496 research outputs found

    Efficient Automated Planning with New Formulations

    Get PDF
    Problem solving usually strongly relies on how the problem is formulated. This fact also applies to automated planning, a key field in artificial intelligence research. Classical planning used to be dominated by STRIPS formulation, a simple model based on propositional logic. In the recently introduced SAS+ formulation, the multi-valued variables naturally depict certain invariants that are missed in STRIPS, make SAS+ have many favorable features. Because of its rich structural information SAS+ begins to attract lots of research interest. Existing works, however, are mostly limited to one single thing: to improve heuristic functions. This is in sharp contrast with the abundance of planning models and techniques in the field. On the other hand, although heuristic is a key part for search, its effectiveness is limited. Recent investigations have shown that even if we have almost perfect heuristics, the number of states to visit is still exponential. Therefore, there is a barrier between the nice features of SAS+ and its applications in planning algorithms. In this dissertation, we have recasted two major planning paradigms: state space search and planning as Satisfiability: SAT), with three major contributions. First, we have utilized SAS+ for a new hierarchical state space search model by taking advantage of the decomposable structure within SAS+. This algorithm can greatly reduce the time complexity for planning. Second, planning as Satisfiability is a major planning approach, but it is traditionally based on STRIPS. We have developed a new SAS+ based SAT encoding scheme: SASE) for planning. The state space modeled by SASE shows a decomposable structure with certain components independent to others, showing promising structure that STRIPS based encoding does not have. Third, the expressiveness of planning is important for real world scenarios, thus we have also extended the planning as SAT to temporally expressive planning and planning with action costs, two advanced features beyond classical planning. The resulting planner is competitive to state-of-the-art planners, in terms of both quality and performance. Overall, our work strongly suggests a shifting trend of planning from STRIPS to SAS+, and shows the power of formulating planning problems as Satisfiability. Given the important roles of both classical planning and temporal planning, our work will inspire new developments in other advanced planning problem domains

    On Different Strategies for Eliminating Redundant Actions from Plans

    Get PDF
    Satisficing planning engines are often able to generate plans in a reasonable time, however, plans are often far from optimal. Such plans often contain a high number of redundant actions, that are actions, which can be removed without affecting the validity of the plans. Existing approaches for determining and eliminating redundant actions work in polynomial time, however, do not guarantee eliminating the "best" set of redundant actions, since such a problem is NP-complete. We introduce an approach which encodes the problem of determining the "best" set of redundant actions (i.e. having the maximum total-cost) as a weighted MaxSAT problem. Moreover, we adapt the existing polynomial technique which greedily tries to eliminate an action and its dependants from the plan in order to eliminate more expensive redundant actions. The proposed approaches are empirically compared to existing approaches on plans generated by state-of-the-art planning engines on standard planning benchmark

    Parameterized Complexity Results for Plan Reuse

    Full text link
    Planning is a notoriously difficult computational problem of high worst-case complexity. Researchers have been investing significant efforts to develop heuristics or restrictions to make planning practically feasible. Case-based planning is a heuristic approach where one tries to reuse previous experience when solving similar problems in order to avoid some of the planning effort. Plan reuse may offer an interesting alternative to plan generation in some settings. We provide theoretical results that identify situations in which plan reuse is provably tractable. We perform our analysis in the framework of parameterized complexity, which supports a rigorous worst-case complexity analysis that takes structural properties of the input into account in terms of parameters. A central notion of parameterized complexity is fixed-parameter tractability which extends the classical notion of polynomial-time tractability by utilizing the effect of structural properties of the problem input. We draw a detailed map of the parameterized complexity landscape of several variants of problems that arise in the context of case-based planning. In particular, we consider the problem of reusing an existing plan, imposing various restrictions in terms of parameters, such as the number of steps that can be added to the existing plan to turn it into a solution of the planning instance at hand.Comment: Proceedings of AAAI 2013, pp. 224-231, AAAI Press, 201

