
doi:10.14311/APP.2015.1.0001
Acta Polytechnica CTU Proceedings 2:1–7, 2015 © Czech Technical University in Prague, 2015

available online at http://ojs.cvut.cz/ojs/index.php/app

REINFORCED ENCODING FOR PLANNING AS SAT

Tomáš Balyo∗, Roman Barták, Otakar Trunda

Department of Theoretical Computer Science and Mathematical Logic, Faculty of Mathematics and Physics,
Charles University, Malostranske namesti 2/25, Praha 1, Czech Republic

∗ corresponding author: biotomas@gmail.com

Abstract. Solving planning problems via translation to satisfiability (SAT) is one of the most
successful approaches to automated planning. We propose a new encoding scheme, called Reinforced
Encoding, which encodes a planning problem represented in the SAS+ formalism into SAT. The
Reinforced Encoding is a combination of the transition-based SASE encoding with the classical
propositional encoding. In our experiments we compare our new encoding to other known SAS+ based
encodings. The results indicate, that he Reinforced encoding performs well on the benchmark problems
of the 2011 International Planning Competition and can outperform all the other known encodings for
several domains.
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1. Introduction
Planning is the problem of finding a sequence of ac-
tions – a plan, that transforms the world from an
initial state to a state that satisfies some goal condi-
tions. The world is fully-observable, deterministic and
static (only the agent we make the plan for changes the
world). The number of possible states of the world as
well as the number of possible actions is finite, though
possibly very large. We will assume that the actions
are instantaneous (take a constant time) and therefore
we only need to deal with their sequencing. Actions
have preconditions, which specify in which states of
the world they can be applied, as well as effects, which
dictate how the world will be changed after the action
is executed.

One of the most successful approaches to planning
is encoding the planning problem into a series of satis-
fiability (SAT) formulas and then using a SAT solver
to solve them. The method was first introduced by
Kautz and Selman [1] and is still very popular and
competitive. This is partly due to the power of SAT
solvers, which are getting more efficient year by year.
Since then many new improvements have been made
to the method, such as new compact and efficient
encodings [2–5], better ways of scheduling the SAT
solvers [3] or modifying the SAT solver’s heuristics to
be more suitable for solving planning problems [6].
In this paper we present a new encoding scheme.

It is inspired by the SASE transition-based encod-
ing [2], which was the first SAT encoding based on the
SAS+ planning formalism. The motivation for our
work is to make the SASE encoding more robust by
incorporating the strengths of older encoding schemes.
We will prove the correctness of our encoding and
compute an upper bound on the size of the encoded
formula. In the experimental section of the paper we
compare our new encoding to other SAS+ encodings
on benchmark problems from the 2011 International

Planning Competition (IPC) [7].

2. Preliminaries
In this section we give the basic definitions of satisfia-
bility, and planning with parallel plans.

2.1. Satisfiability
A Boolean variable is a variable with two possible
values True and False. A literal of a Boolean variable
x is either x or ¬x (positive or negative literal). A
clause is a disjunction (OR) of literals. A clause
with only one literal is called a unit clause and with
two literals a binary clause. An implication of the
form x ⇒ (y1 ∨ · · · ∨ yk) is equivalent to the clause
(¬x∨y1∨· · ·∨yk). A conjunctive normal form (CNF)
formula is a conjunction (AND) of clauses. A truth
assignment φ of a formula F assigns a truth value to
its variables. The assignment φ satisfies a positive
(negative) literal if it assigns the value True (False)
to its variable and φ satisfies a clause if it satisfies
any of its literals. Finally, φ satisfies a CNF formula
if it satisfies all of its clauses. A formula F is said
to be satisfiable if there is a truth assignment φ that
satisfies F . Such an assignment is called a satisfying
assignment. The satisfiability problem (SAT) is to
find a satisfying assignment of a given CNF formula
or determine that it is unsatisfiable.

2.2. Planning
In the introduction we briefly described what plan-
ning is, in this section we give the formal definitions.
We will use the multivalued SAS+ formalism [8] in-
stead of the classical STRIPS formalism [9] based on
propositional logic.

