthcare in the world. HL7 Version 2 includes messaging for laboratory 

test results, which use LOINC codes as the “question” for a laboratory test and other 

standards such as SNOMED CT codes as the “answer.” The clinical genomics group in 

HL7 has developed specifications to support personalized genetic-based medicine. This 

group focuses on providing structure for clinical decision support, translational medicine, 

and research. HL7 Version 3 (V3) Clinical Document Architecture (CDA) provides a 

document markup standard that specifies the structure and semantics of clinical 

documents for data exchange. Fast Healthcare Interoperability Resources (FHIR) is a 

framework created by HL7 that combines the best features of HL7’s V2, V3 and CDA 
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focusing on implementation. FHIR uses “resources” or modular components that can 

easily be aggregated into working systems to solve real world implementation problems.  

Clinical models are represented as archetypes or templates. Archetypes provide a 

semantic collection of required data that describes a certain concept (e.g., blood pressure) 

whereas templates specify or aggregate related archetypes that serve a certain purpose 

(e.g., progress note). Such reusable templates and archetypes facilitate development of 

new clinical models by eliminating the need for the substantial effort of de novo data 

modeling. The openEHR Foundation provides highly reusable and modular archetypes 

that can be reused with different templates in various operational forms (41, 42). The 

produced templates can be rendered in operational forms such as XSD schemas and 

JSON format to enable implementation within clinical information processes including 

CDS (43-47). openEHR archetypes are shared with the informatics community through 

the Clinical Knowledge Manager (CKM) repository. The Clinical Information Modeling 

Initiative (CIMI), another international consortium, is dedicated to providing a common 

representation of health information to assure semantic interoperability across the 

evolution of standards representing clinical information (48).  

Specifically for genomics data, the HUGO Gene Nomenclature Committee (HGNC) 

is the only international authority that approves standardized nomenclature for human 

genes as symbols and identifiers (IDs) (49).  Whereas HCNC is an international effort, 

ENSEMBL and ENTREZ are prominent regional initiatives for providing gene IDs, and 

they are also used widely in the bioinformatics field. Additionally, Web services based on 

Representational State Transfer (REST), supported by HGNC and ENSEMBL databases, 

and Simple Object Access Protocol (SOAP), supported by ENTREZ databases, can be 
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leveraged to create scalable and up-to-date “gene” elements. The HL7 V2 

Implementation Guide for clinical genomics has used HGNC gene symbols for reporting 

DNA sequence variants located within a gene (50). In the future, it may be possible to use 

various FHIR resources to enable the exchange of gene expression data with EHR 

systems.   

 

5.3 Methods 

5.3.1. Model design process 

The model was designed using a five-step process that culminated in the application 

of the model to breast cancer gene expression data. First, we studied publicly available 

transcriptomics data from databases, research articles, and laboratory report formats. We 

identified the required elements for describing the patient, diagnoses, sample, and 

transcriptomics data. Second, we designed an initial model including all required 

elements from the previous step.  Third, we validated a small dataset containing two 

genes and identified additional data features present in gene expression data such as units 

and gene identifiers. Fourth, we identified the available standard data element models and 

terminologies that could be used to express our transcriptomics data model. Finally, we 

demonstrated the application of the resulting model with transcriptomics data and 

associated metadata from a breast cancer patient.  

 

5.3.2. Modeling artifacts 

In this study, XSD language was used to define a schema for the proposed 

transcriptomics lab report. An instance of the example data was created using Extensible 
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Markup Language (XML). Both XSD and XML provide platform-independent and 

operational forms of data, as well as the bases for scalable publishing of data models and 

instances (51). oXygen XML Editor 16.1 was used for generating the XSD and XML 

instance files (52). Another template of the report was formulated according to the 

openEHR Clinical Models approach and using openEHR archetypes and template 

modeling tools (53).  

