180 research outputs found

    Enhanced Quality of Experience Based on Enriched Network Centric and Access Control Mechanisms

    Get PDF
    In the digital world service provisioning in user satisfying quality has become the goal of any content or network provider. Besides having satisfied and therefore, loyal users, the creation of sustainable revenue streams is the most important issue for network operators [1], [2], [3]. The motivation of this work is to enhance the quality of experience of users when they connect to the Internet, request application services as well as to maintain full service when these users are on the move in WLAN based access networks. In this context, the aspect of additional revenue creation for network operators is considered as well. The enhancements presented in this work are based on enriched network centric and access control mechanisms which will be achieved in three different areas of networks capabilities, namely the network performance, the network access and the network features themselves. In the area of network performance a novel authentication and authorisation method is introduced which overcomes the drawback of long authentication time in the handover procedure as required by the generic IEEE 802.1X process using the EAP-TLS method. The novel sequential authentication solution reduces the communication interruption time in a WLAN handover process of currently several hundred milliseconds to some milliseconds by combining the WPA2 PSK and the WPA2 EAP-TLS. In the area of usability a new user-friendly hotspot registration and login mechanisms is presented which significantly simplifies how users obtain WLAN hotspot login credentials and logon to a hotspot. This novel barcode initiated hotspot auto-login solution obtains user credentials through a simple SMS and performs an auto-login process that avoids the need to enter user name and password on the login page manually. In the area of network features a new system is proposed which overcomes the drawback that users are not aware of the quality in which a service can be provided prior to starting the service. This novel graceful denial of service solution informs the user about the expected application service quality before the application service is started

    Improved internet protocol multimedia subsystem authentication for long term evolution

    Get PDF
    Long Term Evolution (LTE) is a major technology to be used in the 4th generation (4G) mobile network and the core network is evolving towards a converged packet based framework for all services. As a part of the evolved core network, Internet Protocol (IP) Multimedia Subsystem (IMS) provides multimedia services (data, voice, video and variations) over packet switched networks. LTE and IMS are both defined by the 3rd Generation Partnership Project (3GPP) group, and the specification identifies that a LTE user device has to carry out two authentication steps to access IP multimedia services. The first authentication step is used to gain LTE network admission and the second authentication step is the IMS authentication used to gain access to the multimedia services. It is observed that the 4G standardized authentication protocols include double execution of the Authentication and Key Agreement (AKA) which increases the system’s complexity, results in significant authentication delay and high terminal energy consumption. Authentication is very important for a terminal to gain access to a network and therefore considerable previous research into this topic has occurred. However a common limitation of previously proposed authentication systems is either a lack of security or significant system modification. This research proposes the Improved AKA (IAKA) authentication protocol which binds the two layer’s authentication procedures by using the unified IP Multimedia Private-user Identity (IMPI). The proposed IAKA only executes the AKA protocol once in the network layer and generates authentication credentials which would be used in the second IMS service layer authentication. This research work included providing IAKA authentication protocol, developing a LTE IMS integrated network by using OPNET Modeller, simulation of the IAKA and the legacy 3GPP defined 4G LTE AKA authentication protocol under different environments, and in-depth analysis of the system performance, security and terminal’s energy consumption. It is shown that the proposed IAKA carries out terminal authentication correctly, improves security, reduces IMS layer authentication delay by up to 38%, and provides an 81.82% terminal energy consumption saving

    SECURITY MEASUREMENT FOR LTE/SAE NETWORK DURING SINGLE RADIO VOICE CALL CONTINUITY (SRVCC).

    Get PDF
    Voice has significant place in mobile communication networks. Though data applications have extensively gained in importance over the years but voice is still a major source of revenue for mobile operators. It is obvious that voice will remain an important application even in the era of Long Term Evolution (LTE). Basically LTE is an all-IP data-only transport technology using packet switching. Therefore, it introduces challenges to satisfy quality of service expectations for circuit-switched mobile telephony and SMS for LTE capable smartphones, while being served on the LTE network. Since 2013, mobile operators have been busy deploying Voice Over LTE (VoLTE). They are relying on a VoLTE technology called Single Radio Voice Call Continuity (SRVCC) for seamless handover between packet-switch domain to circuit-switch domain or vice versa. The aim of thesis is to review and identify the security measurement during SRVCC and verify test data for ciphering and integrity algorithm.fi=OpinnÀytetyö kokotekstinÀ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LÀrdomsprov tillgÀngligt som fulltext i PDF-format

    SECURITY MEASUREMENT FOR LTE/SAE NETWORK DURING SINGLE RADIO VOICE CALL CONTINUITY (SRVCC).

