63,590 research outputs found

    Corepressor diversification by alternative mRNA splicing is species specific.

    Get PDF
    BackgroundSMRT and NCoR are corepressor paralogs that help mediate transcriptional repression by a variety of transcription factors, including the nuclear hormone receptors. The functions of both corepressors are extensively diversified in mice by alternative mRNA splicing, generating a series of protein variants that differ in different tissues and that exert different, even diametrically opposite, biochemical and biological effects from one another.ResultsWe report here that the alternative splicing previously reported for SMRT appears to be a relatively recent evolutionary phenomenon, with only one of these previously identified sites utilized in a teleost fish and a limited additional number of the additional known sites utilized in a bird, reptile, and marsupial. In contrast, extensive SMRT alternative splicing at these sites was detected among the placental mammals. The alternative splicing of NCoR previously identified in mice (and shown to regulate lipid and carbohydrate metabolism) is likely to have arisen separately and after that of SMRT, and includes an example of convergent evolution.ConclusionsWe propose that the functions of both SMRT and NCoR have been diversified by alternative splicing during evolution to allow customization for different purposes in different tissues and different species

    Epigenetic regulation of neuronal maturation : the effect of MeCP2 and MicroRNAs on the maturation of hippocampal neurons

    Get PDF
    Dendrites and the dendritic spines of neurons play key roles in the connectivity of the brain and have been recognized as the locus of long-term synaptic plasticity, which is correlated with learning and memory. The development of dendrites and spines in the mammalian central nervous system is a complex process that requires specific molecular events over a period of time. It has been shown that specific molecules are needed not only at the spines point of contact, but also at a distance, providing signals that initiate a cascade of events leading to synapse formation. The specific molecules that act to signal neuronal differentiation, dendritic morphology, and synaptogenesis are tightly regulated by genetic and epigenetic programs. It has been shown that the dendritic spine structure and distribution are altered in many diseases, including many forms of mental retardation (MR) such as Rett syndrome, and can also be potentiated by neuronal activities and an enriched environment. Because dendritic spine pathologies are found in many types of MR, it has been proposed that an inability to form normal spines leads to the cognitive and motor deficits that are characteristic of MR. Epigenetic mechanisms, including DNA methylation, chromatin remodeling, and the noncoding RNA-mediated process, have profound regulatory roles in mammalian gene expression. My dissertation research focused on two aspects of epigenetic mechanisms, Mecp2-DNA methylation pathway and noncoding microRNAs that regulate the development and maturation of dendrites and spines. It is well known that Rett Syndrome, a severe postnatal childhood neurological disorder is mostly caused by mutations in the MECP2 gene. My studies focused on the role of MeCP2-mediated epigenetic regulation in postnatal brain development in a Mecp2-deficient mouse model. I found that, while Mecp2 was not critical for the production of immature neurons in the dentate gyrus (DG) of the hippocampus, the newly generated neurons exhibited profound deficits in neuronal maturation, including delayed transition into a more mature stage, altered expression of presynaptic proteins, and reduced dendritic spine density. Furthermore, I found that cultured neurons and brains lacking Mecp2 exhibited altered expression of microRNAs. My studies demonstrate that one brain-enriched microRNA, miR-137, has a significant role in regulating neuronal maturation by translational regulation of Mind bomb1. Despite extensive efforts to understand the molecular regulation of dendrite and spine development, epigenetic and non-coding RNA pathways have only recently been considered. In this thesis, I will first summarize the literature on epigenetic mechanisms that regulate the development and maturation of dendrites and spines, and discuss some general methodologies as well as recent technological advances in biology and neurosciences. I will then present my own data to show how epigenetic alterations could result in the morphological and phenotypic abnormalities that are a fundamental characteristic MR, such as Rett syndrome

    The ansamycin antibiotic, rifamycin SV, inhibits BCL6 transcriptional repression and forms a complex with the BCL6-BTB/POZ domain

    Get PDF
    BCL6 is a transcriptional repressor that is over-expressed due to chromosomal translocations, or other abnormalities, in ~40% of diffuse large B-cell lymphoma. BCL6 interacts with co-repressor, SMRT, and this is essential for its role in lymphomas. Peptide or small molecule inhibitors, which prevent the association of SMRT with BCL6, inhibit transcriptional repression and cause apoptosis of lymphoma cells in vitro and in vivo. In order to discover compounds, which have the potential to be developed into BCL6 inhibitors, we screened a natural product library. The ansamycin antibiotic, rifamycin SV, inhibited BCL6 transcriptional repression and NMR spectroscopy confirmed a direct interaction between rifamycin SV and BCL6. To further determine the characteristics of compounds binding to BCL6-POZ we analyzed four other members of this family and showed that rifabutin, bound most strongly. An X-ray crystal structure of the rifabutin-BCL6 complex revealed that rifabutin occupies a partly non-polar pocket making interactions with tyrosine58, asparagine21 and arginine24 of the BCL6-POZ domain. Importantly these residues are also important for the interaction of BLC6 with SMRT. This work demonstrates a unique approach to developing a structure activity relationship for a compound that will form the basis of a therapeutically useful BCL6 inhibitor

