
Developing a Cross Platform IMS Client

using the JAIN SIP Applet Phone

Submitted in ful�lment

of the requirements of the degree of

Master of Science

of Rhodes University

Walter Tawanda Muswera

Grahamstown, South Africa

December 2014

Abstract

Since the introduction of the IP Multimedia Subsystem (IMS) by the Third Generation

Partnership Project (3GPP) in 2002, a lot of research has been conducted aimed at

designing and implementing IMS capable clients and network elements.

Though considerable work has been done in the development of IMS clients, there is no

single, free and open source IMS client that provides researchers with all the required

functionality needed to test the applications they are developing. For example, several

open and closed source SIP/IMS clients are used within the Rhodes University Conver-

gence Research Group (RUCRG) to test applications under development, as a result of

the fact that the various SIP/IMS clients support di�erent subsets of SIP/IMS features.

The lack of a single client and the subsequent use of various clients comes with several

problems. Researchers have to know how to deploy, con�gure, use and at times adapt

the various clients to suit their needs. This can be very time consuming and, in fact,

contradicts the IMS philosophy (the IMS was proposed to support rapid service creation).

This thesis outlines the development of a Java-based, IMS compliant client called RUCRG

IMS client, that uses the JAIN SIP Applet Phone (JSAP) as its foundation. JSAP, which

originally o�ered only basic voice calling and instant messaging (IM) capabilities, was

modi�ed to be IMS compliant and support video calls, IM and presence using XML

Con�guration Access Protocol (XCAP).

Acknowledgements

First and foremost I o�er my sincerest gratitude to my supervisor, Professor Alfredo

Terzoli, who has supported me throughout my thesis with his patience and knowledge

whilst granting me the space to grow and work in my own way. Without his encouragement

and e�ort, this thesis would not have been completed or written. One simply could not

wish for a better or friendlier supervisor.

Secondly, I would like to acknowledge the �nancial support of Telkom SA, Tellabs, Easttel,

Genband, Bright Ideas 39 and THRIP through the Telkom Centre of Excellence in the

Department of Computer Science at Rhodes University.

Finally, I thank my family, friends and the Rhodes University Convergence Research

Group (RUCRG), who were undoubtedly the fulcrum that kept me from falling. Without

you guys, the journey would have not been worthwhile! Your love, support and prayers

have done so much for me that no words in this world can ever describe. I love you guys

and I am truly blessed to have you in my life.

Related Publications

The work that appears in this thesis has been presented in the following conference papers:

1. Walter Muswera, and Alfredo Terzoli. Development of an IMS Compliant, Cross

Platform Client Using the JAIN SIP Applet Phone. In Southern Africa Telecom-

munication Networks and Applications Conference (SATNAC), 2010.

2. Walter Muswera, and Alfredo Terzoli. Developing a Cross Platform IMS Client using

the JAIN SIP Applet Phone. In Southern Africa Telecommunication Networks and

Applications Conference (SATNAC), 2011.

3. Walter Muswera, and Alfredo Terzoli. RUCRG IMS Client: Design and Implemen-

tation of Presence and XCAP. In Southern Africa Telecommunication Networks and

Applications Conference (SATNAC), 2012.

Abbreviations, Acronyms, and Terms

3GPP - 3rd Generation Partnership Project

AAA - Authentication, authorization and accounting

AH - Authorization header

AKA - Authentication and key agreement

AUTN - Authentication token

AVP - Audio video pro�le

CK - Cipher key

CSCF - Call session control function

HSS - Home subscriber server

HTTP - Hypertext Transfer Protocol

I-CSCF - Interrogating CSCF

IETF - Internet Engineering Task Force

IK - Integrity key

IM - Instant messaging

IMPI - IMS private user identity

IMPU - IMS public user identity

IMS - IP Multimedia Subsystem

IP - Internet Protocol

v

vi

IPsec - Internet Protocol Security

J2SE - Java 2 Standard Edition

MD5 - Message Digest 5

P-CSCF - Proxy CSCF

PDA - Personal digital assistant

PRACK - Provisional acknowledgement

PSTN - Public switched telephone network

RAND - Random challenge

RTP - Real Time Transport Protocol

S-CSCF - Serving CSCF

SA - Security association

SDP - Session Description Protocol

SIP - Session Initiation Protocol

TCP - Transmission Control Protocol

UDP - User Datagram Protocol

UMTS - Universal Mobile Telecommunications System

URI - Uniform resource identi�er

URL - Uniform resource locator

VoIP - Voice over Internet Protocol

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Objectives of the Research . 3

1.4 Scope . 3

1.5 Thesis Organisation . 4

2 Protocols and Technologies 5

2.1 Session Initiation Protocol . 5

2.1.1 SIP Background and History . 6

2.1.2 SIP Protocol Operation . 6

2.1.2.1 SIP Requests . 6

2.1.2.2 SIP Responses . 7

2.1.3 SIP Functions . 8

2.1.4 SIP Entities . 8

2.1.4.1 User Agents . 9

2.1.4.2 Registrars . 9

2.1.4.3 Proxy Servers . 9

2.1.5 Types of Services Enabled by SIP 10

2.1.5.1 Basic Session Management Services 10

2.1.5.2 Presence . 11

2.2 SIP and Other Protocols . 12

vii

CONTENTS viii

2.2.1 Session Description . 13

2.2.2 The Media Plane . 16

2.3 The IP Multimedia Subsystem . 18

2.3.1 IMS Overview . 18

2.3.2 IMS Architecture . 18

2.3.3 Elements of the IMS Architecture 21

2.3.3.1 IMS Terminals . 22

2.3.3.2 SIP Servers . 22

2.3.3.3 User Databases . 25

2.3.4 UE Procedures . 25

2.3.4.1 Local P-CSCF Discovery 26

2.3.4.2 Application Level SIP Registration 26

2.3.4.3 Service Route Discovery During Registration 27

2.3.5 IMS Concepts . 27

2.3.5.1 IMS Identities . 27

2.3.5.2 IMS Security . 28

2.3.6 Private SIP Extensions for 3GPP IMS 29

2.3.6.1 IMS Services . 30

2.4 Summary . 30

3 Existing IMS Clients and JSAP 31

3.1 IMS Clients . 31

3.1.1 IMS Communicator . 32

3.1.2 UCT IMS Client . 33

3.1.3 Mercuro IMS Client . 33

3.2 JAIN SIP Applet Phone (JSAP) . 33

3.2.1 JSAP Architecture . 34

3.2.2 Limitations . 36

3.3 Summary . 37

CONTENTS ix

4 Development Tools 38

4.1 Application Programming Interfaces (APIs) 38

4.1.1 Media APIs . 39

4.1.1.1 FMJ . 40

4.1.1.2 FFMPEG . 40

4.1.1.3 JFFMPEG . 41

4.1.1.4 FFMPEG-Java . 41

4.1.1.5 LTI-CIVIL . 41

4.1.1.6 Gstreamer . 42

4.1.1.7 Gstreamer-Java . 42

4.1.2 Signalling APIs . 43

4.1.2.1 JAIN SIP API . 43

4.1.2.2 JAIN SDP API . 45

4.1.3 Mobicents XCAP API . 45

4.2 Other Tools Used for Developing the Client 45

4.2.1 JDK 1.6 . 45

4.2.2 Netbeans 6.8 . 46

4.3 Summary . 46

5 Enhancing Signalling and Media Support in JSAP 47

5.1 Preliminary Analysis . 47

5.1.1 Unhandled Server Responses . 48

5.1.2 Password re-prompting . 48

5.1.3 Cancelling Early Sessions . 49

5.1.4 Re-registration . 51

5.1.5 De-registration . 51

5.2 Enhancements . 52

5.2.1 Con�guration . 52

5.2.2 Reliability of Provisional Responses 55

CONTENTS x

5.2.2.1 UAC Behaviour . 55

5.2.2.2 UAS Behaviour . 56

5.2.3 Session Description Handling . 59

5.2.3.1 Dynamic Payload Coding and Decoding 59

5.2.3.2 Sending the SDP O�er with Preferred Codec 61

5.2.3.3 Receiving the SDP O�er and Selecting Preferred Codec . . 62

5.2.3.4 Sending the SDP Answer 63

5.2.3.5 Receiving the SDP Answer 63

5.2.4 Media Plane . 64

5.2.4.1 Gstreamer Concepts . 65

5.2.4.2 Implementation of the Media Plane 66

5.3 Summary . 69

6 Improving Presence Support 70

6.1 Presence . 70

6.2 JSAP+ Presence . 71

6.3 Network Storage of User Information . 72

6.3.1 Choice of Technology . 73

6.3.2 Integration of XCAP support . 73

6.3.2.1 Authentication and Authorisation 73

6.3.2.2 Client Operations . 74

6.3.3 Presence Lists . 77

6.4 JSAP++ Architecture . 79

6.5 Summary . 81

7 Adding IMS Compliance 82

7.1 Development Process . 82

7.2 IMS Registration . 83

7.3 IMS Session Establishment . 91

CONTENTS xi

7.3.1 UAC Behaviour . 93

7.3.2 UAS Behaviour . 95

7.4 SDP Codec Negotiation in IMS . 99

7.5 Session Cancelling . 103

7.6 Session Ending . 104

7.7 Putting Things Together . 105

7.8 Summary . 108

8 RUCRG IMS Client Testing 109

8.1 Testing . 109

8.1.1 Conformance Testing . 109

8.1.2 Interoperability Testing . 110

8.1.3 Interoperability with Conformance Monitoring 110

8.2 Testing Requirements . 111

8.2.1 Hardware Requirements . 111

8.2.2 Software Requirements . 111

8.2.3 Testbed Speci�cations . 112

8.3 Test Setup . 113

8.4 System Testing . 114

8.4.1 Endpoint Registration with a Registrar 115

8.4.1.1 Entities Involved . 115

8.4.1.2 Test Purpose . 115

8.4.1.3 Preconditions . 115

8.4.1.4 Results . 115

8.4.2 Point-to-point Audio/Visual call using Proxy/IMS 120

8.4.2.1 Entities Involved . 120

8.4.2.2 Test Purpose . 120

8.4.2.3 Preconditions . 120

8.4.2.4 Results . 120

CONTENTS xii

8.4.3 Presence . 128

8.4.3.1 Entities Involved . 128

8.4.3.2 Test Purpose . 128

8.4.3.3 Preconditions . 128

8.4.3.4 Results . 129

8.5 Summary . 131

9 Conclusion 132

9.1 Synopsis . 132

9.2 Discussion . 135

9.2.1 Achieved Goals . 135

9.2.2 Challenges . 136

9.2.3 Limitations . 136

9.3 Future Work . 136

9.4 Summary . 137

Appendix A Accompanying CD-ROM 144

Appendix B Deployment Guide 145

List of Figures

2.1 SIP User Agent . 9

2.2 Presence Operation . 12

2.3 IMS Functional Planes (Adapted from Oguejiofor et al [43] 20

2.4 <P, S and I> - CSCF working together 25

3.1 JSAP Derived Architecture . 35

5.1 Testing Information Flow (Adapted from Luo [36]) 48

5.2 Dialog Creation . 50

5.3 Client Con�guration Life Cycle . 54

5.4 Session setup Using Reliability Mechanisms 58

5.5 JSAP Gstreamer Video Pipelines . 67

6.1 JSAP+ Presence Handling . 71

6.2 RUCRG XCAP Client Interface . 74

6.3 Presence implementation using RLS with XCAP 78

6.4 JSAP++ Presence implementation with XCAP 79

6.5 JSAP++ Architecture . 80

7.1 Authentication Screen . 86

7.2 IMS Registration (Non-roaming Case) . 88

7.3 SIP Registration . 89

7.4 De-registration menu . 90

i

LIST OF FIGURES ii

7.5 Ready for calls . 92

7.6 Invite Screen . 93

7.7 Incoming Call Screen . 96

7.8 Session setup Call Flows . 98

7.9 Points when CANCEL is enabled for RUCRG IMS client 103

7.10 RUCRG IMS client CANCEL sequence diagram 104

7.11 RUCRG IMS client BYE sequence diagram 105

7.12 IMS Client Display Before Registration 106

7.13 IMS UAC Main Flow Diagram . 107

8.1 RUCRG IMS Client Position in RUCRG Testbed 113

8.2 Interoperability Testing with Conformance Monitoring (Adapted from ETSI

[17]) . 114

8.3 Test Arrangement for SIP Registration . 116

8.4 Test Arrangement for IMS Registration . 118

8.5 Test Arrangement for SIP Session Setup 120

8.6 Test Arrangement for IMS Session Setup 121

8.7 Test Arrangement for SIP Media Test Case 123

8.8 Test Arrangement for IMS Media Test Case 123

8.9 Test Arrangement for Presence Test Case 128

Chapter 1

Introduction

Research groups such as the RUCRG (Rhodes University Convergence Research Group)

involved in the development of SIP/IMS applications require an IMS compliant client for

application testing. However, there is a lack of a single, free and open source IMS com-

pliant client that provides researchers with all the functionality needed to test SIP/IMS

applications. This chapter sets the scene to explain what has been done in this research to

overcome this problem. This chapter also outlines in brief the background and objectives

of this research.

1.1 Background

In recent years, there has been a growing interest in multimedia communication services

o�ered via the Internet and other telecommunications platforms. Internet users who used

to merely surf the web or send emails are now using services such as instant messaging

(IM), presence, on-line gaming as well as voice and video over IP (VVoIP). This growth

(Internet usage), has been driven by the capability of the Internet to provide several new

services seamlessly to users at any time. Furthermore, the growth can be attributed to the

availability of protocols and standard APIs that are openly available to service developers

[11].

With Internet users accessing services from a range of end user terminals (with varying

capabilities), the challenge of integrating voice and data services in �xed and mobile en-

vironments has become more complex. Service integration has thus become an important

aspect when building IP multimedia communication services.

The IP Multimedia Subsystem (IMS) is a service delivery framework speci�ed by the 3rd

Generation Partnership Project (3GPP) and other standards development organisations

1

1.2. PROBLEM STATEMENT 2

[41]. It de�nes a unifying architecture for IP based services over both packet switched

(PS) and circuit switched (CS) networks. The IMS enables the convergence of di�erent

wireless and �xed access technologies for the creation, delivery and consumption of mul-

timedia services [41, 43]. This means that the IMS enables users to access services from a

range of end user terminals. Additionally, the IMS supports service integration through

standardised reference points (interfaces and protocols) which not only makes service cre-

ation faster and easier but also makes Internet technologies such as Web services available

to end user devices with varying technologies. IMS can therefore be viewed as a catalyst

for convergence, a platform through which new communication applications are delivered

as well as an enabler for service driven development.

1.2 Problem Statement

The RUCRG in the Department of Computer Science is mainly concerned with current

trends in the move towards converged service platforms for next generation networks

(NGNs) and the Internet. Research in these areas covers service orchestration, policy

frameworks for service development, development of tool-kits for services such as IP tele-

vision (IPTV), Location Based Services (LBS) and Video on Demand (VoD) using open

standards. These applications are built on platforms such as the Mobicents Application

Server, FOKUS IMS Core, Kamailio and Asterisk. As the interest in the IMS grows, ap-

plications being developed within the RUCRG use IMS as a deployment platform because

it enables the deployment and/or delivery of integrated services using open standards [11].

Several free, open and closed source SIP/IMS clients are currently being used by the RU-

CRG developers for application testing. The use of various clients comes with several

challenges. The major challenges being that application developers have to learn to in-

stall, con�gure, use and extend the various clients to suit their needs. Additionally, most

of the available clients support only a subset of the functions that are required, which

poses further challenges during testing. For example, some clients:

� Can only be used on speci�c platforms.

� Support a limited range of video and audio codecs.

� Do not support network storage of user data (such as resource lists).

� Cannot be extended because they are closed source and proprietary.

� Are di�cult to debug, test and extend due to the structure of their code.

1.3. OBJECTIVES OF THE RESEARCH 3

� Have existing bugs that have not been �xed in a long time or have been discontinued.

Among these clients is the JSAP [29] which one of RUCRG members helped to develop.

Researchers in the RUCRG used the JSAP extensively to test SIP applications and have

a deep understanding of the client code. Unfortunately, the client only supports SIP

applications. The RUCRG decided to upgrade the JSAP to be IMS compliant and create

a single client that researchers (RUCRG) can easily adapt to suit their needs as they

develop new services.

1.3 Objectives of the Research

The main objective of this thesis was to upgrade the JSAP to be IMS compliant so that

it can be used for both SIP and IMS application testing. The goal was to produce a client

that provides native IMS functionality, supports re-usability of client code, enables ser-

vice composition/aggregation, and allows easy modi�cation by the RUCRG researchers.

These goals were identi�ed by working closely with the RUCRG researchers, gathering a

comprehensive list of requirements and incrementally adding functionality to the client.

This client was developed to be compliant with 3GPP, European Telecommunications

Standards Institute (ETSI), Telecoms and Internet converged Services and Protocols for

Advanced Network (TISPAN) and the Internet Engineering Task Force (IETF) recom-

mendations and speci�cations. Care was taken not to limit the use of the client to the

IMS platform thus making the client backward compatible with legacy SIP servers and

applications. Lastly, the client had to be free in terms of cost (use of freely available

libraries in development) as well as open source.

1.4 Scope

The study focuses on upgrading the JSAP to be IMS compliant but not to develop par-

ticular services.

This study does not take into account the use of the IP multimedia Services Identity

Module (ISIM) as in the case of mobile IMS clients because this PC based IMS client

does not use ISIM modules.

The client will support audio and video using the following codecs only: PCMU, GSM, G722,

G723, DVI4_8000, DVI4_16000, PCMA, G728, G729, JPEG, H261, H263 and H263+.

1.5. THESIS ORGANISATION 4

re-INVITE will not be implemented so there is no session management, that is, renegoti-

ation of session parameters. This feature will be added in future.

Finally, there is no support for the encryption of communication between the clients

and the IMS network. Clients use the initial IMS authentication to establish a trusted

connection.

1.5 Thesis Organisation

The remainder of this thesis is organised into eight chapters:

Chapter 2 - Protocols and Technologies: Provides an overview of literature related to SIP

and the IMS. The chapter shows the relationship between SIP and the IMS, speci�cally

highlighting how SIP plays a major role in the IMS.

Chapter 3 - Existing IMS Clients and JSAP: Assesses some of the existing IMS clients

that are used in the RUCRG to show their limitations and put into perspective why a new

client was needed. The chapter also provides an overview of the JSAP and its architecture,

focusing mainly on the work that was carried out to understand its structure.

Chapter 4 - Development Tools: The chapter discusses the software and tools used for

developing the client.

Chapter 5 - Enhancing Signalling and Media Support in JSAP: Discusses the process of

incorporating advanced SIP request and response messages into JSAP in preparation for

IMS support. The chapter also discusses how Gstreamer was integrated into the client to

handle media.

Chapter 6 - Improving Presence Support: Discusses how XCAP support was incorporated

into the JSAP client to support presence and buddy list uploads/downloads.

Chapter 7 - Adding IMS Compliance: Discusses how IMS support was added to the client

(registration and session setup) to work seamlessly with the existing SIP implementation.

Chapter 8 - RUCRG IMS Client Testing: Presents how testing was performed to validate

the new IMS capable client. The chapter also details the experimental setup (what was

being tested and how it was done) and the results of the tests that were carried out.

Chapter 9 - Conclusion: Assesses whether the client meets the objectives that were set

out for the project, and proposes possible extensions that can be made to the client to

provide richer IMS services.

Chapter 2

Protocols and Technologies

This chapter will provide an overview of the key protocols and technologies underpin-

ning the IMS client developed in this thesis. Speci�cally, the discussion will focus on

the protocols that were used in the development of the JSAP such as Session Initiation

Protocol (SIP), Session Description Protocol (SDP) and Real-time Transport Protocol

(RTP). Furthermore, an explanation on why SIP plays such a crucial role in the Internet

communications space will be provided. This will lead us to examine the IP Multimedia

Subsystem (IMS) and its features.

2.1 Session Initiation Protocol

A large number of applications that are developed within the Rhodes University Con-

vergence Research Group (RUCRG) are examples of multimedia communication services

delivered over the Internet. These applications depend on establishment and termination

of sessions between servers and clients. Most, if not all, of these sessions are established

using SIP.

SIP is de�ned by the Internet Engineering Task Force (IETF) in RFC 3261 [54] as an

application layer signalling protocol for initiating, modifying, or terminating communica-

tion and collaborative sessions over Internet Protocol (IP) networks [11]. SIP facilitates

communication between di�erent users by providing the means for endpoints (clients) to

discover one another and to negotiate variables for the session they would like to share.

In other words, SIP helps to �nd the best way for users to communicate given their

preferences and the capabilities of the devices they have at their disposal.

5

2.1. SESSION INITIATION PROTOCOL 6

2.1.1 SIP Background and History

SIP originated in late 1996 as a component of the IETF multicast backbone (Mbone - an

experimental multicast network on top of the public Internet). SIP was adopted as an

IETF proposed standard in 1999 and published under RFC 2543 [27]. In 2002, SIP was

published under RFC 3261 [54] after being enhanced with new features and a better design

to incorporate interoperability functions. RFC 3261 is currently the core SIP speci�cation

as de�ned by IETF and is backward compatible with RFC 2543. SIP has become widely

used for VVoIP services. As will be shown later in this chapter, SIP is at the heart of the

IMS network architecture [39].

2.1.2 SIP Protocol Operation

SIP is based on the Web protocol Hypertext Transfer Protocol (HTTP) and like HTTP,

SIP has a client/server architecture. SIP is therefore a request/response protocol. Re-

quests are generated by SIP clients while SIP servers receive requests and return responses.

Before we could upgrade the JSAP, there was need to verify that the already implemented

SIP functions worked according to the SIP speci�cations. The following sections discuss

how the various SIP functions work.

2.1.2.1 SIP Requests

The core IETF SIP speci�cation de�nes six types of SIP requests, each with a di�erent

purpose. Every SIP request contains a �eld called a method, which denotes its purpose.

Table 2.1 shows the methods de�ned by the IETF for each of the core SIP requests.

Table 2.1: RFC 3261 SIP Request Methods

Method Description

ACK Con�rms that the client has received a �nal response to a request.
BYE Used by a client to tell the server that it wishes to release the call.
CANCEL Cancels a pending request with the same Call-ID, To, From and Call

sequence number (Cseq) header �eld values.
INVITE Indicates that the user or service is being invited to participate in a

session. The message body may contain a description of the session.
OPTIONS Queries the capabilities of the other side.
REGISTER Used by a client to register the address listed in the To header �eld

with a SIP server.

2.1. SESSION INITIATION PROTOCOL 7

In addition to the original six SIP requests, other request methods are de�ned by the IETF

as the extensions to the RFC 3261 base SIP speci�cation. These methods are shown in

Table 2.2.

Table 2.2: Other SIP Request Methods

Method RFC Description

INFO 2976 Transfers information during a session.
MESSAGE 3428 Allows the transfer of IM.
NOTIFY 3265 Informs the user about the subscribed event.
SUBSCRIBE 3265 Enables the user to subscribe to certain events.
REFER 3515 and 4488 Enables the sender of the request to instruct the

receiver to contact a third party.
PRACK 3262 Provisional Reliable ACK (PRACK) plays the same

role as ACK request, but for provisional responses.
UPDATE 3311 Allows a client to update parameters of a session,

but has no impact on the state of a Dialog.
PUBLISH 3903 PUBLISH is similar to REGISTER in that it allows

a user to create, modify and remove state to another
entity which manages this state on behalf of the user.

2.1.2.2 SIP Responses

According to RFC 3261 [54], every request must have at least one �nal response, and may

also have a number of provisional responses. Responses include a three digit (numeric)

status code and a reason phrase. The latter contains human readable information about

the status code. There are two types of SIP responses: provisional/informational and �nal

response. These responses are grouped into status codes, of which there are six values for

the �rst digit as shown in Table 2.3

Table 2.3: RFC 3261 SIP Responses

Response Description

1xx Provisional or information responses. They indicate that the request has
been received and the recipient is processing the request.

2xx Success response.
3xx Redirection responses. The requester needs to take further action to

complete the request.
4xx Client-error responses
5xx Server-error responses
6xx Global-failure responses. The request cannot be ful�lled at any server.

2.1. SESSION INITIATION PROTOCOL 8

2.1.3 SIP Functions

Signalling plays a key role in IP multimedia communication services and, as has been

earlier pointed out, SIP is typically used as the signalling protocol. SIP basically solves

two key aspects in IP multimedia communications:

1. Session setup, modi�cation, and termination

One of the main functions of SIP is the initiation of multimedia sessions. By using

SIP, a local user can signal his/her desire to engage in a multimedia session with a

remote user. Similarly, the remote user can use SIP to signal his/her acceptance or

rejection of the communication [45, 10]. During the session setup, session descrip-

tors are exchanged so that both parties can agree on the crucial parameters for the

session. SIP can also be used to modify session parameters of an ongoing session,

for instance, if a user is engaged in an audio session and wants to add video to the

session. A re-INVITE request is sent in order to add the new media components to

the session.

The last SIP function related to session management is session termination. Any of

the session participants can use SIP to signal his/her desire to terminate the com-

munication while e�ectively stopping media transmission and reception [45, 10].

2. Location of users

SIP makes use of elements called proxy servers to help route requests to a user's

current location. Proxy servers obtain the user's location when user agents send

registrations [54]. SIP clients therefore need to register with a proxy server as this

allows their location to be known (this is important for receiving incoming requests).

The location is identi�ed by an IP address and a port number. This means that

in SIP, registration is used for routing incoming SIP requests but has no role in

authorising outgoing requests. Authorisation and authentication are handled in

SIP on a request-by-request basis via a challenge/response mechanism [54].

2.1.4 SIP Entities

The SIP protocol de�nes a number of SIP entities as part of the SIP architecture:

2.1. SESSION INITIATION PROTOCOL 9

2.1.4.1 User Agents

A SIP UA comprises two components, a user agent client (UAC) and a user agent server

(UAS) as shown in Figure 2.1:

Figure 2.1: SIP User Agent

The UAC is responsible for the generation of new SIP requests and the reception of the

associated responses. The UAS is responsible for receiving SIP requests and generating

the appropriate responses. UAs are typically located at the SIP endpoints, and the end

user can interact with them through a user interface. UAs are the main focus of this

research.

2.1.4.2 Registrars

As earlier pointed out, a SIP UA needs to be registered before it can receive multimedia

calls. Registration is a process by which a SIP UA communicates its current location

and its externally visible identi�er (formally known as the SIP Address of Record) to the

registrar server. A registrar is a server that accepts registration requests from the UAs.

It authenticates and registers users when they come on-line, and then stores information

on the users' logical identities and the devices that they can use for communications.

The devices are identi�ed by their URIs [23]. When the registrar accepts the registration

request, it places the received information (the mapping between user location and globally

visible identi�er) in a database called a Location Service.