    Get PDF
    Voice has significant place in mobile communication networks. Though data applications have extensively gained in importance over the years but voice is still a major source of revenue for mobile operators. It is obvious that voice will remain an important application even in the era of Long Term Evolution (LTE). Basically LTE is an all-IP data-only transport technology using packet switching. Therefore, it introduces challenges to satisfy quality of service expectations for circuit-switched mobile telephony and SMS for LTE capable smartphones, while being served on the LTE network. Since 2013, mobile operators have been busy deploying Voice Over LTE (VoLTE). They are relying on a VoLTE technology called Single Radio Voice Call Continuity (SRVCC) for seamless handover between packet-switch domain to circuit-switch domain or vice versa. The aim of thesis is to review and identify the security measurement during SRVCC and verify test data for ciphering and integrity algorithm.fi=OpinnÀytetyö kokotekstinÀ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LÀrdomsprov tillgÀngligt som fulltext i PDF-format

    Secure Service Provisioning (SSP) Framework for IP Multimedia Subsystem (IMS)

    Get PDF
    Mit dem Erscheinen mobiler Multimediadienste, wie z. B. Unified Messaging, Click-to-Dial-Applikationen, netzwerkĂŒbergeifende Multimedia-Konferenzen und nahtlose Multimedia-Streming-Dienste, begann die Konvergenz von mobilen Kommunikationsetzen und Festnetzen, begleitet von der Integration von Sprach- und Datenkommunikations-Übertragungstechnik Diese Entwicklungen bilden die Voraussetzung fĂŒr die Verschmelzung des modernen Internet auf der einen Seite mit der Telekommunikation im klassischen Sinne auf der anderen. Das IP Multimedia-Subsystem (IMS) darf hierbei als die entscheidende Next-Generation-Service-Delivery-Plattform in einer vereinheitlichten Kommunikationswelt angesehen werden. Seine Architektur basiert auf einem modularen Design mit offenen Schnittstellen und bietet dedizierte Voraussetzungen zur UnterstĂŒtzung von Multimedia-Diensten auf der Grundlage der Internet-Protokolle. Einhergehend mit dieser aufkommenden offenen Technologie stellen sich neue Sicherheits-Herausforderungen in einer vielschichtigen Kommunikationsinfrastruktur, im Wesentlichen bestehend aus dem Internet Protokoll (IP), dem SIP-Protokoll (Session Initiation Protocol) und dem Real-time Transport Protokoll (RTP). Die Zielsetzung des Secure Service Provisioning-Systems (SSP) ist, mögliche Angriffsszenarien und SicherheitslĂŒcken in Verbindung mit dem IP Multimedia Subsystem zu erforschen und Sicherheitslösungen, wie sie von IETF, 3GPP und TISPAN vorgeschlagen werden, zu evaluieren. Im Rahmen dieser Forschungsarbeit werden die Lösungen als Teil des SSP-Systems berĂŒcksichtigt, mit dem Ziel, dem IMS und der Next-Generation-SDP einen hinreichenden Schutz zu garantieren. Dieser Teil, der als Sicherheitsschutzstufe 1 bezeichnet wird, beinhaltet unter anderem Maßnahmen zur Nutzer- und Netzwerk-Authentifizierung, die Autorisierung der Nutzung von Multimediadiensten und Vorkehrungen zur GewĂ€hrleistung der Geheimhaltung und IntegritĂ€t von Daten im Zusammenhang mit dem Schutz vor Lauschangriffen, Session-Hijacking- und Man-in-the-Middle-Angriffen. Im nĂ€chsten Schritt werden die BeschrĂ€nkungen untersucht, die fĂŒr die Sicherheitsschutzstufe 1 charakteristisch sind und Maßnahmen zu Verbesserung des Sicherheitsschutzes entwickelt. Die entsprechenden Erweiterungen der Sicherheitsschutzstufe 1 fĂŒhren zu einem Intrusion Detection and Prevention-System (IDP), das Schutz vor Denial-of-Service- (DoS) / Distributed-Denial-of-Service (DDoS)-Angriffen, missbrĂ€uchlicher Nutzung und TĂ€uschungsversuchen in IMS-basierten Netzwerken bietet. Weder 3GPP noch TISPAN haben bisher Lösungen fĂŒr diesen Bereich spezifiziert. In diesem Zusammenhang können die beschriebenen Forschungs- und Entwicklungsarbeiten einen Beitrag zur Standardisierung von Lösungen zum Schutz vor DoS- und DDoS-Angriffen in IMS-Netzwerken leisten. Der hier beschriebene Ansatz basiert auf der Entwicklung eines (stateful / stateless) Systems zur Erkennung und Verhinderung von Einbruchsversuchen (Intrusion Detection and Prevention System). Aus Entwicklungssicht wurde das IDP in zwei Module aufgeteilt: Das erste Modul beinhaltet die Basisfunktionen des IDP, die sich auf Flooding-Angriffe auf das IMS und ihre Kompensation richten. Ihr Ziel ist es, das IMS-Core-Netzwerk und die IMS-Ressourcen vor DoS- und DDoS-Angriffen zu schĂŒtzen. Das entsprechende Modul basiert auf einer Online Stateless-Detection-Methodologie und wird aktiv, sobald die CPU-Auslastung der P-CSCF (Proxy-Call State Control Function) einen vordefinierten Grenzwert erreicht oder ĂŒberschreitet. Das zweite Modul (IDP-AS) hat die Aufgabe, Angriffe, die sich gegen IMS Application Server (AS) richten abzufangen. Hierbei konzentrieren sich die Maßnahmen auf den