A planning task Π in the SAS+ formalism is defined
as a tuple Π = {X,O, sI , sG} where
• X = {x1, . . . , xn} is a set of multivalued variables
with finite domains dom(xi).
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• O is a set of actions (or operators). Each action
a ∈ O is a tuple (pre(a), eff(a)) where pre(a) is the
set of preconditions of a and eff(a) is the set of
effects of a. Both preconditions and effects are of
the form xi = v where v ∈ dom(xi).

• A state is a set of assignments to the state variables.
Each state variable has exactly one value assigned
from its respective domain. We denote by S the
set of all states. sI ∈ S is the initial state. sG is
a partial assignment of the state variables (not all
variables have assigned values) and a state s ∈ S is
a goal state if sG ⊆ s.
An action a is applicable in the given state s

if pre(a) ⊆ s. By s′ = apply(a, s) we denote the
state after executing the action a in the state s,
where a is applicable in s. All the assignments in
s′ are the same as in s except for the assignments
in eff(a) which replace the corresponding (same
variable) assignments in s. If P = [a1 . . . ak]
is a sequence of actions, then apply(P, s) =
apply(ak, apply(ak−1 . . . apply(a2, apply(a1, s)) . . . )).
A sequential plan P of length k for a given planning
task Π is a sequence of k actions P such that
sG ⊆ apply(P, sI).

2.3. Parallel Plans
A parallel plan P with makespan k for a given planning
task Π is a sequence of sets of actions (called parallel
steps) P = [A1, . . . , Ak] such that E(A1)⊕· · ·⊕E(Ak)
is a sequential plan for Π, where E is an ordering
function, which transforms a set of actions Ai into a
sequence of actions E(Ai) and ⊕ denotes the concate-
nation of sequences.
Let us denote by sj the world state in between

the parallel steps Aj and Aj+1, which is obtained
by applying the sequence E(Aj) on sj−1, i.e., sj =
apply(E(Aj), sj−1) (except for s0 = sI). In this paper
we will use the ∀-Step parallel planning semantics [10],
which requires that each action a ∈ Aj is applicable
in the state sj , the effects of all actions are applied
in sj+1 and all possible orderings E of the sets Aj
make valid sequential plans (hence the name ∀-Step
semantics).

To ensure, that each ordering of the sets of actions
in a parallel plan leads to a valid sequential plan, it
is sufficient to check that the actions in each set are
pairwise independent [3]. We say that two actions
a1 and a2 are independent if they do not share com-
mon variables, i.e., scope(a1) ∩ scope(a2) = ∅, where
scope(a) ⊆ X is a set of all state variables that appear
in pre(a) and eff(a).

Note, that the pairwise independence of actions is a
sufficient but not a necessary condition for the parallel
steps in a ∀-Step semantics plan, as the following
example demonstrates.

Example 1. Let a1 and a2 be two actions such that
pre(a1) = pre(a2) = {x = 1}, eff(a1) = {y = 2},
and eff(a2) = {z = 2}. Clearly, a1 and a2 are not

SP1 PlanningAsSat (Π)
SP2 k := 0
SP3 repeat
SP4 k := k + 1
SP5 F := encodeTaskWithMakespan(Π, k)
SP6 until isSatisfiable(F )
SP7 P := extractPlan(getSatAssignment(F ))
SP8 return P

Figure 1. Pseudo-code of the basic planning as satis-
fiability algorithm.

independent (they share the variable x), however, they
can be ordered arbitrarily to achieve the same changes
between two given states.

The pairwise independence of actions in each step of
a parallel plan also implies that they can be executed
in parallel (at the same time).

3. Finding Plans using SAT
The basic idea of solving planning as SAT is the
following [1]. We construct (by encoding the planning
task) a series of SAT formulas F1, F2, . . . such that
Fi is satisfiable if there is a parallel plan of makespan
≤ i. Then we solve them one by one starting from F1
until we reach the first satisfiable formula Fk. From
the satisfying assignment of Fk we can extract a plan
of makespan k. The pseudo-code of this algorithm is
presented in Figure 1

The method was first introduced by Kautz and Sel-
man [1] and is still very popular and competitive. This
is partly due to the power of SAT solvers, which are
getting more efficient year by year. Since then many
new improvements have been made to the method,
such as new compact and efficient encodings [2–5],
better ways of scheduling the SAT solvers [3] or mod-
ifying the SAT solver’s heuristics to be more suitable
for solving planning problems [6]. Clever ways of
solver scheduling [3] can significantly improve the per-
formance of the planning algorithm at the cost of
possibly longer-makespan plans. Nevertheless, we will
use the basic one-by-one scheduling since we are inter-
ested only in comparing the properties of encodings,
i.e., the construction of the formulas. In the follow-
ing section we will describe how a formula encoding
a planning task can be constructed using our new
Reinforced encoding.

