1,327 research outputs found

    Trick or Heat? Manipulating Critical Temperature-Based Control Systems Using Rectification Attacks

    Full text link
    Temperature sensing and control systems are widely used in the closed-loop control of critical processes such as maintaining the thermal stability of patients, or in alarm systems for detecting temperature-related hazards. However, the security of these systems has yet to be completely explored, leaving potential attack surfaces that can be exploited to take control over critical systems. In this paper we investigate the reliability of temperature-based control systems from a security and safety perspective. We show how unexpected consequences and safety risks can be induced by physical-level attacks on analog temperature sensing components. For instance, we demonstrate that an adversary could remotely manipulate the temperature sensor measurements of an infant incubator to cause potential safety issues, without tampering with the victim system or triggering automatic temperature alarms. This attack exploits the unintended rectification effect that can be induced in operational and instrumentation amplifiers to control the sensor output, tricking the internal control loop of the victim system to heat up or cool down. Furthermore, we show how the exploit of this hardware-level vulnerability could affect different classes of analog sensors that share similar signal conditioning processes. Our experimental results indicate that conventional defenses commonly deployed in these systems are not sufficient to mitigate the threat, so we propose a prototype design of a low-cost anomaly detector for critical applications to ensure the integrity of temperature sensor signals.Comment: Accepted at the ACM Conference on Computer and Communications Security (CCS), 201

    Analysis and Development of Multiple Phase Shift Modulation in A SiC-Based Dual Active Bridge Converter

    Get PDF
    Renewable energy adoption is a popular topic to release the stress of climate change caused by greenhouse gas. Electricity is ideal secondary energy for clean primary energy such as nuclear, wind, photovoltaic, and so on. To extend the application of electricity and reduce fossil energy consumption by transportation sectors, electric vehicles (EVs) become promising technology that can further inspire the development of renewable energy. Battery as the core in an EV provides the energy to the motor and all on-board electric equipment. The battery charger is mainly composed of a power factor correction (PFC) and isolated DC-DC converter. Therefore, power electronics equipment plays an important role in automotive products. Meanwhile, in recent years, the market capacity for wide band-gap devices, SiC MOSFET, continues to increase in EV applications. Dual active bridge (DAB) is an excellent candidate for isolated DC-DC converter in EV battery charger. The characteristics include an easy control algorithm, galvanic isolation and adjustable voltage gain. Different modulation strategies are developed to improve the performance and stability by using multiple phase shift (MPS) control. This thesis focuses on the utilization of different modulation strategies to realize smooth transition among MPS control in full operational range with securing zero-voltage-switching (ZVS) to eliminate the crosstalk in the hard-switching process. The influence of MPS control on ZVS resonance transient is also addressed to find out the accurate minimum required energy of the inductor to finish the ZVS transition. Furthermore, a general common-mode voltage model for DAB is proposed to analyze the impact of MPS control on the common-mode performance

    Wide Band Gap Devices and Their Application in Power Electronics

    Get PDF
    Power electronic systems have a great impact on modern society. Their applications target a more sustainable future by minimizing the negative impacts of industrialization on the environment, such as global warming effects and greenhouse gas emission. Power devices based on wide band gap (WBG) material have the potential to deliver a paradigm shift in regard to energy efficiency and working with respect to the devices based on mature silicon (Si). Gallium nitride (GaN) and silicon carbide (SiC) have been treated as one of the most promising WBG materials that allow the performance limits of matured Si switching devices to be significantly exceeded. WBG-based power devices enable fast switching with lower power losses at higher switching frequency and hence, allow the development of high power density and high efficiency power converters. This paper reviews popular SiC and GaN power devices, discusses the associated merits and challenges, and finally their applications in power electronics

    Contributions to the design of power modules for electric and hybrid vehicles: trends, design aspects and simulation techniques

