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Abstract

Autophagy involves the formation of an endoplasmic reticulum-derived membrane termed a
phagophore which expands to engulf cytoplasmic cargo before sealing to form an
autophagosome. Amino acid starvation is amongst the most potent autophagic stimuli,
however whilst the key signalling complexes involved in starvation-induced autophagy are
known, the precise regulatory mechanisms remain poorly understood. The serine/threonine
kinase ULK1 and close homolog ULK2 assume the most upstream position in the autophagic
signalling cascade and play a crucial yet enigmatic role in coordinating the autophagic

machinery.

To further understand the mechanisms of starvation-induced autophagy, | performed a
number of unbiased phosphoproteomic screens to identify ULK substrates before classifying
their roles in starvation-induced autophagy. Analysis of these datasets has revealed that loss of
ULK results in significant changes to the phosphoproteome and has yielded a high confidence
list of potential substrates whilst also offering interesting insights into the veracity of the
published ULK consensus signature. Amongst the novel phosphorylation targets are
components of the retromer and AMPK complexes along with multiple components of the
class lll PI3K VPS34 complex. The pseudokinase p150, scaffolding component of the VPS34
complex, is phosphorylated by ULK1 in vitro and in vivo at serine 861. CRISPR-based knockout
of p150 results in inhibition of autophagy and endosomal trafficking, whilst mutating the
phosphorylated residue in p150 alters both omegasome establishment and autophagic flux.
Furthermore, incorporation of phosphomutant p150 into the VPS34 complex modulates its
lipid kinase activity in vitro. These data identify a novel ULK-dependent signalling axis and help

illuminate the complexities of signal transduction in autophagy.



Impact Statement

Autophagy is a catabolic process of quality control for both proteins and organelles. It is a
major mechanism by which homeostasis is maintained and the requisite protein/lipid
machinery are essentially conserved across all Eukarya. The rapidly broadening implication of
autophagy in both physiology and pathophysiology has garnered much interest in recent years
with the importance of autophagy research signified by the awarding of the 2016 Nobel Prize
in Medicine or Physiology to Yoshinori Oshumi, the researcher responsible for the discovery of

many of the core autophagy-regulatory genes in Saccharomyces cerevisiae.

Autophagy requires the activity of ULK1 and homolog ULK2, the only serine/threonine kinases
in the autophagic signalling cascade, however the exact mechanism by which they function is
unclear. Their importance is exemplified by the increasing identification of autophagy-
dependent and -independent pathological phenotypes associated with loss of ULK. More
pertinently, as kinases they are considered druggable targets and a number of small-molecule
ULK1 agonists/antagonists have recently been developed, some with the proven capacity to
drive cancer cell death in both cultured cells and in murine tumour xenografts. These insights
highlight the potential importance of ULK activity modulation in human therapeutics and in
turn emphasise the requirement for a comprehensive understanding of how the kinases elicit

their downstream functions.

Via the identification and validation of novel ULK substrates, | have illuminated new facets of
ULK-dependent signalling with potential implications both in academia and in human health.
By unpicking the signalling network within which ULK1 and ULK2 are integrated and by
studying how this system is perturbed upon their loss, | have provided tangible evidence as to
how to the kinases function. Each of the novel substrates could serve as therapeutic
biomarkers for ULK activity. Importantly, amongst them are components of well conserved
and lipid and protein kinase complexes that are implicated in crucial cellular processes from
membrane trafficking to energy homeostasis. The findings described in this thesis therefore

provide ample scope for future discoveries with relevance across disciplines.
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Chapter 1. Introduction

1.1 Proteostasis

1.1.1 What is proteostasis

The mechanism by which protein synthesis and protein degradation are balanced is termed
proteostasis. It is required to maintain sufficient protein activity and is therefore crucial for cell
viability. Bulk synthesis, as well as that of specific proteins, is controlled at transcriptional and
translational levels. However, due a multitude of factors including chaperone availability, the
presence of environmental stresses as well as a protein’s intrinsic stability, proteins become
damaged or misfolded over time. Improperly structured proteins (i.e. proteins in a sub optimal
thermodynamic conformation) can be highly toxic due to pathological gain of functions (M
Dong et al., 1994, Chen et al., 2011) or due to their tendency to form aggregates with the
latter implicated in many neurodegenerative disorders (Ross and Poirier, 2004). It is therefore

crucial that damaged proteins are recognised and cleared efficiently.

There have evolved two systems to facilitate protein degradation, the activities of which are
highly interconnected (Ji and Kwon, 2017): lysosomal degradation and the ubiquitin-

proteasome system (UPS) (Figure 1.1).