4. Reinforced Encoding
Our goal is (given a planning task Π = {X,O, sI , sG}
and an integer k) to construct a CNF formula Fk such
that Fk is satisfiable only if there is a parallel plan
of at most k steps for Π. We also want to construct
Fk in a way, that in the case it is satisfiable, we can
easily extract a plan from its satisfying assignment.
Before we describe the formula, we need to introduce
the notion of transitions [2].
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A transition represents a change of a state variable
x ∈ X from one value to another from its domain
dom(x) or from an arbitrary value to a specific value.
There are the following three kinds of transitions.

• An active transition changes the value of the vari-
able x from d to e such that d 6= e, {d, e} ⊆ dom(x),
it is denoted by δx: d→e. An action a has an ac-
tive transition δx: d→e if (x = d) ∈ pre(a) and
(x = e) ∈ eff(a).

• A prevailing transition conserves the value of the
variable x (if it was d, then it remains d, d ∈
dom(x)), it is denoted by δx: d→d. An action a has
a prevailing transition δx: d→d if (x = d) ∈ pre(a)
and there is no assignment related to x in eff(a).

• A mechanical transition changes the value of the
variable x from any value to the value d (d ∈
dom(x)), it is denoted by δx: ∗→d. An action a has
a mechanical transition δx: ∗→d if (x = d) ∈ eff(a)
and there is no assignment related to x in pre(a).

Example 2. The action a with preconditions
pre(a) = {x = 1, y = 3} and effects eff(a) = {y =
1, z = 2} has one active transition (δy: 3→1), one pre-
vailing transition (δx: 1→1), and one mechanical tran-
sition (δz: ∗→2).

The transition set of an action a is the set of all
transitions that a has, it is denoted by ∆a. By ∆p we
will mean the set of all possible prevailing transitions
of a planning task, i.e., ∆p = {δx: d→d | x ∈ X, d ∈
dom(x)}. The set of all transitions ∆ is the union of
all the prevailing transitions and the transition sets of
all the actions ∆ = ∆p ∪ {∆a | a ∈ O}. By ∆x ⊆ ∆
where x ∈ X we will denote the set of all transitions
related to the variable x.

The constructed formula Fk will have the following
three kinds of Boolean variables.

• Action variables ati indicating whether the i-th ac-
tion is used in the t-th step. We will have one such
variable for each action from the description of the
planning task and for each of the k parallel steps.

• Assignment variables btx=v indicating whether the
value of the variable x is equal to v in the end of the
t-th step (after applying the actions of the t-th step).
We will have one such Boolean variable for each
state variable x ∈ X and each value v ∈ dom(x) for
each of the k parallel steps.

• Transition variables ctδ (or ctx: d→e where δ =
δx: d→e) indicating whether the transition δ oc-
curred during the t-th step. We will have one such
variable for each δ ∈ ∆ for each of the k parallel
steps.

Now we are ready to define the clauses contained
in Fk.

The following set of binary clauses will enforce, that
at most one value is assigned to each state variable

x ∈ X.

(¬btx=vi
∨ ¬btx=vj

)
∀x ∈ X, vi 6= vj , {vi, vj} ⊆ dom(x), ∀t ∈ {1, . . . , k}

(1)

The following three kinds of clauses connect the as-
signment variables with the transition variables. The
first set of clauses ensures that each transition δx: d→e
(including prevailing transitions δx: e→e and mechani-
cal transitions δx: ∗→e) implies that x = e at the end
of each step.

(¬ctδx: d→e
∨ btx=e)

∀δx: d→e ∈ ∆,∀t ∈ {1, . . . , k}
(2)

Similarly, we need to add clauses for each transition
δx: d→e (except for mechanical transitions) to enforce
that x = d holds at the end of the previous step,
except for the first step, where we explicitly disable
all the transitions that are not compatible with the
initial state (using the clauses from equation 8).