 

5.3.3. Description of the data sample 

We used publicly available breast cancer sample RNA-Sequence data from The 

Cancer Genome Atlas (TCGA) as an example representation of the gene expression data 

with our XSD model.  The specific sample (TCGA-A2-A0CX-01A-21R-A00Z-07) was 

accessed on March 3, 2015 (54). This sample was sequenced by Illumina HiSeq 2000 

sequencer and processed by UNC RNA-Sequence Version 2 protocol. We used the 

“Level 3” RNA-Seq Version 2 data file “unc.edu.b1ecc303-eb55-436f-9629-

cdac63bde297.1171987.rsem.genes.normalized_results” for our example representation. 

We included only HGNC identifiable gene symbols provided in the data file (20, 502 

genes).  

 

5.4 Results 

5.4.1. Gene expression model 

The assumption behind the proposed model is that the model represents RNA-Seq 

gene expression results for a specific patient using a specific sample performed on a 

specific sequencing platform, analyzed and normalized by a specific analysis pipeline. 
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Reporting of a variable number of genes and multiple analysis tools in the specific 

analysis pipeline are accommodated. The data elements in the proposed model are shown 

in Figure 4.1. In this XSD model, we have patient-, clinician-, document-, and author-

specific elements to describe the individuals involved. These elements are required in the 

model. We have provided two optional elements for specifying reason for testing and 

diagnosis. Sample specific information such as node status and tumor size is represented 

within the “sample” element. The transcriptomics data processing pipeline and the 

processed data are represented in the “test” element.  

We used available archetypes from openEHR Clinical Knowledge Manager (CKM) 

to serve as fundamental components such as “Result Report” and “Laboratory Test” 

compositions, and the “Individual’s personal demographics” cluster (47). In addition, a 

new archetype was extended from available OBSERVATION subtype, specifically, from 

openEHR-EHR-OBSERVATION.lab_test.v1openEHR-EHR-OBSERVATION.gelab.v1 

cluster to meet specific requirements for reporting gene expression lab results. The 

template produced was exported to operational form as Template Data Schema file in 

XSD format. To represent gene names, we used the HGNC standardized nomenclature 

that is already in use in the HL7 Version 2 genetic variation reports (55). In addition, we 

mapped our model elements to available HL7 V2 and V3 standards, openEHR archetypes 

and templates, and CIMI model instances. Unfortunately, data modeling editors required 

for developing CIMI models are not yet published. Therefore, development of custom 

models with available CIMI models was not feasible.  

A complete list of elements of our model mapped to openEHR, HL7 and CIMI is 

shown in Table 5.1. Using openEHR, we mapped all our XSD elements except for the 
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“test” element. The “test” element is one of the unique data elements for which no 

standard data elements have been established. Hence, we developed an “Extended Gene 

Expression Test Specifications” archetype that is equivalent to our XSD model’s “test” 

element. The detail of the “Extended Gene Expression Test Specifications” archetypes is 

shown in Figure 5.2. Computable versions of the model and its detailed description can 

be found at https://github.com/mumtahena/Transcriptomics_data_model. 

 

5.4.2. Implementation architecture and process 

Figure 5.3 shows how the model can be used in the flow of transcriptomics data 

instances within the healthcare system. When a CLIA-certified laboratory performs a 

gene-expression-based assay, raw data and associated pipeline information are stored in-

house. The laboratory uses the transcriptomics data knowledgebase with reference 

genome data and annotation resources as represented by “1” in Figure 5.3 to process the 

raw data using the established analysis pipeline. The CDS algorithms can use the same 

knowledgebase to compute the transcriptomics data. We assume that the laboratory and 

the knowledgebase will have computable “reference biomarker” transcriptomics data 

available using our model or a model similar to ours.  The laboratory then delivers the 

transcriptomics data results to the EHR in a machine-readable format using the proposed 

data model along with a traditional narrative summary of the result interpretation (“2”). 

Instances contain patient-, platform-, and analysis-pipeline-specific information, and the 

expressions at the individual gene levels for a variable number of genes.  