1.1.2 Lysosomal degradation: autophagy

Lysosomes are membranous organelles specialised in the catabolism of proteins, lipids and
glycans. They are enriched in hydrolytic enzymes and maintain an acidic pH (~pH5) via the
activity of the surface localised vacuolar-type H+ -ATPase (V-ATPase). Cargo destined for
degradation is delivered to the lysosomal lumen by a variety of methods. After internalisation,
extracellular cargo are trafficked to lysosomes either directly (as with phagocytic vesicles) or
indirectly through the endosomal system (as with surface receptors). The products of
degradation access the cytoplasm for reassimilation via membrane-localised lysosomal

permeases.

19



Chapter 1. Introduction

Degradation of surface receptors requires the multiprotein ESCRT (endosomal sorting
complexes required for transport) complexes. Four such complexes exist (ESCRT-0, ESCRT-1,
ESCRT-2 and ESCRT-3) all of which are conserved from yeast to metazoans. After
internalisation and trafficking to early endosomes, ubiquitinated cargo is bound by ESCRT O,
which localises to endomembranes via association with the phospholipid signalling
intermediate PI3P (phosphoinsositide-3-phosphate). ESCRT-1 and ESCRT-2 promote inward
budding of the membrane, with ESCRT-2 also able to bind both ubiquitin and PI3P. Membrane
scission is achieved by ESCRT-3, which dynamically polymerises around the neck of the
intralumenal vesicles (ILVs). ESCRT-3 is disassembled in a ATP-dependent manner via the
activity of the AAA ATPase VPS4A/VPS4B (Hurley and Hanson, 2010). Endosomes accrue ILVs
and gradually acidify before mature late endosomes terminally fuse with lysosomes to
facilitate degradation of ILV-associated cargo. These are the mechanisms by which
extracellular cargo are degraded. Intracellular cargo follows a similar but distinct route which
also terminates at the lysosome, with the sequestration and lysosomal turnover of intracellular
cargoes, themselves targeted in a non-selective or ubiquitin-mediated manner, termed
autophagy (Figure 1.1A). Three sub-classifications of autophagy exist, chaperone-mediated

autophagy, microautophagy and macroautophagy, each of which are described below.

CMA (chaperone-mediated autophagy) involves the engagement of cytosolic proteins destined
for degradation by the heat shock family chaperone HSC70 alongside cochaperones, before
association with the lysosomal membrane-spanning glycoprotein LAMP2A. Cargo unfolding by
the chaperone complex and association with LAMP2A allows translocation of proteins across
the membrane whereupon they are degraded by resident proteases (Kaushik and Cuervo,
2018). LAMP2A multimerisation promotes cargo recognition and unfolding (Bandyopadhyay et
al., 2010, Bandyopadhyay et al., 2008, Rout et al., 2014), with stability of the translocation
complex increased by association of GFAP at the cytosolic face of the lysosome

(Bandyopadhyay et al., 2010).

CMA, which has been observed in mammalian and avian cells only (Kaushik and Cuervo, 2018),
is stimulated by cellular stresses such as reactive oxygen species, long term nutrient starvation
and hypoxia (Valdor et al., 2014, Cuervo et al., 1995, Ferreira et al., 2015). Alongside

modulation via control of Lamp2a transcription (Valdor et al., 2014), CMA can be regulated via

AKT1-dependent phosphorylation of GFAP at the lysosomal surface leading to its self-
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association and the consequent destabilisation of the translocation complex. Activation of
AKT1 by mTORC2 inhibits CMA basally, with translocation PH domain leucine-rich repeat-
containing protein phosphatase 1 (PHLPP1) relieving this repression via AKT1

dephosphorylation (Arias et al., 2015).
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Microautophagy
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The necessary selection of cargo via association of HSC70 means that CMA is an obligatorily
selective procedure that only targets proteins. HSC70 binds with KFERQ-like motifs in cargo
proteins, which are necessary and sufficient to direct substrates for CMA, and this can be
driven by post translational modification revealing or concealing the motifs as observed with

HIF1la and MST1 degradation respectively (Ferreira et al., 2015, Li et al., 2015b).