    Get PDF
    314 p.En la última década, la protección del medio ambiente y el uso alternativo de energías renovables están tomando mayor relevancia tanto en el ámbito social y político, como científico. El sector del transporte es uno de los principales causantes de los gases de efecto invernadero y la polución existente, contribuyendo con hasta el 27 % de las emisiones a nivel global. En este contexto desfavorable, la electrificación de los vehículos de carretera se convierte en un factor crucial. Para ello, la transición de la actual flota de vehículos de carretera debe ser progresiva forzando la investigación y desarrollo de nuevos conceptos a la hora de producir vehículos eléctricos (EV) y vehículos eléctricos híbridos (HEV) más eficientes, fiables, seguros y de menor coste. En consecuencia, para el desarrollo y mejora de los convertidores de potencia de los HEV/EV, este trabajo abarca los siguientes aspectos tecnológicos: - Arquitecturas de la etapa de conversión de potencia. Las principales topologías que pueden ser implementadas en el tren de potencia para HEV/EV son descritas y analizadas, teniendo en cuenta las alternativas que mejor se adaptan a los requisitos técnicos que demandan este tipo de aplicaciones. De dicha exposición se identifican los elementos constituyentes fundamentales de los convertidores de potencia que forman parte del tren de tracción para automoción.- Nuevos dispositivos semiconductores de potencia. Los nuevos objetivos y retos tecnológicos solo pueden lograrse mediante el uso de nuevos materiales. Los semiconductores Wide bandgap (WBG), especialmente los dispositivos electrónicos de potencia basados en nitruro de galio (GaN) y carburo de silicio (SiC), son las alternativas más prometedoras al silicio (Si) debido a las mejores prestaciones que poseen dichos materiales, lo que permite mejorar la conductividad térmica, aumentar las frecuencias de conmutación y reducir las pérdidas.- Análisis de técnicas de rutado, conexionado y ensamblado de módulos de potencia. Los módulos de potencia fabricados con dies en lugar de dispositivos discretos son la opción preferida por los fabricantes para lograr las especificaciones indicadas por la industria de la automoción. Teniendo en cuenta los estrictos requisitos de eficiencia, fiabilidad y coste es necesario revisar y plantear nuevos layouts de las etapas de conversión de potencia, así como esquemas y técnicas de paralelización de los circuitos, centrándose en las tecnologías disponibles.Teniendo en cuenta dichos aspectos, la presente investigación evalúa las alternativas de semiconductores de potencia que pueden ser implementadas en aplicaciones HEV/EV, así como su conexionado para la obtención de las densidades de potencia requeridas, centrándose en la técnica de paralelización de semiconductores. Debido a la falta de información tanto científica como comercial e industrial sobre dicha técnica, una de las principales contribuciones del presente trabajo ha sido la propuesta y verificación de una serie de criterios de diseño para el diseño de módulos de potencia. Finalmente, los resultados que se han extraído de los circuitos de potencia propuestos demuestran la utilidad de dichos criterios de diseño, obteniendo circuitos con bajas impedancias parásitas y equilibrados eléctrica y térmicamente. A nivel industrial, el conocimiento expuesto en la presente tesis permite reducir los tiempos de diseño a la hora de obtener prototipos de ciertas garantías, permitiendo comenzar la fase de prototipado habiéndose realizado comprobaciones eléctricas y térmicas

    Signal Order Optimization of Interconnects Enabling High Electromagnetic Compatibility Performance in Modern Electrical Systems

    Get PDF
    Flexible flat cables (FFCs) are a typical form of interconnect in modern electrical and electronic systems that facilitate signal transmission between components while minimizing harness volume. FFCs offer a practical connectivity solution in energy management applications, where sensors and displays are essential for monitoring power consumption and performing advanced digital control. In FFCs, signal lines run parallel to each other, and the proximity between lines can cause interference among adjacent signals. Therefore, the arrangement of signals along different lines can significantly influence the overall transmission performance. In this paper, the order of signals within the FFC is optimized to ensure optimal transmission performance, avoiding electromagnetic compatibility (EMC) and signal integrity (SI) issues. The problem is tackled by implementing a multi-objective optimization (MOO) approach, whose aim is to minimize near-end and far-end crosstalk, namely NEXT and FEXT. The effectiveness of the proposed approach is verified by considering a minimized interconnection system involving an FFC. The Pareto-optimal solutions are identified, and worst-case and best-case conditions are highlighted. The results show improvements in EMC and SI, underlining the relevance of the proposed optimization strategy. The proposed strategy provides a valuable tool for designing high-performance interconnections in electrical and electronic systems