A single data instance is all that is required to store one or more genes with 

normalized expression values, required platform information, and analysis pipeline 
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descriptions from one test. These normalized gene expression values are computable, and 

can be shared, and theoretically used in CDS.  CDS services then use the computable 

patient-specific data from the EHR and a knowledgebase to generate patient-specific 

recommendations, as shown by “3.”  These recommendations are delivered to clinicians 

by the EHR during routine patient care at the point of care (“4”). With the advent of new 

technology, analysis pipelines, and new CDS algorithms and knowledge, the data stored 

using our proposed model, transcriptomics data, can be reevaluated and a new 

interpretation of the data can be generated. Further, advanced CDS systems will be able 

to use the computable gene expression values from all genes or a subset of the genes to 

provide assessments and recommendations, trigger recruitment alerts for clinical trials, 

develop new potential biomarkers, or assess the validity of current biomarkers with the 

linked phenotype information from the EHR.  Thus, the computable representation by our 

model of transcriptomics data accommodates patient-focused and population-based 

decision-making use cases. 

 

5.5 Discussion  

We took a practical approach to possible integration of transcriptomics data into the 

EHR considering the current challenges and future evolution of bioinformatics 

knowledge, EHR capabilities, CDS modules, and laboratory processes. In this study, we 

proposed platform-agnostic transcription data models to provide an interoperable and 

computable representation of such data. We emphasized that our goal was to study if we 

could represent transcriptomics data using currently available open-source resources such 

as openEHR archetypes and other standards. This study is an important first step to 
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integrating transcriptomics data in routine clinical care.  

We incorporated open-source, widely used, platform-independent, and easy-to-use 

resources to build and validate our model with patient data.  To our knowledge, this is the 

first study to investigate the feasibility transcriptomics or gene expression data 

integration into EHRs. The transcriptomics field is rapidly evolving, and it is expected 

that standard terminology systems will lag behind medical knowledge (56). Although 

openEHR is rich in archetypes and templates, we were unable to map elements specific to 

gene-expression to currently available openEHR templates or archetypes. Moreover, 

CIMI is an excellent effort in standardizing data models, yet the tools needed for edit and 

development are  not yet published.  This study identifies the gap between the required 

data elements for transcriptomics data and available openEHR archetypes to represent the 

data. Furthermore, we provide a preliminary custom-made transcriptomics data archetype 

extended from openEHR archetype to accommodate the specific requirements of 

transcriptomics data. The computable models are available at 

https://github.com/mumtahena/Transcriptomics_data_model. We plan to update and 

validate our model as more archetypes, standards, terminologies, and data models 

become available. 

A limitation of our study is that we demonstrated this model using only one patient’s 

RNA-Seq-based gene expression data. In the future, we plan to extend our example 

validations with data from other sequencing platforms such as microarray, qPCR and 

NanoString. Although there may be situations where two samples from the same patient 

are compared, the scope of this study was limited to assessing whether processed 

normalized trancriptomics data could be represented with current standards and modeling 
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efforts. Further, while gene-level summarized qPCR, nanostring data are very similar to 

the RNA-Seq and microarray gene-level summarized data we used for demonstration, our 

future efforts will focus on integrating transcriptomics data from other platforms and 

including multiple samples from the same patient for differentially expressed gene 

analysis. In addition, we would like to develop and demonstrate CDS prototypes that can 

apply CDS algorithms on the data instances produced by the model. We also plan to 

improve this data model based on the specifications of the future HL7 Clinical Genomics 

specifications and CIMI as they become available and validate it with the implementation 

with available FHIR resources.  

 

5.6 Conclusion 

 To address the challenges of incorporating transcriptomics data in routine clinical 

care and in research, we developed an EHR platform-independent model representing 

transcriptomics data, built in part on openEHR general data element archetypes and 

standard terminologies. The resulting model lays the groundwork necessary for future 

research and development in this area.  

  

5.7 Acknowledgements 

 I, Mumtahena Rahman (MR), collaborated with Aly Khalifa, Bret Heale (BH), and 

Guilherme Del Fiol in the Biomedical Informatics Department on this work. MR and BH 

are funded by a National Library of Medicine training fellowship (T15LM007124). 