(¬ctδx: d→e
∨ bt−1

x=d)
∀δx: d→e ∈ ∆, d 6= ∗,∀t ∈ {2, . . . , k}

(3)

The third kind of clauses is needed to guarantee, that
if a variable x has the value v then there is a transition
which changes the value of x to v.

(¬btx=v ∨ ctδ1
∨ · · · ∨ ctδm

)
∀x ∈ X, v ∈ dom(x),δ1, . . . , δm transform x to v,

∀t ∈ {1, . . . , k}
(4)

Next we describe the clauses that connect the action
variables with the transition variables. If an action
a is selected, then all the transitions in its transition
set ∆a must be selected as well. This implication is
expressed via the following clauses.

(¬at ∨ ctδ)
∀a ∈ O,∀δ ∈ ∆a,∀t ∈ {1, . . . , k}

(5)

Also we need to make sure, that transitions (except for
prevailing transitions) cannot happen without actions
that have them in their transition sets. The following
set of clauses will ensure this.

(¬ctδ ∨ ats1
∨ · · · ∨ atsm

)
∀δ ∈ (∆ \∆p), support(δ) = {s1, . . . , sm},

∀t ∈ {1, . . . , k}
(6)

By support(δ) we mean the set of indices of actions
that have δ in their transition set, i.e., support(δ) =
{i | ai ∈ O; δ ∈ ∆ai

}.
Next we need to deal with the interfering actions in-

side a parallel step. As discussed earlier, it is sufficient
to ensure, that only pair-wise independent actions are
together in each parallel step. We will achieve this by
disabling all pairs of non-independent (interfering) ac-
tions. To extrude interfering actions from the parallel
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steps we will add binary clauses for all the interfering
action pairs.

(¬ati ∨ ¬atj)
∀ai, aj ∈ O, ai, aj not independent,

∀t ∈ {1, . . . , k}

There might be a plenty of interfering action pairs
producing a lot of clauses. But if we look carefully at
the clauses we have already described, we can see, that
most of the interfering actions cannot occur together
anyway as we will show via the following notion of
compatible actions.

Two sets of conditions (assignments) are compatible
if they assign the same values to the variables they
share. Two actions a1 and a2 are compatible if the
preconditions of a1 are compatible with the precondi-
tions of a2 and also the effects of a1 are compatible
with the effects of a2.

Due to the clauses that enforce, that actions imply
their transitions (5) and their connection to assign-
ment variables (2 and 3) together with the clauses
that forbid a state variable to have more than one
value 1, actions that are not compatible cannot be
in a parallel step together. Therefore it is enough to
suppress compatible interfering action pairs.

(¬ati ∨ ¬atj)
∀ai, aj ∈ O, ai, aj compatible and not independent,

∀t ∈ {1, . . . , k}
(7)

Lastly, we add the clauses that enforce the initial
state to hold in the beginning and the goal conditions
to be satisfied in the end. As for the initial state, we
will disable all the transitions that are not compatible
with the initial state, i.e., if a variable x has the value
d in the initial state, then all the transitions that
change x from a value other than d are disabled by
using a unit clause. Note, that mechanical transitions
are always compatible with the initial state (or any
other state) and therefore no mechanical transition is
disabled.

(¬c1
δx: d→e

)
∀δx: d→e ∈ ∆, (x = d) /∈ sI

(8)

To encode the goal conditions we will use unit clauses
with assignment variables. Fore each goal condition
(x = v) ∈ sG we will have a unit clause (bkx=v) which
forces the value of x to be v after the last parallel
step.

(bkx=v)
∀(x = v) ∈ sG

(9)

The formula Fk for the Reinforced encoding is a
conjunction of the clauses defined in equations 1, 2,
3, 4, 5, 6, 7, 8, and 9. A ∀-step parallel plan can be
extracted from any satisfying assignment of Fk in the

following way. Let φ be a satisfying assignment of Fk.
Pφ is a sequence of action sets such that its t-th set
contains those actions ai ∈ O for which φ(ati) = True.