Schutz des ISC-Interfaces zwischen IMS Core und Application Servern. Das betreffende Modul realisiert eine Stateful Detection Methodologie zur Erkennung missbrĂ€uchlicher NutzungsaktivitĂ€ten. WĂ€hrend der Nutzer mit dem Application Server kommuniziert, werden dabei nutzerspezifische Zustandsdaten aufgezeichnet, die zur PrĂŒfung der LegitimitĂ€t herangezogen werden. Das IDP-AS prĂŒft alle eingehenden Requests und alle abgehenden Responses, die von IMS Application Servern stammen oder die an IMS Application Server gerichtet sind, auf ihre ZulĂ€ssigkeit im Hinblick auf die definierten Attack Rules. Mit Hilfe der Kriterien Fehlerfreiheit und Processing Delay bei der Identifikation potenzieller Angriffe wird die LeistungsfĂ€higkeit der IDP-Module bewertet. FĂŒr die entsprechenden Referenzwerte werden hierbei die ZustĂ€nde Nomallast und Überlast verglichen. Falls die LeistungsfĂ€higkeit des IDP nicht unter den Erwartungen zurĂŒckbleibt, wird ein IDP-Prototyp zur Evaluation im Open IMS Playground des Fokus Fraunhofer 3Gb-Testbeds eingesetzt, um unter realen Einsatzbedingungen z. B. in VoIP-, Videokonferenz- , IPTV-, Presence- und Push-to-Talk-Szenarien getestet werden zu können.With the emergence of mobile multimedia services, such as unified messaging, click to dial, cross network multiparty conferencing and seamless multimedia streaming services, the fixed–mobile convergence and voice–data integration has started, leading to an overall Internet–Telecommunications merger. The IP Multimedia Subsystem (IMS) is considered as the next generation service delivery platform in the converged communication world. It consists of modular design with open interfaces and enables the flexibility for providing multimedia services over IP technology. In parallel this open based emerging technology has security challenges from multiple communication platforms and protocols like IP, Session Initiation Protocol (SIP) and Real-time Transport Protocol (RTP). The objective of Secure Service Provisioning (SSP) Framework is to cram the potential attacks and security threats to IP Multimedia Subsystem (IMS) and to explore security solutions developed by IETF, 3GPP and TISPAN. This research work incorporates these solutions into SSP Framework to secure IMS and next generation Service Delivery Platform (SDP). We define this part as level 1 security protection which includes user and network authentication, authorization to access multimedia services, providing confidentiality and integrity protection etc. against eavesdropping, session hijacking and man-in-the middle attacks etc. In the next step, we have investigated the limitations and improvements to level 1 security and proposed the enhancement and extension as level 2 security by developing Intrusion Detection and Prevention (IDP) system against Denial-of-Service (DoS)/Distributed DoS (DDoS) flooding attacks, misuses and frauds in IMS-based networks. These security threats recently have been identified by 3GPP and TISPAN but no solution is recommended and developed. Therefore our solution may be considered as recommendation in future. Our approach based on developing both stateless and stateful intrusion detection and prevention system. From development point of view, we have divided the work into two modules: the first module is IDP-Core; addressing and mitigating the flooding attacks in IMS core. Its objective is to protect the IMS resources and IMS-core entities from DoS/DDoS flooding attacks. This module based on online stateless detection methodology and activates when CPU processing load of P-CSCF (Proxy-Call State Control Function) reaches or crosses the defined threshold limit. The second module is IDP-AS; addressing and mitigating the misuse attacks facing to IMS Application Servers (AS). Its focus is to secure the ISC interface between IMS Core and Application Servers. This module is based on stateful misuse detection methodology by creating and comparing user state (partner) when he/she is communicating with application server to check whether user is performing legitimate or illegitimate action with attacks rules. The IDP-AS also compared the incoming request and outgoing response to and from IMS Application Servers with the defined attacks rules. In the performance analysis, the processing delay and attacks detection accuracy of both Intrusion Detection and Prevention (IDP) modules have been measured at Fraunhofer FOKUS IMS Testbed which is developed for research purpose. The performance evaluation based on normal and overload conditions scenarios. The results showed that the processing delay introduced by both IDP modules satisfied the standard requirements and did not cause retransmission of SIP REGISTER and INVITE requests. The developed prototype is under testing phase at Fraunhofer FOKUS 3Gb Testbed for evaluation in real world communication scenarios like VoIP, video conferencing, IPTV, presence, push-to-talk etc