    Review of Mode Conversion and Modal Analysis in Electromagnetic Compatibility

    Get PDF
    Undesired conversion between common-mode (CM) and differential-mode (DM) noise often occurs in modern electronic and electrical systems, posing challenges in terms of Electromagnetic Compatibility (EMC). Modal analysis represents a crucial tool in EMC investigation and provides insight into the mechanism underlying mode conversion. By inspecting CM and DM behaviors and their interconversion, it allows for understanding of conducted emission propagation mechanisms, drives electromagnetic interference (EMI) filter design towards optimal/tailored solutions, and enables the possibility to identify the main contributors to the radiated emission phenomenon. This paper offers a comprehensive review of mathematical methodologies and modelling strategies for EMC-oriented modal analysis, with particular emphasis on mode conversion phenomena. To this end, modal decomposition techniques and standard parameters for quantifying mode conversion are summarized and compared. Additionally, the paper provides an overview and in-depth discussion of different scenarios and test cases in which mode conversion occurs, with the final goal to achieve a systematic comprehension of its root causes and consequences within power and communication systems. Eventually, a survey of circuit modelling approaches for mode conversion is presented, offering insights into addressing this phenomenon effectively

    Convertisseurs à bobine variable pour applications de transport durables

    Get PDF
    Abstract: Power electronics converters are key components and enable efficient conversion and management of electrical energy in a wide range of applications. For vehicular use, there is an inevitable need to improve their performance and reducing their size. This is particularly important in case of powertrain DC-DC converters as they are required to have improved performance while respecting the specifications, characteristics and stringent space limitations. These objectives define research targets and a particular progress is essential in the field of passive components, semiconductor devices, converter topologies and control. At the current state of technologies, the passive components particularly the power inductors are dominant components which affect the overall volume, cost and performance of power electronic converters. Considering the aforementioned critical aspects, this thesis proposes a variable inductor (VI) concept in order to reduce the weight and size power inductors which are traditionally bulky and have fairly limited operating range. By modulating the permeability of the magnetic material, this concept enhances the current handling capability of power inductors, controls the current ripples, reduces the magnetic and switching losses, as well as the stresses applied to switching devices. Furthermore, it enables the use of smaller cores which leads to the reduction of mass and volume allowing improvements in the converter operation and its overall performance. However, to integrate it into powertrain DC-DC converters, it is fundamental, to question the design of the component itself, the selection of suitable magnetic core materials, and the control of current in the auxiliary winding and saturation management of magnetic cores. This thesis systematically addresses these different research challenges. A particular attention is paid to the experimental study of a VI prototype to demonstrate the concept on a small-scale in order to explore its viability. Subsequently a detailed characterization was developed using finite element analysis to determine the intrinsic functionality of the passive component. Furthermore, this thesis proposed an RMS current based VI design to reduce oversizing of power inductors for electric vehicles application. In this methodology, the selection of a suitable magnetic core material is a crucial step to assure smaller and efficient converters. Hence, this thesis proposes a simplified approach based on weighted property method (WPM) for an appropriate selection of magnetic core in accordance to the needs of the user. Furthermore, to validate the integration of this concept in DC-DC converter topology used in the powertrain of electrified vehicles, an affine parameterization method is used to design the control parameters and a simple management strategy is proposed to enable dynamic control of the VI. The converter control and the proposed strategy are evaluated through simulations