2.1.4.3 Proxy Servers

A proxy server is an intermediary entity that makes requests on behalf of other clients. It

primarily helps with SIP routing, which means that its main purpose is to ensure that a

request is sent to another entity �closer� to the targeted user [45]. Basically, a proxy server

takes SIP requests, processes them, and passes them downstream while sending responses

2.1. SESSION INITIATION PROTOCOL 10

upstream to other SIP servers or devices. A proxy is involved only in the setup and

tear-down of a communication session. After a UA establishes a session, communication

occurs directly between the parties involved [23] unless otherwise required.

Proxies are also useful for enforcing policy (for example, making sure a user is allowed

to make a call). A proxy interprets and, if necessary, rewrites speci�c parts of a request

message before forwarding it.

There may be a set of proxies between UAC and UAS that help to route requests. Two

speci�c types of SIP proxies will be discussed.

� Outbound Proxy

An outbound proxy helps the UAs to route outgoing requests. UAs are usually

con�gured to route all their requests to an outbound proxy, which will route the

requests for them.

� Inbound Proxy

An inbound proxy is a proxy server that handles incoming requests for an adminis-

trative domain. It basically helps to route incoming requests to the appropriate UA

within the domain it is responsible for. When an inbound proxy receives a request

for a user belonging to the domain for which that proxy is responsible, the proxy

queries the Location Service, determines the contact address of the UA to which

this request is directed, and forwards the request to that address.

2.1.5 Types of Services Enabled by SIP

In this section, we will look more closely into some of the di�erent types of services that

can be enabled by SIP. We will speci�cally examine those services that are implemented

in the JSAP so that we can verify that they are working properly. Furthermore, this will

allow us to reuse some of these functions when we upgrade the client to be IMS compliant.

2.1.5.1 Basic Session Management Services

As already alluded to, SIP plays a crucial role in providing the main control functions

needed in IP multimedia communication scenarios. SIP can be used to enable communi-

cations based on a variety of media, such as: voice communication, video communication,

IM communication, text over IP, peer to peer gaming, white-boarding and �le transfer

to name but a few. Additionally, SIP provides support for combining di�erent types of

media in the same communication session. There are several possible combinations that

2.1. SESSION INITIATION PROTOCOL 11

one can imagine but the most common are: voice combined with video (so called video

telephony), voice combined with IM, voice combined with real time text, voice combined

with on-line transfer of a picture, voice combined with the on-line transfer of a generic

�le, voice combined with gaming and voice combined with white-boarding.

As it may be deduced from above, the main media component is voice, with an additional

media added to it. These particular scenarios are sometimes referred to as �rich voice�

[45].

2.1.5.2 Presence

In order to improve communication among users, it is useful for them to see the presence

of their �buddies�. Presence is a standard method of representing and querying the status

of an individual, both physical (e.g., a user's location) and on-line (e.g., status of avatars)

[8]. SIP o�ers the tools for publishing, subscribing, and notifying watchers about avail-

ability and willingness of users to set up multimedia communications. To access presence

information, users often refer to a presence server. Presence servers accept, store, and

distribute presence information.

The Instant Message and Presence Protocol (IMPP) Working Group of the IETF, de�ne

an abstract model for describing IM and presence systems in RFC 2778 [13] . The model

de�nes three di�erent entities:

� The presentity is the entity that provides presence information. For instance,

Chiedza may want to provide her presence information (on-line, busy, and so on) to

her buddies. The presentity is an abstract concept that represents Chiedza for the

presence service.

� The watcher is the entity that receives presence information. For instance Tino,

a buddy of Chiedza's, might be interested in �watching� her presence information.

There are two types of watchers, namely:

� Subscribers request noti�cation of future changes in the presentity's presence

information from the presence service.

� Fetchers do not subscribe to a presentity's presence information but simply

request the current value of the presentity's presence information. A special

type of fetcher that requests information on a regular basis is called a poller.

� The presence service receives presence information from the presentities and dis-

tributes it among the watchers.

2.2. SIP AND OTHER PROTOCOLS 12

This is represented in Figure 2.2:

Figure 2.2: Presence Operation

In addition to this basic model, the presence service is typically related to other services

that are responsible for managing lists of groups of users (buddy lists). Presence informa-

tion can typically be shared only within these groups of users. These capabilities allow

the development of community based services [45].

2.2 SIP and Other Protocols

Various services can be o�ered on top of the Internet, that is, on top of an IP network [45].

Among these are streaming services (which allow users to access, in real-time, either live or

stored time-based media content) such as Video-on-Demand (VoD) and Internet Protocol

Television (IPTV) and communication services (those that allow people to communicate

with each other using di�erent types of media) such as Voice over IP (VoIP) and email

exchange [45].

As pointed out earlier in section 2.1, SIP plays a crucial role in the delivery of multimedia

communication services over the Internet. However, SIP by itself, is not capable of deliv-

ering multimedia communication services. It needs to work alongside other protocols to

accomplish that function. Most importantly, because SIP is a signalling protocol, it needs

to work together with other protocols at the media layer [10]. In this section, we will

explain what multimedia communications are, the role of signalling and media protocols

in IP multimedia communications.

In order to bring to light the role of signalling and media protocols in IP multimedia

communications, we will look at what is required to set up the exchange of multimedia

data between two communicating parties. Let us assume that Chiedza and Tino want to

have a voice conversation.

2.2. SIP AND OTHER PROTOCOLS 13

1. First of all, we need a mechanism by which Chiedza can �rst signal to Tino her

desire to start conversing with him. This would be like an invitation signal sent

from Chiedza's PC to Tino's.

2. Secondly, when this signal reaches Tino's PC, it would need to trigger some alerting

mechanism that can attract Tino's attention.

3. It may take some time for Tino to respond so in the meantime we have to inform

Chiedza about the progress of the communication attempt. For instance, Chiedza

may need to know that her invitation went through and that Tino is being alerted

[45].

4. The fourth aspect refers to the fact that in order to send voice samples over the

network, they �rst need to be encoded. Likewise, the encoded data needs to be

decoded at the receiving end. There are a variety of standard ways to code and

decode the voice signals, and it is crucial that the CODEC (COder/DECoder) used

in Chiedza's PC matches the one used by Tino. It is therefore necessary that, prior

to starting the voice communication, Chiedza and Tino agree on the codecs that

they will use for this particular communication.

5. Finally, Chiedza needs to add Tino's computer IP address as the destination address

in the IP packets that she sends to Tino.

2.2.1 Session Description

In this section we will look at how multimedia sessions can be described. We will focus

on the SDP protocol which de�nes the syntax for describing multimedia sessions. This is

because JSAP uses the SDP protocol to describe multimedia sessions and there is need

to verify that these functions were correctly implemented before we upgrade the client.

Most, if not all, of the aspects illustrated above highlight a need to exchange some extra

information between Chiedza and Tino. This is not the actual voice information (media),

but rather, information that helps Chiedza and Tino to control the way voice communi-

cation occurs. This control information is sent in messages between Chiedza's and Tino's

computers according to some signalling protocol. SIP is one such signalling protocol that

can convey this type of information, but there are others. The relevance of signalling in

this context is important, not just to cope with the basic call scenarios, but also to enable

more complex multimedia value added services.

2.2. SIP AND OTHER PROTOCOLS 14

SIP is used to control multimedia communications irrespective of the session being estab-

lished. This works perfectly well because SIP does not need to care about the nature of

the session in order to deliver its functions [45]. However, there is still a need at speci�c

times, such as session creation, to describe the characteristics of the session and convey

that information to the participants of the session. Such descriptions, which are actually

dependent on the nature of the session would include parameters such as media types,

transport addresses, start time and duration of the session, and so on. This knowledge is

crucial for the participants in the session. For example, in a two-party voice call; before

the actual voice transmission can start, the participants need to learn what IP addresses

and ports they need to send the media packets to. Moreover, they also need to agree

on what voice codec to use for transmission and reception. This is done using SDP. SIP

messages carry SDP session descriptions that allow participants to agree on a set of pa-

rameters needed for the multimedia communication. SIP does not need to know about

the session speci�cs.

SDP speci�ed in RFC 4566 [26] de�nes a general-purpose format for describing multimedia

sessions. SDP de�nes a language for representing the key parameters that characterise

a multimedia session. SDP is text based. An SDP message contains three levels of

information:

1. Session level description: contains lines that describe characteristics of the whole

session.

2. Time description: contains lines indicating time-related aspects of the session.

3. Media description: contains lines that characterise the di�erent media present in

the session [45].

Tables 2.4, 2.5 and 2.6 taken from RFC 4566 [26] show the di�erent types of lines for each

level indicating whether the �eld is is required (R) or optional (O).

2.2. SIP AND OTHER PROTOCOLS 15

Table 2.4: Session Level Description SDP Lines

Field Field description R/O

v Protocol version R
o Originator and session identi�er R
s Session name R
i Session information O
u URI of description O
e Email address O
p Phone number O
c Connection information O
b Bandwidth information O
z Time zone adjustments O
k Encryption key O
a Session attribute O

Table 2.5: Time level Description SDP Lines

Field Field Description R/O

t Time the session is active R
r Repeat time O

Table 2.6: Media Level Description SDP Lines

Field Field Description R/O

m Media name and transport address R
i Media title R
c Connection information R
b Bandwidth information O
k Encryption key O
a Attribute line O

The O�er/Answer Model

The use of SDP in communication requires de�ning a negotiation framework so that

the communicating parties can agree on the session characteristics. Such a negotiation

framework is called the o�er/answer model, and is de�ned in RFC 3264 [52]. A party

that wants to communicate indicates the desired session description from his/her point

of view. This is called the SDP o�er. The o�er contains, among other things:

� The set of media streams that the o�erer wants to use.

2.2. SIP AND OTHER PROTOCOLS 16

� The desired characteristics of the media streams as quali�ed by the format parameter

and the media-line attributes.

� The IP addresses and ports which the o�erer wants to use to receive the media.

� Additional parameters, if needed, that further qualify the media transport.

When the remote party receives the o�er, it replies with an SDP answer. The answer

contains the following pieces of information:

� Whether a media stream is accepted or not.

� The media streams characteristics that will be used for the session.

� The IP addresses and ports that the answerer wants to use in order to receive media.

The o�erer receives the answer, and, at this point, if the answerer has accepted at least

one media stream, both parties have found an overlap in their respective desired session

descriptions, and communication can start. In the case of media types that are conveyed

using RTP, the o�er/answer model enables the negotiation of the type of codecs [45].

The set of functions and elements that participate in the processing and exchange of the

signalling are said to constitute the Control (or signalling) Plane.

2.2.2 The Media Plane

Not all the services are delivered through manipulation of the signalling [45]. The simplest

multimedia call requires some media level handling at the endpoints, in order to capture

and present the media as well as to receive and transmit. Thus, there is a need for

the applications at the endpoints to have direct access to some form of media handling

capabilities. In the example presented above, when Chiedza starts talking to Tino, voice

samples are created that can be sent directly over IP. However, application level protocols

called media protocols are generally used to carry media. Di�erent media transport

protocols are suited for speci�c types of media. For example, RTP is typically used if the

media is voice/video. This is because RTP contains features that facilitate the transport

of pure real-time tra�c.

Since both SIP and RTP are application level protocols, they use the services provided by

transport protocols such as UDP/TCP. This means that VoIP faces latency and integrity

issues which rise from the IP protocol. Notwithstanding these issues, the constraints on

real time behaviour of VoIP are strict. In order for real time communication to work, this

2.2. SIP AND OTHER PROTOCOLS 17

entire process has to be done with minimal latency. Psaier [47] argues that interruptions

lasting more than 200ms are unacceptable in a VoIP conversations. One solution to this

problem is to combine SIP, RTP and RTCP. SIP takes the role of the session control

protocol and initiates calls. RTP transmits the voice data while RTCP deals with the

exchange of connection information to monitor the quality of the connection.

The set of functions and elements that participate in the processing and exchange of the

media are said to form the media plane. The media plane and the control plane are

integral parts of any IP multimedia communication system. Thus, it was crucial to verify

that JSAP's implemented media functions could support audio/video before we could

upgrade it into an IMS client. In the Chiedza and Tino example we discussed how a

simple voice communication may be enabled on the Internet, and we have highlighted the

need for:

� A signalling transport protocol to carry the control information (signalling).

� A media transport protocol to carry the real time user information (media).

� An application in the endpoints that is able to:

� capture the voice samples from the microphone and send them over the network

using a media transport protocol.

� receive the media transport protocol packets, get the voice samples, and feed

them to the sound-card to be played.

As has already been mentioned, many applications that transmit/stream audio and/or

video over an IP network typically use RTP as the media transmission protocol. Such

applications have corresponding pro�les called the audio video pro�les (AVPs) and pay-

load format speci�cations. These pro�les are de�ned in a combined document, RFC 3551

[55]. This RFC includes a de�nition of several possible payload types for audio and video.

Some of the most common ones are presented in Table 2.7.

Payload types can be static or dynamic. Static payload types are de�ned with a �xed

identi�cation number. Dynamic payload types do not have a number statically assigned.

The assignment is done in a dynamic way, typically via signalling (for instance, using

SDP). Identi�cation numbers between 96 and 127 are allocated to dynamic payload types.

2.3. THE IP MULTIMEDIA SUBSYSTEM 18

Table 2.7: AVP Payload Types

Payload Type Encoding name Media Type Clock Rate Channels

0 PCMU Audio 8000 1
3 GSM Audio 8000 1
4 G723 Audio 8000 1
8 PCMA Audio 8000 1
26 JPEG Video Variable -
31 H261 Video 90000 -
34 H263 Video 90000 -

96-127 Dynamic Audio/Video - -

2.3 The IP Multimedia Subsystem

In this section, we will introduce the IMS. In order to explain what IMS is, we will use

the previous section on SIP and SIP network architectures to outline how, starting from

a SIP network and adding IMS requirements, we end up with the IMS architecture.

2.3.1 IMS Overview

The IMS is a global, access independent and standard based IP connectivity and service

control architecture that enables various types of multimedia services to be made available

to end-users using common Internet-based protocols [46]. Its core network has a common

IP based transport and signalling, which can be accessed by di�erent networks. SIP

matches the network access requirements for IMS because it allows applications to remain

agnostic of the access network. Hence, it was chosen as the main standardised signalling

protocol for the IMS.

Since its introduction, IMS has been adopted by several major telecommunication stan-

dardisation bodies in mobile and �xed networks as the basis for the Next Generation

Network (NGN). Unlike traditional IP-based networks, IMS guarantees end-to-end qual-

ity of service (QoS) within the network. Similar to IP-based networks, IMS creates an

infrastructure that enables the fast deployment of new IP-based services and �exible

billing, while maintaining compatibility with existing applications [39].

2.3.2 IMS Architecture

The IMS architecture de�ned in 3GPP TS 23.228 [5] is at the heart of the convergence of

voice, data, �xed and mobile networks and is based on a wide range of IETF protocols.

2.3. THE IP MULTIMEDIA SUBSYSTEM 19

IMS combines and enhances these protocols to allow real-time services in addition to 3GPP

mobile packet-switched (PS) domain and the wire-line NGN [39]. The IMS architecture

comprises four logical planes, or layers, which correspond to discrete functions as depicted

in Figure 2.3.

20

Figure 2.3: IMS Functional Planes (Adapted from Oguejiofor et al [43]

2.3. THE IP MULTIMEDIA SUBSYSTEM 21

Each plane consists of IMS functional components that together provide the supported

functions at that layer [43]. The device plane consists of the user terminals used to access

the IMS services. An IMS-capable device or an IMS client can be used to access IMS

network. The device plane is where the work of this thesis is situated. The device plane

includes smart-phones, switch-phones and other advanced IP phones. The standardisation

of this plane also forms part of the work of the 3GPP and other major IMS standardisation

bodies, for both wireless and wire-line networks.

The transport plane refers to the access network used by IMS terminals to access the IMS

network. Included in this plane are IMS components such as routers, media gateways

and switches. These components translate protocols between the IMS core network and

the connecting network. The transport plane also shields the upper layers of the IMS

architecture from the network access technologies by providing a common access interface

to the components in this plane [43].

The Call Session Control Functions (CSCFs) form the core of the IMS control layer. There

are three types of CSCFs namely: the Proxy-CSCF (P-CSCF), Interrogating-CSCF (I-

CSCF) and the Serving-CSCF (S-CSCF). The Home Subscriber Server (HSS) database

is another element within the control layer. Other elements forming the IMS control

plane include the Breaking Gateway Control Function (BGCF), Media Resource Function

(MRF) and others, which will be discussed in the next section.

The service plane consists of Application Servers (ASs). All the IMS services run within

the ASs and a single AS can handle multiple multimedia services. ASs also provide

interfaces with the control layer using SIP. For example, the IMS-Service Control (ISC)

interface is a reference point between S-CSCF and ASs whose main functions are to:

� Notify the ASs of the registered IMPU, registration state and UE capabilities.

� Supply the AS with information to allow it to execute multiple services.

� Convey charging function addresses.

Some examples of ASs include the presence servers, group list management servers, IM

servers and conferencing servers [39].

2.3.3 Elements of the IMS Architecture

The IP multimedia core network subsystem (IMCNS) includes the di�erent functional

components of network infrastructure for delivering multimedia services [46]. As earlier

2.3. THE IP MULTIMEDIA SUBSYSTEM 22

pointed out, these components are divided into four planes (as shown in Figure 2.3) each

of which performs a speci�c function. The components include databases for maintain-

ing subscriber information, call and session control components, media and application

servers, media/signalling gateways and user equipment for accessing the network. Only

components that are important to IMS registration and session setup will be discussed in

this thesis.

2.3.3.1 IMS Terminals

Typically referred to as User Equipment (UE) are the IMS capable terminals used by sub-

scribers to access IMS services. They contain the SIP UA that generates and terminates

SIP messages on the user's behalf. Once an IP address has been allocated for registra-

tion, the UE cannot change it while engaged in an active Dialog [39]. As the name IP

multimedia subsystem suggests, a fundamental requirement is that UEs must have some

form of IP connectivity in order to access the IMS. Examples of UEs are mobile phones,

personal data assistants (PDAs) and computers.

2.3.3.2 SIP Servers

These are also known as Call Session Control Functions (CSCFs). They perform session

control functions for IMS sessions. CSCFs can be categorised into three groups, based on

their functionality:

1. Proxy - CSCF (P-CSCF)

The Proxy Call Session Control Function (P-CSCF) is the �rst contact point for

users within the IMS. P-CSCF performs the role of a SIP Proxy Server for inbound

and outbound messages from an IMS Terminal (UE). This means that all SIP sig-

nalling tra�c from the UE will be sent to the P-CSCF. Similarly, all terminating

SIP signalling from the network is sent from the P-CSCF to the UE.

There are four unique tasks assigned for the P-CSCF:

(a) SIP compression

Given that SIP is a text-based protocol, it contains a large number of headers

and header parameters, including extensions and security-related information.

This means that typical SIP message sizes are larger than those in binary-

encoded protocols. For speeding up the session establishment and reducing

2.3. THE IP MULTIMEDIA SUBSYSTEM 23

bandwidth consumption on the access network, 3GPP has mandated the sup-

port of SIP compression between the UE and P-CSCF. The P-CSCF com-

presses messages if the UE has indicated that it wants to receive signalling

messages compressed.

(b) IPSec security association

P-CSCF is responsible for maintaining Security Associations (SAs) and apply-

ing integrity and con�dential protection for SIP signalling. This is achieved

during SIP registration as the UE and P-CSCF negotiate IPSec SAs. After

the initial registration, the P-CSCF is able to apply integrity and con�dential

protection to SIP signalling.

(c) Interaction with Policy and Charging Rules Function (PCRF)

(d) Emergency session detection

P-CSCF plays an important role in IMS emergency session handling. It is

responsible for the detection of emergency requests. P-CSCF is expected to

reject/re-route emergency attempts based on operator policy (e.g. user is at-

tempting to make an emergency call via home P-CSCF when roaming) or based

on network capability [43, 46].

2. Serving - CSCF (S-CSCF)

The S-CSCF is the hub of all signalling functions in an IMS network. It is re-

sponsible for handling registration processes (performs the role of a SIP registrar),

recording the location of each user and also for performing the user authentica-

tion, call processing and routing of calls to the Application Servers (ASs).When a

user sends a registration request, it will be routed to the S-CSCF, which downloads

authentication data from the HSS. Based on the authentication data, it generates

a challenge to the UE. After receiving the response and verifying it, the S-CSCF

accepts the registration and starts monitoring the registration status. After this

procedure, the user is able to initiate and receive IMS services.

All incoming/outgoing messages to/from a UE traverse the allocated S-CSCF, which

inspects these messages in order to establish the steps that need to be taken (for

example authorising a user for a particular action, based on the user pro�le). An S-

CSCF therefore performs routing functions based on the message it receives. When

the S-CSCF receives a UE-originating request via the P-CSCF it needs to decide

if ASs are to be contacted prior to sending the request further on. After possible

interaction with ASs, the S-CSCF either continues a session in IMS or breaks to

2.3. THE IP MULTIMEDIA SUBSYSTEM 24

other domains (CS or another IP network).

Similarly, the S-CSCF receives all requests which will be terminated at the UE.

Although, the S-CSCF knows the IP address of the UE from the registration, it

routes all requests via the P-CSCF, since the P-CSCF takes care of SIP compres-

sion and security functions. Prior to sending a request to the P-CSCF, the S-CSCF

may route the request to an AS (for instance, to check possible redirection instruc-

tions). The user pro�le (downloaded by the S-CSCF from the HSS) instructs an

S-CSCF whether the SIP signalling message should be routed to one or more ASs

before it is routed to the �nal destination [43, 46].

3. Interrogating - CSCF (I-CSCF)

I-CSCF is responsible for querying the HSS to determine the S-CSCF for the user.

It is the contact point within an operator's network. It is also responsible for

establishing the interface between two di�erent IMS networks such as the home

and visitor network. An I-CSCF has the Topology Hiding Inter-network Gateway

(THIG) which can be used by the network operator to hide network con�guration

and topology. This function hides the addresses of operator network entities from

being passed outside the operator's network [39].

Strictly speaking, an I-CSCF is also a SIP Proxy Server. However, its location

and function is more speci�c. It is located at the edge of an administrative domain

of a network. When a P-CSCF wants to �nd the next hop for a SIP message, it

obtains the address of the I-CSCF of the destination network. I-CSCF is therefore

the contact point within an operator's network for all connections destined to a

subscriber of that network operator.

There are three unique tasks assigned to the I-CSCF:

(a) Obtaining next hop name

Accessing the name of the next hop (either S-CSCF or application server) from

the Home Subscriber Server (HSS).

(b) S-CSCF Assignment

Assigning an S-CSCF based on received capabilities from the HSS. The assign-

ment of the S-CSCF will take place when a user is registering with the network

or a user receives a SIP request while they are unregistered from the network

but has services related to an unregistered state (e.g. voice mail).

2.3. THE IP MULTIMEDIA SUBSYSTEM 25

(c) Request Routing

Routing incoming requests to an assigned S-CSCF or the application server (in

the case of public service identity). The I-CSCF uses its Diameter interface

with the HSS/SLF to �nd the S-CSCF assigned to the UE. It subsequently

forwards the incoming SIP message to the appropriate S-CSCF [43, 46].

Figure 2.4 demonstrates how the various CSCF types (P, S and I) work together.

Figure 2.4: <P, S and I> - CSCF working together

2.3.3.3 User Databases

The IMS architecture contains two main databases: home subscriber server (HSS) and

the subscription locator function (SLF). The HSS provides the main data storage for all

subscriber and service-related data of IMS. The data stored in the HSS includes public

and private user identities, registration information, access parameters, service-triggering

information, and user-speci�c requirements for S-CSCF capabilities. The SLF is used

by network operators who have multiple HSSs as a resolution mechanism that enables

the I-CSCF, S-CSCF and the AS to determine the address of the HSS that holds the

subscriber data for a given user identity [39, 43, 46].

2.3.4 UE Procedures

Among the IMS components discussed, the UE is a critical entity for the overall success of

the IMS value chain. This is because the UE is the only component that lists to the user

IMS services found on the network. Bachman [9] argues that the presentation of these

2.3. THE IP MULTIMEDIA SUBSYSTEM 26

services to the end user determines the return on investments on IMS. To highlight the

role that the UE performs in the IMS playing �eld, the steps that the UE must perform

in a GPRS/UMTS network before the IMS services can be accessed will be presented.

Attention will be focused on procedures relevant to a UE built for end user devices that

do not use ISIMs.

2.3.4.1 Local P-CSCF Discovery

Our UE accesses the IMS directly from a packet switched �xed network, so the �rst step

is to discover the local P-CSCF before the user can register on the IMS network. The

P-CSCF is the �rst contact point for the UE in the IMS network. The 3GPP suggested

two methods (in 3GPP TS 23.228 [5] and 3GPP TS 24.228 [2]) that can be used by the

UE to discover the P-CSCF :

1. Use of dynamic host con�guration protocol (DHCP)

DHCP can be used to provide the user with the domain name of a P-CSCF and the

address of a Domain Name System (DNS) server that is capable of resolving the

P-CSCF name as speci�ed in RFC 3319 [57].

2. Use of IP-core access network (IP-CAN) provisioned services

Some IP-CANs provide the capability to derive the P-CSCF address as part of the

access bearer establishment process.

Another approach that is used in some deployments and not recommended, consists of

manually con�guring the name or address of the P-CSCF in the terminal. Once assigned

to a user, the P-CSCF does not change while the user remains connected to the access

network [45].

2.3.4.2 Application Level SIP Registration

The third step to accessing IMS services is UE application level SIP registration. Reg-

istration creates bindings in a location service for a particular domain that associates

an address-of-record (AOR) uniform resource identi�er (URI) with one or more contact

addresses [54]. The UE uses the same registration procedure for registering on the home

or visited network. Furthermore, it can also register multiple public identities through a

single IMS registration procedure.

2.3. THE IP MULTIMEDIA SUBSYSTEM 27

2.3.4.3 Service Route Discovery During Registration

Earlier in this chapter we saw that outgoing requests from a UE need to traverse the

originating user's S-CSCF so that the S-CSCF can apply for services on the user's behalf.

We also saw that S-CSCFs are assigned to the users dynamically at registration. Further-

more, we discussed how the UE determines what P-CSCF to use for sending originating

requests, but not how the UE determines which S-CSCF to use for outgoing requests. This

issue is resolved by a new SIP extension de�ned in RFC 3608 [65]. This extension de�nes

a new header �eld called the Service-Route header, which is generated by the registrar

(the S-CSCF in the IMS case) and is included in successful responses to the REGISTER

message. The Service-Route header conveys the name of the home service proxy (S-CSCF)

where the UA must direct its requests. Once the UE has received the response, that is,

the �200 OK� to the REGISTER, it will include both the P-CSCF name and the S-CSCF

name in the Route header of all outgoing requests [11]. Once the above steps have been

performed successfully, the UE is ready to establish a SIP session to access IMS services.