 

 



 
 

 

116 

Table 5. 1: Overview of model elements and the standards or models used  
 
XSD 
model 
elements 

Descriptio
n 

Requi
red 
(Yes/
No) 

Standards/models used in 
proposed transcriptomics model 

Additional potential 
value sets, 
standards, 
terminologies or 
CIMI models 

author Name of 
the author 
of the test 
result 

Yes openEHR-EHR-
CLUSTER.individual_professio
nal.v1 

CIMI-CORE-
ROLE.healthcare_p
rovider_individual_
role.v1.0.0 

patient  Name and 
date of 
birth of 
the patient 

Yes openEHR-EHR-
CLUSTER.individual_personal.
v1 

CIMI-CORE-
ITEM_GROUP.per
son_name.v1.0.0  
CIMI-CORE-
ITEM_GROUP.birt
h_date.v1.0.0 

orderingC
linician 

Name of 
the 
clinician 
who 
ordered 
the test 

Yes openEHR-EHR-
CLUSTER.individual_professio
nal.v1 

CIMI-CORE-
ROLE.healthcare_p
rovider_individual_
role.v1.0.0 

reasonFor
Testing 

Reason 
the test is 
ordered 

No openEHR-EHR-
EVALUATION.reason_for_enc
ounter.v1 

HL7-RIM 
ActReason 
2.16.840.1.113883.
5.8 
 

relevantD
iagnosis 

Diagnosis No openEHR-EHR-
EVALUATION.problem_diagno
sis.v1 

CIMI-CORE-
ITEM_GROUP.pat
hology_report_final
_diagnosis_narrativ
e.v1.0.0 

sample Sample 
origin, 
date 
collected 

Yes openEHR-EHR-
CLUSTER.specimen.v1  

HL7 “Specimen 
Type” value set 
mapped to 
corresponding 
concepts in 
SNOMED CT  
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Table 5.1. (Continued) 

XSD 
model 
elements 

Descriptio
n 

Requi
red 
(Yes/
No) 

Standards/models used in 
proposed transcriptomics model 

Additional potential 
value sets, 
standards, 
terminologies or 
CIMI models 

test Platform 
used, 
analysis 
used, gene 
specific 
results, 
and 
optional 
notes 

Yes openEHR-EHR-
OBSERVATION.lab_test.v1 
openEHR-EHR-
OBSERVATION.gelab.v1 
Custom archetype including: 
(1) The brand name or industrial 
name with model and version 
may be used for sequencing. 
(2) Standard analysis pipeline 
name or individual name of 
algorithm should be stored.  
(3) HGNC gene symbols or ID 
or ENTREZ ID or ENSEMBL 
ID for gene representation. 
(4) Numeric gene expression 
with units.  
 

Well-established 
gene representation 
is covered with our 
custom-made 
openEHR archetype 
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Figure 5.1: Overview of the elements of the XML Schema Definition (XSD) 
transcriptomics data model. Dark grey lines represent required elements and light gray 
lines represent optional elements in the model. 
 



 
 

 

119 

 

 
 

Figure 5.2: The custom-made ‘Extended Gene Expression Specifications” archetype in the 
transcriptomics data model using openEHR archetype and templates. Gray color text represents 
zero occurrence items. Details about optional, required, and zero occurrence items can be found in 
the original template.  
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Figure 5.3: Integration of transcriptomics data instances with electronic health record (EHR) 
systems showing various steps denoted in numbers (1-4). The dotted lines show information flow 
to and/or from transcriptomics data instances. “1” shows the information flow using reference 
biomarker data instance represented using the proposed model. “2” denotes the information flow 
from the laboratory to the EHR in a machine-readable format using the proposed data model 
along with a traditional narrative summary of the result interpretation. CDS services then use the 
computable patient-specific data from the EHR and a knowledge base to generate patient-specific 
recommendations, as depicted by “3.”  “4” shows that these recommendations can be delivered to 
clinicians by the EHR at the point of care. 
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CHAPTER 6 

DISCUSSION 

This dissertation focuses on pathway-based drug response biomarker development in 

breast cancer and assesses the availability of open-source resources for integrating gene 

expression data in the patient electronic health record (EHR). A summary of findings, 

significance, limitations, and future directions for this dissertation work is presented 

below. 

6.1 Summary of findings 

Gene expression profiling has identified five molecular subtypes of breast cancers. 

