
Planning as Quantified Boolean
Formulae

Michael Cashmore

A Thesis submitted for the degree of Doctor
of Philosophy

Department of Computer and Information Sciences

2013

This thesis is the result of the authors original research. It has been com-
posed by the author and has not been previously submitted for examination
which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the
United Kingdom Copyright Acts as qualified by University of Strathclyde Reg-
ulation 3.50. Due acknowledgement must always be made of the use of any
material contained in, or derived from, this thesis.

i

Contents

1 Introduction 1
1.1 Domain-Independent Planning 1

1.1.1 Domain definitions . 2
1.1.2 Grounding . 2
1.1.3 Parallel Optimised Planning 2
1.1.4 Planning as Satisfiability 5
1.1.5 Example of Planning as Satisfiability 6

1.2 Quantified Boolean Formulae . 7
1.3 Quantified Boolean Formulae in Planning 8
1.4 Statement of Thesis . 9

2 Background 10
2.1 Planning as Satisfiability . 10

2.1.1 Alternate Encodings of Planning Problems 11
2.1.2 Embedding Planning-Specific Knowledge 26
2.1.3 Solver Modifications and Search Algorithms 31

2.2 Model-Checking and Planning with Quantified Boolean Formulae 40
2.2.1 Planning Under Uncertainty 40
2.2.2 Model-Checking with QBF 41

2.3 Solving Quantified Boolean Formulae 42
2.3.1 DPLL-based Solvers . 42
2.3.2 Non-QDPLL Solvers . 44

3 QBF Encodings with Exponential Time-steps 45
3.1 Flat Encoding . 46
3.2 Compact Tree Encoding . 49
3.3 Comparison between Flat and Compact Tree Encoding 52
3.4 Leaf-based Encodings . 53
3.5 Example of the Action-leaf CTE 54

4 Partially Grounded QBF Encoding 59
4.1 Partially Grounded QBF Encoding 60

4.1.1 Splitting propositions and operators 60
4.1.2 Partially grounded state representation 62
4.1.3 State constraints . 63
4.1.4 Transition constraints . 66

4.2 Example of the Partially Grounded QBF Encoding 67

ii

5 Results 69
5.1 Comparing Encodings with Exponential

Time-steps . 69
5.1.1 Comparing the size of CTE and Flat encodings 70
5.1.2 Timing CTE and Flat encodings with DPLL solvers . . . 75
5.1.3 Timing CTE and Flat encodings with other solvers 81
5.1.4 Timing CTE using Leaf-based state representations . . . 83
5.1.5 Comparison with SAT-based encodings 83

5.2 Solving Partially Grounded QBF Encodings 87

6 Conclusion 90
6.1 Summary . 90

6.1.1 The Compact Tree Encoding 90
6.1.2 Leaf-Based Encodings . 91
6.1.3 The Partially Grounded QBF Encoding 91

6.2 Future Work . 92
6.2.1 Extending the Encodings 92
6.2.2 Related Work . 94

6.3 Final Word . 95
6.4 List of Publications . 96

iii

List of Figures

1.1 The domain for blocksworld, as used in IPC2. 3
1.2 A simple instance of blocksworld. 4
1.3 The initial state (left) and goal state (right) of the example

blocksworld problem. 4

2.1 Constraints for the translation of grounded causal Planning to
SAT from Kautz et al. [54]. 15

2.2 Constraints for the translation of lifted causal Planning to lifted
SAT from Kautz et al. [54]. 16

2.3 The restricted dependency tree of the ground condition
〈(unstack ?x ?y), {ADD(holding A)}〉. 22

2.4 Constraints for the split action encoding used by SOLE. 23
2.5 Constraints for the SAS+-based encoding used by SASE. 25
2.6 Gripper domain, adapted from the AIPS-98 Planning competition. 27
2.7 A simple instance of gripper. 28
2.8 The Davis–Putnam algorithm for SAT. 33
2.9 Rintanen’s algorithm for finding (sub)goal support. 34
2.10 The basic algorithm for Planning as Satisfiability. 35
2.11 A simpe SAT problem. 35
2.12 Solving the SAT problem leads to a conflict. 35
2.13 Algorthim A for Planning as Satisfiability, using n parallel pro-

cesses. 37
2.14 Algorthim B for Planning as Satisfiability, using geometric di-

vision of CPU use based on parameter γ where δ is some time
increment. 38

2.15 A simple top-level strategy for optimisation proposed by Streeter
and Smith [95]. 39

3.1 The tree formed by expanding universal quantifiers in the Flat
Encoding (k = 1) with a generic state-based representation. Each
box corresponds to a set of existentially quantified variables; each
circle a universally quantified variable. Variables beneath the
universal variable are copied to represent its expansion. 46