2.3.5 IMS Concepts

In the previous section, we have seen that the IMS architecture requires additional func-

tions on top of the basic SIP architecture. Next we will describe in detail some fundamen-

tal IMS concepts, and highlight the di�erences they present when compared to a basic

SIP network.

2.3.5.1 IMS Identities

In a basic SIP network, the end user is typically assigned a public identity and some

security credentials. The public identity typically has the form of a SIP URI such as

chiedza@open-ims.test. When Chiedza registers to her SIP server, she uses her public

identity, which is then authenticated by the server. The public identity is also employed

by other users in order to request communication with Chiedza.

In IMS, the end user is assigned two identities by the home network operator: IP Multi-

media Private Identity (IMPI) or Private User Identity (PrUI), and IP Multimedia Public

Identity (IMPU) also referred to as Public User Identity (PUI). The PUI represents the

identity that is employed by other users to request communication with the user. The PUI

therefore identi�es the user and used to route SIP requests. On the other hand, PrUI is

exclusively used for identifying the user's subscription and authentication purposes. The

2.3. THE IP MULTIMEDIA SUBSYSTEM 28

PrUI is unique to the UE, that is, it is used to identify the user's device. A user can

therefore have multiple PUIs per PrUI.

2.3.5.2 IMS Security

Security is a fundamental requirement in every telecommunication system and the IMS

is not an exception. The IMS has its own authentication and authorisation mechanisms

between the UE and the IMS network in addition to access network procedures. Moreover,

the integrity and optional con�dentiality of the SIP messages is provided between the UE

and the IMS network and between IMS network entities regardless of the underlying

core network. This means that IMS provides at least a similar level of security as the

corresponding GPRS, circuit-switched or packet switched networks: for example, the IMS

ensures that users are authenticated before they can start using services, and users are

able to request privacy when engaged in a session [46]. IMS security encompasses two

aspects:

1. Access Security (AS)

AS, described in 3GPP TS 33.203 [3] refers to the provision of security services

such as authentication, integrity, and con�dentiality for the SIP signalling path

between the user and the IMS network. Mutual authentication between the user

and the network is based on the UMTS Authentication and Key Agreement (AKA)

protocol. SIP employs a user authentication scheme that is based on the HTTP

Digest mechanism. Therefore, there is a need to map the AKA parameters onto

HTTP Digest authentication. Such a mapping is described in RFC 3310 [40].

2. Network Domain Security (NDS)

NDS, described in 3GPP TS 33.210 [7] refers to the provision of authentication, con-

�dentiality, integrity, and replay protection between di�erent IMS networks (security

domains) or between nodes within the same security domain. In order to achieve

NDS, security gateways (SEG) are deployed in the interconnecting networks. Each

SEG is responsible for setting up and maintaining security associations with its peer

SEGs. The SAs are negotiated using the Internet Key Exchange (IKE) protocol de-

�ned in [31]. The authentication is based on pre-shared secrets [45].

Because the IMS has its own authentication and authorisation mechanisms that are used

between the UE and the IMS network we needed to add these extensions in order to make

JSAP IMS compliant.

2.3. THE IP MULTIMEDIA SUBSYSTEM 29

2.3.6 Private SIP Extensions for 3GPP IMS

SIP includes a speci�c type of extension referred to as �private�. These extensions are

either not ready for standards track, but may be negotiated for use by communicating

UEs, or they are private/proprietary in nature, because a characteristic motivating them

is usage that is known not to �t the Internet architecture for SIP [37]. Private headers

include the �P-� pre�x and are typically de�ned for SIP usage in non-Internet, controlled

network scenarios such as those occurring in telecom operators' networks e.g. when we

deal with IMS.

RFC 3455 [22] de�nes a number of private SIP extensions that were introduced due to

IMS requirements. Next we brie�y describe some of the extensions that we needed to add

in order to make JSAP IMS compliant.

1. P-Visited-Network-ID Header

When a user roaming in a visited network attempts to register, there is a need to

convey the information about the visited network to the home S-CSCF so that it

can check if there exists a roaming agreement with the visited network. In order

to convey this information, a new private header has been de�ned that contains a

text string that identi�es the visited network. The P-CSCF in the visited network

adds this header into the REGISTER message that is sent to the home S-CSCF

Example:. P-Visited-Network-ID=�Telecom Italia Mobile� [46].

2. P-Access-Network-Info Header

There are cases, especially when a wireless-access network is used, when the services

to apply may depend on the technology of the access network or the location of the

user (e.g., the cell from which a call or other IMS service originates). The new

private P-Access-Network-Info header is capable of conveying that information from

the UE to the IMS network. This header is populated by the UE based on the

information it gets from other sources (for example, radio signalling) [45].

3. P-Associated-URI Header

We saw in previous sections that an IMS user may be associated with more than

one PUI. When the user sends a REGISTER message to the network in order to

register a particular PUI, the S-CSCF responds with a �200 OK� that includes

the P-Associated-URI header that lists all the associated Public User Identities.

The presence of a URI in the P-Associated-ID does not mean that such a URI is

registered, only that it is associated with the Public User Identity that has been

registered.

2.4. SUMMARY 30

2.3.6.1 IMS Services

IMS being essentially a SIP based multimedia network, most of the SIP services that we

discussed in previous sections can be o�ered over an IMS infrastructure. In many cases,

these services running as IMS applications are located in the terminals, true to the end-

to-end nature of SIP. In other cases, the applications sit on Application Servers on top of

the IMS network. Hybrid situations are also common.

The aim of 3GPP is not to standardise all the applications, but rather to provide ser-

vice capabilities. Nevertheless, there are some important applications that have been

speci�ed both by 3GPP and/or open mobile alliance (OMA), given the need to ensure

interoperability and inter-working across di�erent operators' networks.

2.4 Summary

In this chapter, we explained what multimedia communications are and the role that SIP

plays in this regard. We also looked at some examples of services that might be delivered

through SIP. We have seen that a true multimedia communication system requires in

terms of information exchanges:

� Exchange of media information (voice or others). This is governed by an media

transport protocol such as RTP or others.

� Exchange of control information (signalling). This is governed by a signalling pro-

tocol such as SIP or others.

In this chapter, we have also seen that SIP plays a major role in IMS. It has also been

shown that the IMS, in addition to the core SIP speci�cation, incorporates many SIP

extensions and SIP network functions. In some cases, these extensions have already been

proposed and standardised while in other cases, they have been de�ned based on speci�c

IMS requirements and are still awaiting standardisation.

Chapter 3

Existing IMS Clients and JSAP

The RUCRG IMS client project was started with the goal of upgrading the JSAP into an

IMS compliant client. Although the focus of this research was not to compare available

IMS clients, we found it interesting to examine the IMS clients which were used in the

Rhodes University Convergence Research Group (RUCRG). This chapter provides an

overview of the feature sets of three freely available IMS clients that are currently being

used in the RUCRG. Furthermore, this chapter will also provide an in-depth overview

of the JSAP which was used as the foundation for the RUCRG IMS client.

3.1 IMS Clients

In this section we will provide a brief assessment of three, free IMS clients used within

the RUCRG: IMS Communicator, UCT IMS client and Mercuro. Table 3.1 provides a

comparative assessment of the important features for IMS compliance that each of these

clients possesses. Also included are the platforms that the clients are compatible with as

well as the licensing of the clients.

31

3.1. IMS CLIENTS 32

Table 3.1: Feature Summary of UCT IMS client, IMS Communicator and Mercuro.
Adapted from �The UCT IMS Client� [62]

UCT IMS client IMS Communicator Mercuro (Bronze)

Registration AKAv1/2-MD5;

MD5

AKAv1-MD5; MD5 AKAv1/2-MD5;

MD5

IMS Signalling PRACK support

Pre-condition

support

PRACK support

Pre-condition

support

PRACK support

Pre-condition

support

Media Support Audio / Video Audio / Video Audio / Video

Presence Support Presence support

Watcher

authentication

No presence

support

Presence support

Watcher

authentication

Instant Messaging Pager mode /

Session-based

No support Pager mode /

Session-based

XCAP Support XCAP support No XCAP support XCAP support

Platform Linux Windows / Linux Windows

License GPLv3 (free and

open source)

LGLP (free and

open source)

Free and closed

source

3.1.1 IMS Communicator

IMS Communicator is an IMS client based on the SIP Communicator Java project [28]. It

is implemented on top of the JAIN SIP stack [30] and the Java Media Framework (JMF)

API [59]. The use of JMF as a media API presents a variety of challenges. Firstly, there

have been signi�cant improvements in video coding technologies over the last few years

but JMF supports a limited set of these codecs. Secondly, Sun Micro-Systems ceased

to support JMF in 2003 [59]. Lastly, JMF installation and con�guration is complex,

especially for ordinary users.

IMS Communicator does not store user data in a central repository on the network. The

presence list is stored on the client, meaning that subscriptions are created and managed

for each presentity in the list by the client. Furthermore, IMS Communicator classes are

overloaded with responsibilities, making them di�cult to debug, test and extend. For

example, SIP messages are received and processed by the same class. Registration with

the FOKUS IMS Core typically fails, and there are existing bugs that have not been �xed

in a long time.

3.2. JAIN SIP APPLET PHONE (JSAP) 33

3.1.2 UCT IMS Client

The UCT IMS client is a free open source implementation of a 3GPP IMS client devel-

oped in ANSI C [62]. It supports a variety of IMS applications such as IM, presence,

VoD/IPTV, and the XCAP protocol among others. It was designed to be used on the

Linux platformand has been key in helping the RUCRG build their IMS testbed at Rhodes

University.

3.1.3 Mercuro IMS Client

Mercuro IMS client is closed source, proprietary and comes pre-compiled thus cannot

be extended. It comes in various versions one of which is free and supports a limited

set of functions [14]. Similar to the UCT IMS client, Mercuro is not cross platform. It

is built only for the Windows environment. The Mercuro IMS client project has been

stopped and the development team has been dissolved [15]. Given that the development

and standardisation of IMS and its associated services is an ongoing process this presents

a big challenge. Client development needs to keep up to date with changes in the IMS to

remain compatible with evolving IMS standards.

3.2 JAIN SIP Applet Phone (JSAP)

JSAP is an open source project which possesses some of the basic features which are

required in a SIP/IMS compliant client such as voice and text instant messaging (IM). It

was chosen as the foundation of the RUCRG IMS client for the following reasons:

� The JSAP project leadership was at Rhodes where one of the key developers of the

initial project was based.

� JSAP was written in Java.

� It supported core SIP signalling.

� It used JAIN SIP (a low level Java API for SIP signalling for �exible handling of

the SIP protocol).

There was need to perform an extensive assessment of the JSAP, particularly because there

was no documentation and that, it only supports core SIP functionality. This section will

critically look at the architecture of the JSAP and some of its limitations.

3.2. JAIN SIP APPLET PHONE (JSAP) 34

3.2.1 JSAP Architecture

In order to make the necessary IMS enhancements, a full analysis of JSAP was carried

out. The assessment involved carrying out systematic experiments that included: tracing

messages sent by JSAP using network analysis tools to check their sequencing and well

formedness, and reverse engineering to �nd out the relationship among the various classes.

The classes which needed to be modi�ed, removed or replaced were identi�ed. This was

done in light of the fact that IMS functionality is built on top of ordinary SIP functionality.

Since the JSAP already supports ordinary SIP registration and SIP session setup, IMS

speci�c parameters needed to be added to allow the existing SIP headers to be reused

whenever possible for IMS. In summary the process, in consultation with some of the

original developers of JSAP, involved:

� Studying the structure of the JSAP and identifying the classes which needed to be

modi�ed to add IMS support.

� Adding helper classes for populating IMS speci�c parameters.

� Removing and/or replacing some existing classes with optimised ones that allow the

support of IMS.

� Adding XML support to allow the populating of IMS/SIP attributes and to allow

persistence user data such as user-names and proxies.

Having gone through the aforementioned processes a structure of JSAP was drawn up.

Figure 3.1 gives an overview of the architecture of the JSAP that resulted from the study

above and speci�c experiments that were done in the cases in which static analysis was

ine�cient or inconclusive.

3.2. JAIN SIP APPLET PHONE (JSAP) 35

Figure 3.1: JSAP Derived Architecture

The dotted lines show various components of JSAP that needed to be added or modi�ed

to make it IMS compliant.

A brief overview of some of the components that were identi�ed in the JSAP are as follows:

1. Invite/Session - provides high level management to call control. The call setup

procedure for an IMS call is more complex as the SIP precondition and reliable

provisional response mechanisms are used.

2. Presence - provides functionality to manage presence information of the client and

associated contacts. Client/Server mode needed to be added.

3.2. JAIN SIP APPLET PHONE (JSAP) 36

3. Registration - hides the complexity of the SIP registration process including dealing

with multiple types of user identities. The registration procedure to the IMS is

more complex as the Authentication and Key Agreement (AKA) algorithm is used

together with md5.

4. Instant Messaging - enables sending and receiving of IMs to and from buddies.

JSAP supported pager mode IM in which messages were sent in the body of SIP

MESSAGE requests and no sessions were established.

5. Call manager - provides the mechanisms for controlling calls. It acts as an interface

for controlling SIP related communications. This includes SIP based calls and reg-

istration. It interfaces with presence and IM module to provide proper signalling

for IM and presence.

6. SIP stack - provides a low level API that provides full control over SIP communi-

cation between the client and IMS.

7. RTP/RTCP Stack - provides low level API to provide full control over real time

data transport between the client and the application server or another client.

3.2.2 Limitations

The assessment of the JSAP also brought to light a variety of limitations in the client:

� JSAP lacked support for IMS functionality, that is, it was an ordinary SIP client

that could not be used in an IMS setting.

� Presence in JSAP was implemented in a peer to peer manner but ideally should also

support Client/Server (JSAP lacked support for network storage of user data).

� Video implementation in the JSAP was not fully functional and required attention

(JMF failed to initialise video capture devices in Linux but worked under Windows.

JMF also lacked support for some of the new high quality well compressed codecs).

� JSAP only supported basic SIP signalling.

� JSAP assumed that media payload formats were always static.

3.3. SUMMARY 37

3.3 Summary

Freely available IMS client applications lacked features required to test the applications

being developed (they support a subset of the required functions) by the RUCRG. For

instance, some of the IMS clients discussed could only be used on speci�c platforms

[61, 15, 62] while others supported a limited range of video and audio codecs [43, 21].

This meant that researchers were forced to switch between clients or adjust their systems

during testing thus posing challenges and extending time to market for applications.

Chapter 4

Development Tools

As explained in chapter 2, an IMS client requires several IETF protocols in order to

perform its various functions; for example it requires Session Initiation Protocol (SIP)

[54], Session Description Protocol (SDP) [25], Real-time Transport Protocol (RTP) [56]

and XML Con�guration Access Protocol (XCAP) [51]. There are several existing APIs

that implement these protocols. This chapter provides an in-depth overview of the APIs

that were used for developing the RUCRG IMS client. Additionally, this chapter will also

discuss the software and tools that were used for developing the RUCRG IMS client.

4.1 Application Programming Interfaces (APIs)

As alluded to in the previous section, the RUCRG IMS client uses a number of existing

APIs that implement di�erent IETF protocols. These APIs can be categorised in several

ways.

Firstly, they may be split into:

� Proprietary - vendors expose functionality in their product by de�ning their own

APIs that can be used only within their platform.

� Open standard - standardisation bodies de�ne a number of standard APIs for ap-

plication development.

Another possible categorisation of APIs refers to the level of abstraction the interface

provides:

38

4.1. APPLICATION PROGRAMMING INTERFACES (APIS) 39

� High - level APIs completely hide the functionality, and o�er an abstract program-

ming model that is largely decoupled from the concepts.

� Low - level APIs give the programmer the capability to manipulate the objects at

the lowest level.

For the purposes of the RUCRG IMS client, open standard low-level APIs were used for

development. This was done in an e�ort to reduce cost of development because open

standard APIs are free and can be used with limited restriction. Consequently this allows

a much larger community of developers to work on the client in the future since no

licensing will be required. Additionally, low level APIs allow a lot of �exibility meaning

more complex applications can be developed.

4.1.1 Media APIs

The transmission of high quality multimedia data over IP based communication links,

has been made possible by signi�cant increases in network bandwidth along with the

improvement of audio/video coding technologies. This has led to the increase in the

demand of audio/video services [38]. The available quality of the delivered media is

closely related to the system used for delivery. The main challenge to clients is to provide

decoders, encoders and transmission formats that �t at least one of the requirements of

the remote user equipment (UE) that they are communicating with [45].

In order to create applications that manipulate media such as voice and video, a media

API is required to access the media capabilities of the underlying platform. A number

of media APIs are currently available, as proprietary platform APIs or standard cross-

platform APIs. They all try to solve the issue of media delivery quite di�erently [47].

Still, they all process media using various handlers for formats, streams and contents.

A good media API should provide specialised libraries and interfaces that make it possi-

ble to combine new and customised multimedia solutions as well as a plug-in architecture

that allows addition of new codecs, formats, capture devices and communication proce-

dures comfortably [38]. The Java Media Framework (JMF) API enables audio, video and

other time-based media to be added to applications and applets built on Java platform

technology. It is the media API used in the JSAP, and one of the major drawbacks in the

client's development due to; the bugs it contains (which require workarounds), the lack of

support for new media codecs and its di�cult installation and con�guration procedure.

Further, Sun Micro-systems ceased to support JMF in 2003 and has since been acquired

4.1. APPLICATION PROGRAMMING INTERFACES (APIS) 40

by Oracle [44]. According to Wikipedia [63], JMF has not been enhanced since 1999, and

the last news item on JMF's home page was posted in September 2008.

Due to the reasons explained above, the use of JMF as the media API in JSAP neces-

sitated the need to �nd an alternative media API. There were a variety of open source

implementations that were assessed. Among the APIs that were investigated there have

been several e�orts to implement open-source alternatives that use JMF as a building

block; for example FMJ (an open source initiative which was started to implement and

extend JMF). Next, we brie�y describe some of the popular APIs used for direct media

manipulation that were investigated as possible replacements to JMF.

4.1.1.1 FMJ

FMJ is an open-source project that was established with the goal of providing an alterna-

tive to JMF, while remaining compatible with it. According to Ken Larson (FMJ project

leader), FMJ aims to produce a single API/framework which can be used to capture,

playback, process, and stream media across multiple platforms. He further argues that

FMJ extends beyond Sun Micro-system's JMF by enhancing platform-speci�c support,

or performance packs, for Mac OSX and 64-bit Linux, providing modern codecs, such as

MPEG4, improving overall performance, and simplifying installation [21]. Codec support

is addressed in FMJ by wrapping a platform's native media applications, such as Direct-

Show, Quicktime and Gstreamer [20]. FMJ has two sub-projects and one sister project.

The sub-projects, FFMPEG-Java and Theora-Java, are Java wrappers for FFMPEG and

Vorbis respectively. The sister project is LTI-CIVIL and it is used as the primary video

capture device library [21].

Since FMJ is compatible with the latest JMF, one may use existing JMF applications

without modifying them. However, several areas of the FMJ project are under develop-

ment, and sometimes workarounds are needed, if existing JMF applications do not work.

This may mean several code modi�cations as development progresses.

4.1.1.2 FFMPEG

FFMPEG is a complete, cross-platform solution to record, convert and stream audio

and video [18]. It includes libavcodec [64] an open source GNU lesser general public

licence (LGPL) licensed library of codecs for encoding and decoding video and audio

data. It is one of the leading audio/video codec libraries and is used in many open-source

multimedia applications and frameworks. FOBS (FFMPEG OBjectS) is an open source

4.1. APPLICATION PROGRAMMING INTERFACES (APIS) 41

object oriented wrapper for �mpeg. FOBS relies on the FFMPEG library, but provides

developers with a much simpler programming interface. However, FFMPEG is currently

available only in C++. The Java version (Fobs4JMF) has been implemented as a JMF

plug in that allows JMStudio (a media player included with the JMF programming tools)

to play the most common formats and codecs (ogg, mp3, m4a, divx, xvid, h264, mov, avi,

etc.). Binaries for this enhanced version of JMStudio are available for Windows, Linux

and Mac OSX which can be used to include support for other formats and codecs into

JMF applications without altering the original code [58].

4.1.1.3 JFFMPEG

This is a Java wrapper for FFMPEG. The JMF plug-ins system lets one use JMStudio

or other Java applications to play mpeg1, h263, mpeg4 (divX), etc. streams. It is based

on a Java port of parts of the FFMPEG project, supporting a number of codecs in pure

Java code. Where codecs have not yet been ported, a Java native interface (JNI) wrapper

allows calls directly into the full FFMPEG code. However there is a feeling among the

developer community that JFFMPEG is dead, and FOBS which also acts like a wrapper

is a better alternative.

4.1.1.4 FFMPEG-Java

FFMPEG-Java is not the same thing as JFFMPEG. FFMPEG-Java is a Java wrapper

around FFMPEG, using JNA (Java Native Access). It assumes that dynamic libraries for

FFMPEG have been compiled, and are included in one's library path [19].

4.1.1.5 LTI-CIVIL

LTI-CIVIL (Larson Technologies Inc. Capturing Images and Video in a Library) is a Java

LGPL licensed library for capturing images from a video source such as a USB camera. It

provides a simple API and does not depend on or use JMF. The FMJ project integrates

LTI CIVIL into the JMF architecture by providing a civil data-source in place of a regular

JMF data-source.

Current Capture Rates According to LTI-CIVIL [35], basic image capture works on

the following platforms at the speci�ed rates and quality:

� 20fps at 320x240 on Windows 2000/XP/Vista

4.1. APPLICATION PROGRAMMING INTERFACES (APIS) 42

� 7fps at 160x120 on GNU/Linux 32/64-bit

� 7fps at 640x480 on Mac OS

4.1.1.6 Gstreamer

Gstreamer is a framework for creating streaming media applications. Most of the valuable

qualities that the Gstreamer framework possesses come from its modularity. The frame-

work is based on plug-ins that provide various codecs and other functionality. Gstreamer

can seamlessly incorporate new plug in modules. The plug-ins can be linked and ar-

ranged in a pipeline. This pipeline de�nes the �ow of the data. Gstreamer's development

framework makes it possible to write any type of streaming multimedia application. The

Gstreamer framework is designed to make it easy to write applications that handle audio

and/or video. It is not restricted to audio and video as it can also process any kind of

data �ow. The pipeline design is made to have as little overhead as possible above what

the applied �lters induce. This makes Gstreamer a good framework for designing even

high end audio applications which put high demands on latency [60].

Gstreamer allows programmers to con�gure media processing scenarios that combine dif-

ferent input, output, and processing options. It o�ers a high level API to manage the data

capture, presentation, and processing of time-based media. Additionally, it also o�ers a

low-level API that supports the seamless integration of custom processing components

and extensions. We will be focusing on the Gstreamer high level API. This API does not

give the programmer real-time access to the low-level media-processing functions; instead,

it allows him/her to con�gure and manipulate a set of high level objects that encapsulate

the main media functions such as players, processors, data sinks, and so on, to build the

desired media-handling scenario in a Java application.

4.1.1.7 Gstreamer-Java

Gstreamer-Java is a Java interface to the Gstreamer framework. Although Gstreamer is

commonly associated with the gnome desktop, Gstreamer itself, and these bindings are

portable across operating systems [24].

Having considered the above media platforms, some experimentation was carried out

by building some example systems to compare audio and/or video streaming support.

Gstreamer (accessed through Gstreamer-Java wrapper) was chosen to replace JMF media

API for receiving, decoding and displaying multimedia content because:

4.1. APPLICATION PROGRAMMING INTERFACES (APIS) 43

� It supports most major audio and video codecs.

� It is still under active development, which guarantees support.

� Its Java bindings are portable across operating systems.

� It can be extended to support additional media types and perform custom process-

ing.

� It de�nes a relatively simple RTP API that enables the transmission and reception

of RTP streams.

� Gstreamer uses Video4Linux/V4L in Linux and Direct-draw in Windows for video

capture. Both support several USB webcams, TV tuners and other devices. Addi-

tionally, these APIs are closely integrated into the respective kernels of their oper-

ating systems making them more e�cient.

It is worth noting that preference was given to APIs either implemented in Java or that

having existing interfaces to Java. The preference was motivated by the fact that one of

our objectives was to produce a client that is platform agnostic.

4.1.2 Signalling APIs

Signalling APIs abstract several key components for session setup, control and termina-

tion. As earlier mentioned there are a several APIs that implement the SIP protocol. The

Java Community Process (JCP) through the Java APIs for Integrated Networks (JAIN)

initiative, de�nes APIs for using Java technologies to provide next generation telecom-

munications services. In the following subsections we discuss two APIs developed under

JCP and JAIN initiative that support SIP programming for call control and messaging.

4.1.2.1 JAIN SIP API

JAIN SIP is a Java API speci�cation for SIP speci�ed in JSR 032 under the JCP devel-

oped for the J2SE environment. It is a Java standard for a low-level SIP interface that

provides access to SIP at the SIP protocol level. It provides application developers with

a standardised interface for SIP services that are functionally compatible with the RFC

3261 speci�cation. JAIN SIP, being low level, gives access to the full power in the SIP

protocol and enables the creation of SIP applications of any type. More speci�cally, JAIN

SIP API provides the application developer with an interface to:

4.1. APPLICATION PROGRAMMING INTERFACES (APIS) 44

� Build and parse SIP messages.

� Use the transaction sub-layer (i.e., send/receive messages statefully).

� Use the transport sublayer (i.e., send/receive messages statelessly).

To date, there have been three versions of the JAIN SIP API. The �rst version (1.0) was

based on SIP speci�cation RFC 2543 [27]. As we already know, that SIP speci�cation was

replaced by RFC 3261 [54]. So, a newer version (1.1) of the JAIN SIP API, which had

compliance for RFC 3261, was developed. The latest JAIN SIP version is 1.2. It incorpo-

rates some enhancements to the 1.1 speci�cation, and it is the one that was used in this

thesis. Version 1.2 of the JAIN SIP speci�cation complies with the base SIP speci�cation

de�ned in RFC 3261 and with the following SIP extensions as earlier discussed:

� INFO method [RFC 2976]

� Reliability of provisional responses [RFC 3262]

� Event Noti�cation Framework [RFC 3265]

� UPDATE method [RFC 3311]

� Reason header [RFC 3326]

� MESSAGE method [RFC 3428]

� REFER method [RFC 3515]

� Distributing Authoritative Name Servers via Shared Unicast Addresses [RFC 3258]

� PUBLISH method [RFC3903]

It is worth mentioning that there are some open-source reference implementations for the

JAIN SIP API. The NIST (National Institute of Standards and Technology) reference

implementation of the JAIN SIP API is the one that was used to develop the SIP/IMS

client discussed in this thesis because it has support for the IMS extensions discussed in

chapter 2.