Breast cancer patients are known to have different prognosis, survival and drug response 

based on the subtypes (1-4). Gene expression-based pathway biomarkers have previously 

been shown to be effective in predicting drug response in patients by correctly identifying 

targeted pathway deregulation (5-8). Inherent interconnectedness of signaling pathways, 

however, makes accurate estimation of pathway activity challenging. Therefore, first, in 

collaboration with the Johnson lab, I developed ASSIGN, a pathway profiling toolkit that 

accounts for interactions among pathway nodes, background base-line gene expression 

variation in various cellular contexts. I validated ASSIGN in cell
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lines as well as with patient data to test the accuracy of pathway activation estimates. 

Chapter 2 is the published manuscript describing and validating ASSIGN. Next, I wanted 

to build in silico genomic pathway signatures of overexpressed genes of interest to assess 

pathway activity in heterogenic samples(9).  Bild lab colleagues used human primary 

epithelial cell cultures (HMECs) to overexpress ERBB2 (HER2), IGF1R, AKT, BAD, 

RAF1, EGFR and KRAS genes with adenovirus. To minimize the variation due to the 

data analysis and normalization pipeline, I reprocessed RNA-Sequencing dataset for all 

of the gene-overexpressed HMEC samples, 55 breast cancer cell lines and more than 

10,000 patient samples across 24 cancer types from The Cancer Genome Atlas (TCGA) 

in collaboration with Dr. Stephen Piccolo.  This dataset is currently publicly available on 

the Gene Expression Omnibus via accession GSE62944. This consistent data processing 

is important in filtering out technical artifacts that may have been present in the data 

otherwise. I validated this alternatively processed TCGA dataset and showed this dataset 

performs better in downstream analyses than the TCGA- processed RNA-Sequencing 

dataset. Chapter 3 is the accepted manuscript describing the alternative data processing 

and the validation of the compiled dataset. Then, I used ASSIGN to generate genomic 

signatures and to estimate pathway activity in samples. I validated pathway estimates of 

55 breast cancer cell lines and in 1082 TCGA breast cancer samples in silico. Using the 

validated signature-based pathway activity, I characterized two major aberrant signaling 

pathways in breast cancer: HER2/IGF1R/PI3K/AKT/BAD and EGFR/RAS/RAF/MEK 

pathways in cell lines and in patient samples. My analyses show that the pathway activity 

demonstrates a consistent spectrum that spans across breast cancer subtypes. This result 

suggests that using receptor status and/or subtypes for characterizing breast cancer 
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oversimplifies the true complexity of growth factor signaling networks in breast cancer. I 

show that there is an inverse correlation between these HER2/IGF1R/PI3K/AKT/BAD 

and EGFR/RAS/RAF/MEK pathways. Specifically, high HER2, IGF1R, AKT activity is 

associated with low BAD, EGFR, RAS and RAF activity and vice versa. The pathway 

characterizations follow a drug response pattern that is consistent with the pathway-

signaling pattern. HER2, PI3K, AKT high activity is associated with high sensitivity to 

drugs that target these pathways but are resistant to chemotherapeutics and EGFR, MEK 

targeting drugs. In an independent drug assay, the pharmacologic inhibition of AKT, 

HER2/EGFR, EGFR pathways further validated the pathway predictions in 

differentiating drug sensitivity based on pathway activation. Then, I used the pathway 

predictions and drug response in breast cancer cell lines to build drug-specific response 

models. I used a stepwise model selection method for the optimum response model where 

the dependent variable is the drug sensitivity data in cell lines, and independent variables 

are the pathway estimations (AKT, BAD, HER2, EGFR, KRAS(GV), KRAS(QH), and 

RAF activity) or the subtypes (ERBB2-amplfied, basal, luminal, claudin-low and normal-

like) or both the pathway estimation and subtypes.  I found that pathway estimations 

contribute more in the drug response prediction models than the subtypes.  However, 

multipathway predictions and subtypes together make better models than pathway-only 

drug response models. Finally, I incorporated multiomics data, specifically, single 

nucleotide polymorphism, insertions/deletions, and RPPA protein data to build the 