of a complete powertrain of a three-wheel recreational vehicle. The small-scale experimental and simulations, and full-scale simulations have demonstrated an interesting capacity of the VI for improving the performance of DC-DC converters for electrified vehicles and manage the saturation of the magnetic core while reducing the size and weight of magnetic components.Les convertisseurs d’électroniques de puissance sont des composants clés de la conversion et gestion efficace de l’énergie électrique dans une large gamme d’applications. Pour des utilisations véhiculaires, il est inévitablement nécessaire d’améliorer leurs performances et de réduire leur taille. Ceci est particulièrement important dans le cas des convertisseurs à courant continu (CC) de la chaine de traction où des performances améliorées en réponse à une large gamme de variations de charge sont recherchées tout en respectant les spécificités, caractéristiques et limitation d’espace nécessaires aux véhicules électrifiés. Ces objectifs définissent une cible de recherche et en particulier des progrès sont essentiels dans le domaine des composants passifs, des dispositifs semi-conducteurs, des topologies des convertisseurs et leurs commandes pour généraliser l’utilisation de véhicules électriques. Les composants passifs, en particulier les inductances de puissance, sont des composants dominants qui affectent le volume global, le coût et les performances de ces convertisseurs d’électroniques de puissance. Compte tenu de ces aspects, cette thèse propose un concept de bobine variable afin de réduire le poids et la taille des inductances de puissance qui sont traditionnellement encombrantes et ont une gamme de fonctionnement assez limitée. En modulant la perméabilité du matériau magnétique, ce concept améliore la capacité de gestion du courant des bobines de puissance, contrôle les ondulations du courant et réduit les pertes magnétiques et par commutation, bien comme les contraintes appliquées aux dispositifs de commutation. En outre, il permet l’utilisation de noyaux plus petits, ce qui entraîne une réduction de masse et de volume, en permettant une amélioration du fonctionnement du convertisseur et de ses performances globales. Cependant, pour l’intégrer aux convertisseurs CC-CC utilisés dans la chaine de traction, il est fondamental de se questionner sur la conception du composant lui-même, la sélection du matériau magnétique, la commande du courant de l’enroulement auxiliaire et la gestion de la saturation du noyau magnétique. Cette thèse aborde de manière systématique ces différents défis de recherche. Une attention particulière est accordée à l’étude expérimentale d’un prototype de bobine variable pour faire la preuve de concept à petite échelle afin d’explorer sa viabilité. Par la suite, une large caractérisation par éléments finis a été développée pour déterminer le fonctionnement intrinsèque de ce composant passif. De plus, cette thèse propose une méthode systématique de design de bobine variable basée sur le courant RMS pour réduire le surdimensionnement traditionnellement associer aux inductances de puissance pour des applications véhiculaires. Dans cette méthodologie, la sélection appropriée du matériau pour le noyau magnétique est une étape cruciale pour garantir des convertisseurs plus petits et efficaces, donc une démarche de sélection simplifiée basée sur la méthode des propriétés pondérées pour le choix de noyau magnétique approprié au besoin de l’application a été mis au point. De plus, pour valider l’intégration de ce concept dans une topologie de convertisseur CC-CC traditionnellement utilisée dans la chaine de traction des véhicules électrifiés, une méthode de synthèse affine a été utilisée pour définir les paramètres des contrôleurs de courant et une stratégie de gestion de la saturation du noyau a été proposée pour permettre le contrôle dynamique de la bobine variable. La commande du convertisseur et la stratégie ont été évaluées par simulation d’une chaine de traction complète d’un véhicule récréatif réel. Les résultats expérimentaux à petite échelle et simulations à pleine échelle ont démontrés des capacités intéressantes de cette bobine variable pour l’amélioration des performances des convertisseurs CC-CC, ayant la capacité de gestion de la saturation du noyau magnétique tout en réduisant la taille et le poids de ces composants passifs, dans le but de son utilisation dans la chaine de traction des véhicules électrifiés

    High Frequency Power Converter with ZVT for Variable DC-link in Electric Vehicles