Microautophagy is best understood as the sequestration of cytoplasmic cargoes via the
invagination of endolysosomal membranes leading to their turnover at the lysosome. It was
first described as a bulk degradation process; however, the selective uptake of many
substrates has now been well established including mitochondria, lipid droplets, peroxisomes,
portions of the nucleus and ER in yeast (Schuck et al., 2014, Tekirdag and Cuervo, 2018). Whilst
uptake of bulk and specific cargoes via invagination of vacuolar membranes is readily apparent
in yeast, it has been suggested that that the process is facilitated by late endosomes in
mammalian cells (Tekirdag and Cuervo, 2018, Sahu et al., 2011). Additionally, microautophagy
via the extension and wrapping of lysosomal/vacuolar tubules around portions of the
cytoplasm, protein aggregates and organelles has been reported (Oku and Sakai, 2018).
However, this process is relatively poorly described and is better established in yeast and plant

species than in mammals (Guan et al., 2001, Oku et al., 2006, Chanoca et al., 2015).

Membrane invagination in mammalian microautophagy is ESCRT-dependent (Sahu et al.,
2011). Cargo can be sequestered in a bulk or selective manner, with HSC70 again implicated in
the latter, resulting in many substrates being shared with CMA (Sahu et al., 2011). However, as
the presence of a KFERQ-like motif is not sufficient to promote microautophagic degradation
(Koga et al., 2011) and as microautophagy can target proteins than cannot be unfolded or
those in complexes, their substrates repertoires differ. HSC70 targets associated cargo to
endolysosomal membranes where it directly binds phosphatidylserine in the cytoplasmic
leaflet, with this interaction required for cargo internalisation (Sahu et al., 2011, Morozova et
al., 2016). Notably, mammalian microautophagy bears parallels with the ESCRT-dependent

turnover of plasma membrane-transmembrane proteins via endocytosis.

Of note, the turnover of mitochondrial proteins by autophagy is achieved by a number of

methods. One such process involves the formation of mitochondria-derived vesicles which are

enriched in proteins damaged via oxidation. They can be engulfed into late endosomes/
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multivesicular bodies when targeted by microautophagy (known as Type 3 Micromitophagy)
(Lemasters, 2014), with the direct fusion of mitochondria-derived vesicles with lysosomes also
observed (McLelland et al., 2016). Whole mitochondria can be sequestered and degraded by

the final autophagic sub-classification to be introduced, macroautophagy.

Like microautophagy, macroautophagy facilitates the degradation of a wide array of
biomolecules and is well conserved from yeast to humans. Macroautophagy is the process by
which cytoplasmic cargos are sequestered in double-membraned vesicles termed
autophagosomes before delivery to the lysosome resulting in the degradation of contents.
Autophagosomes form de novo at specialised regions of the endoplasmic reticulum (ER) and
expand to engulf portions of the cytosol in non-specific/bulk macroautophagy, or specific

cargo in selective macroautophagy.

First to be discovered, non-selective/bulk macroautophagy affords the turnover of long-lived
proteins. It occurs constitutively but can be stimulated by cellular stressors such as amino acid
starvation (nitrogen starvation in yeast), growth factor restriction and hypoxia (Mauvezin et
al., 2015, Li et al., 2013a, Daskalaki et al., 2018). Additionally, in yeast as well as mammals, a
wide array of often cytotoxic substrates are targeted by selective macroautophagy, ranging
from protein aggregates (aggrephagy), to mitochondria (mitophagy) and portions of the ER
(ERphagy/reticulophagy), as well as invading pathogens (xenophagy) in metazoans (Zaffagnini

and Martens, 2016). The mechanisms of macroautophagy will be discussed in sections 1.2-1.3.

1.1.3 The ubiquitin proteasome system

In the UPS (ubiquitin proteasome system), both cytosolic and nuclear cargo destined for
degradation are targeted to the proteasome, a ~2.5MDa barrel shaped complex with a
protease-lined pore (Figure 1.1B). Made up of a core 20S catalytic particle and one or two 195
regulatory particles, the 26S proteasome facilitates degradation of client proteins (Tanaka,
2009). Whereas long-lived proteins, or those in large aggregates or damaged organelles are
targeted by autophagy, short-lived proteins tend to be degraded by the proteasome. The
700kDa 19S regulatory particle promotes catalytic activation of the core subcomplex. It is
composed of lid and base subcomplexes, with the former implicated in substrate

deubiquitination (see below) and the latter in substrate recognition, ATP-dependent substrate
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unfolding and translocation into the 750kDa 20S catalytic particle. Threading of unfolded
polypeptides into the 20S subcomplex, the opening pore of which is too narrow to allow
polypeptides to pass in the absence of the 19S sub complex, results in their processive
degradation, yielding 3-15 residue oligopeptides. See Figure 1.1 for a schematic depiction of

the main routes of eukaryotic proteostasis.