models. In the multiomics models, pathway activity contributed the most for the targeted 

signature-associated therapies. Chapter 4 describes the detailed methods and results from 

this study. 
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Next, I assessed the feasibility of integrating gene expression data with currently 

available data standards, terminology and archetypes for future applications of gene 

expression-based biomarkers in the EHR for routine clinical care. After identifying the 

key features of the gene expression data, I proposed a preliminary data model in 

extensible markup language schema (XSD) that can represent the transcriptomics data in 

a platform- independent manner. Then, I tried to map each of the data elements to 

publicly available data models/initiatives/archetype clusters. The feasibility of mapping 

the preliminary data models to clinical information modeling initiative (CIMI) 

interoperable models was studied. Due to the unavailability of existing data models that 

could represent transcriptomics data and a published editor for making a custom model, 

the proposed preliminary model could not be mapped to CIMI models. Then, I tried 

mapping data elements to openEHR archetypes to represent transcriptomics data. I could 

map the generic data elements such as patient-, sample-, clinician-, and diagnosis-data 

models with available archetypes. However, no archetype or cluster was available from 

openEHR that could accurately represent specific transcriptomics data. Therefore, I 

extended one of the flexible laboratory report clusters (openEHR-EHR-

OBSERVATION.lab_test.v1openEHR-EHR-OBSERVATION.gelab.v1) to 

accommodate transcriptomics data. Then, I used this archetype to represent a publicly 

available patient sample. Chapter 5 describes the preliminary models for the development 

methods, high-level design validation using openEHR archetype and a proposed 

architecture to show how transcriptomics data information could flow within the patient 

care environment.  
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6.2 Significance 

The goals of personalized medicine remain elusive due to challenges in matching 

specific genomic aberration in an individual to his drug response. Traditionally, we 

carefully study genomic aberrations in controlled environment to link drug response. 

However, it is inherently challenging to apply our knowledge at the bench about the 

genomic aberration and drug characteristics in patients. Therefore, the goal of this 

dissertation is to take data produced at the bench, apply it to control datasets to develop 

the biomarker and finally, to study the feasibility of implementation of such biomarker in 

electronic health record so that the gene-expression-based biomarkers can be 

implemented in patient care. Specifically, development of pathway and drug response 

biomarkers falls into the translational biomedical informatics domain and assessment of 

feasibility of integrating gene expression data falls into the clinical informatics domain. 

Below is the specific significance of my work for this dissertation. 

Although pathway profiling can be informative in assessing signaling aberration, a 

traditional single pathway approach falls short in being specific in assessing signal when 

there is interaction of gene in various pathways in vivo. ASSIGN, a novel context-

specific pathway profiling toolkit, can be used to estimate the level of pathway aberration 

in a specific patient tumor accounting for tumor-specific gene expression differences and 

pathway interaction. Thus, ASSIGN can contribute implementing personalized genomics-

based medicine by identifying pathway aberration with high sensitivity and specificity.  

The Cancer Genome Atlas (TCGA) is a wonderful source of patient tumor and 

clinical data and is widely used in cancer research. RNA-Seq data from this resource has 

some limitations since it does not provide integer-based gene counts, uses a cumbersome 
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pipeline for data processing and old gene annotation files, and the alignment of the read 

maps are less accurate than currently available new aligners. Therefore, we reprocessed 

the TCGA RNA-Seq dataset with an alternative pipeline and showed that our dataset 

produces a more consistent downstream data analysis than the TCGA RNA-Seq dataset 

from same samples. The reprocessed TCGA RNA-Seq dataset is the largest to date, 

including more than 10,000 tumor and normal patient samples. Additionally, patient 

identifications in clinical data and RNA-Sequencing data were matched for easy 

downstream analyses. This dataset can be accessed on the Gene Expression Omnibus via 

accession number GSE62944. This is a significant effort since it takes thousands of hours 

of computing resources to generate such a dataset. Researchers now have an alternate 

version of widely used TCGA patient mRNA dataset that they can use for potentially 

improved analysis results. 