3.2 The tree formed by expanding universal quantifiers in the Flat
Encoding (k = 1) with a generic state-based representation. Equal-
ity constraints are represented by dark arrows, transition con-
straints by red arrows with the label τ . The dashed arrow shows
a pair of states that are made implicitly equal. 47

iv

3.3 The tree formed by expanding universal quantifiers in the Com-
pact Tree Encoding with a generic state-based representation.
Each box corresponds to a set of existentially quantified vari-
ables; each circle a universally quantified variable. Variables be-
neath the universal variable are copied to represent its expansion.
Transition constraints are shown by arrows with the label τ 47

3.4 The tree formed by expanding universal quantifiers in the CTE
with a generic state-based representation. Each level corresponds
to a set of existentially quantified variables; each node represents
a unique combination of context and variable set. Transitions
between states are noted with arrows. 53

3.5 The tree formed by expanding universal quantifiers in the Action-
leaf CTE. Each level corresponds to a set of existentially quan-
tified variables; each node represents a unique combination of
context and variable set. Transitions between states are noted
with arrows. 55

4.1 Part of a SAT formulation of the pigeonhole problem, with ex-
istentially quantified variables represented by square boxes. The
state representation is a Graphplan-based encoding with split ac-
tions, as described in Section 2.1. 60

4.2 Part of a partially grounded QBF formulation of the pigeonhole
problem, with existentially quantified variables represented by
square boxes and universally quantified variables represented by
circles. Expanding the universal quantifiers will produce a tree
with 2m = P branches, each corresponding to a unique pigeon. . 60

4.3 The domain for the pigeonhole problem with operator place and
propositions placed, empty, and in. 61

4.4 The operator remove for the pigeonhole domain. 65
4.5 The constraints QBF instance Φn representing a pigeonhole prob-

lem with 2m pigeons and pigeonholes, and n+ 1 states. 68

5.1 Average memory use for problems solved using the CTE against
Flat encoding; solving QBFs with DepQBF; memory in kb. . . . 73

5.2 Average memory use for problems solved using the CTE against
Flat encoding; solving QBFs with QuBE7.0; memory in kb. . . 73

5.3 Average memory use for problems solved using the CTE against
Flat encoding; solving QBFs with Quantor; memory in kb. . . 75

5.4 Times on problems solved using the CTE against Flat encoding;
solving QBFs with QuBE7.0; times in ms. 79

5.5 Times on problems solved using the CTE against Flat encoding;
solving QBFs with DepQBF; times in ms. 79

5.6 Ratio of solution times, (CTE/Flat) on encodings with various
makespans; solving QBFs with DepQBF. 80

5.7 Ratio of solution times, (CTE/Flat) on encodings with various
makespans; solving QBFs with QuBE7.0. 80

5.8 Times on problems solved using the CTE against Action-leaf
CTE; solving QBFs with QuBE7.0; times in ms. 83

v

5.9 Solution times for QBF encodings (CTE) against solution times
for SATPLAN’04, solving QBFs with a variety of solvers; times
in ms. 85

5.10 Solution times for Madagascar against solution times for SAT-
PLAN’04; times in ms. 85

5.11 Average memory usage over time for SAT and QBF encodings
per domain, solving QBFs with DepQBF, SAT instances with
picosat; memory in kb. 87

vi

List of Tables

2.1 Variables resolved by sQueezeBF using Q-resolution per prob-
lem in the driverlog domain. 43

3.1 Formula sizes for CTE and Action-leaf CTE; time-step bound
provided by the fix point of the plan graph. 58

5.1 Number of quantifier alternations for various makespans. 71
5.2 Number of variables and clauses for encodings of various prob-

lems in the IPC benchmark suite. The time-step bound for each
encoding is provided by the fix point of the plan graph. 71