4.1. Correctness
In this subsection the prove the correctness of our
encoding, i.e., the following proposition.

Proposition 1. If the formula Fk obtained using the
Reinforced encoding of the planning task Π is satisfied
by a truth assignment φ then Pφ is a valid ∀-Step
parallel plan of makespan k for the planning task Π.

Proof. The requirements for the action sets given by
the ∀-Step semantics are clearly satisfied:
• the preconditions of actions in each parallel step
are satisfied due to 2, 3, and 5

• the effects are propagated also due to 2, 3, and 5
• the actions can be ordered arbitrarily thanks to 7

It remains to prove that PSφ = [E(A1)⊕· · ·⊕E(Ak)]
is a valid (sequential) plan for Π, where ⊕ denotes
the concatenation of sequences and E is an arbitrary
ordering of an action set.
Let us observe, that the transitions of the state

variables are consistent at each step, i.e., exactly one
transition is allowed for each state variable (due to
2, 3, and 1) and a non-prevailing transition cannot
happen without an action that has it (thanks to 6).
Prevailing transitions do not have to be supported by
any actions since they are used to preserve the values
of the variables that are not changed in the given
step by any actions. Furthermore, all the transitions
between two neighboring parallel steps must be com-
patible due to 2, 3, 4 and 1. Note, that it may happen,
that a variable x has no value assigned in the end of
a step t (all the btx=v, v ∈ dom(x) are False) and no
transition related to the variable is selected (all the
ctδ, δ ∈ ∆x are False). However, this can only occur
for variables that are not used in the goal conditions
or by actions that appear in the t-th step or later.
Since the action variables imply the proper tran-

sition variables thanks to 5, the actions must be ap-
plicable if their action variable is True and also the
transition connected to the action must happen.
Thanks to 8 only transitions compatible with the

initial state can happen in the first step and because
of 2 and 9 only transitions that change the variables
to their goal values are allowed in the last step. This
fact together with the consistency of the transitions
during all the k steps implies the validity of PSφ for
the planning task Π.

The reversed implication, which is that if Pφ is
a valid ∀-Step parallel plan of makespan k, then φ
satisfies Fk, does not hold. This is because Pφ may
contain a non-independent pair of actions in one of its
steps and still be a valid ∀-Step plan (see Example 1).
Such a pair of actions would make one of the clauses
of type 7 unsatisfied.
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4.2. Size of The Encoded Formula
The size of the formulas will of course depend on
the parameters of the planning task being encoded.
We will use the following quantitative properties of
a planning task Π = (X,O, sI , sG) to compute the
upper bounds.
• n - The number of actions (n = |O|).
• v - The number of state variables (v = |X|).
• d - The maximum domain size of any state variable
(d = maxx∈X{|dom(x)|}).

• p - The maximum number of preconditions or effects
an action has (p = maxa∈O{|pre(a)|, | eff(a)|})

Typically, the number of actions is much higher than
the other parameters. From these values we can com-
pute the following upper bounds related to the plan-
ning task.
• The number of assignments is at most vd.
• The number of transitions is at most v(d2 +d) since

there are at most d(d− 1) active, d prevailing, and
d mechanical transitions for each variable.
From these bounds it is apparent, that Fk (a for-

mula for makespan k) has at most kn action variables,
kvd assignment variables, and kv(d2 + d) transition
variables. Therefore the total number of Boolean
variables in Fk is k(n+ vd(d+ 2)).

Now let us compute an upper bound on the number
of clauses in Fk. We will count separately the number
of unit clauses (clauses with one literal), binary clauses
(clauses with two literals), and Horn clauses (clauses
with at most one positive literal). The formula Fk
obtained by the Reinforced encoding is the conjunction
of the clauses defined in equations 1, 2, 3, 4, 5, 6, 7,
8, and 9

• There are at most kvd2 clauses of the type 1 – one
for each step and variable and two different values
from its domain. These clauses are binary and
Horn.

• There are at most kv(d2 + d) clauses of the both
type 2 and type 3 – one for each step and transition.
These clauses are binary and Horn.

• There are at most kvd clauses of the type 4 – one
for each step and assignment.