1.1.4 Regulation of proteostasis through ubiquitination

Substrate selectivity of the UPS is maintained via the post translational covalent attachment of
the 8.6kDa protein ubiquitin proteins to be targeted for degradation. Termed ubiquitination,
this can serve as a degradation signal that is recognised by proteasomal ubiquitin binding
proteins, such as the 19S proteasomal subunits RPN10 and RNP13 (Collins and Goldberg,
2017). Alongside marking proteins for degradation, ubiquitination can also modulate their
biological functionality, with a protein’s fate depending on the number of ubiquitin modules
conjugated (either mono-, multiple mono- or poly-ubiquitin chains, with the latter either linear
or branched), to the lysine on ubiquitin by which it is conjugated or even by the presence of

post-translational modifications on conjugated ubiquitin (Kazlauskaite et al., 2014b).

Ubiquitin conjugation is facilitated by three families of enzymes. Most upstream are ubiquitin-
activating enzymes (E1), which covalently binds ubiquitin via a catalytic cysteine, expending
ATP in the process. Ubiquitin is then transferred onto a ubiquitin carrier protein (E2), again via
attachment to a catalytic cysteine (Komander and Rape, 2012). Finally, both the E2 enzyme
and the protein substrate bind to an E3 enzyme which catalyses the transfer of cysteine onto
an accessible lysine on the substrate. This process is repeated to generate polyubiquitin chains
(Hershko and Ciechanover, 1998). The relative numbers of ubiquitin-processing enzymes
reflect the manner in which substrate selectivity is maintained. Whilst only 2 E1 proteins and
~30-50 E2 proteins have been identified, the substrate-binding E3 enzymes represent ~5% of
the human genome with around 600-700 different species estimated to exist. Unsurprisingly,
E3 enzymes display the most diversity in their catalytic domains with three main families

identified (Zheng and Shabek, 2017).

The most prominent ubiquitin linkage identified in the cell and also the major driver of

proteasomal degradation is lysine 48-linked ubiquitin (Ji and Kwon, 2017). Interestingly,
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ubiquitin-independent proteasomal degradation has been reported for some cargo, with these
requiring alternative activators in place of the 19S5 subcomplex such as REGy or PA200/BIm10
(Sadre-Bazzaz et al., 2010, Chen et al., 2007). Whilst the majority of autophagic cargo do not
require ubiquitination before targeting, lysine 63-linked ubiquitin chains have been implicated
in around half of the 20 types of selective macroautophagy identified (Deng et al., 2017,
Grumati and Dikic, 2018, Ji and Kwon, 2017) and the autophagic adaptor p62 preferentially
binds ubiquitin linked in this manner (Kirkin et al., 2009). However, K6, K11, K46 and M1 have
minor and potentially substrate-specific roles in autophagic targeting (Cunningham et al.,

2015, Dwane et al., 2017, Ji and Kwon, 2017, Riley et al., 2010, van Wijk et al., 2017).

For the remainder of this thesis, | will be mainly discussing canonical bulk macroautophagy
(herein referred to as autophagy) in mammalian systems, which is the chief focus of my work.
However, | will refer to insights from model organisms as well as those from selective

autophagy where appropriate.

1.2 Autophagy

1.2.1 The importance of autophagy research

Based on its central role in the turnover of cytoplasmic material and the freeing of metabolic
substrates for reuse, autophagy regulates cellular homeostasis at multiple levels. Amongst
other roles, it is crucial for the maintenance of genomic stability through controlling redox,
iron and lipid homeostasis, as well as mitochondrial function and survival during nutrient
starvation. Unsurprisingly therefore, autophagy is implicated in a wide array of physiological

and pathophysiological processes (Levine and Kroemer, 2019).

Autophagy has been implicated in adaptive immunity via the delivery of antigens for MHC class
Il presentation (Crotzer and Blum, 2009) and in innate immunity via xenophagy and control of
interferon signalling (Ravenhill et al., 2019, Konno et al., 2013). It has also been implicated in
both the promotion and the suppression of cancer depending on the tissue, stage and present
genetic mutations. Whilst the autophagic program is often upregulated in cancer cells to
survive the metabolic stress experienced in the tumour environment (Tooze et al., 2019), it has

also been shown to promote anti-cancer immune surveillance via both cancer-cell intrinsic and
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systematic means (Michaud et al., 2011, Crotzer and Blum, 2009, Ma et al., 2013). The
autophagy protein BECN1 (see section 1.3.4), which is frequently monoallelically deleted in
murine and human cancers, controls levels of the tumour suppressor protein p53 by stabilising
the deubiquitinases USP13 and thus USP10, with the latter directly targeting p53 (Liu et al.,
2011). Intriguingly, the tumour suppressor p53 also promotes autophagy suggesting that its
upregulation is part of its anti-oncogenic program, however p53 is also degraded by autophagy
despite BECN1's role in proteasomal protection and thus autophagy may facilitate tumour
promotion (White, 2016). Confusing this scenario, autophagy deficient mice were found to
generate benign hepatic tumours only (Takamura et al., 2011). The role of autophagy in cancer
therefore evades a simple description; generally, it is seen as being tumour suppressive in

healthy cells whilst favouring tumour progression after oncogenesis (Galluzzi et al., 2015).