5.3 Memory used solving problems using the Compact Tree Encoding
(CTE) and Flat Encoding, solving QBFs with DepQBF; sizes to
the nearest kb. 72

5.4 Memory used solving problems using the Compact Tree Encoding
(CTE) and Flat Encoding, solving QBFs with QuBE7.0; sizes
to the nearest MB. 72

5.5 Memory used solving problems using the Compact Tree Encoding
(CTE) and Flat Encoding, solving QBFs with Quantor; sizes
to the nearest MB. 74

5.6 Number of Planning problems solved by the CTE or Flat encod-
ing that were not solved by the other. 76

5.7 Time taken to solve instances using the Compact Tree Encoding
(CTE) and Flat Encoding, solving QBFs with QuBE7.0; times
in ms. “-” means the encoding ran out of time. 77

5.8 Time taken to solve instances using the Compact Tree Encoding
(CTE) and Flat Encoding, solving QBFs with DepQBF; times
in ms. 78

5.9 Time taken to solve some instances using the ISCAS-85 transla-
tion of the CTE, solving QBFs with CirQit2.1; times in ms. . . 81

5.10 Time taken to solve some instances using the Compact Tree En-
coding (CTE) and Flat Encoding, solving QBFs with Quantor;
times in ms. Some results are excluded from the table due to
space constraints. 82

5.11 Number of Planning problems solved by the CTE or Action-leaf
CTE encoding that were not solved by the other. 83

5.12 Time taken to solve instances using the CTE and SATPLAN’04,
solving QBFs with with a variety of solvers; times in ms. 86

5.13 Formula sizes for partially grounded QBF and SAT based encod-
ings. “-” means the encoding ran out of time. 88

vii

5.14 Time taken to encode and solve problems using PGQBF encod-
ings and SAT based encodings. All times are in seconds. “-”
means the time limit was reached, “*” means that the encoding
ran out of memory. 89

viii

Acknowledgements

I would like to thank all of the members of the Planning group at King’s, for
their support, and for teaching me in the first place. In particular I’d like to
thank my supervisor, Maria Fox, for all of her input and guidance.

I would also like to thank those who collaborated with me, or lent me advice,
especially Enrico Giunchiglia and Ian Gent, my external supervisor.

Finally I’d like to thank Bram Ridder and Daniele Magazzenni for sharing
the best office and hundreds of cups of tea; Stephen Cashmore for fixing my
grammar; and Michele Cashmore, my wife, for putting up with me while I
wrote this thesis.

ix

Abstract

This work explores the idea of classical Planning as Quantified Boolean For-
mulae. Planning as Satisfiability (SAT) is a popular approach to Planning and
has been explored in detail producing many compact and efficient encodings,
Planning-specific solver implementations and innovative new constraints. How-
ever, Planning as Quantified Boolean Formulae (QBF) has been relegated to
conformant Planning approaches, with the exception of one encoding that has
not yet been investigated in detail. QBF is a promising setting for Planning
given that the problems have the same complexity.

This work introduces two approaches for translating bounded propositional
reachability problems into QBF. Both exploit the expressivity of the binary-
tree structure of the QBF problem to produce encodings that are as small as
logarithmic in the size of the instance and thus exponentially smaller than the
corresponding SAT encoding with the same bound. The first approach builds
on the iterative squaring formulation of Rintanen; the intuition behind the idea
is to recursively fold the plan around the midpoint, reducing the number of
time-steps that need to be described from n to log2n. The second approach
exploits domain-level lifting to achieve significant improvements in efficiency.

Experimentation was performed to compare our formulation of the first ap-
proach with the previous formulation, and to compare both approaches with
comparative and state-of-the-art SAT approaches. Results presented in this
work show that our formulation of the first approach is an improvement over
the previous, and that both approaches produce encodings that are indeed much
smaller than corresponding SAT encodings, in both terms of encoding size and
memory used during solving. Evidence is also provided to show that the first
approach is feasible, if not yet competitive with the state-of-the-art, and that
the second approach produces superior encodings to the SAT encodings when
the domain is suited to domain-level lifting.