4.2. OTHER TOOLS USED FOR DEVELOPING THE CLIENT 45

4.1.2.2 JAIN SDP API

As we have seen, IP communication applications that use SIP will in many cases need to

describe sessions using Session Description Protocol (SDP). Such descriptions are trans-

ported as part of the SIP message payload. From the developer's perspective, there is a

need then to be able to encode and parse SDP content. There are a number of di�erent

ways to do this. One possible way to accomplish this is by using an implementation of the

JAIN SDP API. JAIN SDP API de�nes a Java interface to facilitate the manipulation of

SDP content. JAIN SDP is part of the Java network API family to which JAIN SIP is a

member. JAIN SDP API corresponds to JSR 141, but at the time of writing was not yet

an approved standard [45]. Given that we are using JAIN SIP API it seemed appropriate

to embrace JAIN SDP for our SDP programming. JAIN SDP is a very simple API that

just allows us to encode and decode SDP content.

4.1.3 Mobicents XCAP API

The Mobicents XCAP client API provides a means to send XCAP requests to an XCAP

Server such as the Mobicents XDM Server. The Mobicents XCAP client API depends on

Java HTTP client API to provide the core HTTP functionality and Java HTTP client

core API to provide low level HTTP transport components for building services with a

minimal footprint.

4.2 Other Tools Used for Developing the Client

A large number of libraries and software are available for use by developers to develop

rich applications for IMS. The Java Community Process (JCP) through the Java APIs for

Integrated Networks (JAIN) initiative, de�ne APIs for using Java technologies to provide

next generation telecommunications services [41]. In this section we will discuss some of

the key tools used to facilitate development of the RUCRG IMS client.

4.2.1 JDK 1.6

The JDK consists of a Java compiler, written in Java, and a run-time interpreter for a

particular platform. It can be downloaded and installed free from the Oracle website. For

the development of the IMS client, in this thesis, JDK 1.6 was used.

4.3. SUMMARY 46

4.2.2 Netbeans 6.8

Netbeans 6.8 Integrated Development Environment (IDE) was used to develop and man-

age the project due to the abundance of its productivity features, such as team collabo-

ration, context-sensitive code editors, debugging and project management. Furthermore,

Netbeans IDE can be extended with various plug-ins order to provide a more complete

IDE experience to developers.

4.3 Summary

This chapter provided descriptions of some of the open source media APIs for multimedia

service creation that were investigated as possible alternatives to JMF. Among the projects

investigated were a variety of implementations building on top of JMF such as FMJ.

Chapter 5

Enhancing Signalling and Media

Support in JSAP

This chapter describes the various enhancements that were made to the JSAP client in

preparation of making it IMS compliant. The �rst section discusses how JSAP was tested

to identify errors and how the errors were �xed. The section that follows describes the SIP

extensions that were incorporated into the JSAP to consolidate the signalling. Finally,

a discussion is given of how the media library was overhauled to use Gstreamer media

library to ensure reliable voice and video support.

5.1 Preliminary Analysis

Before new features could be integrated, it was necessary to validate and verify against

the standards the already implemented SIP features in the JSAP. On the one hand, this

was done to reinforce the understanding of how JSAP worked. On the other, this exercise

was carried out with the intention of limiting the occurrence of unexpected behaviour by

the client, caused by defects inherited from the original implementation.

The preliminary analysis entailed the systematic testing of the JSAP. The analysis sum-

marised in Figure 5.1 involved running tests based on varying con�guration of inputs and

taking appropriate action following the evaluation of the test results.

47

5.1. PRELIMINARY ANALYSIS 48

Figure 5.1: Testing Information Flow (Adapted from Luo [36])

In Figure 5.1, �Software to be Tested� refers to the JSAP client. The �Test Con�guration�

includes test cases, test plan and procedures. The evaluation compared the results that

were produced by running JSAP to expected outputs. For example, incorrect data was

intentionally introduced (fault injection) in order to assess how the client behaved if users

accidentally entered unexpected input.

It is worth mentioning that the testing was not meant to identify all the defects within

JSAP. Instead, it was done to establish that the client functions properly/improperly

under speci�c conditions. Below is a discussion of the various problems that were identi�ed

in JSAP and how they were resolved.

5.1.1 Unhandled Server Responses

When a user enters incorrect authentication parameters, there is need for him/her to be

prompted to re-enter their credentials. However, JSAP did not have a mechanism to

handle �403 Forbidden� responses sent back by the server. The user interface (UI) would

remain unchanged with the user unaware of what was happening in the background, while

the server waited for a response. This error was corrected by adding a method to handle

�403 Forbidden� responses. This method calls the authentication GUI which prompts the

user to reenter the credentials.

5.1.2 Password re-prompting

In the case that the user managed to enter the correct authentication parameters, when the

registration expired, the user would be prompted again for their credentials. Furthermore,

sending any request through an authenticated proxy meant that the user had to enter their

authentication parameters for every request that passed through the proxy.

This was corrected by caching the correct credentials and only prompting the user to en-

ter new credentials if the ones initially provided were not accepted by the authenticating

5.1. PRELIMINARY ANALYSIS 49

server. New classes were introduced: UserCredentials class for collecting the user-name

and password and storing them; CredentialsCache class for caching credentials through-

out the duration of the session such that they can be used for other requests within the

transaction that require authentication without further prompting the user for credentials.

CredentialsCache veri�es whether the credentials have been used before for a particular

transaction. If so, it checks whether they have been successfully authenticated before

forwarding the result to SipSecurityManager class which actually handles the authen-

tication process. CredentialsCache obtains the credentials from the UserCredentials

object and only requests the user to enter new credentials if the entered information is

incorrect.

5.1.3 Cancelling Early Sessions

SIP Dialogs are created through the generation of 2xx or 1xx responses to INVITE re-

quests. Figure 5.2 illustrates how a Dialog is established between two parties in the

process of establishing a call session.

50

Figure 5.2: Dialog Creation

5.1. PRELIMINARY ANALYSIS 51

Tags in the From and To headers together with the CallID are used to identify a Dialog.

The tag in the From header is set by the calling UA and provides only half of the Dialog

identi�cation. The other half is set by the the recipient of the request (called party) by

including a tag in the To header of the provisional and successful �nal responses. The

called party (Tino in Figure 5.2) therefore establishes all the three parameters needed to

identify the Dialog before the calling party (Chiedza in Figure 5.2). The result is that the

Dialog is established by the called party before the calling party as shown in Figure 5.2.

With JSAP, the caller could not cancel a session while the called party was in ringing

state, that is, when JSAP had received a �180 Ringing� response. This was because JSAP

was setting the Dialog ID before receiving the remote tag. As such, the UA could not

�nd the transaction (incorrect Dialog ID) to cancel when requested to do so because the

remote tag was missing.

This was corrected by setting the Dialog ID after receiving the �180 Ringing� or �183

Session Progress� response from the remote client.

5.1.4 Re-registration

Re-registration in JSAP was not functioning properly: once a user was de-registered, they

could not re-register without restarting the client. This was due to the fact that the client

logic incorrectly represented the registration state. When the client received a �200 OK� to

a de-registration request it would correctly update the UI but not update the registration

state to unregistered. The result was when the user attempted to re-register, the UI would

not update because the client logic re�ected that the user was still registered.

The solution was to update the registration status when client received a �200 OK� to a

de-registration request.

5.1.5 De-registration

Registrations are �soft state� meaning that they expire if they are not refreshed within

a time interval speci�ed by the registrar. However, a client can in�uence the expiration

interval selected by the registrar. For example, registrations can be explicitly removed by

the client by specifying an expiration interval of �0� for a contact address in a REGISTER

request. RFC 3261 [54] speci�es that all UAs should support this mechanism so that

bindings can be removed before their expiration interval has passed.

From the testing that we carried out, it was discovered that the client was not updating

the stored registration request as it refreshed its registration. This resulted in the client

5.2. ENHANCEMENTS 52

sending a de-registration request with an incorrect sequence number to the registrar when

it needed to remove the binding. This did not have a direct impact on the functioning of

the client but it was violation of the SIP speci�cation.

The solution was to save the most recent REGISTER request every time one was sent

out. This would allow the client to send out the correct de-registration request when it

needed to de-register.

5.2 Enhancements

Having attempted to �x the major defects in the JSAP, the next task was to identify

the core functions that needed to be added to prepare the client for the addition of IMS

capabilities. The enhancements were guided by:

1. The need to increase modularity in the JSAP in order to allow easy modi�cation of

the client.

2. The need to incorporate extensions to the base SIP protocol.

3. The need to overhaul JSAP media capabilities.

This section will outline how JSAP was modi�ed to perform the following functions:

� Use XML to load its start-up con�guration.

� Establish sessions using reliable mechanisms speci�ed in RFC 3262 [53].

� Negotiate media codecs (static and dynamic).

� Exchange audio/video with another client using Gstreamer.

From now on, the new client resulting from this enhancement process will be called

JSAP+.

5.2.1 Con�guration

Con�guration parameters in JSAP were hard-coded in the Configuration class. For

example, the IP address of the machine the client was being run on had to be known

beforehand in order to be manually con�gured into the code. This made the client in�ex-

ible.

5.2. ENHANCEMENTS 53

To overcome this issue and other inherent limitations, a con�guration utility was developed

to allow the client access its start-up context. An XML based con�guration mechanism

was introduced to allow for the persistence of the information that the user entered. New

classes were also added to manage automatic con�guration of the IP address. Changes

were made to the JSAP to allow the con�guration of client parameters at start-up using

a Properties object and XML.

Figure 5.3 illustrates how the con�guration parameters are managed in JSAP+ (the name

we gave to the new, enhanced JSAP, as mentioned above) using the JSAPCon�g.xml �le,

from the time the client starts up until the time it is closed.

54

Figure 5.3: Client Con�guration Life Cycle

5.2. ENHANCEMENTS 55

The con�guration parameters are passed to the con�guration �le via a UI: the user now

enters the client con�guration parameters in the con�guration area of the UI. At client

start-up, or whenever the user presses the Apply button in the UI, the con�guration param-

eters are conveyed as a Configuration object to MessageListener in the userInput()

or updateConfiguration() methods. The JSAPCon�g.xml �le is just a data structure

to hold the parameters entered by the user.

5.2.2 Reliability of Provisional Responses

SIP de�nes two types of responses: provisional and �nal. These responses are often sent

over UDP, which means they can be lost. To deal with this problem, �nal responses

are sent reliably. However, provisional responses are not sent reliably [54]. To increase

the chances of provisional responses successfully reaching their destination, some of these

provisional responses are retransmitted. However, there are cases where it would be

important to guarantee the delivery of a provisional response. Examples of these cases

are:

� Playing a message to a user that informs him/her that the call will be cancelled due

to lack of funds in their account.

� Playing an announcement when a call is being forwarded or queued.

� When a provisional response contains an SDP answer as a result of an SDP o�er

sent in an INVITE request.

The cases mentioned above (and many others) rely on the reliability mechanism for setting

up communication parameters before sessions are established. Hence, it was necessary to

integrate support for reliability of provisional responses, into JSAP. Fortunately, SIP

includes mechanisms that support the delivery of provisional responses reliably. In this

section, we discuss how the reliability of provisional responses was implemented in JSAP.

Our client acts as both a UAC and a UAS, so both scenarios will be discussed.

5.2.2.1 UAC Behaviour

When a UAC creates a new request, it can insist on reliable delivery of provisional re-

sponses by inserting a Require header �eld with an option tag 100rel. If the UAC does not

wish to insist on using reliable provisional responses, but merely indicate that it supports

them, a Supported header must be included in the request with the option tag 100rel [53].

5.2. ENHANCEMENTS 56

Our client is built to support both basic SIP and IMS. This means that it may encounter

legacy SIP UEs that do not support the reliability extension. As a result it does not insist

on the use of reliable provisional responses, allowing the remote device to decide whether

it needs to use reliability mechanisms or not. Nokia [42] argues that the use of Supported

header instead of Require header in the originating UE results in better interoperability

with clients not supporting a particular SIP extension. Our client therefore includes a

Supported header with a 100rel option tag in all the INVITE requests that it sends out

to indicate that it supports reliability mechanisms. It also includes an SDP o�er with

every INVITE request. If it receives a provisional response that contains a Supported or

Require header �eld (containing a 100rel option tag) for an initial INVITE request, it

uses reliability mechanisms. However, this mechanism excludes �100 Trying� responses

because of their hop-by-hop nature.

If a Dialog is not yet created (as discussed in sub-section 5.1.3), the UAC establishes it im-

mediately after receiving a provisional response. It then creates a new request (PRACK)

to acknowledge receipt of the provisional response. The PRACK request contains a RAck

header �eld, which indicates the sequence number of the provisional response being ac-

knowledged. This request is sent within the Dialog associated with the provisional re-

sponse. Once the answer has been received, the UAC establishes the session based on the

parameters of the o�er and answer, even if the original INVITE has not been responded

to.

If the UAC receives another reliable provisional response to the same request, and its RSeq

value is not one higher than the value of the previous sequence number, the response will

not be acknowledged with a PRACK. This means that the response will be discarded and

will not be processed further by the UAC. Furthermore, our UAC does not acknowledge

reliable provisional responses received after the �nal response.

5.2.2.2 UAS Behaviour

When an INVITE request is received containing a Supported header or a Require header

with a 100rel option tag, the UAS sends any non-100 provisional response to the INVITE

reliably. Each reliable provisional response is assigned a sequence number, carried in

the RSeq header �eld. The RSeq value allows the UAS to keep track of the provisional

responses the PRACKs are acknowledging. Provisional responses for di�erent requests

may use the same values for the RSeq number, as speci�ed in RFC 3262 [53]. This is

because the RSeq numbering space is within a single transaction.

If the INVITE contained an SDP o�er, a �183 Session Progress� response containing an

5.2. ENHANCEMENTS 57

SDP answer is sent back to the caller. Since the response is sent reliably, a Require header

is included that contains the option tag 100rel. When the PRACK request is received,

it con�rms delivery of the �183 Session progress� response that was sent. A �200 OK�

response to the PRACK is then sent. If a PRACK request is received that does not

match any unacknowledged reliable provisional response that was sent, the UAS responds

to the PRACK with a �481 No Dialog Found� response. Furthermore, the UAS does not

send a second reliable provisional response, until an acknowledgement is received for the

�rst one.

If an originating UAC sends us an INVITE request containing a Supported header or

a Require header with a 100rel option tag, but without an SDP o�er, our �rst reliable

provisional response will contain an SDP o�er. The remote UAC will therefore receive

a provisional response requiring the use of reliable provisional response mechanisms with

an o�er. The remote UAC must generate an answer in the PRACK.

Once the answer has been sent or received, the UAS establishes the session based on

the parameters of the o�er and answer, even if the original INVITE has not yet been

responded to. However, media streams are only opened after a �200 OK� to the INVITE

is received because our client does not support early media.

In cases where we include a session description in a reliable provisional response and the

INVITE is accepted before the reliable provisional response is acknowledged, our UAS

delays sending the 2xx until the provisional response is acknowledged. Otherwise, the

reliability of the 1xx cannot be guaranteed.

Figure 5.4 provides a summary of how the reliability of provisional responses mechanism

is handled in JSAP+.

58

Figure 5.4: Session setup Using Reliability Mechanisms

5.2. ENHANCEMENTS 59

5.2.3 Session Description Handling

SDP de�nes the syntax for describing IP multimedia communication sessions. As already

stated in chapter 4, JSAP uses the JAIN SDP API for encoding and parsing SDP content.

The SDP support was however, not su�cient: there were a variety of functions that needed

to be integrated to allow the client to handle a wider range of video and audio payloads.

Firstly, JSAP was only capable of handling static payload formats. This meant that there

was a need to integrate the ability to encode/decode attribute-lines in order to cater for

dynamic payloads. Secondly, the client needed to be modi�ed to describe multimedia

sessions in a way that is compatible with the new media API (Gstreamer) that was

introduced. The SDP encoding/decoding needed to be modi�ed to suit Gstreamer. The

idea was also to preserve as much of the original JSAP implementation as possible. In

this section, we will look at how the client's SDP handling was modi�ed to cater for the

issues highlighted above.

5.2.3.1 Dynamic Payload Coding and Decoding

The SDP media and transport line (m-line) includes information about a particular

media. A session description may contain several �m-lines�, implying that the session

may contain several media. Each �m-line� indicates:

� The type of media: voice, video, and so on.

� The port where the sender expects to receive media packets.

� The protocol to use for media transport.

� The media format.

The interpretation of the media format depends on the actual media transport protocol.

When RTP/AVP is used, the media format represents the RTP payload type number.

In chapter 2, we stated that the RTP payload number can be static or dynamic. If it

is static, there exists a well-known ID number associated with it, so there is no need to

include further information about the payload type in the SDP. Below is an example of

an m-line with a static payload type (0), which indicates PCM µ-law encoding for audio.

m = audio 40000 RTP/AVP 0

5.2. ENHANCEMENTS 60

However, if the payload type is dynamic, there is no �xed ID associated with it. Dy-

namic payload types are randomly assigned numbers between 96 and 127. Since payload

type numbers are dynamically assigned (as such, they change), extra information that

characterises the format is required by the remote party receiving the SDP in order to

be able to identify the payload type. Attributes (a-lines), are the primary means for

providing such kind of information in SDP. They may be used as session-level attributes,

media-level attributes, or both. In our case we were more interested in the media level at-

tribute �rtpmap�, because we needed to provide support for non-static media codecs. The

�rtpmap� attribute is used to map the payload type in an �m-line� with some parame-

ters characterising the payload type, such as the encoding name, clock rate, or encoding

parameters. The next example shows an �m-line� with a dynamic payload type.

m = audio 49230 RTP/AVP 961

a = rtpmap:96 L8/8000

In this case, there is an additional �a-line�, which is used to describe the encoding type

(L8), encoding at a sampling rate of 8000Hz and dynamically assigned to payload type

96.

The SDP component that we build simpli�es the task of setting or getting these pieces of

information from an SDP message. The component is a Java class called SdpManager. We

also used another Java class called SdpInfo which is a data structure that holds the value

of the �ve parameters we are interested in. The SdpManager class o�ers two methods:

1. byte[] createSdp(SdpInfo sdpinfo)

2. SdpInfo getSdp(byte [] sdpcontent)

The �rst one receives as input an SdpInfo object, and creates as output a byte array

representing the SDP content. The second one gets an SDP message as a byte array, and

produces an SdpInfo object with the key info we are interested in. It is worth highlighting

that the port and the media format parameters are obtained through a Media object, not

directly through the MediaDescription object. So, in order to get these parameters, we

had to:

1. Obtain the MediaDescription from the SessionDescription.

2. Obtain the Media object from the MediaDescription.

1Any number between 96 and 127 could have been used

5.2. ENHANCEMENTS 61

3. Obtain the desired parameters from the Media object.

In chapter 2, we explained the way to describe multimedia sessions using SDP. RFC 3264

[52] describes the SDP o�er/answer model. It also describes possible options to activate

the media reception and transmission at the di�erent stages in the model. The approach

that we implemented was based on the following considerations:

1. The calling party sends the SDP o�er.

2. The called party receives the o�er and generates an answer. As soon as the SDP

answer is sent, the answerer commences media transmission and starts listening on

the receive ports speci�ed in the SDP answer.

3. When the o�erer receives the SDP answer, it starts listening on the receive ports

that were speci�ed in the SDP o�er; and commences media transmission.

As was the case with reliability of provisional responses, our client acts as both UAC and

UAS.

5.2.3.2 Sending the SDP O�er with Preferred Codec

In order to build the SDP o�er, our client checks the media con�guration parameters. If

the con�gured media is audio only, then the SDP will contain only an audio �m-line�.

If, on the other hand, it is audio and video, the SDP will contain an audio �m-line� and

a video �m-line�. Also taken from the con�guration parameters are the o�ered codecs:

myAudioCodec and myVideoCodec. These are set by the user in the UI, and conveyed to

MessageListener through the Properties object. The SDP will contain only one codec

per media. The ports for audio and video are taken from the con�guration parameters:

myAudioPort and myVideoPort. These are also set by the user in the UI:

offerInfo = new SdpInfo();

offerInfo.setIpAddress(myIP);

offerInfo.setAudioPort(myAudioPort);

offerInfo.setAudioFormat(myAudioCodec);

offerInfo.setVideoPort(myVideoPort);

offerInfo.setVideoFormat = (myVideoCodec);

ContentTypeHeader contentTypeHeader = myHeaderFactory.createContent

TypeHeader(�application�, �sdp�);

byte[] content = mySdpManager.createSdp(offerInfo);

myRequest.setContent(content, contentTypeHeader);

5.2. ENHANCEMENTS 62

If the video component is not desired, vPort and vformat are set to -1, causing the

SdpManager not to include the video �m-line� in the SDP.

5.2.3.3 Receiving the SDP O�er and Selecting Preferred Codec

When an INVITE is received that contains an SDP o�er, the UA will get the SDP content

and obtain the relevant parameters (ports and codecs):

byte[] cont = (byte[]) myRequest.getContent();

offerInfo = mySdpManager.getSdp(cont);

Having obtained the relevant information about the remote party's preferences, we build

the SDP answer as follows:

� The audio port in the answer is the con�gured port for audio (myAudioPort).

� The audio format in the answer is the same as the audio format in the o�er.

� If the o�er does not contain a video m-line, then the answer will not contain it

either (vport= -1).

� If the o�er contains video, but the recipient UA only wants audio then the video

component is rejected (vport=0):

answerInfo.setIpAddress(myIP);

answerInfo.setAudioPort(myAudioPort);

answerInfo.setAudioFormat(offerInfo.getAudioFormat());

if(offerInfo.getVideoPort() == -1)

{

answerInfo.setVideoPort(-1);

}

else if (myVideoPort() == -1)

{

answerInfo.setVideoPort(0);

answerInfo.setVideoFormat(offerInfo.getVideoFormat());

5.2. ENHANCEMENTS 63

}

else

{

answerInfo.setVideoPort(myVideoPort);

answerInfo.setVideoFormat(offerInfo.getVideoFormat());

}

5.2.3.4 Sending the SDP Answer

When the called party accepts the call, he/she issues a �200 OK� message that contains

the SDP answer previously constructed. The called party will also start listening for

media and will start transmitting media:

ContentTypeHeader contentTypeHeader = myHeaderFactory.createContent

TypeHeader(�application�, �sdp�);

byte[] content = mySdpManager.createSdp(answerInfo);

myResponse.setContent(content, contentTypeHeader);

myVoiceTool.startMedia(offerInfo.getIpAddress(), offerInfo.getAudio

Port(), answerInfo.getAudioPort(), offerInfo.getAudioFormat());

if (answerInfo.getVideoPort()>0)

{

myVideoTool.startMedia(offerInfo.getIpAddress(), offerInfo.get

VideoPort(), answerInfo.getVideoPort(), offerInfo.getVideo

Format());

}

5.2.3.5 Receiving the SDP Answer

When the calling party receives the �200 OK�, he/she will start listening on the receive

ports for the o�ered media. The client will also extract the SDP answer and begin

transmitting media toward the address present in the answer. This is captured in the

code snippet below:

5.2. ENHANCEMENTS 64

byte[] cont =(byte[]) myResponse.getContent();

answerInfo = mySdpManager.getSdp(cont);

myVoiceTool.startMedia(answerInfo.getIpAddress(), answerInfo.getAudio

Port(), offerInfo.getAudioPort(), answerInfo.getAudioFormat());

if (answerInfo.getVideoPort()>0)

{

myVideoTool.startMedia(answerInfo.getIpAddress(), answerInfo.get

VideoPort(), offerInfo.getVideoPort(), answerInfo.getVideoFormat());

}

RTP formats supported by Gstreamer were added to JSAP MediaManager. Table 5.1

shows some of the mappings from SDP to Gstreamer.

Table 5.1: SDPConstants mapping to Gstreamer formats

SDPConstants Gstreamer

Video

SdpConstants.H263 h263
SdpConstants.JPEG jpeg
SdpConstants.H261
SdpConstants.MPV mpv
SdpConstants.MP2T Mp2t

Audio

SdpConstants.G722
SdpConstants.G723
SdpConstants.GSM gsm
SdpConstants.PCMU pcmu

SdpConstants.DV14-8000
SdpConstants. DV14-16000

SdpConstants.PCMA pcma
SdpConstants.G728
SdpConstants.G729 g729

5.2.4 Media Plane

IP multimedia communications comprise of two planes: a signalling plane and a media

plane. We have already dealt with how the signalling plane was modi�ed in the JSAP

to prepare everything that RTP needs, like determining the address where RTP packets

need to be sent and negotiating the format that audio and video need to be encoded in.

5.2. ENHANCEMENTS 65

In this section we will look into the media plane. At a minimum, a multimedia call

requires some media-level handling at the endpoints in order to capture and present the

media as well as receive and transmit the media packets over the network. This means,

even in the most basic case, there is a need for the applications at the endpoints to have

direct access to the media-handling capabilities of the user terminal.

As discussed in the previous chapter, the JSAP media plane functions were implemented

using JMF, which was found to have a variety of shortcomings. An investigation into

alternative, open source media APIs to the JMF was carried out. Among the projects

investigated were a variety of implementations building on top of JMF such as FMJ.

However, Gstreamer (accessed through Gstreamer-Java wrapper) was chosen to replace

JMF because of the numerous advantages it possesses.

5.2.4.1 Gstreamer Concepts

Gstreamer-Java is a Java interface to the Gstreamer API for handling time based media in

Java applications [24]. It allows programmers to develop applications in Java to capture,

present, store, and process time-based media. It can be extended to support additional

media types and perform custom processing. Additionally, Gstreamer de�nes an RTP

API to enable the transmission and reception of RTP streams. Gstreamer is a powerful

yet easy API for building media/multimedia applications. The JSAP was redesigned to

use Gstreamer as the media API (in place of JMF media API) to:

� Capture media and transmit over the network.

� Receive media over the network and render it to the user.

Gstreamer API de�nes several �elements� that model media processing [60]. Elements

are an important class of objects in Gstreamer. By linking together di�erent elements,

a pipeline is created to perform a task such as media playback or capture. Below we

introduce the main Gstreamer elements that were used to build our audio and video

implementations in JSAP using Gstreamer.

� Source: is an element that encapsulates a media stream. During the media han-

dling process, di�erent data sources may represent the underlying media streams

at di�erent stages of the process, as shown in Figure 5.5, where the data source is

represented as �src*�. Every pipeline needs a data source to receive data. This can

be a �le or a network stream. In Figure 5.5 b, the udpsrc element is used to receive

5.2. ENHANCEMENTS 66

UDP packets from the network while in Figure 5.5 a, the udpsrc0 element performs

a similar function.