Autophagy has been shown to promote longevity. There is a strong correlation between
advanced age and the suppression of autophagy and it has been well established that dietary
restriction without malnutrition (which stimulates autophagy) extends lifespan, with both
observations made in several model organisms (Hansen et al., 2018). Whilst ubiquitous
overexpression of the autophagy gene Atg5 (see section 1.3.6) was shown to extend lifespan in
mice (Pyo et al., 2013) and despite the increase in longevity demonstrated after upregulating
autophagy in intestine-, muscle- and immune system-tissue, the link between neuronal
autophagy with both extension of lifespan and age-related pathologies has garnered the most

attention in recent years (Hansen et al., 2018).

Neurones are highly metabolically active and post-mitotic and therefore rely on high levels of
basal autophagy to clear damaged proteins and organelles that cannot be diluted upon cell
division. Misregulated autophagy is implicated in various neurodegenerative disorders such as
Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and polyglutamine
(PolyQ) disorders, all of which are characterised by the build-up of neuronal aggregates
(Metaxakis et al., 2018, Fujikake et al., 2018, Ashkenazi et al., 2017, Hara et al., 2006, Komatsu
et al., 2006). Autophagy is therefore an attractive therapeutic target for the treatment of

neurodegenerative diseases.

These and other discoveries underscore the importance of autophagy research. Work in

baker’s yeast (S. cerevisiae) has led to the identification of 41 ATG (autophagy-related) genes,
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less than half of which are conserved in humans (Tsukada and Ohsumi, 1993, Thumm et al.,
1994, Harding et al., 1995, Wen and Klionsky, 2016). The identification of a suite of genes and
proteins that regulate autophagy has allowed us to greatly increase our understanding of its
molecular mechanisms. Whilst not all of the ATG genes are conserved in humans, the main
signalling complexes are found across Eukaryota (see section 1.3). In the next section the main
morphological stages of autophagy as well as molecular machinery that facilitate them will be

discussed.

1.2.2 Stages of Autophagy

Shortly after their discovery in rat liver homogenates, lysosomes were shown to contain
intracellular material (Clark, 1957, Novikoff, 1959, De Duve et al., 1955). Based on these and
other observations, they were soon implicated in the turnover of cytoplasmic components,
with Christian De Duve christening the process autophagy, Greek for ‘self-eating’ (De Duve,
1963, Ohsumi, 2014). Whilst partially degraded cytoplasmic and organellar material were
observed on multiple occasions within lysosomes or in lysosome-like bodies, the identification
of double-membraned organelles loaded with cytoplasmic material in the absence of
hydrolytic enzymes, known today as autophagosomes, came some years later (Arstila, 1968,

Smith and Farquhar, 1966).

All of these observations were made by electron microscopy, the only way to study autophagy
prior to the identification of specific protein markers. Today this technique is still instrumental
in studying the morphological stages of autophagy at an ultrastructural level (Eskelinen et al.,
2011). However confocal microscopy alongside more sophisticated techniques such as
correlative cryo-fluorescence and cryo-soft X-ray microscopy have greatly increased our

understanding as to the morphological stages of autophagy (Duke et al., 2014).

The first stage in the autophagic program is autophagosome initiation/nucleation. This takes
place at specialised regions of the ER termed omegasomes due to the unique omega-shaped
morphology of the nascent autophagosomal membrane (Axe et al., 2008). As autophagosome
biogenesis proceeds, a cup-shaped membrane termed the phagophore detaches from the ER
to enclose the material destined for degradation. The phagophore is supported on either side

by neighbouring ER cisternae (Hayashi-Nishino et al., 2009, Yla-Anttila et al., 2009) and is
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shaped by localised F-actin polymerisation (Mi et al., 2015). Phagophore closure results in the
formation of a double membraned autophagosome of around 0.5-2um in diameter (0.3-0.9um
in yeast), which is then trafficked along the microtubule network towards the perinuclear
region of the cell (Fass et al., 2006). In metazoans, autophagosomes mature by fusing with late
endocytic compartments (Tooze et al., 1990), with the resultant organelle termed an
amphisome. Amphisomes or autophagosomes then fuse with lysosomes to form an
autolysosome. In yeast no equivalent to amphisomes exist, with autophagosomes fusing
directly with the vacuole (yeast equivalent to the lysosome). Within autolysosomes the inner
membrane along with associated cargo is destroyed by resident hydrolases. Lysosomes are

regenerated via autophagic-lysosome reformation (Figure 1.2) (Munson et al., 2015, Yu et al.,