    Get PDF
    abstract: The most important metrics considered for electric vehicles are power density, efficiency, and reliability of the powertrain modules. The powertrain comprises of an Electric Machine (EM), power electronic converters, an Energy Management System (EMS), and an Energy Storage System (ESS). The power electronic converters are used to couple the motor with the battery stack. Including a DC/DC converter in the powertrain module is favored as it adds an additional degree of freedom to achieve flexibility in optimizing the battery module and inverter independently. However, it is essential that the converter is rated for high peak power and can maintain high efficiency while operating over a wide range of load conditions to not compromise on system efficiency. Additionally, the converter must strictly adhere to all automotive standards. Currently, several hard-switching topologies have been employed such as conventional boost DC/DC, interleaved step-up DC/DC, and full-bridge DC/DC converter. These converters face respective limitations in achieving high step-up conversion ratio, size and weight issues, or high component count. In this work, a bi-directional synchronous boost DC/DC converter with easy interleaving capability is proposed with a novel ZVT mechanism. This converter steps up the EV battery voltage of 200V-300V to a wide range of variable output voltages ranging from 310V-800V. High power density and efficiency are achieved through high switching frequency of 250kHz for each phase with effective frequency doubling through interleaving. Also, use of wide bandgap high voltage SiC switches allows high efficiency operation even at high temperatures. Comprehensive analysis, design details and extensive simulation results are presented. Incorporating ZVT branch with adaptive time delay results in converter efficiency close to 98%. Experimental results from a 2.5kW hardware prototype validate the performance of the proposed approach. A peak efficiency of 98.17% has been observed in hardware in the boost or motoring mode.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Design and Advanced Model Predictive Control of Wide Bandgap Based Power Converters

    Get PDF
    The field of power electronics (PE) is experiencing a revolution by harnessing the superior technical characteristics of wide-band gap (WBG) materials, namely Silicone Carbide (SiC) and Gallium Nitride (GaN). Semiconductor devices devised using WBG materials enable high temperature operation at reduced footprint, offer higher blocking voltages, and operate at much higher switching frequencies compared to conventional Silicon (Si) based counterpart. These characteristics are highly desirable as they allow converter designs for challenging applications such as more-electric-aircraft (MEA), electric vehicle (EV) power train, and the like. This dissertation presents designs of a WBG based power converters for a 1 MW, 1 MHz ultra-fast offboard EV charger, and 250 kW integrated modular motor drive (IMMD) for a MEA application. The goal of these designs is to demonstrate the superior power density and efficiency that are achievable by leveraging the power of SiC and GaN semiconductors. Ultra-fast EV charging is expected to alleviate the challenge of range anxiety , which is currently hindering the mass adoption of EVs in automotive market. The power converter design presented in the dissertation utilizes SiC MOSFETs embedded in a topology that is a modification of the conventional three-level (3L) active neutral-point clamped (ANPC) converter. A novel phase-shifted modulation scheme presented alongside the design allows converter operation at switching frequency of 1 MHz, thereby miniaturizing the grid-side filter to enhance the power density. IMMDs combine the power electronic drive and the electric machine into a single unit, and thus is an efficient solution to realize the electrification of aircraft. The IMMD design presented in the dissertation uses GaN devices embedded in a stacked modular full-bridge converter topology to individually drive each of the motor coils. Various issues and solutions, pertaining to paralleling of GaN devices to meet the high current requirements are also addressed in the thesis. Experimental prototypes of the SiC ultra-fast EV charger and GaN IMMD were built, and the results confirm the efficacy of the proposed designs. Model predictive control (MPC) is a nonlinear control technique that has been widely investigated for various power electronic applications in the past decade. MPC exploits the discrete nature of power converters to make control decisions using a cost function. The controller offers various advantages over, e.g., linear PI controllers in terms of fast dynamic response, identical performance at a reduced switching frequency, and ease of applicability to MIMO applications. This dissertation also investigates MPC for key power electronic applications, such as, grid-tied VSC with an LCL filter and multilevel VSI with an LC filter. By implementing high performance MPC controllers on WBG based power converters, it is possible to formulate designs capable of fast dynamic tracking, high power operation at reduced THD, and increased power density
    • …
    corecore