AKT, BAD, HER2, EGFR, IGF1R, RAF, KRAS (G12V) and KRAS (Q61H) mutant 

signatures generated in human mammary epithelial cells are validated in cancer cell lines 

and in breast cancer patients. These signatures are potentially applicable to other 

signaling pathway associated including other types of cancer, immunological, and 

neurological diseases. The proposed biomarkers for AKT inhibitors could provide better 

patient selection strategy in clinics after validation in clinical trials.  

The proposed data model for representing transcriptional data is preliminary but a 

necessary first step towards implementing computable, discrete, sharable genomics data. 

If genomics data could be represented in this way, employing clinical decision support 

rules on such data is theoretically possible. Thus, it would be feasible to provide decision 

guidance to the clinicians at the point of care without overloading them with complex 
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genomics data.  

 

6.3 Limitations 

      Although ASSIGN considers background gene expression differences between 

training and test samples, ASSIGN cannot capture patient-specific background variation. 

Signature adaptive feature may sometimes infer to other biological context if the signal in 

the test data is not strong. Therefore, careful validation of the ASSIGN’s adaptive 

predictions is needed. 

The alternatively processed RNA-Seq dataset from TCGA does not provide transcript 

or gene level expression unlike TCGA provided RNA-Sequencing data.  This dataset is 

normalized using a ‘single-sample’ normalization method to avoid change in expression 

values with the addition of new samples to the dataset. Therefore, it may still be 

necessary to correct for intersample variation when comparing data across different 

cancer types.  

Addition of other relevant growth factor receptor network may further refine pathway 

estimates and can better differentiate between targeted pathways. Developed biomarkers 

for AKT inhibitors are potentially overfitted from mulitomics data and model R2’s are 

likely higher than their actual performance. Therefore, more rigorous validation of the 

biomarkers is necessary prior to testing the biomarkers in clinical trials. 

The transcriptomics data model currently can represent RNA-Sequencing normalized 

data. However, transcriptomics data from other platforms are not tested and expert 

validation of the data model is necessary to further refine and improve the model to 

accommodate gene expression data from a wide variety of sequencing platforms. 
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6.4 Future directions  

Gene expression-based pathway estimation leading to patient-specific drug response 

biomarker development and possible integration of gene expression data in the EHR are 

the two main focuses of this dissertation work. I developed ASSIGN for context specific 

pathway activity estimation. In the future, I want to accommodate multiomics data in 

ASSIGN to build robust multiomic- based drug response prediction models to minimize 

overfitting of multiomic data. This way we can consider DNA-, RNA-, proteomics-and 

methylation-level data interaction at once in determining drug response with more 

sensitivity and specificity. In the future, the compendium of mRNA data will be updated 

as more patient samples are publicly available for publication and to share. I generated in 

silico genomic signatures of AKT, BAD, HER2, EGFR, IGF1R, RAF, KRAS (G12V) 

and KRAS (Q61H) genes that are important in growth factor receptor signaling 

pathways. Arguably, the same gene expression signatures may be used in other cancer 

types to identify and target deregulation. However, validation of signature predictions is 

required for generalizability.  These signatures can be applied to other cancer types for 

measuring pathway activity after additional cancer type-specific validation with either 

protein or mutation data. I would like to apply these signatures to other cancer types and 

explore the possibility of biomarker development for drug response similar to this work. 

In addition, I would like to incorporate other important nodes such as PI3K, ERK, MEK, 

JNK in the growth factor receptor networks to further refine our signature genes and 

pathway estimation with better accuracy. Even though the signatures predictions were 

thoroughly validated and tested in breast cancer cell lines, prospective test validation of 

the drug response models is required in patient cells in in vitro and in vivo clinical trials.  
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In assessing the feasibility of incorporating gene expression data in EHR, I used 

currently available data elements and standards and followed best practices. In the future, 

I would like to expand our efforts to represent transcriptional data from additional 

platforms such as microarray, NanoStrings and qPCR to show improved generalizability 

across transcriptomics platforms. In addition, I would like to work with expert data 

modelers who have knowledge of genomics data to conduct an extensive validation of 

this model for better reliability and generalizability.  
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