2010).
ER
Omegasome
Omegasome Phagophore Phagophore Autophagosome
Elongation
Lysosome
«— —
Proto-lysosomal
budding
o

Autophagic Lysosome Autophagolysosome Autophagosome-Lysosome

Reformation Fusion

Figure 1.2 — Schematic depiction of the stages of autophagy. The main morphological stages of
autophagy from autophagosome biogenesis through to termination are shown. The brown ER-
localised dots represent ribosomes, which are absent on omegasomes. Magenta triangles represent

lysosomal hydrolases. Dashed line represents the degrading inner autophagosomal membrane.

1.2.3 Membrane trafficking in autophagy

A schematic depicting the sources of autophagosomal membranes and associated protein

machinery discussed in this section is shown in Figure 1.3.
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1.2.3.1 |Initiation

It is widely accepted that autophagosomes nucleate from specialised ER-regions termed
omegasomes (Lamb et al., 2013). However, it has also been suggested that autophagosomes
form at recycling endosomes (Puri et al., 2018, Knaevelsrud et al., 2013), mitochondria (Hailey
et al., 2010), the Golgi (Ohashi and Munro, 2010, Geng et al., 2010, Nishida et al., 2009) and
the plasma membrane (Nascimbeni et al., 2017, Ravikumar et al., 2010). The apposition of ER
cisternae with many intracellular membranes (Marsh et al., 2001, Fernandez-Busnadiego et al.,
2015, Phillips and Voeltz, 2015) may have confounded accurate identification of the
autophagosome nucleation site and could therefore explain the wide-ranging attributions that
exist in the literature. Whilst it is possible that autophagosomes nucleate from several
organelles independently, the weight of existing data supports the ER as the site of

autophagosomal biogenesis and will be considered thus herein (Lamb et al., 2013).

The hierarchy of Atg protein recruitment to the ER upon autophagy initiation is largely
conserved from yeast to humans, with autophagy initiation complexes such as the protein
kinase ULK complex, the lipid kinase VPS34 complex and the autophagy-specific
transmembrane protein ATG9A (which associates transiently) the first to be recruited (Suzuki
et al., 2007, Nakatogawa et al., 2009, Karanasios et al., 2016). Localisation of these complexes
to omegasomes is crucial for downstream effector recruitment and consequently for the
significant membrane reorganisation associated with autophagosome biogenesis (see section

1.3) (Suzuki et al., 2007, Mercer et al., 2018).

In yeast autophagosomes emanate from a single area juxtaposed to the ER — the PAS
(phagophore assembly site). In metazoans however, omegasomes form at several sites across
the ER simultaneously, at regions coincident with ERES (ER-exit sites) and the ERGIC (ER-Golgi
intermediate compartment) (Karanasios et al., 2016). The majority of ER to Golgi transport
proceeds via the formation of vesicotubular trafficking intermediates from ERES, which fuse to
form the ERGIC before cargo is trafficked on to the Golgi. ER-Golgi anterograde traffic utilises
COPII (coatomer protein) machinery, with COPI proteins regulating retrograde traffic between

the Golgi cisternae and the ER.
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Whilst earlier data suggested COPI-dependent traffic was not implicated in autophagosome
biogenesis (Carlos Martin Zoppino et al., 2010) and instead regulated autophagosome
maturation via control of early endosome functionality (Razi et al., 2009), it was recently
shown that dual inhibition of bidirectional ER-Golgi trafficking via inhibition of COPI/II activity
was required to abolish the formation of autophagosomes upon starvation (Karanasios et al.,
2016). Furthermore, it was demonstrated using super resolution microscopy that starvation
induces omegasomal formation at specialised ERES/ERGIC regions in close proximity with
vesicles enriched in ATG9A (Karanasios et al., 2016). Supporting this notion is the established
roles of COPII coat in the promotion of autophagosome biogenesis in both yeast and mammals
(Shima et al., 2019, Ge et al., 2014, Davis et al., 2016, Tan et al., 2013, Graef et al., 2013,
Webster et al., 2016), as well as the capacity of ERGIC membranes to promote in vitro and in
vivo LC3 lipidation (a crucial step in autophagosome formation covered below) and to recruit
the autophagy markers ATG14 and DFCP1 in vivo (Karanasios et al., 2016, Ge et al., 2013).
Furthermore RAB1, whose isoforms regulate COPIl and COPII activity to control ER-Golgi and
intra-Golgi traffic (Garcia et al., 2011), has also been implicated in the establishment of
omegasomes (Webster et al., 2016, Tan et al., 2013) with knockdown of RAB1B or
overexpression of a dominant-negative mutant resulting in the reduction of autophagosome
number likely due to the disruption of COPll-dependent ERES formation (Carlos Martin
Zoppino et al., 2010).