� Depayloader: is needed to extract video/audio information from RTP packets.

Depayloaders are speci�c to the video encoding used e.g. rtph263depay element is

used to extract h263+ video from RTP packets.

� Decoder: is needed once the video packets are in usable form. The decoder pro-

cesses the video packets back into a format that can be displayed (generally in the

form of raw RGB or raw YUV video). FFMPEG H.263 video decoder (�dec_h263)

is an example of a decoder.

� Filter: is needed to convert video from one colorspace to another e.g. the �mpeg-

colorspace element. This was a necessary step when utilising the xvimagesink since

a bug exists in the ATI driver which advertises a broken YV12 format. However,

the YV12 format works on non ATI based machines regardless of whether they have

the ATI graphics card or not.

� Sink: is an element that accepts data for storage/rendering. Disk writing, sound

card playback and video output would all be implemented by sink elements. Sink

elements do not produce any data. They only have a sink pad that accepts incoming

data.

In order for an application to obtain instances of objects that represent the main Gstreamer

elements (such as the ones discussed above), the application makes calls to the gst element

factory.

5.2.4.2 Implementation of the Media Plane

We have described the main elements of the Gstreamer API, and now we will show how

the API was used to implement the following operations:

� Send media over the network.

� Receive media from network.

� Process the media.

� Present the media.

As an example, Figure 5.5 shows the various Gstreamer elements that were put together

to create pipelines for sending and receiving live video over the network.

67

Figure 5.5: JSAP Gstreamer Video Pipelines

(a) JSAP Gstreamer Video Server Pipeline (b) JSAP Gstreamer Video Client Pipeline

5.2. ENHANCEMENTS 68

Pads are the element's input and output represented in the �gure by �sink*� and �src*�.

They are used to negotiate links and data �ow between elements: these are the points

where one can connect other elements. Pads have speci�c data handling capabilities, thus

they can restrict the type of data that �ows through it.

The gstrtpbin represents an entity that is used to manage and coordinate an RTP session.

It keeps track of the participants in the media session and keeps track of the media being

transmitted. It also handles the RTCP control channel. Thus, it o�ers methods to:

� Start and close an RTP session.

� Create RTP streams to be sent (in case we are transmitting the media).

� Add and remove peers.

� Obtain session statistics.

The XOverlay interface was used to solve the problem of embedding video streams in an

application window. The application provides an XWindow to the element implementing

this interface to draw on and the element will then use this XWindow rather than creating

a new top level window. This can be useful to embed video in video players. This

interface is implemented by the Video4linux and Video4linux2 elements and by ximagesink,

xvimagesink, and sdlvideosink.

Ending Session

We also needed to stop media transmission and reception as soon as a BYE request was

sent or received. If the client is in an established state and it receives a BYE request,

then we need to add the following code:

myVoiceTool.stopMedia();

if (answerInfo.getVideoPort()>0)

{

myVideoTool.stopMedia();

}

Similarly, when the client is in an established state and the user presses the Stop button,

the UA will send a BYE request. We also included the above code to ensure that the

media transmission and reception is stopped.

5.3. SUMMARY 69

5.3 Summary

This chapter looked at how the various errors in JSAP were identi�ed and remedied. Then

it detailed the enhancements made with regard to signalling and media. The resulting

client was renamed JSAP+ and will be referred to as JSAP+ in the rest of this thesis. In

the next chapter we turn our attention to presence support.

Chapter 6

Improving Presence Support

Presence technologies are becoming widespread. For example, many SIP-based multi-

media applications are now o�ering real-time communication services integrated with

presence. Thus our client needed to be able to handle presence. The previous chapter

discussed extensively the enhancements made to the signalling and media in JSAP result-

ing in JSAP+. In this chapter, we discuss how we integrated XCAP into JSAP+ in order

to provide better presence support. The client resulting from this work was renamed

JSAP++.

6.1 Presence

Presence allows users to publish their communication statuses, to indicate their availability

and willingness to communicate. For instance, Chiedza's presence information might tell

us that she is not connected, or that she is connected but in a meeting and cannot accept

communications. Apart from this traditional use of presence, extended presence allows

additional information (dynamic attributes) of individuals and devices to be provided.

For example, if Chiedza's client supports extended presence, additional information may

be provided about her mood, location and communication capabilities (depending on the

device through which she is currently connected). Furthermore, presence information as

a service enabler can be incorporated into any number of services, such as IPTV and

presence enabled address books [38].

Presence has since been adopted for on-line collaboration, within enterprises as well as by

service providers through the adoption of the IMS. A number of emerging applications

and recent research e�orts have bene�ted from presence technologies, particularly context

70

6.2. JSAP+ PRESENCE 71

aware applications. Lei and Coulton [33] argue that SIP based presence will be a key

enabler for achieving the envisaged rich multimedia experience within the IMS.

6.2 JSAP+ Presence

JSAP+ supported some form of SIP based presence which was integrated with IM. Similar

to what we did for signalling and media, there was need to perform an extensive assessment

of the current presence architecture of JSAP+ in order to establish its adequacy for

RUCRG research purposes. The assessment included:

� Tracing messages sent by the client using network analysis tools to check

� their sequencing; and

� that they were well formed.

� Reverse engineering to �nd out the relationship among the various classes.

Having gone through the aforementioned process, a structure of how the client handled

presence was drawn up. Figure 6.1 gives an overview of the structure that resulted from

the experiments that were carried out.

Figure 6.1: JSAP+ Presence Handling

JSAP+ used a peer-to-peer presence mechanism based on a rudimentary implementation

of SIMPLE (session initiation protocol for instant messaging and presence leveraging

extensions) [12, 50, 48] as illustrated in Figure 6.1. In this setup, a SIP presence server

and a resource list server (RLS) are not used. The client is the one that stores and

manages the list of users whose presence status is desired. The client uses this locally

6.3. NETWORK STORAGE OF USER INFORMATION 72

managed list to subscribe to the presence events of other users through a SIP proxy. This

means that at each log-on, the client has to fetch the presence list from a �le that it stores

on the computer which it is runs on.

Since JSAP+ stored and managed user data locally (lacked mechanisms to store user

data in a central repository), the data could not be accessed when the user moved from

one device to another. As such, we needed to extend the client to support network based

storage. This section will outline how JSAP+ was modi�ed to store and retrieve user data

on the network using XCAP (an HTTP-based protocol that allows a client to manage this

user data).

Because JSAP+ already supported some form of presence, we wanted to preserve what

was potentially useful. We carried out a full analysis of JSAP+ classes that handled

presence. The process involved:

� Identi�cation of classes which needed to be modi�ed, removed or replaced.

� Studying the structure of the identi�ed classes.

� Adding helper classes for populating XCAP speci�c parameters.

� Removing and/or replacing some existing classes with optimised ones to allow (ef-

�cient) support of XCAP.

6.3 Network Storage of User Information

Frequently, presence based applications require some back-end infrastructure, to store

user information [45]. When this information resides within the network, its management

can be done from anywhere, through a multiplicity of devices and modalities, including

the web, wireless handsets, or PC applications [51]. Examples of this type of information

are access control lists in VoIP application servers, presence authorisation lists, resource

lists, and so on.

For cases where this information is based on XML, the IETF has de�ned an HTTP-based

protocol called XCAP, which allows a client to manage user data. XCAP [51] allows a

client to read, write, and modify application con�guration data stored in XML format

on a server. XCAP maps XML document sub-trees and element attributes to HTTP

URIs, so that these components can be directly accessed by HTTP [45]. XCAP resources

are accessed using HTTP methods (GET to read, PUT to create or modify, DELETE

to remove). The key to XCAP operation is that the protocol de�nes an algorithm for

6.3. NETWORK STORAGE OF USER INFORMATION 73

constructing a URI that can be used to reference a component within an XML document.

A component can be any element or attribute within the XML document.

6.3.1 Choice of Technology

An XCAP client API was required to provide a means to send XCAP requests to the

XCAP Server. The Mobicents XCAP client API was chosen because it is a free and

open-source Java library. This choice aligns with the RUCRG philosophy of producing

applications that are free and open-source. The API also integrated well in the client

since the client was originally developed in Java. Furthermore, the use of a Java API

allowed us to retain the platform independence feature of the client.

It should however be noted that, the Mobicents XCAP client API is an incomplete im-

plementation of the XCAP protocol. The mechanisms to forward XCAP server responses

to the application have only been implemented for the GET operation but not for the

other XCAP operations (PUT and DELETE). Despite this discrepancy, the client and the

server interacted in a reliable way (operations were successfully executed on the XCAP

server); hence we decided to use it. Another reason we used the Mobicents XCAP client

API was that it was the only Java XCAP client API that we could �nd.

As a consequence of using a partially implemented API, we had to manually check the

resource lists on the XCAP server after executing an operation to verify that it had been

successfully executed. We also had to use the Mobicents XCAP server for testing all

XCAP functions to avoid compatibility issues. Future work will therefore have to be done

to complete and standardise this part of our work.

6.3.2 Integration of XCAP support

JSAP+ was extended to allow authentication with an XCAP server and to permit ex-

tracting, parsing and displaying of XCAP documents. A full discussion of how extensions

were made follows.

6.3.2.1 Authentication and Authorisation

XCAP has other functions apart from managing buddy lists. As such, researchers may

need to manage other types of XCAP resources without needing to be registered with a

SIP/IMS network. Fortunately, this is possible since SIP and XCAP are di�erent protocols

and they use di�erent authentication and authorisation (AA) mechanisms.

6.3. NETWORK STORAGE OF USER INFORMATION 74

An additional interface shown in Figure 6.2 was created to enable management of other

types of XCAP resources and to collect the user's authentication parameters when they

need to work with the XCAP server outside SIP/IMS.

Figure 6.2: RUCRG XCAP Client Interface

This UI allows advanced users to choose various options such as the XCAP server to use,

the type of document, the document name as well as the request type. This UI also allows

them to modify XCAP resources on the XCAP server without the having to go through

a SIP/IMS network. The user can directly log-on to the XCAP server when they need

to modify their XCAP resources. Furthermore, the UI allows the user to view responses

from the XCAP server when the GET operation is invoked.

The Execute button has been placed in the middle of other options that the user can select

because some XCAP requests only require the options before the button to be supplied

in order to complete the XCAP operation.

6.3.2.2 Client Operations

� Adding and Modifying

Adding and modifying work in similar ways; they both use the HTTP PUT request

6.3. NETWORK STORAGE OF USER INFORMATION 75

and the body of the request is never empty. Their speci�c behaviour depends on

whether the URI that the client constructs refers to an existing resource or not.

In the case of adding or modifying a document, the client constructs a docu-

ment URI that references the location where the document is to be placed. This

URI contains the XCAP root and a document selector. The MIME content type

is set to the type de�ned by the application usage. For example, it would be

�application/resource-lists+xml� for a (RLS) services document. The XCAP

server checks if the resource exists. If the URI resolves to an existing document, the

new content replaces the content selected by the URI resulting in the modi�cation

of the contents. If not, the operation results in the addition of new content.

Adding or modifying elements and attributes works in a similar manner to adding

or modifying documents. To create/replace an element (within an existing doc-

ument) or an attribute (in an existing element of a document), the client con-

structs a URI whose document selector points to the document to be modi�ed.

A node selector is also added to the URI to help identify a single element or at-

tribute. The MIME content types are set to �application/xcap-el+xml� and

�application/xcap-att+xml� respectively.

An illustration of how a PUT operation is performed on a document is shown below:

PUT http://127.0.0.1:8080/mobicents/services/resource-lists/users/

Chiedza/friends.xml HTTP/1.1

Content-Type:application/resource-lists+xml

<?xml version="1.0" encoding="UTF-8"?>

<resource-lists xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance

">

<list name="friends" uri="sip:friends@open-ims.test" subscribable=

"true">

</list>

</resource-lists>

� Retrieving

This is accomplished by performing an HTTP GET request. In order to retrieve

6.3. NETWORK STORAGE OF USER INFORMATION 76

a document, the client sets the request URI to the document URI. In the case of

retrieving an element of a document, the client constructs a URI whose document

selector points to the document containing the element to be fetched. The node

selector identi�es the element to be fetched.

To fetch an attribute in a document, the client constructs a URI whose document

selector points to the document containing the attribute to be fetched. The node

selector contains an expression identifying the attribute whose value is to be fetched.

Retrieving is always followed by a �200 OK� response from the server if the request

was successful.

In the case of retrieving an attribute, the �200 OK� response will contain an

�application/xcap-att+xml� document with the speci�ed attribute.

An illustration of how a GET operation is performed on an attribute is shown

below:

GET http://127.0.0.1:8080/mobicents/services/resource-lists/users/

Chiedza/friends.xml?

resource-lists/list/list/entry[@name="Ruvarashe"]/@uri HTTP/1.1

The server responds:

HTTP/1.1 200 OK

Content-Type:application/xcap-att+xml

Content-Length: ...

sip:Ruvarashe@open-ims.test

� Deleting

Deleting is achieved by invoking an HTTP DELETE operation. To delete a docu-

ment, the client constructs a URI that references the document to be deleted. In a

similar way to creating or replacing a document, the URI is a document URI.

In the case of deleting an element from a document, the client constructs a URI

whose document selector points to the document containing the element to delete.

6.3. NETWORK STORAGE OF USER INFORMATION 77

The node selector identi�es the element to be deleted.

To delete an attribute from the document, the client constructs a URI whose doc-

ument selector points to the document containing the attribute to be deleted. The

node selector evaluates to an attribute in the document to be deleted.

An illustration of how a DELETE operation is performed on an element is shown

below

DELETE http://127.0.0.1:8080/mobicents/services/resource-lists/users/

Chiedza/friends.xml?

resource-lists/list/list/entry[@name="Tasara"] HTTP/1.1

The operations discussed above are invoked through the UI shown in Figure 6.2. The

user supplies parameters through this interface and these are then used to construct the

relevant XCAP requests that trigger the behaviour explained above. For example, if the

user intends to delete a subscriber from a list on the XCAP server, they choose DELETE

as the request method in the UI and �ll in the relevant parameters pertaining to the user.

When the Execute button is pressed, the XCAP client constructs a URI that points to

the location of the speci�ed subscriber and calls the XCAP DELETE operation on that

URI. If the element exists, it is deleted.

6.3.3 Presence Lists

Presence lists are lists of users whose presence status is desired by a watcher. Presence

authorisation policies de�ne rules about which watcher is allowed to subscribe to which

presentity, and what speci�c information they are allowed to access. There are several

ways of accessing presence information for a list, but only two will be discussed. One way

to obtain presence information for the list is to subscribe to a resource which represents

that list. In this case, a RLS has to access this list in order to process a SIP SUBSCRIBE

requesting it as shown in Figure 6.3.

6.3. NETWORK STORAGE OF USER INFORMATION 78

Figure 6.3: Presence implementation using RLS with XCAP

Another way to obtain presence information for the users on the list is for a watcher

to subscribe to each user individually. In this case, it is convenient to have a server

to store the list: when the client boots, it fetches the list from the server. These two

implementations allow a user to access their resource list from di�erent clients, as shown

in Figure 6.3 and Figure 6.4.

6.4. JSAP++ ARCHITECTURE 79

Figure 6.4: JSAP++ Presence implementation with XCAP

The model in Figure 6.4 is the one that we implemented in JSAP++ client because it

was more aligned to the original implementation.

6.4 JSAP++ Architecture

Figure 6.5 shows a high level architectural snapshot of the JSAP++ client that resulted

from the enhancements made to the JSAP.

6.4. JSAP++ ARCHITECTURE 80

Figure 6.5: JSAP++ Architecture

The client comprises the following components:

� User interface: it is implemented by the NISTMessenger class, and shows the graph-

ical user interface that allows the user to interact with the client.

� Client application core logic: it is implemented by the MessageListener class. It

consists of a �nite state machine that receives events from GUI and from the SIP

stack, and coordinates the execution of all the other components.

� SIP implementation: in our case, it is the SIP stack from NIST, which o�ers JAIN

SIP 1.2 standard interface. It also provides the means to manage the presence

information of the UE and associated contacts.

� Group list manager: implements procedures for retrieving, updating, and storing

user data on the network.

� SDP manager: is a custom wrapper software layer that abstracts and simpli�es the

functionality in the JAIN SDP API for the purposes of our client application.

� SDP implementation: in our case, it is the SDP stack from NIST, which implements

the JAIN SDP interface.

6.5. SUMMARY 81

� VoiceTool and VideoTool: These are custom components which we created to o�er

simple APIs for capturing/presenting the voice or media streams respectively, and

transmitting/receiving them over the network. They use the services of Gstreamer.

� Gstreamer-Java implementation: We used the Gstreamer-Java interface for all our

media related handling. This piece of software implements the Gstreamer presenta-

tion API and the Gstreamer RTP API.

6.5 Summary

This chapter began by reviewing the way JSAP+ handled presence and identifying the

areas where the client needed to be modi�ed to allow for an improved presence model.

We then provided context and discussed the work done to provide support for storing user

data on the network, particularly relating to presence. This was achieved by extending

the JSAP+ client to make use of XCAP for the storage and retrieval of user data.

In the next chapter, a detailed discussion on the design and development of the RUCRG

IMS client will be given.

Chapter 7

Adding IMS Compliance

The previous chapter discussed how XML Con�guration Access Protocol (XCAP) support

was integrated into the JSAP+ client for the purposes of managing application con�g-

uration data. The result of this upgrade was an enhanced JSAP+ client that we called

JSAP++. This chapter will provide details on how JSAP++ was transformed from a

basic SIP client to an IMS compliant client which we now call the RUCRG IMS client.

7.1 Development Process

According to 3GPP IMS requirements, an IMS compliant end user device has to provide

AKA (authentication and key agreement)v1/2-MD5 authentication, IMS SIP signalling

support, basic voice and video, IM and presence [32].

Now that we had a working SIP client that could reliably register with a SIP registrar,

setup and terminate SIP sessions using reliability mechanisms, send and receive voice and

video using Gstreamer media API as well as manage application con�guration data on

the network using XCAP, the next step was to make the it IMS compliant. In order to

make JSAP++ IMS compliant we needed to add the ability to:

� Register with an the IMS network, while preserving its ability to register with an

ordinary SIP registrar.

� Establish IMS sessions while preserving its ability to setup sessions through ordinary

SIP proxies.

� Negotiate media codecs during IMS session establishment using the SDP o�er/answer

mechanism.

82

7.2. IMS REGISTRATION 83

� Cancel an early IMS session using the CANCEL method while preserving its ability

to cancel ordinary SIP sessions.

� Exchange voice or voice and video with another IMS client.

� Terminate an IMS session using the BYE method while preserving its ability to

terminate ordinary SIP sessions.

The following sections describe how these capabilities were integrated into JSAP++.

7.2 IMS Registration

As alluded to in chapter 2 (section 2.3.4), it is necessary for an IMS subscriber to be

registered to his/her home IMS network in order to access IMS services. This meant that

support for AKAv1/2-MD5 needed to be added to the JSAP++ client to make it IMS

compliant. In this section, we discuss how AKAv1-MD5 was integrated into JSAP++.

To preserve the currently working MD5-based SIP authentication, we built IMS registra-

tion on top of the current SIP authentication mechanism. The MD5 infrastructure was

reused. Only the AKA parameters and supporting methods that were not part of the

MD5 scheme were added to the client. AKA, which was discussed earlier, is based on one

time password generation mechanisms for HTTP Digest Authentication [40].

A shared secret (K) is established beforehand between the client/user and the authenti-

cation centre (AuC). The secret key is the password that the user enters when challenged

to authenticate. A user registers with their home IMS network. If the user is not known

to the domain, such a user will be unable to register.

As discussed in chapter 2, the P-CSCF serves as the initial SIP proxy into the IMS. Our

IMS client (which we will also refer to as a UE, user equipment) has to send an initial

REGISTER request to a P-CSCF that will forward requests on its behalf. This requires

that the client establish the address of the P-CSCF before sending the request. Chapter

2 highlighted the di�erent mechanisms that are used to determine what P-CSCF to use

for sending requests. In our case, the user manually con�gures the IP address of the

P-CSCF as shown in the con�guration screen in Figure 7.12 (section 7.7) below. The user

also con�gures in the GUI, the public and private identities (public identity is routing

requests to a user while the private identity used for identifying the user's subscription

and authentication purposes as explained in chapter 2).

7.2. IMS REGISTRATION 84

The client programmatically establishes the IP address of the machine that it is being

run on when it is started. It also programmatically con�gures the client and server ports.

These ports will be included in the REGISTER message sent to the P-CSCF.

The user/subscriber sends a REGISTER request by selecting the Register menu item on

the GUI. The UE also adds a Via header to record that the message has traversed the UE.

The REGISTER message also includes the server and client ports. The message itself is

sent on the standard SIP port (5060) unless a di�erent port is explicitly speci�ed. The

REGISTER message also includes the private identity of the user. This identity will be

used by the S-CSCF and HSS to identify the user.

The trace below shows the initial REGISTER request sent from the RUCRG IMS client

to the P-CSCF:

REGISTER sip:146.xxx.xxx.xxx SIP/2.0

Call-ID: 6b0a822f0e25a6f60ed726d3d6d86b27@146.xxx.xxx.xxx

CSeq: 1 REGISTER

Max-Forwards: 70

Expires: 3600

User-Agent: RUCRG IMS Client Version 1

Contact: <sip:chiedza@146.xxx.xxx.xxx:5060;transport=udp>

Via: SIP/2.0/UDP 146.xxx.xxx.xxx:5060;branch=z9hG4bK71a3d2dd1089c2

2f489bb25d8112cbd2

Authorization: Digest response="",username="chiedza@open-ims.test",

nonce="",realm="open-ims.test",uri="sip:146.xxx.xxx.xxx",algorithm=

AKAv1-MD5

From: "chiedza" <sip:chiedza@open-ims.test>;tag=113324400

To: "chiedza" <sip:chiedza@open-ims.test>

Content-Length: 0

The sections highlighted in italics (in the traces) show the major di�erences between

SIP and IMS messages. We will highlight these di�erences in the same manner for all

subsequent traces.

When the P-CSCF receives the REGISTER message, it adds a Via header and removes

the Route header. The REGISTER message will then be routed to the IP address speci�ed

in the request. The P-CSCF then forwards the request to the I-CSCF.

7.2. IMS REGISTRATION 85

The I-CSCF queries the HSS to assign the S-CSCF and the HSS replies with a number

of possible S-CSCFs. The I-CSCF then selects an S-CSCF based on the capabilities of

S-CSCFs provided by the HSS. Once the S-CSCF assignment is completed, the I-CSCF

forwards the REGISTER message to the selected S-CSCF.

The S-CSCF queries the HSS for the user's authentication details. The HSS passes the

random number (RAND), authentication token (AUT), signed result (XRES), cipher key

(CK) and integrity key (IK) to the S-CSCF. At this point we are not yet authenticated,

so our registration request is rejected by the S-CSCF. The S-CSCF then challenges our

UE with a �401 Unauthorized� response, which contains a nonce value, RAND, AUTN,

CK and IK.

The �401 Unauthorized� message is passed to the P-CSCF, which in turn saves the CK and

IK then removes them from theWWW-Authenticate header. These keys will be needed for

establishing the IPSec security association. The P-CSCF then passes the nonce, RAND

and AUTN values to the subscriber.

When the UE receives the �401 Unauthorized� response, it prompts the user to enter the

K which the user and the AuC exchanged beforehand. Figure 7.1 shows the interface that

the user is presented with in order to enter their credentials.

7.2. IMS REGISTRATION 86

Figure 7.1: Authentication Screen

Using the K and a sequence number generated by the AuC of the home network after

the �rst REGISTER request is received, the UE veri�es the AUTN. If the veri�cation is

successful, the network has been authenticated by our client.

Using the nonce, K and RAND as input to the AKA algorithm, the UE then computes an

authentication response (RES). The RES is sent to the S-CSCF in a second REGISTER

request. This REGISTER message contains the RES in the Authorization header as shown

in the trace for a second REGISTER request sent from the RUCRG IMS client:

REGISTER sip:146.xxx.xxx.xxx SIP/2.0

Call-ID: 6b0a822f0e25a6f60ed726d3d6d86b27@146.xxx.xxx.xxx

CSeq: 2 REGISTER

Max-Forwards: 70

Expires: 3600

P-Access-Network-Info: IEEE-802.11

7.2. IMS REGISTRATION 87

User-Agent: RUCRG IMS Client Version 1

Supported: path

Contact: <sip:chiedza@146.xxx.xxx.xxx:5060;transport=udp>

Via: SIP/2.0/UDP 146.xxx.xxx.xxx:5060;branch=z9hG4bK71a3d2dd1089c2

2f489bb25d8112cbd2

Authorization: Digest response="a782123e7eeb8afedc44a1025acca6ce",

cnonce="88cec05a31ef9d62b459f0261f87139b",username="chiedza@open-

ims.test",auts="8As0A4UvPmSRpPTGLzQ=",nc=00000001,qop=auth-int,

nonce="Ed80Mh8tIo+QqSk6v5UtE6k06j77WAAApFsbVQ29Hy0=",realm="open-

ims.test",uri="sip:146.xxx.xxx.xxx",algorithm=AKAv1-MD5

From: "chiedza" <sip:chiedza@open-ims.test>;tag=113324400

To: "chiedza" <sip:chiedza@open-ims.test>

Content-Length: 0

The RES is delivered to the server in the second REGISTER request. Upon receiving the

request, the S-CSCF compares the RES with the XRES. If the two match, the S-CSCF

registers the user's public identity and associates it with the client's IP address and port

number. The S-CSCF replies with a �200 OK� message which is relayed back to the P-

CSCF. This message serves to inform the user that they have been successfully registered

on the network. The �200 OK� response to the REGISTER request also contains the

Service-Route header. The Service-Route header conveys the name of the home service

proxy (S-CSCF) where the UA must direct its requests. As soon as the UE receives

this response, that is, the �200 OK� to the REGISTER, it stores the S-CSCF record

and includes both the P-CSCF name and the S-CSCF name in the Route header of all

outgoing requests [11]. Once the above steps have been performed successfully, the UE is

ready to establish a SIP session to access IMS services. The IMS registration of the user

is now complete.

The sequence diagram in Figure 7.2 summarises the IMS registration process followed by

the RUCRG IMS client. The call �ow shows Chiedza registering in her home network.

The IMS registration goes through the following sequence:

1. IP address assignment to the client.

2. Unauthenticated IMS registration attempt: the client attempts an IMS registration

but is challenged by the IMS network to authenticate itself.

7.2. IMS REGISTRATION 88

3. Authenticated IMS registration: registration is reattempted but this time the user

is successfully authenticated and accepted.

Figure 7.2: IMS Registration (Non-roaming Case)

When this is compared to standard SIP registration procedure in Figure 7.3 the di�erences

in the setup procedures are immediately evident.