• There are at most 2knp clauses of the type 5 – one
for each step, action and each of its transitions
(there are at most 2p transitions connected to each
action). These clauses are binary and Horn.

• There are at most kv(d2 + d) clauses of the type 6 –
one for each step and transition.

• There are at most kn2 clauses of the type 7 – one for
each step, and each pair of compatible interfering
actions (at most each pair of actions). These clauses
are binary and Horn.

• There are at most v(d2 + d) clauses of type 8 – one
for each transition that is not compatible with the

initial state (at most all the transitions). These are
unit clauses.

• There are at most v clauses of the type 9 – one for
each goal condition. These clauses are unit.

In total we have k(n2 +2np+4vd2 +4vd)+vd2 +vd+v
clauses, from which vd2 + vd+ v are unit clauses and
k(n2 + 2np+ 3vd2 + 2vd) are both binary and Horn
clauses.

5. Experimental Evaluation
To evaluate the performance of our new Reinforced en-
coding, we compared it with three other SAS+ based
encodings of planning as SAT. We ran experiments
with a 30 minutes time limit using the following four
encodings.
• Reinforced Encoding (Reinf). A Java implementa-
tion of our new Reinforced encoding as described
in the previous section.

• Direct Encoding (Dir). We implemented a simple
encoding based on the historically first encoding of
planning as SAT [1]. We adapted it for the SAS+
formalism. This encoding is similar to our Rein-
forced encoding but uses only action and assignment
variables.

• SASE Encoding (SASE). Our Java implementation1

of the transition-based SASE encoding [2]. This
encoding uses only action and transition variables.

• R2∃-Step Encoding (R2∃). The original Java im-
plementation of the R2∃-Step encoding [5]. This
encoding differs from the previous three encoding
significantly since it uses a different parallel plan-
ning semantics. The R2∃-Step encoding allows more
actions inside the parallel steps, therefore it often
finds plans with much lower makespans. Lower
makespan indicates that fewer SAT solver calls are
required to find a plan, however, it does not say
anything about its length, i.e., the total number of
actions it contains.

5.1. Experimental Setting
To compare the performance of the encodings we cre-
ated a simple script, which iteratively constructed and
solved the formulas for time steps 1, 2, . . . until a sat-
isfiable formula was reached (see Figure 1). For each
encoding we used the same SAT solver – Lingeling[11]
(version ats).

The time limit was 30 minutes for the SAT solving
part, i.e., the total time the SAT solver could spend
solving the formulas F1, F2, . . . for each problem in-
stance was 30 minutes. The time required for the gen-
eration of F1, F2, . . . is usually negligible compared
to the time required to solve them and therefore we
will ignore it. Hence the overall planning time could
exceed the given time limit for a problem instance.

1The original SASE implementation cannot be used since it
does not support the format of the latest benchmark problems
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Domain Dir SASE Reinf R2∃
barman 4 4 4 8
elevators 20 20 20 20
floortile 16 11 18 18

nomystery 20 10 20 6
openstacks 0 0 0 15
parcprinter 20 20 20 20
parking 0 0 0 0
pegsol 10 6 10 19

scanalyzer 14 12 15 9
sokoban 2 2 2 2
tidybot 2 2 2 2
transport 16 17 18 13
visitall 12 9 10 20

woodworking 20 20 20 20
Total 156 133 159 172

Table 1. The number of problems (out of 20) in each
domain that the encodings solved within the time limit
(30 minutes for SAT solving).

The experiments were run on a computer with In-
tel i7 920 CPU @ 2.67 GHz processor and 6 GB of
memory.

The benchmark problems of the IPC are organized
into domains. Each domain contains 20 problems and
there are 14 domains which results in a total of 280
problems. The benchmark problems are provided in
the PDDL format, however, the encodings require
input in the SAS+ format. We used Helmert’s trans-
lation tool, which is a part of the Fast Downward
planning system [12], to obtain the SAS+ files from
the PDDL files. The translation is very fast requiring
only a few seconds for all domains.