ER-mitochondria contact sites or MAMs (mitochondria-associated ER membrane) have also
been identified as the region of autophagosome biogenesis (Garofalo et al., 2016, Hamasaki et
al., 2013, Tang et al., 2019). The SNARE (soluble NSF attachment protein receptor) protein
STX17 was shown to relocalise to MAMSs upon starvation and recruit ATG14. Disruption of
MAM formation via knockdown of key structural proteins resulted in the inhibition of ATG14
recruitment to mitochondria and inhibited autophagic flux (Hamasaki et al., 2013). The
identification of starvation-induced lipid rafts at MAMs provided further mechanistic insight
into the role of ER-mitochondria contact sites in autophagy induction. MAM-localised lipid
rafts recruit the autophagy regulators WIPI1 and the VPS34 complex (via AMBRA1) upon
starvation (Garofalo et al., 2016). Finally, ER-plasma membrane (ER-PM) contact sites have
also been identified as platforms of starvation-induced autophagosome biogenesis

(Nascimbeni et al., 2017).
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1.2.3.2 Elongation

Each of the membrane sources previously mooted as sites of autophagosome initiation may
provide lipids to growing phagophores. Lipid transfer may occur via membrane bridges,
vesicular traffic or lipid transport proteins (Biazik et al., 2015), with the ATG9A-positive
membrane trafficking potentially implicated in the latter two forms of transfer (see below and
section 1.3.7). Furthermore, lipid delivery may occur via the de novo production of lipids on

the surface of autophagosomes, however little evidence exists to support this model.

ATGYA is mainly localised at the Golgi in basal conditions and disperses to peripheral vesicles
upon starvation which are believed to supply lipids to growing phagophores in both yeast and
humans (see section 1.3.7). A population of ATG9A localises to endosomal compartments and
the early endosomal pool of ATG9A pool exists in close proximity with ANXA2, a positive
regulator of actin polymerisation that regulates early to late endosomal maturation (Moreau
et al., 2015, Morel et al., 2009). ANXA2 is upregulated on starvation in a c-Jun/JNK-dependent
manner and it colocalises with ATG9A at early endosomes. Here, ANXA2 positively regulates
autophagy by regulating ATG9A trafficking to recycling endosomes via its effectors ARP2 and
SPIRE1 (Moreau et al., 2015). The PX-BAR protein SNX18 was shown to drive the formation of
recycling endosome tubules enriched with ATG9A and ATG16L1 (see section 1.3.6) which
promoted their trafficking to sites of autophagosome formation upon starvation (Sereng et al.,
2018b, Knzevelsrud et al., 2013, Sgreng et al., 2018a). Interestingly, the phospholipase D1
inhibitor HS1BP3 was identified in recycling endosome-derived vesicles along with ATG9A and
ATG16L1, with these structures observed to fuse with early autophagosomal membranes.
HS1BP3 decreases phosphatidic acid levels in the autophagic precursors which corresponds
with a decrease in autophagosome number, likely due to inhibition of membrane delivery to
forming autophagosomes (Holland et al., 2016). Additionally, recycling endosomes contribute
to autophagosomal biogenesis via ATG9A-independent mechanisms. Longatti et al., showed
that an ULK1-positive but ATG9A-negative recycling endosome-derived vesicles contribute to

forming autophagosomes in a RAB11-dependent manner (Longatti et al., 2012).
Aside from the Golgi and endosomes, various distinct membrane compartments are believed

to contribute lipids to growing autophagosomes. ATG9A-mediated trafficking is implicated in

lipid transfer to autophagosomes from the plasma membrane (Zhou et al., 2017).
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Furthermore, ATG16L1-positive vesicles, which form at the plasma membrane via clathrin-
mediated endocytosis upon ATG16L1 overexpression (Ravikumar et al., 2010), were shown to
undergo homotypic fusion, possibly demonstrating the direct generation of early
autophagosomal precursors from the plasma membrane (Moreau et al., 2011). ANXA2
positively regulates the recruitment of phosphatidylinositol and phosphatidylserine to
ATG16L1-positive vesicles, as well as their fusion (Morozova et al., 2015). Finally, recent data
suggest that COPII vesicles fuse with autophagic membranes in budding yeast (Shima et al.,
2019, Tan et al., 2013, Graef et al., 2013). However, as with other vesicular-fusion dependent
mechanisms, it remains unknown how resident membrane proteins would be excluded to

prevent their autophagosomal degradation.