7.2. IMS REGISTRATION 89

Figure 7.3: SIP Registration

In order to avoid multiple registrations, the IMS client displays a progress screen showing

a Please wait message while it communicates with the IMS network entities. If the IMS

registrar or the whole IMS network is not running, the client will time-out after 30 seconds,

and allow the user to try again.

De-registration

If the user decides to de-register the client he/she can do so by selecting the UnRegister

menu item as shown in Figure 7.4.

7.2. IMS REGISTRATION 90

Figure 7.4: De-registration menu

When the UnRegister menu item is selected, a REGISTER request will be sent to the

IMS network. This initial REGISTER request will be challenged by the network in a

similar manner to a normal REGISTER request. However, when the client receives the

�401 Unauthorized� response, the user is not prompted to enter their credentials since

these were cached during registration. As a result the de-registration is completed in the

background. The user will be presented with the Unregistered screen as soon as the �200

OK� response for the second REGISTER request is received.

The trace below shows the de-registration request sent from the RUCRG IMS client to

the IMS network:

REGISTER sip:146.xxx.xxx.xxx

SIP/2.0 Call-ID: ee948510f0068dd4ea2b13d20d1d887a@146.xxx.xxx.xxx

Max-Forwards: 70

Expires: 0

P-Access-Network-Info: IEEE-802.11

User-Agent: RUCRG IMS Client Version 1

Supported: path

7.3. IMS SESSION ESTABLISHMENT 91

Contact: <sip:chiedza@146.xxx.xxx.xxx:5060;transport=udp>

CSeq: 4 REGISTER

Via: SIP/2.0/UDP 146.xxx.xxx.xxx:5060;branch=z9hG4bK74afcb1fb6d877

77dc71662af19d602f

Authorization: Digest response="c397ba38c6ae1278c78ba68ffcb283e3",

cnonce="88cec05a31ef9d62b459f0261f87139b",username="chiedza@open-

ims.test",auts="NbX+DUho2Y/CbrGjmmY=",nc=00000001,qop=auth-int,

nonce="/8XmN4COXSh8r5G755XIEA+TnZeAFQAAeibc6GKLR0g=",realm="open-

ims.test",uri="sip:146.xxx.xxx.xxx",algorithm=AKAv1-MD5

From: "chiedza" <sip:chiedza@open-ims.test>;tag=1429718272

To: "chiedza" <sip:chiedza@open-ims.test> Content-Length: 0

From the trace one can see that the REGISTER request for de-registration is similar to

the one sent for registration. The only di�erence is the value of the Expires header, which

is set to zero.

7.3 IMS Session Establishment

In this section, we discuss how IMS session establishment mechanisms were implemented

in JSAP++ to transform it into the RUCRG IMS client. Like a SIP UA, an IMS client

is made up of the user agent client (UAC) and the user agent server (UAS). The UAC

generates the requests and processes the responses, while the UAS processes the requests

and then generates the responses.

There are two issues that complicate IMS call setup procedures when compared with SIP

call setup procedures:

1. IMS calls have quality of service (QoS) requirements.

IMS strives to o�er a quality of experience equal to, if not better than, traditional

circuit-switched telephony [11]. Therefore, the 3GPP have stipulated a strict call

setup procedure in 3GPP TS 23.218 [4] that ensures that both the originating and

terminating access networks have provisioned adequate channels to ensure minimal

delay and packet loss, which would negatively impact the media quality. What this

implies is that the session is not established until the originating client's network

and the remote client's network have provisioned the resources required for that

call.

7.3. IMS SESSION ESTABLISHMENT 92

2. Reliability is mandatory in IMS calls.

It is a requirement that all IMS provisional responses are sent reliably. This is

because provisional responses may contain SDP answers as a result of SDP o�ers

sent in INVITE requests, as discussed in chapter 5. Thus, it is crucial for an SDP

answer (to an SDP o�er that was in an INVITE) to be in a reliable non-failure

message in order to guarantee its delivery. Fortunately, the reliability mechanisms

implemented in chapter 5 are applicable to IMS, save for the fact that they are

e�ected by default.

After a user is successfully registered with their home IMS network (i.e. after receiving a

�200-OK� response to the REGISTER request), the client displays a Ready-for-calls screen,

to allow the user to establish a session with another IMS client. Figure 7.5 depicts the

RUCRG IMS client display after a successful registration to IMS network.

Figure 7.5: Ready for calls

From this Ready-for-calls screen, there are two possibilities that can result in the estab-

lishment of a communication session:

1. The user can establish a session by entering a destination SIP URI, followed by

pressing the telephone icon shown in the upper right hand corner.

2. The user can respond to an incoming call.

7.3. IMS SESSION ESTABLISHMENT 93

In other words, our client can take the role of a UAC or a UAS. Both scenarios will be

discussed in the following sections.

7.3.1 UAC Behaviour

In this section, our client initiates the call and will be referred to as the caller's UE/the

client.

When the telephone icon is pressed, the client displays the Invite screen, shown in Figure

7.6. This interface consists of two buttons which allow the user to make a choice between

establishing an audio call or an audio/video call with the remote client.

Figure 7.6: Invite Screen

The client prepares a list of supported voice codecs or voice and video codecs depending

on the choice made by the user. This information is included as the �rst SDP o�er in the

initial INVITE as discussed in chapter 5. The client sends the INVITE to the destination

SIP URI selected by the user.

The trace below shows an INVITE request that was sent from the RUCRG IMS client

(the user is Chiedza) to another IMS Client B (the user is Tino).

INVITE sip:tino@open-ims.test SIP/2.0

7.3. IMS SESSION ESTABLISHMENT 94

Call-ID: f81a412b16968b26f684d579b488f30b@146.xxx.xxx.xxx

CSeq: 1 INVITE

From: "chiedza" <sip:chiedza@open-ims.test>;tag=113324400

To: <sip:tino@open-ims.test>

Via: SIP/2.0/UDP 146.xxx.xxx.xxx:5060;branch=z9hG4bK0eecb09deaa5ad2cc

8f0689bfde894fc

Max-Forwards: 70

Contact: <sip:chiedza@146.xxx.xxx.xxx:5060;transport=udp>

Route: <sip:146.xxx.xxx.xxx:4060;transport=udp>,<sip:orig@scscf.open-

ims.test:6060;lr>

Allow: INVITE,ACK,CANCEL,BYE,MESSAGE,PRACK,UPDATE

P-Preferred-Identity: "chiedza" <sip:chiedza@open-ims.test>

Supported: 100rel,precondition

P-Access-Network-Info: IEEE-802.11

User-Agent: RUCRG IMS Client Version 1

Content-Type: application/sdp

Content-Length: 737

The message contains Route entries for the UE and the S-CSCF address that was extracted

from the Service-Route header in the registration �200 OK� message. To and From headers

are also included in the message. These headers do not play a role in call processing. In

the above trace, the SDP part has been stripped from this message and will be discussed

later.

The INVITE is received by the home P-CSCF, which veri�es that the preferred public

identity that we speci�ed in the INVITE request is currently registered. The P-CSCF

then queries the DNS to obtain the IP address of the S-CSCF in the called party's home

network. The INVITE request is relayed to the called party's UE through the home IMS

network and through the terminating IMS network elements.

When the called party's UE receives the INVITE, it examines the codec(s) list in the SDP

and prepares a list of codec(s) common to both UEs (caller and callee). The common

codec(s) list is included in the �183 Session Progress� response sent by the called party's UE

responds. The �183 Session Progress� message retraces the path of the original INVITE.

Each node that the �183 Session Progress� message traverses removes its own entry from

7.3. IMS SESSION ESTABLISHMENT 95

the Via header and forwards the message to the via entry at the top. As the message

moves through the network, the Record-Route header remains unchanged.

When the caller's UE receives the �183 Session Progress� from the called party, it extracts

the list of common codec(s), examines it and selects the most appropriate codec(s) to

activate. A PRACK request, which includes the list of the selected codec(s), is sent back

to the called party's UE.

According to 3GPP TS 27.060 [1], information about the required resources must be pro-

vided at this point to the network, to ensure a successful context activation attempt. The

RUCRG testbed, does not support resource reservation but it remains important that

the signalling is able to handle this requirement. The UE therefore assumes that the re-

quired resources have been provisioned without actually querying the network about their

availability. As a result, instead of indicating in the PRACK that the resources needed

for meeting the QoS requirements of the session are not available as per speci�cation, we

indicate that we have met the QoS requirements.

The called party's UE responds to the PRACK with a �200 OK� message, in which it

also indicates that QoS for the session is met on its side. The �nal codec(s) at the called

side is(are) also decided and relayed in the �200 OK� message. The Packet Data Protocol

(PDP) context for the caller and called party are now active. The QoS for the call has

now been met and all the resources for the call are in place. At this point, the called

party's UE rings to notify the called party of the incoming call. The called party's UE

sends the caller's UE a �180 Ringing� response to inform the caller that the called party

is being alerted.

The caller's UE acknowledges the ringing message with a PRACK and the called party's

UE responds to it with a �200 OK� message.

When the call has been answered, the remote UE noti�es the caller by sending a �200

OK� message to the INVITE. The caller's UE acknowledges the �200 OK� message with

an ACK request to complete the session establishment. At this point, the call is ready to

enter conversation mode.

7.3.2 UAS Behaviour

In this section our client receives an incoming call. We will refer to our client as the called

party's UE/called UE.

When the called party's UE receives an incoming call it examines the SDP list of available

codecs. It prepares a list of codecs that are common between the UEs. This list is included

7.3. IMS SESSION ESTABLISHMENT 96

in the �183 Session Progress� message that is sent to the caller's UE. The contact address

in the �183 Session Progress� message is set to the called party's IP address. The called

UE copies the Via and Record-Route headers from the received INVITE and sends the

response to the home P-CSCF.

The P-CSCF removes its own Via header entry and addresses the message to the top Via

header (terminating S-CSCF in this case). As mentioned in the previous section, the �183

Session Progress� message retraces the path of the original INVITE because we did not

change the Via and the Record-Route headers that we received in the INVITE.

Each node the response traverses removes its own entry from the Via header and forwards

the message to the via entry at the top until the �183 Session Progress� response reaches

the caller's UE. The Record-Route header remains unchanged.

The caller's UE then responds with a PRACK request to inform the called party's UE

about the codec(s) selected for the session. The called party's UE responds to the PRACK

with a �200 OK� message to indicate that QoS for the session is met on its side. This

signi�es that the called party has accepted the proposed codec(s). Similar to UAC be-

haviour, the PDP contexts for both the caller and the callee are active. The QoS for the

call has now been met. All the resources for the call are in place.

At this point the called UE displays the incoming call screen to the called party as shown

in Figure 7.7 and alerts the called party of the incoming call by ringing.

Figure 7.7: Incoming Call Screen

7.3. IMS SESSION ESTABLISHMENT 97

The called UE then sends a �180 Ringing� response to inform the caller that the called

party is being alerted. When the caller acknowledges the ringing message with a PRACK,

the called party's UE responds to the PRACK with a �200 OK� message.

When the called party answers the call, the called UE noti�es the caller by sending a �200

OK� message to the INVITE. The caller's UE then acknowledges the �200 OK� message

with an ACK request to complete the session establishment. At this point the call is now

ready to enter conversation mode.

Figure 7.8a provides a summary of how the call setup procedure is handled in the RU-

CRG IMS client while Figure 7.8b shows how it is handled in JSAP++ using reliability

mechanisms.

98
F
ig
u
re

7.
8:

S
es
si
on

se
tu
p
C
al
l
F
lo
w
s

(a
)
IM

S
S
es
si
o
n
se
tu
p

(b
)
S
IP

S
es
si
on

se
tu
p
U
si
n
g
R
el
ia
b
il
it
y
M
ec
h
a
n
is
m
s

7.4. SDP CODEC NEGOTIATION IN IMS 99

The di�erences between these call setup procedures are immediate. These �gures also

make clear the complexity of the IMS call setup procedure when it is compared to the

SIP call setup.

7.4 SDP Codec Negotiation in IMS

In chapter 2, we established that SDP speci�es a format for exchanging streaming related

parameters between SIP subscribers. In this section, we discuss the signalling interactions

between two IMS subscribers to illustrate how IMS codec selection using SDP was imple-

mented in RUCRG IMS client. The discussion covers two phases of the SDP negotiation:

1. Codec selection between the calling and called IMS subscribers.

2. SDP signalling involved in exchanging QoS information.

As mentioned earlier, the IMS call setup starts with an initial INVITE request sent from

the UAC to the P-CSCF. This INVITE contains a media o�er, as discussed in the previous

section. Similar to basic SIP, the presence of the SDP payload in the INVITE request

is indicated by the application/sdp value in the Content-Type header, as illustrated in the

INVITE request in the section 7.3.1.

The user initiates a call to a selected destination SIP URI. The caller's UE includes all

the codecs that it supports in the SDP o�er of the initial INVITE.

A trace of the SDP o�er sent from the RUCRG IMS client is shown below, with media

attribute �elds integrated.

v=0

o=chiedza 960784 962153 IN IP4 146.xxx.xxx.xxx

s=-

c=IN IP4 146.xxx.xxx.xxx

t=0 0

m=audio 4152 RTP/AVP 0 3 9 4 5 6 8 15 18

b=AS:25

a=curr:qos local none

a=curr:qos remote none

a=des:qos mandatory local sendrecv

a=des:qos none remote sendrecv

7.4. SDP CODEC NEGOTIATION IN IMS 100

a=rtpmap:0 PCMU/8000

a=rtpmap:3 GSM/8000

a=rtpmap:9 G722/8000

a=rtpmap:4 G723/8000

a=rtpmap:5 DVI4_8000/8000

a=rtpmap:6 DVI4_16000/16000

a=rtpmap:8 PCMA/8000

a=rtpmap:15 G728/8000

a=rtpmap:18 G729/-1

The UE sends the initial INVITE with nine voice codecs. It also indicates that it will need

to allocate resources to meet the QoS requirements for codecs. The �m=� line speci�es

the caller-port 4152, the transport type (RTP/AVP) and the supported codecs IDs (0

3 9 4 5 6 8 15 18). The �a=rtpmap� lines map the codec IDs 0, 3, 9, 4, 5, 6,

8, 15 and 18 to PCMU, GSM, G722, G723, DVI4_8000, DVI4_16000, PCMA, G728 and

G729. The �a=curr� lines show that the QoS for the caller (local) and the called party

(remote) are not currently met. The �rst �a=des� line indicates that the caller (local)

needs to allocate resources in send and receive directions to meet the QoS requirements

for the codec. The last �a=des� line indicates that the caller has no speci�c requirements

for the called party.

The called party's UE examines the list of available codecs and prunes the list by excluding

codecs that it does not support. This list will be included in the �183 Session Progress�

message sent back to the caller.

A trace of the SDP answer sent from the RUCRG IMS client is shown below, with media

attribute �elds integrated.

v=0

o=chiedza 960784 962153 IN IP4 146.xxx.xxx.xxx

s=-

c=IN IP4 146.xxx.xxx.xxx

t=0 0

m=audio 5412 RTP/AVP 0 3 9 4 8 15

b=AS:25

a=curr:qos local none

a=curr:qos remote none

a=des:qos mandatory local sendrecv

7.4. SDP CODEC NEGOTIATION IN IMS 101

a=des:qos mandatory remote sendrecv

a=conf:qos remote sendrecv

a=rtpmap:0 PCMU/8000

a=rtpmap:3 GSM/8000

a=rtpmap:9 G722/8000

a=rtpmap:4 G723/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:15 G728/8000

From the SDP trace above, the called party's UE replies back with 0, 3, 9, 4, 8 and

15 in the �m=� line. Codecs 5, 6, and 18 are removed since they are not supported. The

called UE also uses the �a=curr� lines to specify that QoS for the session is currently not

met. Note that the �a=des� lines now signify that the called party (local) also needs to

allocate resources for meeting the QoS. This message also instructs the caller to inform the

called party when the resources for meeting the QoS are acquired. This QoS con�rmation

is being requested in the line "a=conf".

When the caller's UE receives the �183 Session Progress�, it examines the received common

codec(s) list and selects the codec(s) to activate.

v=0

o=chiedza 960784 962153 IN IP4 146.xxx.xxx.xxx

s=-

c=IN IP4 146.xxx.xxx.xxx

t=0 0

m=audio 4152 RTP/AVP 0

b=AS:25

a=curr:qos local sendrecv

a=curr:qos remote none

a=des:qos mandatory local sendrecv

a=des:qos none remote sendrecv

a=rtpmap:0 PCMU/8000

The caller's UE now sends a PRACK to inform the called party about the selected

codec(s). The PCMU codec with frequency 8000 has been selected for use in this session.

This is signalled by the �m=� and �a=� lines. Due to the fact that the Rhodes University

testbed does not support resource reservation as explained in the previous section, the

caller's UE indicates that the QoS for the call has now been met and all the resources for

7.4. SDP CODEC NEGOTIATION IN IMS 102

the call are in place. The caller's PDP context gets activated, and the caller's UE noti�es

the called party's UE that it can now meet the QoS in the send and receive direction. The

�a=curr:qos local sendrecv� signals that caller's PDP context has been established.

Now that the caller has selected the codec(s) to be used and indicated that resources have

been reserved for the selected codec, the called party responds to the PRACK with a �200

OK� message. The message also indicates that QoS for the session have been met by the

called party.

v=0

o=chiedza 960784 962153 IN IP4 146.xxx.xxx.xxx

s=-

c=IN IP4 146.xxx.xxx.xxx

t=0 0

m=audio 5412 RTP/AVP 0

b=AS:25

a=curr:qos local sendrecv

a=curr:qos remote sendrecv

a=des:qos mandatory local sendrecv

a=des:qos mandatory remote sendrecv

a=conf:qos remote sendrecv

a=rtpmap:0 PCMU/8000

Note that the �a=curr� line for the called party (local) has been updated to indicate

that called end QoS is also met.

Now all the resources for the call are in place, the called party's UE rings to notify

the called party (callee) of the incoming call. The called party's UE also sends us �180

Ringing� response to inform the caller that the called party is being alerted. The caller's

UE acknowledges the ringing message with a PRACK and the called party's UE responds

to the PRACK with a �200 OK� message.

When the called party answers the call, their UE noti�es us of this event by sending a

�200 OK� message to our INVITE. Our UE then acknowledges the �200 OK� message

with an ACK request to complete the session establishment. At this point, the call is now

ready to enter conversation mode.

7.5. SESSION CANCELLING 103

7.5 Session Cancelling

In this section, we discuss how the SIP CANCEL in JSAP++ was transformed to be IMS

compliant. As usual, our client acts as both a UAC and a UAS.

Cancelling a SIP session is performed using the SIP CANCEL method as speci�ed in RFC

3261 [54]. In the case of the RUCRG IMS client, a user can cancel an INVITE request by

pressing the Cancel button in the GUI. During session establishment, a CANCEL request

can only be sent from the moment we receive the �rst provisional response, up until just

before we receive the �nal response as illustrated in Figure 7.9. Furthermore, we can only

cancel sessions that we originated as speci�ed in RFC 3261.

Figure 7.9: Points when CANCEL is enabled for RUCRG IMS client

In order for the CANCEL to traverse the correct IMS network elements, the P-CSCF

name and the S-CSCF names are included in the Route header of the CANCEL request.

The S-CSCF name is the name of the home service proxy that we received in the Service-

Route header during registration. Figure 7.10 illustrates how a CANCEL request is sent

7.6. SESSION ENDING 104

from the RUCRG IMS client to another IMS client.

Figure 7.10: RUCRG IMS client CANCEL sequence diagram

7.6 Session Ending

In this section, we discuss how the SIP BYE in JSAP++ was transformed to be IMS

compliant. As in the CANCEL case, our client acts as both a UAC and a UAS.

A SIP session is ended using the SIP BYE method as speci�ed in RFC 3261 [54]. In the

case of the RUCRG IMS client, a user can terminate a request by pressing the Stop button

in the GUI, as shown in Figure 7.11. Once the Stop button has been pressed, the UAC in

the RUCRG IMS client will send a BYE request. Following the requirements of RFC 3261

[54], our IMS client does not send BYE requests outside of Dialogs. The client can only

send BYE requests for either con�rmed or early Dialogs if the call was locally initiated. If

the call was originated remotely, the client can send BYE requests on con�rmed Dialogs,

but not on early Dialogs. Similar to the CANCEL, the P-CSCF name and the S-CSCF

name are included in the Route header of the BYE request. Once again, the home service

proxy name is established during registration from the Service-Route header.

7.7. PUTTING THINGS TOGETHER 105

Figure 7.11: RUCRG IMS client BYE sequence diagram

The �nal architecture of the RUCRG IMS client is the same as the one we presented at

the end of chapter 6 (in section 6.4) but the call �ow has changed to suite both SIP and

IMS.

7.7 Putting Things Together

When the RUCRG IMS client application is started, the GUI is loaded through the

NISTMessenger class. NISTMessenger creates an instance of MessageListener whose

constructor method contains the parameters needed to initialise the JAIN SIP environ-

ment. Once the system has been initialised, MessageListener is ready to receive events

from the SipProvider or from the user interface. The SIP port that will be used is

introduced through the JSAPCon�g.xml, and communicated to the MessageListener.

The port always refers to a UDP port because we will always use UDP as the network

transport. In order to create the Listening Point, the client needs to pass the IP ad-

dress, port, and transport as an argument. The port and server address are found in the

JSAPCon�g.xml, whereas the IP address is directly obtained by the client.

Figure 7.12 shows the RUCRG IMS client display before the user can register with the

home IMS network. As shown in the �gure, the client is designed to allow the user to

choose between registering with the IMS or an ordinary SIP network. Furthermore, the

menu allows the user to terminate a registration or exit the application completely.

7.7. PUTTING THINGS TOGETHER 106

Figure 7.12: IMS Client Display Before Registration

The RUCRG IMS client is con�gured to �rst prompt the user to register, if they are not

already registered before they can perform key IMS procedures like session initiation. A

REGISTER request is sent to the home IMS registrar, once the Register menu item has

been selected. If the user selects the Exit menu item, the RUCRG IMS client application

will be closed.

Once the GUI is loaded, the user has to choose whether they want to start a SIP or an

IMS session. At that point, the user has to �ll in some con�guration parameters (server

port, his or her own Address-of-Record and the server address in the GUI etc.), and

then press the Apply button. This GUI event causes the con�gured parameters to be

saved in the JSAPCon�g.xml �le in the user directory and updated in the Properties.

After doing so, the user can press the Register menu item, causing the client to send a

REGISTER request to the identi�ed server. If the request has been sent successfully, the

user should see a dialog box that shows two �elds requiring the user-name and password.

If the correct credentials are provided, the user is successfully bound to the supplied IP

address and port.

As stated before, registration is the �rst step towards accessing IMS services. After a

successful registration to the home IMS network, an Invite screen, which allows the user

to establish a session, is displayed. After a successful invitation, the call is started.

Pressing the End command on the call screen will end the communication.

7.7. PUTTING THINGS TOGETHER 107

The main �ow diagram of the UAC side of IMS Client is shown in Figure 7.13. The

diagram shows the �ow of procedures and events to be performed by our IMS client after

a successful registration, the creation of the session and the ending of the session.

Figure 7.13: IMS UAC Main Flow Diagram

7.8. SUMMARY 108

7.8 Summary

In this chapter, we presented how IMS functionality was added to JSAP++ to come up

with the RUCRG IMS client. We also explained how some important SIP extensions were

used such as Route, P-Preferred-Identity , P-Access-Network-Info.

In sum, this chapter showed how we transformed JSAP from a very basic SIP client with

unsatisfactory signalling and media support, into an IMS compliant client with robust and

complete signalling and media support. In the next chapter, we will present the tests that

were carried out on the RUCRG IMS client to test its conformance and interoperability.

Chapter 8

RUCRG IMS Client Testing

Chapters 5, 6 and 7 provided details of the implementation of the functional IMS client

prototype called the RUCRG IMS client. This chapter presents the results of the various

compatibility tests that we performed between the RUCRG IMS client, SIP application

servers and other freely available IMS and/or SIP clients. The chapter also details the tests

that were carried out to evaluate the client's conformance with IMS and SIP standards.

8.1 Testing

According to ETSI [17], equipment implementing standardised protocols and services can

be tested in two related but di�erent ways. These are described below:

8.1.1 Conformance Testing

Conformance testing involves establishing the extent to which a device that has not pre-

viously been shown to conform, known as the equipment under test (EUT), complies

with the requirements speci�ed by a particular protocol [17]. There are a number of SIP

conformance test suites that have been developed. For example, ETSI have developed a

SIP test suite in a standardised testing language called Testing and Test Control Notation

version 3 (TTCN-3) [16]. Another SIP conformance test tool is the TAHI project, which

was developed in Japan. However, we failed to �nd a test suite for conformance with IMS.

One of the major problems with test suites is that they cover a great amount of test cases

making it di�cult to choose which tests cases to run. Li et al [34] argue that in the ETSI

test suite each test case corresponds literally to one or two sentences in the SIP protocol

109

8.1. TESTING 110

speci�cation. Additionally, ETSI does not make available the detailed information of the

SIP conformance test system for commercial reasons. This also makes choosing test cases

more complex. On the other hand, the TAHI test suite is based on Perl, which may lead

to problems in understanding and modifying the tests for various purposes. As a result

this thesis used a simple protocol monitor to test for conformance.

8.1.2 Interoperability Testing

Interoperability testing is aimed at assessing the ability of a device, which has not previ-

ously been shown to interoperate (EUT), to support required functionality between itself

and the quali�ed equipment (QE) to which it is connected [17]. The QE is an appli-

cation/device which implements the same protocol as the EUT, but has already been

proven to interoperate with similar applications/devices from other suppliers. Unlike

conformance testing, interoperability testing does not seek to verify the protocol require-

ments. Instead, interoperability tests are performed to ensure correct exchange and use

information between products.

During protocol speci�cation, standardisation bodies may not specify how applications

should behave in a given scenario. Discretion is left to the developer to decide how they

want their application to behave. As such it becomes di�cult to test for conformance

and this may also result in interoperability problems among applications because various

parts of the protocol may be interpreted di�erently by di�erent programmers.

8.1.3 Interoperability with Conformance Monitoring

Combining interoperability with conformance monitoring is one way of dealing with a

situation where a conformance suite is not used. In this case a human interpreter analyses

the protocol monitor output. According to ETSI [17] �... it is valid to consider using the

techniques together to give a combined result.� ETSI [17] further argue that, �... some

limited conformance testing with extensive interoperability testing ... may be useful in

certain situations.� We therefore used this approach in this thesis to test our client. The

test setup is shown in Figure 8.2 (section 8.3). Consequently, our results were obtained

in one single set of experiments.

8.2. TESTING REQUIREMENTS 111

8.2 Testing Requirements

The list of hardware, software and tools used for setting up the experiments are provided

in the following subsections.