    Discovery and genotyping of structural variation from long-read haploid genome sequence data

    Get PDF
    In an effort to more fully understand the full spectrum of human genetic variation, we generated deep single-molecule, real-time (SMRT) sequencing data from two haploid human genomes. By using an assembly-based approach (SMRT-SV), we systematically assessed each genome independently for structural variants (SVs) and indels resolving the sequence structure of 461,553 genetic variants from 2 bp to 28 kbp in length. We find that &gt;89% of these variants have been missed as part of analysis of the 1000 Genomes Project even after adjusting for more common variants (MAF &gt; 1%). We estimate that this theoretical human diploid differs by as much as ∼16 Mbp with respect to the human reference, with long-read sequencing data providing a fivefold increase in sensitivity for genetic variants ranging in size from 7 bp to 1 kbp compared with short-read sequence data. Although a large fraction of genetic variants were not detected by short-read approaches, once the alternate allele is sequence-resolved, we show that 61% of SVs can be genotyped in short-read sequence data sets with high accuracy. Uncoupling discovery from genotyping thus allows for the majority of this missed common variation to be genotyped in the human population. Interestingly, when we repeat SV detection on a pseudodiploid genome constructed in silico by merging the two haploids, we find that ∼59% of the heterozygous SVs are no longer detected by SMRT-SV. These results indicate that haploid resolution of long-read sequencing data will significantly increase sensitivity of SV detection.</jats:p

    Smrt američkog sna

    Get PDF
    This paper will focus on the decline of the American Dream and the reasons for its decline. The American Dream is dying because certain social and economic changes that have occurred in America have made it impossible for the majority of Americans to achieve their Dream. The original traditional American values gave rise to the development of the American Dream and the portrayal of America as ‘the land of opportunity.’ However, with time, the original values as well as the American Dream became corrupted. Americans lived the American Dream when America was at its peak but later unfavorable social and economic changes caused distress in the country and led to the loss of the spirit of the American Dream. Despite much pessimism, some Americans still believe in the spirit of the American Dream and hope that it can be restored in the future

    Single-molecule real-time sequencing combined with optical mapping yields completely finished fungal genome

    Get PDF
    Next-generation sequencing (NGS) technologies have increased the scalability, speed, and resolution of genomic sequencing and, thus, have revolutionized genomic studies. However, eukaryotic genome sequencing initiatives typically yield considerably fragmented genome assemblies. Here, we assessed various state-of-the-art sequencing and assembly strategies in order to produce a contiguous and complete eukaryotic genome assembly, focusing on the filamentous fungus Verticillium dahliae. Compared with Illumina-based assemblies of the V. dahliae genome, hybrid assemblies that also include PacBio- generated long reads establish superior contiguity. Intriguingly, provided that sufficient sequence depth is reached, assemblies solely based on PacBio reads outperform hybrid assemblies and even result in fully assembled chromosomes. Furthermore, the addition of optical map data allowed us to produce a gapless and complete V. dahliae genome assembly of the expected eight chromosomes from telomere to telomere. Consequently, we can now study genomic regions that were previously not assembled or poorly assembled, including regions that are populated by repetitive sequences, such as transposons, allowing us to fully appreciate an organism’s biological complexity. Our data show that a combination of PacBio-generated long reads and optical mapping can be used to generate complete and gapless assemblies of fungal genomes. IMPORTANCE Studying whole-genome sequences has become an important aspect of biological research. The advent of nextgeneration sequencing (NGS) technologies has nowadays brought genomic science within reach of most research laboratories, including those that study nonmodel organisms. However, most genome sequencing initiatives typically yield (highly) fragmented genome assemblies. Nevertheless, considerable relevant information related to genome structure and evolution is likely hidden in those nonassembled regions. Here, we investigated a diverse set of strategies to obtain gapless genome assemblies, using the genome of a typical ascomycete fungus as the template. Eventually, we were able to show that a combination of PacBiogenerated long reads and optical mapping yields a gapless telomere-to-telomere genome assembly, allowing in-depth genome sanalyses to facilitate functional studies into an organism’s biology
    corecore