    REINFORCED ENCODING FOR PLANNING AS SAT

    Get PDF
    Solving planning problems via translation to satisfiability (SAT) is one of the most successful approaches to automated planning. We propose a new encoding scheme, called Reinforced Encoding, which encodes a planning problem represented in the SAS+ formalism into SAT. The Reinforced Encoding is a combination of the transition-based SASE encoding with the classical propositional encoding. In our experiments we compare our new encoding to other known SAS+ based encodings. The results indicate, that he Reinforced encoding performs well on the benchmark problems of the 2011 International Planning Competition and can outperform all the other known encodings for several domains

    Portfolio-based Planning: State of the Art, Common Practice and Open Challenges

    Get PDF
    In recent years the field of automated planning has significantly advanced and several powerful domain-independent planners have been developed. However, none of these systems clearly outperforms all the others in every known benchmark domain. This observation motivated the idea of configuring and exploiting a portfolio of planners to perform better than any individual planner: some recent planning systems based on this idea achieved significantly good results in experimental analysis and International Planning Competitions. Such results let us suppose that future challenges of the Automated Planning community will converge on designing different approaches for combining existing planning algorithms. This paper reviews existing techniques and provides an exhaustive guide to portfolio-based planning. In addition, the paper outlines open issues of existing approaches and highlights possible future evolution of these techniques

    Planning as Quantified Boolean Formulae

    Get PDF
    This work explores the idea of classical Planning as Quantified Boolean Formulae. Planning as Satisfiability (SAT) is a popular approach to Planning and has been explored in detail producing many compact and efficient encodings, Planning-specific solver implementations and innovative new constraints. However, Planning as Quantified Boolean Formulae (QBF) has been relegated to conformant Planning approaches, with the exception of one encoding that has not yet been investigated in detail. QBF is a promising setting for Planning given that the problems have the same complexity. This work introduces two approaches for translating bounded propositional reachability problems into QBF. Both exploit the expressivity of the binarytree structure of the QBF problem to produce encodings that are as small as logarithmic in the size of the instance and thus exponentially smaller than the corresponding SAT encoding with the same bound. The first approach builds on the iterative squaring formulation of Rintanen; the intuition behind the idea is to recursively fold the plan around the midpoint, reducing the number of time-steps that need to be described from n to logâ‚‚n. The second approach exploits domain-level lifting to achieve significant improvements in efficiency. Experimentation was performed to compare our formulation of the first approach with the previous formulation, and to compare both approaches with comparative and state-of-the-art SAT approaches. Results presented in this work show that our formulation of the first approach is an improvement over the previous, and that both approaches produce encodings that are indeed much smaller than corresponding SAT encodings, in both terms of encoding size and memory used during solving. Evidence is also provided to show that the first approach is feasible, if not yet competitive with the state-of-the-art, and that the second approach produces superior encodings to the SAT encodings when the domain is suited to domain-level lifting.This work explores the idea of classical Planning as Quantified Boolean Formulae. Planning as Satisfiability (SAT) is a popular approach to Planning and has been explored in detail producing many compact and efficient encodings, Planning-specific solver implementations and innovative new constraints. However, Planning as Quantified Boolean Formulae (QBF) has been relegated to conformant Planning approaches, with the exception of one encoding that has not yet been investigated in detail. QBF is a promising setting for Planning given that the problems have the same complexity. This work introduces two approaches for translating bounded propositional reachability problems into QBF. Both exploit the expressivity of the binarytree structure of the QBF problem to produce encodings that are as small as logarithmic in the size of the instance and thus exponentially smaller than the corresponding SAT encoding with the same bound. The first approach builds on the iterative squaring formulation of Rintanen; the intuition behind the idea is to recursively fold the plan around the midpoint, reducing the number of time-steps that need to be described from n to logâ‚‚n. The second approach exploits domain-level lifting to achieve significant improvements in efficiency. Experimentation was performed to compare our formulation of the first approach with the previous formulation, and to compare both approaches with comparative and state-of-the-art SAT approaches. Results presented in this work show that our formulation of the first approach is an improvement over the previous, and that both approaches produce encodings that are indeed much smaller than corresponding SAT encodings, in both terms of encoding size and memory used during solving. Evidence is also provided to show that the first approach is feasible, if not yet competitive with the state-of-the-art, and that the second approach produces superior encodings to the SAT encodings when the domain is suited to domain-level lifting

    REINFORCED ENCODING FOR PLANNING AS SAT

    Get PDF
    • …
    corecore