5.2. Experimental Results
The number of solved instances in presented in Ta-
ble 1. Looking at the results from the perspective
of the domains, we can observe, that the elevators,
parcprinter, and woodworking domains are entirely
solved by every encoding. On the other hand, the
parking domain is so difficult that not even a single
problem is solved by any of the encodings. The open-
stacks domain is very difficult for all but the R2∃-Step
encoding. The sokoban and tidybot domains are also
very hard for all of the encodings, only two of the
twenty problems are solved by each encoding.
If we compare the encodings, we can observe that

the R2∃-Step encoding has the highest total number
of solved instances followed by our new Reinforced en-
coding. As for the individual domains, the R2∃-Step
encoding solves strictly more problems than the other
encodings in four cases. The Reinforced encoding
achieves this for three domains, while the Direct and
SASE encoding cannot outperform the other encod-

Domain Dir SASE Reinf R2∃
barman 121 121 121 84

elevators 190 190 190 85
floortile 302 181 344 169

nomystery 347 119 347 30
openstacks - - - 93

parcprinter 261 261 261 30
parking - - - -
pegsol 222 131 222 158

scanalyzer 83 61 95 17
sokoban 60 60 60 27
tidybot 14 15 15 6
transport 221 242 262 55
visitall 223 110 146 34

woodworking 68 68 68 33

Table 2. The sum of makespans of the plans
found within the time limit for each domain. Lower
makespan means fewer SAT solver calls, it does not
indicate better plan quality. Domains with the same
number of solved problems for each encoding are high-
lighted.

ings in any of the domains. The Reinforced encoding
solves the same number of problems as any other en-
coding in seven cases. Except for the visitall domain,
the Reinforced encoding is never worse than the Direct
or SASE encoding.

Looking at the makespans of found plans displayed
in Table 2 we can observe that the makespans for the
R2∃-Step plans are indeed significantly lower than the
makespans of plans found by the other three encodings.
As expected, in the cases when the Direct, SASE, and
Reinforced encodings solve all the problems (or solve
the same problems) their total makespans are identical.
This is due to the fact that these three encodings use
the same ∀-Step parallel planning semantics.
The times required to solve the problems are pre-

sented in Table 3. If we look at the results for the
domains, where each encoding solved the same num-
ber of problems, i.e., the highlighted domains, we can
notice, that except for the parcprinter and sokoban
problems, the runtime of the R2∃-Step encoding is
much higher than the runtime of the other methods.
If we also look at Table 2, which contains the total
makespan of the found plans, we can deduce, that
lower makespan, i.e., fewer SAT calls does not nec-
essarily mean faster planning, especially not in the
case of the easy domains. Nevertheless, for the do-
mains, where R2∃-Step significantly outperformed the
other methods – openstacks, pegsol, and visitall, the
makespans are much lower than the makespans of the
other methods, despite the fact, that they solved fewer
problems.
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Domain Dir SASE Reinf R2∃
barman 2041.44 1549.31 1680.53 2999.30

elevators 33.96 55.72 38.10 288.29
floortile 7327.15 2083.57 1206.18 1380.63

nomystery 3798.45 1377.23 1894.65 1927.40
openstacks - - - 2679.68

parcprinter 10.07 28.25 12.15 4.24
parking - - - -
pegsol 3796.11 2096.72 4971.97 830.72

scanalyzer 1401.21 831.80 1435.19 1118.89
sokoban 592.03 1337.87 857.04 550.18
tidybot 75.68 74.02 118.09 480.85
transport 1404.23 3554.90 3203.62 7418.01
visitall 2380.76 683.25 726.53 14.24

woodworking 2.57 2.04 3.84 138.61

Table 3. The time in seconds required to solve all the problems that were solved within the time limit. The presented
time is the sum of times the SAT solver alone required, formula generation time is not included. Domains with the
same number of solved problems for each encoding are highlighted.

6. Conclusion
In this paper we have introduced a new encoding of
a planning problem represented in the SAS+ formal-
ism into SAT. Our new encoding performs well on
the benchmark problems of the 2011 International
Planning Competition. It can strictly outperform all
the other evaluated SAS+ encodings in three domains
and solve the same number of problems as any other
encoding for seven domains out of fourteen. On the
remaining four domains our encoding is outperformed
by the R2∃-Step encoding which uses a different paral-
lel planning semantics. As for future work, we believe
that the Reinforced encoding can be improved by de-
creasing the number of its clauses by using a more
compact way of encoding of the action interference
constraints.
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