8.2.1 Hardware Requirements

Table 8.1 lists the hardware requirements for conducting the experiments.

Table 8.1: Hardware Speci�cations

Desktop Personal Computer

Component Description

CPU Intel® Core� i7-870 2.93 GHz

RAM 4 GB

HDD 500 GB

Network Connection Gigabit Ethernet

Laptop Personal Computer

CPU Intel® Pentium® Processor T4500

RAM 2.5 GB

HDD 250 GB

Network Connection Gigabit Ethernet

8.2.2 Software Requirements

Table 8.2 lists the software that was used for conducting the experiments.

8.2. TESTING REQUIREMENTS 112

Table 8.2: Software Speci�cations

Desktop Personal Computer

Software Description

Operating System Linux Ubuntu 9.10

Java JDK 1.6.0, Java Virtual Machine(JVM)

Netbeans 6.8

Gstreamer 1.4

Laptop Personal Computer

Operating System Microsoft Windows Vista Home Edition/Linux Ubuntu 10.10

Java JDK 1.6.0_23, Java Virtual Machine(JVM)

Netbeans 6.9.1

Gstreamer 1.4

Wireshark A network protocol analyser used to capture network

packets

8.2.3 Testbed Speci�cations

Figure 8.1 captures our testing environment, the RUCRG testbed. The �gure also shows

the position of the RUCRG IMS client within the testbed as well as the access network.

8.3. TEST SETUP 113

Figure 8.1: RUCRG IMS Client Position in RUCRG Testbed

The testbed was originally built for SIP experimentation. A move towards compliance

with IMS was then started and work is still in progress to �nalise the migration. The

IMS part of the testbed comprises the IMS CN, which provides the basic control layer

elements: P-CSCF, I-CSCF, S-CSCF and HSS as discussed in chapter 2.

8.3 Test Setup

The RUCRG IMS client (EUT) was tested within the controlled environment of the

RUCRG testbed described above. Since a registrar was used to locate the users in the

RUCRG testbed, the clients involved in any communication had to be registered with

either the IMS CN or SIP proxy server. Two private user identities were created to be

used within IMS: Chiedza@open-ims.test and Tino@open-ims.test. The clients involved

in the test were hosted on two di�erent machines within the same local area network

(LAN) as shown in Figure 8.2.

8.4. SYSTEM TESTING 114

Figure 8.2: Interoperability Testing with Conformance Monitoring (Adapted from ETSI
[17])

This approach enabled us to run a network protocol monitor (wireshark) on the machine

that our EUT was running on as described earlier. Additionally, this setup enabled us to

carry out conformance tests since we were monitoring all the tra�c generated and received

by the EUT. While this arrangement cannot provide a complete and time e�cient proof

of conformance, analysis of the protocol monitor output was able to show whether the

signalling between the EUT and QE conformed to the appropriate standard(s) throughout

the testing. The EUT was initially deployed on the laptop while it was running Windows.

The experiments were then repeated with the EUT deployed on the laptop running Linux

Ubuntu. The QEs were deployed on the personal computer. Among the QEs used were

two IMS clients (Mercuro IMS client and UCT IMS client), four SIP clients (Twinkle,

Ekiga, GRANDSTREAM GXV3140 and SJphone), FOKUS IMS Core as the IMS CN

and Kamailio as the SIP proxy. After registration, either one of the client applications

(QE or EUT) was used to initiate requests, while the other responded to them.

8.4 System Testing

We have already alluded to the fact that both conformance and interoperability are im-

portant approaches of testing standardised protocol implementations. In this section,

we describe in detail the basic conformance and interoperability tests that were carried

out between the RUCRG IMS client and freely available: SIP proxy servers (Kamailio),

SIP clients (Twinkle, Ekiga), IMS core networks (FOKUS IMS Core) and IMS clients

(Mercuro IMS client and UCT IMS client). We de�ned test cases for IMS/SIP regis-

tration and session initiation, media support, presence support and IM support. These

8.4. SYSTEM TESTING 115

cases were based on end-to-end systems testing, that is, higher level functionality, rather

than on speci�c protocol requirements. Each experiment is described using the following

structure:

� Entities involved.

� Test purpose.

� Preconditions.

� Result.

The test cases that we de�ned were not meant to provide exhaustive testing of all facets

of SIP protocol operation. Instead, we chose scenarios that provided coverage of the

functionality that we implemented in the EUT.

8.4.1 Endpoint Registration with a Registrar

8.4.1.1 Entities Involved

UE (EUT), IMS CN (P-CSCF, S-CSCF, I-CSCF and HSS), SIP proxy.

8.4.1.2 Test Purpose

To evaluate registration capabilities of the EUT with Kamailio (acting as the SIP registrar)

as well as with FOKUS IMS Core (acting as the IMS registration server).

8.4.1.3 Preconditions

EUT is pre-con�gured with the proxy server it is supposed to send registration requests.

8.4.1.4 Results

SIP Registration

Since the JSAP client already supported ordinary SIP registration, the aim of this test

was to make sure the client could still successfully register with any ordinary SIP proxy

server after modi�cations had been made to the code.

8.4. SYSTEM TESTING 116

Figure 8.3: Test Arrangement for SIP Registration

The results of these tests are presented in Table 8.3.

117

T
ab
le
8.
3:

S
IP

R
eg
is
tr
at
io
n
T
es
t
R
es
u
lt
s

T
e
s
t
C
a
s
e

T
e
s
t

R
e
s
u
lt

E
U
T
re
g
is
tr
a
ti
o
n

w
it
h
th
e
S
IP

re
g
is
tr
a
r

(K
a
m
a
il
io
)

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a

R
E
G
IS
T
E
R

re
q
u
es
t
to

th
e

R
eg
is
tr
a
r

E
U
T
su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�4
0
1

U
n
a
u
th
o
ri
ze
d
�

re
ce
iv
ed

fr
o
m

th
e

R
eg
is
tr
a
r

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a
se
co
n
d

R
E
G
IS
T
E
R

re
q
u
es
t
w
it
h

cr
ed
en
ti
a
ls
to

th
e

R
eg
is
tr
a
r

E
U
T

su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�2
0
0

O
K
�
re
ce
iv
ed

in

re
sp
o
n
se

to
th
e

R
E
G
IS
T
E
R

re
q
u
es
t

P
a
ss

E
U
T
re
fr
es
h
es

co
n
ta
ct

a
d
d
re
ss

w
it
h
th
e
S
IP

re
g
is
tr
a
r

(K
a
m
a
il
io
)

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a

R
E
G
IS
T
E
R

re
q
u
es
t
w
it
h
E
x
p
ir
y

se
t
to

6
0
se
co
n
d
s
to

th
e
R
eg
is
tr
a
r

E
U
T
su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�4
0
1

U
n
a
u
th
o
ri
ze
d
�

re
ce
iv
ed

fr
o
m

th
e

R
eg
is
tr
a
r

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a
se
co
n
d

R
E
G
IS
T
E
R

re
q
u
es
t
w
it
h

cr
ed
en
ti
a
ls
to

th
e

R
eg
is
tr
a
r

E
U
T
re
ce
iv
es

�2
0
0
O
K
�
to

th
e

R
E
G
IS
T
E
R

re
q
u
es
t

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a
n
o
th
er

R
E
G
IS
T
E
R
re
q
u
es
t
3
0

se
co
n
d
s
a
ft
er

th
e
�
rs
t

in
o
rd
er

to
re
fr
es
h
th
e

re
g
is
tr
a
ti
o
n
(N

O
T
E
1
).

P
a
ss

E
U
T
d
e-
re
g
is
te
rs

co
n
ta
ct

a
d
d
re
ss

w
it
h
th
e
S
IP

re
g
is
tr
a
r

(K
a
m
a
il
io
)

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a

R
E
G
IS
T
E
R

re
q
u
es
t
w
it
h
E
x
p
ir
y

se
t
to

0
se
co
n
d
s
to

th
e
R
eg
is
tr
a
r

E
U
T
re
ce
iv
es

�4
0
1

U
n
a
u
th
o
ri
ze
d
�

fr
o
m

th
e
R
eg
is
tr
a
r

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a

R
E
G
IS
T
E
R

re
q
u
es
t
w
it
h

cr
ed
en
ti
a
ls
a
n
d

E
x
p
ir
y
se
t
to

0

se
co
n
d
s
to

th
e

R
eg
is
tr
a
r

E
U
T

su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�2
0
0

O
K
�
m
es
sa
g
e

re
ce
iv
ed

fr
o
m

th
e
Q
E

P
a
ss

E
U
T
tr
ie
s
to

re
g
is
te
r
w
it
h
n
o
n

ex
is
ti
n
g
S
IP

re
g
is
tr
a
r

E
U
T
su
cc
es
sf
u
ll
y

ti
m
es

o
u
t
a
ft
er

6
0

se
co
n
d
s

P
a
ss

8.4. SYSTEM TESTING 118

As one can see, the EUT can successfully register, de-register and refresh registrations

with a SIP registrar.

IMS Registration

This test was used to evaluate whether the client could register successfully with FOKUS

IMS Core.

Figure 8.4: Test Arrangement for IMS Registration

The results are presented in Table 8.4. This test was also passed.

119

T
ab
le
8.
4:

IM
S
R
eg
is
tr
at
io
n
T
es
t
R
es
u
lt
s

T
e
s
t
C
a
s
e

T
e
s
t

R
e
s
u
lt

E
U
T
re
g
is
tr
a
ti
o
n

w
it
h
th
e
IM

S

n
et
w
o
rk

(F
O
K
U
S

IM
S
co
re
)

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a

R
E
G
IS
T
E
R

re
q
u
es
t
to

th
e

R
eg
is
tr
a
r

E
U
T
su
cc
es
sf
u
ll
y

p
ro
ce
ss

�4
0
1

U
n
a
u
th
o
ri
ze
d
�

re
ce
iv
ed

fr
o
m

th
e

R
eg
is
tr
a
r

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a
se
co
n
d

R
E
G
IS
T
E
R

re
q
u
es
t
w
it
h

cr
ed
en
ti
a
ls
to

th
e

R
eg
is
tr
a
r

E
U
T
re
ce
iv
es

�2
0
0
O
K
�
to

th
e

R
E
G
IS
T
E
R

re
q
u
es
t

P
a
ss

E
U
T
R
ef
re
sh
es

co
n
ta
ct

a
d
d
re
ss

w
it
h
th
e
IM

S

n
et
w
o
rk

(F
O
K
U
S

IM
S
co
re
)

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a

R
E
G
IS
T
E
R

re
q
u
es
t
w
it
h
E
x
p
ir
y

se
t
to

6
0
se
co
n
d
s
to

th
e
R
eg
is
tr
a
r

E
U
T
su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�4
0
1

U
n
a
u
th
o
ri
ze
d
�

re
ce
iv
ed

fr
o
m

th
e

R
eg
is
tr
a
r

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a
se
co
n
d

R
E
G
IS
T
E
R

re
q
u
es
t
w
it
h

cr
ed
en
ti
a
ls
to

th
e

R
eg
is
tr
a
r

E
U
T
re
ce
iv
es

�2
0
0
O
K
�
to

th
e

R
E
G
IS
T
E
R

re
q
u
es
t

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a
n
o
th
er

R
E
G
IS
T
E
R
re
q
u
es
t
3
0

se
co
n
d
s
a
ft
er

th
e
�
rs
t

in
o
rd
er

to
re
fr
es
h
th
e

re
g
is
tr
a
ti
o
n
(N

O
T
E
1
).

P
a
ss

E
U
T
d
e-
re
g
is
te
rs

co
n
ta
ct

a
d
d
re
ss

w
it
h
th
e
IM

S

n
et
w
o
rk

(F
O
K
U
S

IM
S
co
re
)

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a

R
E
G
IS
T
E
R

re
q
u
es
t
w
it
h
E
x
p
ir
y

se
t
to

0
se
co
n
d
s
to

th
e
R
eg
is
tr
a
r

E
U
T
re
ce
iv
es

�4
0
1

U
n
a
u
th
o
ri
ze
d
�

fr
o
m

th
e
R
eg
is
tr
a
r

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a

R
E
G
IS
T
E
R

re
q
u
es
t
w
it
h

cr
ed
en
ti
a
ls
a
n
d

E
x
p
ir
y
se
t
to

0

se
co
n
d
s
to

th
e

R
eg
is
tr
a
r

E
U
T

su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�2
0
0

O
K
�
m
es
sa
g
e

re
ce
iv
ed

fr
o
m

th
e
Q
E

P
a
ss

E
U
T
tr
ie
s
to

re
g
is
te
r
w
it
h
n
o
n

ex
is
ti
n
g
IM

S

n
et
w
o
rk

E
U
T
su
cc
es
sf
u
ll
y

ti
m
es

o
u
t
a
ft
er

6
0

se
co
n
d
s

P
a
ss

8.4. SYSTEM TESTING 120

NOTE 1: 3GPP TS 24.229 [6] mandates that a UE should re-register an already registered

public user identity either 600 seconds before expiration time if the previous registration

was for a period greater than 1200 seconds, or when half of the registration time has

expired if the previous registration was for 1200 seconds or less.

8.4.2 Point-to-point Audio/Visual call using Proxy/IMS

8.4.2.1 Entities Involved

UEs (QEs and EUT), IMS CN (P-CSCF, S-CSCF, I-CSCF and HSS), SIP proxy.

8.4.2.2 Test Purpose

To verify that a voice and video communication can be successfully established from

EUT to the QE and vice versa. The EUT and the QE both assumed the �originating�

and �terminating� roles with respect to initiating the call in successive tests.

8.4.2.3 Preconditions

Communicating clients are registered.

8.4.2.4 Results

SIP Session Setup

Figure 8.5: Test Arrangement for SIP Session Setup

The results are presented in Table 8.5 and show that the EUT is capable of setting up a

media session with a QE using SIP.

8.4. SYSTEM TESTING 121

Table 8.5: SIP Media Session Setup Results

Test Case Test Result

Call

establishment

from QE to

EUT through

SIP proxy with

authentication

EUT

successfully

processes

INVITE

received from

QE and sends

back �180

Ringing�

EUT

successfully

sends �200 OK�

message to QE

EUT

successfully

processes

ACK received

from QE

Pass

Call

establishment

from EUT to

QE through SIP

proxy with

authentication

EUT

successfully

sends INVITE

to the QE

EUT

successfully

processes the

�180 Ringing�

received from

the QE

EUT

successfully

processes �200

OK� received

from the QE

and sends

back an ACK

Pass

IMS Session Setup

Figure 8.6: Test Arrangement for IMS Session Setup

The results presented in Table 8.6 show that our client can successfully setup an IMS

media session with another IMS client through the FOKUS IMS Core.

122

T
ab
le
8.
6:

IM
S
M
ed
ia
S
es
si
on

S
et
u
p
R
es
u
lt
s

T
e
s
t
C
a
s
e

T
e
s
t

R
e
s
u
lt

C
a
ll

es
ta
b
li
sh
m
en
t

fr
o
m

Q
E
to

E
U
T
th
ro
u
g
h

th
e
IM

S
w
it
h

a
u
th
en
ti
ca
ti
o
n

E
U
T

su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

IN
V
IT
E

re
ce
iv
ed

fr
o
m

Q
E
a
n
d
se
n
d
s

b
a
ck

�1
8
3

S
es
si
o
n

P
ro
g
re
ss
�

E
U
T

su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

P
R
A
C
K

(r
es
p
o
n
se

to

�1
8
3
S
es
si
o
n

P
ro
g
re
ss
�)

re
ce
iv
ed

fr
o
m

Q
E
a
n
d
se
n
d
s

b
a
ck

�2
0
0
O
K
�

E
U
T

su
cc
es
sf
u
ll
y

se
n
d
s
�1
8
0

R
in
g
in
g
�
to

Q
E

E
U
T

su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

P
R
A
C
K

(r
es
p
o
n
se

to

�1
8
0
R
in
g
in
g
�)

re
ce
iv
ed

fr
o
m

Q
E
a
n
d
se
n
d
s

b
a
ck

�2
0
0
O
K
�

E
U
T

su
cc
es
sf
u
ll
y

se
n
d
s
�2
0
0

O
K
�
(i
n

re
sp
o
n
se

to

th
e
IN
V
IT
E
)

to
Q
E

E
U
T

su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

A
C
K
re
ce
iv
ed

fr
o
m

Q
E

P
a
ss

C
a
ll

es
ta
b
li
sh
m
en
t

fr
o
m

E
U
T
to

Q
E
th
ro
u
g
h
th
e

IM
S
w
it
h

a
u
th
en
ti
ca
ti
o
n

E
U
T

su
cc
es
sf
u
ll
y

se
n
d
s
IN
V
IT
E

to
Q
E

E
U
T

su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�1
8
3

S
es
si
o
n

P
ro
g
re
ss
�

re
ce
iv
ed

fr
o
m

Q
E
a
n
d
se
n
d
s

b
a
ck

P
R
A
C
K

E
U
T

su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�2
0
0

O
K
�
(t
o
�1
8
3

S
es
si
o
n

P
ro
g
re
ss
�

P
R
A
C
K
)

re
ce
iv
ed

fr
o
m

Q
E

E
U
T

su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�1
8
0

R
in
g
in
g
�

re
ce
iv
ed

fr
o
m

Q
E
a
n
d
se
n
d
s

b
a
ck

P
R
A
C
K

E
U
T

su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�2
0
0

O
K
�
(t
o
�1
8
0

R
in
g
in
g
�

P
R
A
C
K
)

re
ce
iv
ed

fr
o
m

Q
E

E
U
T

su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�2
0
0

O
K
�
(t
o

IN
V
IT
E
)
a
n
d

se
n
d
s
b
a
ck

A
C
K

P
a
ss

8.4. SYSTEM TESTING 123

Decoding and Display of Multimedia Streams

To evaluate media support, audio and video sessions were established between the EUT

and QE through a SIP proxy server. The audio and video streams were analysed by a

human user at the EUT and the QE. Figure 8.7 illustrates the test arrangement:

Figure 8.7: Test Arrangement for SIP Media Test Case

The same set of tests was repeated with the call being routed through the IMS network.

Figure 8.8 shows the test arrangement:

Figure 8.8: Test Arrangement for IMS Media Test Case

The tests were framed by the following questions:

8.4. SYSTEM TESTING 124

� Can speech from EUT be heard and understood at QE?

� Can video from EUT be seen and understood at QE?

� Can speech from QE be heard and understood at EUT?

� Can video from QE be seen and understood at EUT?

All the tests were successful and video and audio streams could be decoded from either

side for both cases: calls established through a SIP proxy and those established through

the IMS network.

SIP Session Termination and Call Clearing

The aim of this test was to ensure that the client could successfully terminate/clear a

call session with another SIP client through a SIP proxy server. The test setup for SIP

session termination and call clearing is similar to that for SIP session setup in Figure 8.5.

The results are presented in Table 8.7.

125

T
ab
le
8.
7:

S
IP

C
al
l
C
le
ar
in
g
an
d
C
al
l
R
ej
ec
ti
on

R
es
u
lt
s

T
e
s
t
C
a
s
e

T
e
s
t

R
e
s
u
lt

C
le
a
ri
n
g
o
f
a
n
a
ct
iv
e

ca
ll
/
B
Y
E
fr
o
m

E
U
T
to

Q
E
th
ro
u
g
h
a
S
IP

p
ro
x
y

E
U
T
su
cc
es
sf
u
ll
y
se
n
d
s

a
B
Y
E
re
q
u
es
t
to

Q
E

E
U
T
b
eg
in
s

d
is
co
n
n
ec
ti
n
g
b
y

re
le
a
si
n
g
R
T
P

se
ss
io
n

E
U
T
su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�2
0
0
O
K
�

re
ce
iv
ed

fr
o
m

Q
E

P
a
ss

C
le
a
ri
n
g
o
f
a
n
a
ct
iv
e

ca
ll
/
B
Y
E
fr
o
m

Q
E
to

E
U
T
th
ro
u
g
h
a
S
IP

p
ro
x
y

E
U
T
su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

a
B
Y
E
re
q
u
es
t

fr
o
m

Q
E
a
n
d
se
n
d
s
b
a
ck

�2
0
0
O
K
�

E
U
T
su
cc
es
sf
u
ll
y

re
le
a
se
s
R
T
P

se
ss
io
n
a
n
d

co
m
p
le
te
ly

d
is
co
n
n
ec
ts

P
a
ss

C
a
ll
cl
ea
ri
n
g
b
ef
o
re

d
es
ti
n
a
ti
o
n

a
n
sw
er
s/
C
A
N
C
E
L
(E
U
T

to
Q
E
)
th
ro
u
g
h
a
S
IP

p
ro
x
y

E
U
T
su
cc
es
sf
u
ll
y
se
n
d
s

a
C
A
N
C
E
L
re
q
u
es
t
to

Q
E

E
U
T
su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�2
0
0
O
K
�

re
ce
iv
ed

fr
o
m

Q
E

P
a
ss

C
a
ll
cl
ea
ri
n
g
b
ef
o
re

d
es
ti
n
a
ti
o
n

a
n
sw
er
s/
C
A
N
C
E
L
(Q

E
to

E
U
T
)
th
ro
u
g
h
a
S
IP

p
ro
x
y

E
U
T
su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

C
A
N
C
E
L

re
q
u
es
t
re
ce
iv
ed

fr
o
m

Q
E
a
n
d
se
n
d
s
b
a
ck

a

�2
0
0
O
K
�

E
U
T
su
cc
es
sf
u
ll
y

se
n
d
s
a
�4
87

R
eq
u
es
t

T
er
m
in
a
te
d
�
to

Q
E

P
a
ss

R
ej
ec
ti
o
n
o
f
in
co
m
in
g

ca
ll
/
B
Y
E
o
ri
g
in
a
ti
n
g
fr
o
m

E
U
T
th
ro
u
g
h
a
S
IP

p
ro
x
y

E
U
T
su
cc
es
sf
u
ll
y
se
n
d
s

a
B
Y
E
re
q
u
es
t
to

Q
E

P
a
ss

R
ej
ec
ti
o
n
o
f
in
co
m
in
g

ca
ll
/
B
Y
E
o
ri
g
in
a
ti
n
g
fr
o
m

Q
E
th
ro
u
g
h
a
S
IP

p
ro
x
y

E
U
T
su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

a
B
Y
E
re
q
u
es
t

re
ce
iv
ed

fr
o
m

Q
E
a
n
d

se
n
d
s
b
a
ck

a
�2
0
0
O
K
�

P
a
ss

8.4. SYSTEM TESTING 126

The results show that the EUT is capable of successfully terminating/clearing established

SIP sessions with a QE.

IMS Session Termination and Call Clearing

The aim of this test was to ensure that the client could successfully terminate/clear a call

session with another IMS client through the IMS network. The test setup for IMS session

termination and call clearing is similar to that for IMS session setup in Figure 8.6. The

results are presented in Table 8.8.

8.4. SYSTEM TESTING 127

Table 8.8: IMS Call Clearing and Call Rejection Results

Test Case Test Result

Clearing of an active

call/BYE from EUT to

QE through an IMS

network

EUT successfully sends

a BYE request to QE

EUT begins

disconnecting by

releasing RTP

session

EUT successfully

processes �200 OK�

received from QE

Pass

Clearing of an active

call/BYE from QE to

EUT through an IMS

network

EUT successfully

processes a BYE request

received from QE and

sends back a �200 OK�

message

EUT successfully

releases RTP

session and

completely

disconnects

Pass

Call clearing before

destination

answers/CANCEL

(EUT to QE) through

an IMS network

EUT successfully sends

a CANCEL request to

QE

EUT successfully

processes �200 OK�

received from QE

Pass

Call clearing before

destination

answers/CANCEL (QE

to EUT) through an

IMS network

EUT successfully

processes CANCEL

request received from

QE and sends back �200

OK�

EUT successfully

sends a �487

Request

Terminated� to QE

Pass

Rejection of incoming

call/BYE originating

from EUT through an

IMS network

EUT successfully sends

a BYE request to QE
Pass

Rejection of incoming

call/BYE originating

from QE through an

IMS network

EUT successfully

processes a BYE request

received from QE and

sends back a �200 OK�

Pass

The results show that the EUT is capable of terminating/clearing an established IMS

session with a QE.

8.4. SYSTEM TESTING 128

8.4.3 Presence

8.4.3.1 Entities Involved

UE (EUT and QEs), XCAP Server, SIP proxy.

8.4.3.2 Test Purpose

Testing was carried out to determine whether the client was capable of performing relevant

XCAP functions.

Figure 8.9: Test Arrangement for Presence Test Case

8.4.3.3 Preconditions

The user has an account con�gured on the XCAP server.

8.4. SYSTEM TESTING 129

8.4.3.4 Results

These tests were conducted to verify the ability of the client to perform the XCAP func-

tions implemented in chapter 6. The results are presented in Table 8.9.

