2,392 research outputs found

    Characterisation of a highly diverged mitochondrial ATP synthase Fo subunit in Trypanosoma brucei.

    Get PDF
    The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pulldown experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase, and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b

    Identification and characterization of FAM124B as a novel component of a CHD7 and CHD8 containing complex

    Get PDF
    BACKGROUND: Mutations in the chromodomain helicase DNA binding protein 7 gene (CHD7) lead to CHARGE syndrome, an autosomal dominant multiple malformation disorder. Proteins involved in chromatin remodeling typically act in multiprotein complexes. We previously demonstrated that a part of human CHD7 interacts with a part of human CHD8, another chromodomain helicase DNA binding protein presumably being involved in the pathogenesis of neurodevelopmental (NDD) and autism spectrum disorders (ASD). Because identification of novel CHD7 and CHD8 interacting partners will provide further insights into the pathogenesis of CHARGE syndrome and ASD/NDD, we searched for additional associated polypeptides using the method of stable isotope labeling by amino acids in cell culture (SILAC) in combination with mass spectrometry. PRINCIPLE FINDINGS: The hitherto uncharacterized FAM124B (Family with sequence similarity 124B) was identified as a potential interaction partner of both CHD7 and CHD8. We confirmed the result by co-immunoprecipitation studies and showed a direct binding to the CHD8 part by direct yeast two hybrid experiments. Furthermore, we characterized FAM124B as a mainly nuclear localized protein with a widespread expression in embryonic and adult mouse tissues. CONCLUSION: Our results demonstrate that FAM124B is a potential interacting partner of a CHD7 and CHD8 containing complex. From the overlapping expression pattern between Chd7 and Fam124B at murine embryonic day E12.5 and the high expression of Fam124B in the developing mouse brain, we conclude that Fam124B is a novel protein possibly involved in the pathogenesis of CHARGE syndrome and neurodevelopmental disorders

    Stable isotopic labeling in proteomics

    Get PDF
    Labeling of proteins and peptides with stable heavy isotopes (deuterium, carbon-13, nitrogen-15, and oxygen-18) is widely used in quantitative proteomics. These are either incorporated metabolically in cells and small organisms, or postmetabolically in proteins and peptides by chemical or enzymatic reactions. Only upon measurement with mass spectrometers holding sufficient resolution, light, and heavy labeled peptide ions or reporter peptide fragment ions segregate and their intensity values are subsequently used for quantification. Targeted use of these labels or mass tags further leads to specific monitoring of diverse aspects of dynamic proteomes. In this review article, commonly used isotope labeling strategies are described, both for quantitative differential protein profiling and for targeted analysis of protein modifications

    Keeping in touch with type-III secretion system effectors : mass spectrometry-based proteomics to study effector-host protein-protein interactions

    Get PDF
    Manipulation of host cellular processes by translocated bacterial effectors is key to the success of bacterial pathogens and some symbionts. Therefore, a comprehensive understanding of effectors is of critical importance to understand infection biology. It has become increasingly clear that the identification of host protein targets contributes invaluable knowledge to the characterization of effector function during pathogenesis. Recent advances in mapping protein–protein interaction networks by means of mass spectrometry-based interactomics have enabled the identification of host targets at large-scale. In this review, we highlight mass spectrometry-driven proteomics strategies and recent advances to elucidate type-III secretion system effector–host protein–protein interactions. Furthermore, we highlight approaches for defining spatial and temporal effector–host interactions, and discuss possible avenues for studying natively delivered effectors in the context of infection. Overall, the knowledge gained when unravelling effector complexation with host factors will provide novel opportunities to control infectious disease outcomes

    Examining the mechanistic regulation of starvation-induced autophagy via the identification and characterisation of novel ULK kinase substrates

    Get PDF
    Autophagy involves the formation of an endoplasmic reticulum-derived membrane termed a phagophore which expands to engulf cytoplasmic cargo before sealing to form an autophagosome. Amino acid starvation is amongst the most potent autophagic stimuli, however whilst the key signalling complexes involved in starvation-induced autophagy are known, the precise regulatory mechanisms remain poorly understood. The serine/threonine kinase ULK1 and close homolog ULK2 assume the most upstream position in the autophagic signalling cascade and play a crucial yet enigmatic role in coordinating the autophagic machinery. To further understand the mechanisms of starvation-induced autophagy, I performed a number of unbiased phosphoproteomic screens to identify ULK substrates before classifying their roles in starvation-induced autophagy. Analysis of these datasets has revealed that loss of ULK results in significant changes to the phosphoproteome and has yielded a high confidence list of potential substrates whilst also offering interesting insights into the veracity of the published ULK consensus signature. Amongst the novel phosphorylation targets are components of the retromer and AMPK complexes along with multiple components of the class III PI3K VPS34 complex. The pseudokinase p150, scaffolding component of the VPS34 complex, is phosphorylated by ULK1 in vitro and in vivo at serine 861. CRISPR-based knockout of p150 results in inhibition of autophagy and endosomal trafficking, whilst mutating the phosphorylated residue in p150 alters both omegasome establishment and autophagic flux. Furthermore, incorporation of phosphomutant p150 into the VPS34 complex modulates its lipid kinase activity in vitro. These data identify a novel ULK-dependent signalling axis and help illuminate the complexities of signal transduction in autophagy

    Quantitative proteomic analysis of chromatin associated protein complexes

    Get PDF
    • …
    corecore