In S. cerevisiae, Atg2p tethers the tips of growing phagophores to ER membranes (Suzuki et al.,
2013, Gomez-Sanchez et al., 2018, Obara et al., 2008) and 98% of PAS-localised Atg2p-GFP
puncta were shown to colocalise with the ubiquitin-like key autophagic effector Atg8p by
immunofluorescence (see below and section 1.3.6), similarly supporting a role in expansion
(Graef et al.,, 2013). In S. pombe, a sporulating yeast more closely related to metazoans than S.
cerevisiae, the membrane-associated autophagy regulator Atg2p in complex with Atg18p was
shown to link highly curved liposomes and promote direct lipid transfer via a conserved
Vps13p-like domain (Osawa et al., 2019). Importantly, the human homologs ATG2A and ATG2B
were shown contain membrane-binding domains at both N and C termini which, cooperatively
with the PI3P-binding Atg18p homologs WIPI1 or WIPI4, tether ER- and phagophore- like
liposomes (Chowdhury et al., 2018, Maeda et al., 2019). Moreover, ATG2A was also shown to
possess the capacity to transfer lipids such as phosphatidylserine and/or phosphatidyl-
ethanolamine between such liposomes in vitro (Valverde et al., 2019, Maeda et al., 2019),
indicating that ATG2-dependent tethering and lipid transfer between ER and autophagic
membranes to provide lipids to the growing phagophore might be conserved between humans
and yeast. Very recently, the integral outer mitochondrial membrane proteins TOM40 and
TOM70 were shown to recruit ATG2A to MAMs upon starvation to facilitate phagophore
elongation in an ATG9A-dependent but WIPI4-independent manner. Deletion of ATG2A’s
ATGY9A-binding region prevented elongation and led to an accumulation of ATG9 vesicles at
autophagosome-assembly sites. This indicates that ATG2 facilitates the contribution of
membranes from ATG9 vesicles to the expanding phagophore, however the mechanism of

lipid transfer from ATG9 vesicles to the phagophore was not elucidated (Tang et al., 2019).
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Finally, direct connections between ER and autophagosomal membranes have been observed
by electron tomography (Uemura et al., 2014, Yla-Anttila et al., 2009) raising the possibility
that diffusion of lipids might contribute to phagophore extension. Taken together, despite
recent and valuable insights, the mechanisms by which disparate membranes, especially those
from non-ER compartments, supply lipids to expanding phagophores remain unclear and

warrant further study.

Conjugation of yeast Atg8p with phosphatidylethanolamine (referred to as lipidation) and its
consequent association with autophagosomal membranes was reported to promote
phagophore elongation (Nakatogawa et al., 2007) and evidence exists suggesting that this
function is somewhat conserved for its mammalian homologs (Weidberg et al., 2011,
Tsuboyama et al., 2016, Nguyen et al., 2016, Sou et al., 2008). They are grouped into two
families based on sequence similarity: the LC3 subfamily (LC3A, LC3B, LC3B2, LC3C) and the
GABARAP subfamily (GABARAP, GABARAPL1, GABARAPL2), collectively referred to herein as
the LC3/GABARAPs. The identification of homolog-specific functionalities has garnered much
attention in recent years. An early knockdown study suggested that the LC3s were crucial for
phagophore elongation, with GABARAPs functioning later on (potentially in autophagosome
closure) (Weidberg et al., 2010). In a later paper from the same group, both LC3 and GABARAP
proteins (LC3B and GABARAPL2) were shown to possess intrinsic fusogenic properties,
promoting membrane tethering and fusion in vitro. Mutation of the responsible N-terminal
motifs resulted in an accumulation of early autophagosomal structures suggesting a role in
elongation in vivo (Weidberg et al., 2011). Interestingly, a later study found that GABARAP and
GABARAPL2 (Landajuela et al., 2016), in concert with curvature-modifying lipids, promoted in
vitro vesicle fusion, thought to be crucial for phagophore elong