    Comprehensive vehicular networking platform for V2I and V2V communications within the Walkie-Talkie Project

    Full text link
    [EN] Communication architectures integrating vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications will be the key of success for the next generation of cars. Nevertheless, the integration of these communication partners in the same platform is a challenging issue because most of the literature is focused on individual parts, such as V2V routing protocols or specific safety services. The Walkie-Talkie project was proposed to fill this gap, focusing on the integration of V2V and V2I systems to equip vehicles with a set of intelligent services addressing safer, smarter, and sustainable driving. This paper describes the developed communications platform. The network design is based on IPv6 to support middleware and applications executed on both the vehicle and infrastructure sides. Whereas V2I is focused on the usage of IPv6 network mobility, V2V is provided by means of a hybrid solution based on intelligent delivery and delay tolerant networks. On top of the networking protocols, a service access middleware exploiting concepts from next generation networks is proposed, together with a proper on-board application management based on the open service gateway initiative. A prototype of the network and real evaluations are also presented as a proof of concept of our platform.This work has been mainly sponsored by the Ministry of Science and Innovation, through the Walkie-Talkie project (TIN2011-27543-C03), and partially by the European Seventh Framework Program, through the ITSSv6 Project (contract 270519), and the Seneca Foundation, by means of the GERM program (04552/GERM/06).Santa, J.; Pereñíguez, F.; Cano Escribå, JC.; Skarmeta, AF.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2013). Comprehensive vehicular networking platform for V2I and V2V communications within the Walkie-Talkie Project. International Journal of Distributed Sensor Networks. 2013:1-12. https://doi.org/10.1155/2013/676850S112201

    Developing a cross platform IMS client using the JAIN SIP applet phone

    Get PDF
    Since the introduction of the IP Multimedia Subsystem (IMS) by the Third Generation Partnership Project (3GPP) in 2002, a lot of research has been conducted aimed at designing and implementing IMS capable clients and network elements. Though considerable work has been done in the development of IMS clients, there is no single, free and open source IMS client that provides researchers with all the required functionality needed to test the applications they are developing. For example, several open and closed source SIP/IMS clients are used within the Rhodes University Conver- gence Research Group (RUCRG) to test applications under development, as a result of the fact that the various SIP/IMS clients support different subsets of SIP/IMS features. The lack of a single client and the subsequent use of various clients comes with several problems. Researchers have to know how to deploy, configure, use and at times adapt the various clients to suit their needs. This can be very time consuming and, in fact, contradicts the IMS philosophy (the IMS was proposed to support rapid service creation). This thesis outlines the development of a Java-based, IMS compliant client called RUCRG IMS client, that uses the JAIN SIP Applet Phone (JSAP) as its foundation. JSAP, which originally offered only basic voice calling and instant messaging (IM) capabilities, was modified to be IMS compliant and support video calls, IM and presence using XML Configuration Access Protocol (XCAP)

    Convergence architecture for home service communities

    Get PDF
    Nowadays, home networks have integrated day to day life through the classical internet access and deliver numerous services to end users. This home entrance is a real opportunity for operators to deploy services directly between homes. However, one major issue is the interconnection between Home Networks (HN) which requires suitable architectures and efficient authentication mechanisms. In this paper, two network architectures were proposed to interconnect HNs in order to support home service delivery and then compared with the IMS as reference architecture. The first architecture was based on a centralized SIP solution and used HTTP digest for authentication purpose; while the second proposition consisted in a distributed architecture based on pure P2P and Identity based cryptography. The study of these two solutions has been undergone through the simulation of a simple photo sharing scenario. As a result, the centralized SIP solution can be relevant for an average number of users and the easiest way to deploy new services. The decentralized solution (pure P2P) can be deployed for small service communities and may be compliant to larger system with improved algorithms
    • 

    corecore