130
T
ab
le
8.
9:

S
u
m
m
ar
y
of

X
C
A
P
R
es
u
lt
s

T
e
s
t
C
a
s
e

T
e
s
t

R
e
s
u
lt

C
re
a
te
/
R
ep
la
ce

X
C
A
P

D
o
cu
m
en
t

E
U
T
su
cc
es
sf
u
ll
y
p
er
fo
rm

s
a
n
H
T
T
P
P
U
T
re
q
u
es
t
w
it
h

th
e
re
q
u
es
t
U
R
I
se
t
to

th
e
lo
ca
ti
o
n
w
h
er
e
th
e
d
o
cu
m
en
t

is
to

b
e
p
la
ce
d

P
a
ss

C
re
a
te
/
R
ep
la
ce

a
n
el
em

en
t

in
a
n
X
C
A
P
D
o
cu
m
en
t

(a
d
d
/
m
o
d
if
y
u
se
rs
)

E
U
T
su
cc
es
sf
u
ll
y
p
er
fo
rm

s
a
n
H
T
T
P
P
U
T
re
q
u
es
t
w
it
h

th
e
re
q
u
es
t
U
R
I
se
t
to

th
e
lo
ca
ti
o
n
o
f
th
e
d
o
cu
m
en
t
to

b
e

m
o
d
i�
ed

a
n
d
th
e
n
o
d
e
se
le
ct
o
r
se
t
to

th
e
el
em

en
t
to

b
e

cr
ea
te
d
/
re
p
la
ce
d

P
a
ss

C
re
a
te
/
R
ep
la
ce

a
n

a
tt
ri
b
u
te

in
a
n
X
C
A
P

D
o
cu
m
en
t
(a
d
d
/
m
o
d
if
y

u
se
r
a
tt
ri
b
u
te
s)

E
U
T
su
cc
es
sf
u
ll
y
p
er
fo
rm

s
a
n
H
T
T
P
P
U
T
re
q
u
es
t
w
it
h

th
e
re
q
u
es
t
U
R
I
se
t
to

th
e
lo
ca
ti
o
n
o
f
th
e
d
o
cu
m
en
t
to

b
e

m
o
d
i�
ed

a
n
d
th
e
n
o
d
e
se
le
ct
o
r
se
t
to

th
e
a
tt
ri
b
u
te

to
b
e

cr
ea
te
d
/
re
p
la
ce
d

P
a
ss

F
et
ch

a
n
el
em

en
t
in

a
n

X
C
A
P
D
o
cu
m
en
t

E
U
T
su
cc
es
sf
u
ll
y
p
er
fo
rm

s
a
n
H
T
T
P
G
E
T
re
q
u
es
t
w
it
h

th
e
re
q
u
es
t
U
R
I
se
t
to

th
e
lo
ca
ti
o
n
o
f
th
e
d
o
cu
m
en
t
to

b
e

q
u
er
ie
d
a
n
d
th
e
n
o
d
e
se
le
ct
o
r
se
t
to

th
e
el
em

en
t
to

b
e

re
tr
ie
ve
d

E
U
T
su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�2
0
0
O
K
�

P
a
ss

F
et
ch

a
n
a
tt
ri
b
u
te

in
a
n

X
C
A
P
D
o
cu
m
en
t

E
U
T
su
cc
es
sf
u
ll
y
p
er
fo
rm

s
a
n
H
T
T
P
G
E
T
re
q
u
es
t
w
it
h

th
e
re
q
u
es
t
U
R
I
se
t
to

th
e
lo
ca
ti
o
n
o
f
th
e
d
o
cu
m
en
t
to

b
e

q
u
er
ie
d
a
n
d
th
e
n
o
d
e
se
le
ct
o
r
se
t
to

th
e
a
tt
ri
b
u
te

to
b
e

re
tr
ie
ve
d

E
U
T
su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�2
0
0
O
K
�

P
a
ss

F
et
ch

a
n
X
C
A
P
D
o
cu
m
en
t

E
U
T
su
cc
es
sf
u
ll
y
p
er
fo
rm

s
a
n
H
T
T
P
G
E
T
re
q
u
es
t
w
it
h

th
e
re
q
u
es
t
U
R
I
se
t
to

th
e
lo
ca
ti
o
n
w
h
er
e
th
e
d
o
cu
m
en
t

is
to

b
e
re
tr
ie
v
ed

E
U
T
su
cc
es
sf
u
ll
y

p
ro
ce
ss
es

�2
0
0
O
K
�

P
a
ss

D
el
et
e
a
n
el
em

en
t
(d
el
et
e

u
se
r)

E
U
T
su
cc
es
sf
u
ll
y
p
er
fo
rm

s
an

H
T
T
P
D
E
L
E
T
E
re
q
u
es
t

w
it
h
th
e
re
q
u
es
t
U
R
I
se
t
to

th
e
lo
ca
ti
o
n
o
f
th
e
d
o
cu
m
en
t

to
b
e
m
o
d
i�
ed

a
n
d
h
e
n
o
d
e
se
le
ct
o
r
se
t
to

th
e
el
em

en
t
to

b
e
d
el
et
ed

P
a
ss

D
el
et
e
a
n
a
tt
ri
b
u
te

(d
el
et
e

u
se
r
a
tt
ri
b
u
te
)

E
U
T
su
cc
es
sf
u
ll
y
p
er
fo
rm

s
an

H
T
T
P
D
E
L
E
T
E
re
q
u
es
t

w
it
h
th
e
re
q
u
es
t
U
R
I
se
t
to

th
e
lo
ca
ti
o
n
o
f
th
e
d
o
cu
m
en
t

to
b
e
m
o
d
i�
ed

a
n
d
th
e
n
o
d
e
se
le
ct
o
r
se
t
to

th
e
a
tt
ri
b
u
te

to
b
e
d
el
et
ed

P
a
ss

D
el
et
e
X
C
A
P
D
o
cu
m
en
t

E
U
T
su
cc
es
sf
u
ll
y
p
er
fo
rm

s
an

H
T
T
P
D
E
L
E
T
E
re
q
u
es
t

o
n
a
U
R
I
th
a
t
re
fe
re
n
ce
s
th
e
d
o
cu
m
en
t
to

b
e
d
el
et
ed

P
a
ss

8.5. SUMMARY 131

The EUT managed to automatically retrieve its buddy list from the XCAP server after

successfully logging into either the IMS network or a SIP network. It then used the list

to send subscriptions to all the buddies listed. Similarly, the EUT managed to upload

the latest copy of the buddy list onto the XCAP server when the user logged out and

cancelled all subscriptions.

8.5 Summary

In this chapter, the setup that was used for testing the RUCRG IMS client within the

RUCRG testbed was presented. The equipment for conducting these tests and the re-

quirements that needed to be satis�ed were also provided. The discussion of results was

based on the SIP signalling messages exchanged between the RUCRG IMS client and the

IMS network (IMS testbed) for the registration and establishment of the session. The

SDP content was also carried within these signalling SIP messages, and used to nego-

tiate the type of media used as well as the preconditions for the QoS agreement. The

results presented show that the RUCRG IMS client is compliant with the 3GPP technical

speci�cations and IETF SIP recommendations.

Chapter 9

Conclusion

SIP used as a signalling protocol provides capabilities to develop real-time multimedia ap-

plications over the Internet. The introduction of the IMS has resulted in the enhancement

of existing SIP services such as voice/video calls, instant messaging (IM) and presence.

It has enabled new multimedia oriented communication services through the integration

of telecommunication and data on an access independent IP network. This co-occurence

of data, voice and video has increased the demand for services with new presentation

characteristics.

The RUCRG decided to reinforce and upgrade the JAIN SIP Applet Phone (JSAP)

to be IMS compliant and create a single client that researchers (RUCRG) can easily

adapt to suit their needs as they develop new services. We therefore build our own

comprehensive IMS client (easily modi�able and open source) that could be integrated

into the infrastructure and services of the RUCRG testbed. This thesis presents the

process followed to create such a client (the RUCRG IMS client). Also described in this

thesis is the architecture of this client and its current development status and integration

with RUCRG testbed.

9.1 Synopsis

This thesis outlined the development of a Java based, IMS compliant client called RUCRG

IMS client, which was developed using the JSAP as its foundation. JSAP is an open source

project which one of the RUCRG members helped to develop. It possesses some of the

basic features required in a SIP/IMS compliant client, such as voice and text IM and is

used extensively to test SIP applications by researchers in the RUCRG. Unfortunately,

132

9.1. SYNOPSIS 133

the client only supports SIP applications. The mandate of this research was to upgrade

the JSAP into an IMS capable user agent.

Because our IMS client development was based on an existing SIP client, it was necessary

to perform an extensive assessment of it. On the one hand, this was done to reinforce

understanding of how JSAP worked, particularly because there was very little documen-

tation. On the other hand, this exercise was carried out to validate and verify the already

implemented SIP features in the JSAP. After careful analysis we found that the JSAP:

� Uses JAIN SIP (a low level Java API for SIP signalling).

� Supports core SIP signalling.

� Uses JAIN SDP in the manipulation of session descriptions.

Furthermore, the analysis of the JSAP also revealed various errors which we remedied.

The main PRACK mechanism was also added to the client in order to support advanced

SIP functions, such as playing announcements during early Dialogs.

Having consolidated the SIP functions in JSAP, we needed to completely overhaul the

media portion, because of the problems that we identi�ed with JMF (the framework

is no longer being supported and some parts of the framework do not work on some

OS platforms). Alternative, open source media APIs to the JMF were investigated and

Gstreamer (accessed through Gstreamer-Java wrapper) was chosen to replace JMF. Voice

and video support was integrated into JSAP using Gstreamer media API. At this point,

the client could reliably perform SIP functions as well as receive and stream audio and

video using the Gstreamer media library. After these enhancements, we named the client

JSAP+.

Presence is important so we overhauled it before integrating IMS functionality. Given

that JSAP+ supported some form of SIP based presence which was integrated with IM,

we started by reviewing the way JSAP+ handled presence. We found that JSAP+ lacked

the mechanisms to store user data in a central repository. User information was stored

on the client: JSAP+ lacked the ability to save user data after the program was executed

or when the user moved from one device to another. So, we needed the client to support

network-based storage. This was achieved by extending the JSAP+ client to make use

of XCAP, in the storage and retrieval of user data. With this extension, we renamed the

client JSAP++.

Then, we began our work on making the client IMS compliant. In chapter 7, we detailed

how JSAP++ was transformed from a basic SIP client to an IMS compliant client, to be

9.1. SYNOPSIS 134

called the RUCRG IMS client. In that chapter, we provided details of the enhancements

that we made to JSAP++ to ensure that it could:

� Register with an IMS network.

� Establish IMS sessions.

� Negotiate media codecs during IMS session establishment using the SDP o�er/answer

mechanism.

� Cancel early IMS sessions using the CANCEL method.

� Exchange voice and/ video with other IMS clients.

� Terminate IMS sessions using the BYE method.

Additionally we detailed how some important IMS headers (SIP extensions for IMS) such

as Route, P-Preferred-Identity and P-Access-Network-Info headers were integrated into

JSAP++.

Finally we tested the system to demonstrate the functionality of the client. We used

a hybrid approach to the testing, in which we combined conformance monitoring and

interoperability testing. Communication was established between our client (EUT) and

various QEs to verify compatibility, while a network protocol analyser was used to validate

that the messages that were exchanged conformed to the standards.

The �nal outcome of this thesis has been the upgrade of JSAP from a basic SIP client to a

SIP and IMS compliant client. The client is now capable of interacting with the FOKUS

IMS Core for the setup, control and termination of IMS services and is interoperable with

Mercuro IMS client and UCT IMS client. The client also supports ordinary SIP functions

and can work with non-IMS SIP proxy servers. It is also interoperable with the following

SIP clients: Twinkle, Ekiga, GRANDSTREAM GXV3140 and SJphone. The client can

also receive and stream audio and video using the Gstreamer media API. Lastly, the

RUCRG IMS client supports network based storage of user data via XCAP using the

Mobicents XCAP API. Modularity and intuitiveness were built into the client throughout

the development: the client needed to remain simple to extend to allow integration of new

features and updating of existing ones as RFCs and standards evolve.

9.2. DISCUSSION 135

9.2 Discussion

The main objective of this thesis was to reinforce the existing SIP functions in the JSAP

and upgrade it to be IMS compliant so that it can be used for both SIP and IMS ap-

plication testing by the RUCRG. The goal was to produce our own client that provides

native IMS functionality, supports re-usability of client code, enables service composi-

tion/aggregation, and allows easy modi�cation by the RUCRG researchers. These goals

were identi�ed by working closely with the RUCRG researchers, gathering a comprehen-

sive list of requirements and incrementally adding functionality to the client. The method-

ology adopted for the development of the client described in this thesis was progressive

prototyping, which involves incrementally adding functionality as required. This client

was developed to be compliant with 3GPP, European Telecommunications Standards In-

stitute (ETSI), Telecoms and Internet converged Services and Protocols for Advanced

Network (TISPAN) and the Internet Engineering Task Force (IETF) recommendations

and speci�cations. This was done to ensure that the client is interoperable with other

clients and servers that follow the same standards. Care was taken not to limit the use of

the client to the IMS platform thus making the client backward compatible with legacy

SIP servers and applications. Lastly, the client had to be free in terms of cost (use of

freely available libraries in development) as well as open source.

9.2.1 Achieved Goals

This research was undertaken to develop a uni�ed, cross-platform SIP/IMS client to be

used for testing communication services being developed by the RUCRG, while adhering

to the speci�cations and recommendations of the major standardisation bodies.

The developed client is indeed cross-platform. We successfully deployed it on two com-

pletely unrelated operating system platforms (Windows Vista and Linux Ubuntu) without

the need to modify the source code.

The results of the testing that was done show that the RUCRG IMS client is capable of

registering with the IMS network using AKAv1-MD5 as well as register with SIP proxies

using MD5. The RUCRG IMS client is now fully o�er/answer capable, that is, it is

able to establish and terminate SIP/IMS based multimedia sessions and negotiate media

codecs (both static and dynamic) using the SDP answer/o�er mechanism. Furthermore,

the client now has full multimedia capability, that is, it is able to establish voice/video

sessions with both SIP/IMS clients using the Gstreamer media API which replaced JMF.

9.3. FUTURE WORK 136

The structure of the client has been improved and the client has been documented allowing

for faster and easier modi�cations.

Finally, the client now uses a network based storage mechanism for storing user data using

XCAP. Thus all the objectives of this thesis were met.

9.2.2 Challenges

It was not an easy task to harmonise and make sense of the large set of standards that

our client needed to be compliant with.

At times, it was also di�cult to decide on the subset of features to implement or exclude.

We hope that the choices were correct, but naturally we expect other researchers to add

the features they need, if they are not implemented.

One important goal was to ensure support to major operating systems and platforms

available today. Due to poor multimedia support for Java, this was not an easy task.

Lastly, the client was undocumented which made it di�cult to improve/upgrade the client.

This resulted in a lot of time being spent on studying the structure of the client.

9.2.3 Limitations

The IMS client developed in this study was built according to 3GPP and IETF speci�-

cations and recommendations. Although IMS may be considered a mature technology, it

is still evolving. Consequently, some of the implemented features may not work in other

IMS testbeds (which are still work in progress) running applications based on di�erent

3GPP speci�cations releases. The RUCRG IMS client was mainly targeted to be used

within the RUCRG testbed running the FOKUS IMS Core. The features we tested were

functional and compatible with the RUCRG testbed settings, but modi�cations may be

required when using the client in other testbeds.

As one could expect, the study did not evaluate interoperability with all available SIP/IMS

clients.

9.3 Future Work

There is need to integrate the SIP Event Noti�cation mechanism for subscribing to a

homogeneous list of resources as described in RFC 4662 [49] instead of sending individual

9.4. SUMMARY 137

SUBSCRIBE requests for each resource. The watcher (subscriber) can then be able to

subscribe to an entire list and receive noti�cations when the state of any of the resources

in the list changes.

The Mobicents XCAP client API that was used to add XCAP support in JSAP is an

incomplete implementation of the XCAP protocol as highlighted in chapter 6. Future

work should complete and standardise this section.

Our client only uses presence information together with IM. A third aspect that can be

enhanced, at the interface level, is to integrate presence with other forms of communication

services such as voice, video, and �le sharing.

9.4 Summary

This chapter provided a summary of the work done in this thesis. It reported how JSAP

was modi�ed to consolidate SIP functions and integrate XCAP to support presence. The

chapter also details the work done to transition JSAP from a basic SIP client to an IMS

compliant client called RUCRG IMS client.

At the end of this journey the Rhodes University Convergence Research Group now has

an advanced, robust and easily modi�able IMS compliant client.

Bibliography

[1] 3GPP. TS 27.060 v3.8.0: Technical Speci�cation Group Core Network; Packet Do-

main; Mobile Station (MS) supporting Packet Switched Services (Release 1999) .

Third Generation Partnership Project, June 2003.

[2] 3GPP. TS 24.228: Signalling �ows for the IP multimedia call control based on Session

Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3. Third

Generation Partnership Project, October 2006.

[3] 3GPP. TS 33.203: 3G security; Access security for IP-based services layer security.

Third Generation Partnership Project, December 2010.

[4] 3GPP. TS 23.218: IP Multimedia (IM) session handling; IM call model; Stage 2.

Third Generation Partnership Project, December 2011.

[5] 3GPP. TS 23.228: IP Multimedia Subsystem (IMS); Stage 2. Third Generation

Partnership Project, December 2011.

[6] 3GPP. TS 24.229: IP multimedia call control protocol based on Session Initiation

Protocol (SIP) and Session Description Protocol (SDP); Stage 3. Third Generation

Partnership Project, June 2011.

[7] 3GPP. TS 33.210: 3G security; Network Domain Security (NDS); IP network layer

security. Third Generation Partnership Project, December 2011.

[8] Arup Acharya, Nilanjan Banerjee, Dipanjan Chakraborty, and Shachi Sharma.

Pressentials: a �exible middleware for presence-enabled applications. In Proceed-

ings of the 5th International Conference on Principles, Systems and Applications of

IP Telecommunications, IPTcomm '11, pages 15:1�15:12, New York, NY, USA, 2011.

ACM.

[9] Andreas Bachmann, Alice Motanga, and Thomas Magedanz. Requirements for an

extendible ims client framework. In Proceedings of the 1st international conference

138

BIBLIOGRAPHY 139

on MOBILe Wireless MiddleWARE, Operating Systems, and Applications, MOBIL-

WARE '08, pages 19:1�19:6, ICST, Brussels, Belgium, Belgium, 2007. ICST (Insti-

tute for Computer Sciences, Social-Informatics and Telecommunications Engineer-

ing).

[10] G. Camarillo. SIP Demysti�ed. McGraw-Hill Companies Inc, �rst edition, 2002.

[11] G. Camarillo and M.A. Garcia-Martin. The 3G IP Multimedia Subsystem (IMS):

Merging the Internet and the Cellular Worlds. John Wiley and Sons Ltd, third

edition, 2008.

[12] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, and D. Gurle. Session

Initiation Protocol (SIP) Extension for Instant Messaging. RFC 3428 (Proposed

Standard), December 2002.

[13] M. Day, J. Rosenberg, and H. Sugano. A Model for Presence and Instant Messaging.

RFC 2778 (Informational), February 2000.

[14] M. Diop. Inside IMS/NGN. Website, 2009.

http://betelco.blogspot.com/2009/02/new-version-of-mercuro-ims-client.html.

[15] L. Etiemble and M. Diop. Mercuro IMS Client. Website, August 2010.

http://imsclient.blogspot.com/.

[16] ETSI. The Global Testing Language. Available Online, 2006.

etsi.org/WebSite/document/Technologies/LEAFLETS/TheGlobalTestingLanguage%

28TTCN3%29.pdf.

[17] ETSI. ETSI EG 202 237: Methods for Testing and Spec-

i�cation (MTS); Internet Protocol Testing (IPT); Generic ap-

proach to interoperability testing. Available Online, April 2007.

http://www.etsi.org/deliver/etsi_eg/202200_202299/202237/01.01.02_60/eg_20223

7v010102p.pdf.

[18] FFMPEG. Ffmpeg. Website, March 2010. http://www.�mpeg.org/.

[19] FFMPEG-Java. Getting Started with FFMPEG-Java - FMJ. Website. http://fmj-

sf.net/�mpeg-java/getting_started.php.

[20] FMJ. Community News - Freedom for Media in Java

(FMJ) Project Releases 0.1 Version. Internet, June 2006.

http://www.artima.com/forums/�at.jsp?forum=276&thread=164831.

BIBLIOGRAPHY 140

[21] FMJ. Home FMJ. Internet, October 2007. http://fmj-sf.net/.

[22] M. Garcia-Martin, E. Henrikson, and D. Mills. Private Header (P-Header) Extensions

to the Session Initiation Protocol (SIP) for the 3rd-Generation Partnership Project

(3GPP). RFC 3455 (Informational), January 2003.

[23] P. Gregory. SIP Communications for Dummies. Wiley Publishing, Inc, second edi-

tion, 2006.

[24] Gstreamer-Java. Gstreamer-java Java Interface to the Gstreamer Framework. Web-

site, May 2010. http://code.google.com/p/gstreamer-java/.

[25] M. Handley and V. Jacobson. SDP: Session Description Protocol. RFC 2327 (Pro-

posed Standard), April 1998. Obsoleted by RFC 4566, updated by RFC 3266.

[26] M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol. RFC

4566 (Proposed Standard), July 2006.

[27] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. SIP: Session Initiation

Protocol. RFC 2543 (Proposed Standard), March 1999. Obsoleted by RFCs 3261,

3262, 3263, 3264, 3265.

[28] E. Ivov. SIP Communicator. Slides, 2007. jres.org/planning/slides/132.pdf.

[29] java.net. Jain-sip-applet-phone. Website, 2010. https://java.net/projects/jain-sip-

applet-phone.

[30] java.net. JAIN SIP API. Website, 2011. http://jsip.java.net/.

[31] C. Kaufman. Internet Key Exchange (IKEv2) Protocol. RFC 4306 (Proposed Stan-

dard), December 2005. Obsoleted by RFC 5996, updated by RFC 5282.

[32] K. I. Lakhtaria. Chapter - 6 IMS Client Development and Deployment. Online PDF,

2010. shodhganga.in�ibnet.ac.in/bitstream/10603/734/11/11_chapter6.pdf.

[33] Z. Lei and P. Coulton. IMS Based Mobile Presence Service. In Future Mobile Ex-

periences: next generation mobile interaction and contextualization, Workshop at

NordiCHI, 2008.

[34] Tian Li, Zhiliang Wang, and Xia Yin. Sip conformance testing based on ttcn-2.

Tsinghua Science & Technology, 12, Supplement 1(0):223 � 228, 2007.

[35] LTI-CIVIL. LTI - CIVIL. Internet, October 2007. http://lti-civil.org/.

BIBLIOGRAPHY 141

[36] L. Luo. Software Testing Techniques Technology Maturation and Research

Strategy Class. Technical report, Institute for Software Research International

Carnegie Mellon University Pittsburgh, PA15232 USA. http://www.cs.cmu.edu/ lu-

luo/Courses/17939Report.pdf.

[37] A. Mankin, S. Bradner, R. Mahy, D. Willis, J. Ott, and B. Rosen. Change Process for

the Session Initiation Protocol (SIP). RFC 3427 (Best Current Practice), December

2002. Obsoleted by RFC 5727, updated by RFCs 3968, 3969.

[38] R. Marston. Multimedia Content Adaptation for IPTV Services in IMS. Master's

thesis, University of Cape town, 2008.

[39] M.T. Masonta. Development of Light-Weight IP Multimedia Subsystem (IMS) Client

for Mobile Devices. Master's thesis, Tshwane University of Technology, May 2008.

[40] A. Niemi, J. Arkko, and V. Torvinen. Hypertext Transfer Protocol (HTTP) Di-

gest Authentication Using Authentication and Key Agreement (AKA). RFC 3310

(Informational), September 2002.

[41] NMSCommunications. SIP/IMS Client Applications for Operators, Ter-

minal Vendors, and Equipment Vendors. Whitepaper, May 2010.

http://www.nmscommunications.com/DevPlatforms/WhitePapers/default.htm.

[42] Nokia. 3GPP2 X32-20050926-0aa: Call �ow updates. Available Online, September

2005. 3GPP2 meeting 2005 September, Vancouver.

[43] E. Oguejiofor, P. Bazot, B. Georges, R. Huber, C. Jackson, J. Kappel, M. Cameron,

and Abhijit Sur. Bala, S. Subramanian. Developing SIP and IP Multimedia Subsystem

IMS Applications. IBM.

[44] Oracle. Oracle press release, January 2010.

http://www.oracle.com/us/corporate/press/044428.

[45] R.M. Perea. Internet Multimedia Communications Using SIP: A Modern Approach

Including Java Practice. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2008.

[46] M. Poikselka and G. Mayer. The IMS: IP Multimedia Concepts and Services. John

Wiley and Sons Ltd, third edition, 2009.

[47] Harald Psaier. A Java-Based Streaming Media Server. Master's thesis, Vienna Uni-

versity of Technology, 2005.

BIBLIOGRAPHY 142

[48] A. B. Roach. Session Initiation Protocol (SIP)-Speci�c Event Noti�cation. RFC 3265

(Proposed Standard), June 2002. Updated by RFCs 5367, 5727.

[49] A. B. Roach, B. Campbell, and J. Rosenberg. A Session Initiation Protocol (SIP)

Event Noti�cation Extension for Resource Lists. RFC 4662 (Proposed Standard),

August 2006.

[50] J. Rosenberg. A Presence Event Package for the Session Initiation Protocol (SIP).

RFC 3856 (Proposed Standard), August 2004.

[51] J. Rosenberg. The Extensible Markup Language (XML) Con�guration Access Pro-

tocol (XCAP). RFC 4825 (Proposed Standard), May 2007.

[52] J. Rosenberg and H. Schulzrinne. An O�er/Answer Model with Session Description

Protocol (SDP). RFC 3264 (Proposed Standard), June 2002.

[53] J. Rosenberg and H. Schulzrinne. Reliability of Provisional Responses in Session

Initiation Protocol (SIP). RFC 3262 (Proposed Standard), June 2002.

[54] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261 (Proposed

Standard), June 2002. Updated by RFCs 3265, 3853, 4320, 4916, 5393, 5621, 5626,

5630, 5922, 5954, 6026, 6141.

[55] H. Schulzrinne and S. Casner. RTP Pro�le for Audio and Video Conferences with

Minimal Control. RFC 3551 (Standard), July 2003. Updated by RFC 5761.

[56] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol

for Real-Time Applications. RFC 3550 (Standard), July 2003. Updated by RFCs

5506, 5761, 6051, 6222.

[57] H. Schulzrinne and B. Volz. Dynamic Host Con�guration Protocol (DHCPv6) Op-

tions for Session Initiation Protocol (SIP) Servers. RFC 3319 (Proposed Standard),

July 2003.

[58] Sourceforge. Fobs: C++ wrapper for �mpeg. Website. http://fobs.sourceforge.net/.

[59] SunMicrosystems. Java Media Framework. Website.

http://java.sun.com/products/java-media/jmf/.

[60] W. Taymans, S. Baker, A. Wingo, R. Bultje, and S. Kost. GStreamer

Application Development Manual(0.10.25.3). Article, June 2010.

http://gstreamer.freedesktop.org/documentation/.

BIBLIOGRAPHY 143

[61] UCT. UCT IMS Client. Website, June 2009. http://uctimsclient.berlios.de/.

[62] D. Waiting, R. Good, R. Spiers, and N. Ventura. The UCT IMS Client. IEEE, 2009.

[63] Wikipedia. Java Media Framework. Website.

http://en.wikipedia.org/wiki/Java_Media_Framework.

[64] Wikipedia. libavcodec. Website. http://en.wikipedia.org/wiki/Libavcodec.

[65] D. Willis and B. Hoeneisen. Session Initiation Protocol (SIP) Extension Header Field

for Service Route Discovery During Registration. RFC 3608 (Proposed Standard),

October 2003. Updated by RFC 5630.

Appendix A

Accompanying CD-ROM

The following are contained within the accompanying CD-ROM:

� Thesis document

� Client source code (includes all the required supporting libraries to run the client

in the gov.nist.applet.phone.libraries package)

� Gstreamer for Windows

144

Appendix B

Deployment Guide

The client comes as a Netbeans project and can be run directly if the following conditions

are met:

1. The Java SDK is installed.

2. When running the client on Linux Ubuntu the following Gstreamer packages need

to be installed:

� Gstreamer �mpeg video plugin

� Gstreamer extra plugins

� Gstreamer plugins for mms, wavpack, quicktime and musepack

� Gstreamer plugins for aac, xvid, mpeg2 and faad

3. When running the client on Windows, Gstreamer WinBuild package (included in

the CD-ROM) needs to be installed.

145