Chapter 1

Introduction

1.1 Domain-Independent Planning

Domain-Independent Planning is a PSPACE-complete search problem [27]. A
simple, abstract definition of Domain-Independent Planning splits the problem
into two parts: a description of the initial and desired states of the world,
in some formal language; and a set of actions–ways in which the world can
be altered, perhaps by an agent. The first item forms the problem instance,
while the second item is called the domain. A single domain may have many
associated problem instances. The solution to a Planning problem is a set of
actions that can be applied from the initial state in order to reach a desired
state. This definition is very abstract and includes many varieties of formal
languages and sub-problems, from non-deterministic and partially-observable
worlds; to complex actions with conditional effects; to puzzles in a continuous
real-time setting.

When regarding translations to Boolean formulae we will restrict ourselves
to a simple subset of Planning problems. These Planning problems are specified
using the standard STRIPS formulation [29]. A Planning problem is the 4-tuple
〈F ,A, I, G〉 in which:

• F is a set of fluents, Boolean variables representing facts about the world;

• A is a set of actions;

• I is a formula over F , describing the initial state of the world; and

• G is a formula over F representing the goal.

A fluent literal is the formula ¬f or f where f ∈ F . A valuation of F describes
a state; this is denoted as S, a complete set of fluent literals over F .

An action a is defined by 〈Pa, Ea〉 in which:

• Pa is a set of fluent literals, called the preconditions, and

• Ea is a set of fluent literals, called the effects.

An action a is applicable in a state S if S |= Pa. Applying a in a given state S
leads to another state Sa such that Sa |= Ea and (f ↔ fa) ∀f ∈ S/E, where
fa ∈ Sa is the fact corresponding to f .

1

The solution to the problem is an ordered sequence of actions that are ap-
plicable from the initial state and end in a state that satisfies G. That is,
T : {a1, a2, . . . , an|(((Ia1)a2) . . .)an |= G}.

Both the lack of uncertainy in the initial state and the deterministic nature of
actions are not true for Domain-Independent Planning in general; however, we
make these assumptions for simplicity. The formulae presented in later sections
deal only with deterministic action effects and unique initial states.

1.1.1 Domain definitions

Implementations of translations presented in later sections are from Planning
Domain Definition Language, PDDL [67]. In this language the domain is de-
scribed using propositions, operators and object types.

The problem instance defines the number of each object type. Binding specific
objects to each parameter of a proposition (or operator) generates a fluent (or
action). This process, called grounding, is described in detail below. Grounding
all of the propositions generates the set of fluents F and similarly grounding the
operators generates the set of actions A.

For example, Figure 1.1 describes a domain for the problem of stacking
blocks. This particular domain comes from the second International Planning
Competition (IPC) [1]. A simple problem instance of this domain is shown
in Figure 1.2, and graphically in Figure 1.3. This instance will be used as an
example throughout this thesis.

1.1.2 Grounding

Traditionally, in order to translate the Planning problem into Boolean encod-
ings we must first ground the instance. Grounding means generating fluents
and actions from the propositions and operators of the domain. Briefly, the
set of fluents are found by making every possible valid binding of objects to
propositions. Actions are similarly created from the operators.

For example, the operator stack defined in Figure 1.1 using the problem
instance described by Figure 1.2 would generate 9 actions. Each action would
include a different pairing of blocks: stack(A,A); stack(A,B); stack(A,C);
and so on. Similarly the proposition holding will generate 3 different fluents:
holding(A); holding(B); and holding(C).

1.1.3 Parallel Optimised Planning

The efficiency of encoding Planning problems as Boolean formulae is greatly
improved by the idea of parallel plans [8, 56]. In a parallel plan a number of
actions can be applied simultaneously to a state. A complex action refers to
a set of actions that are applied in parallel. The exact definition of a complex
action depends upon the parallel plan semantics that are being used.

The length of the plan is its makespan, the number of timepoints at which
complex actions are applied. The makespan is an important concept as it di-
rectly affects the size of the resulting formula after translation. A plan is said
to be makespan optimal if the makespan is of size n, and no valid plan exists
with a makespan of size n− 1.

2

(d e f i n e (domain BLOCKS)
(: requ i rements : s t r i p s : typing)
(: types block)
(: p r ed i c a t e s (on ?x − block ?y − block)

(ontab le ?x − block)
(c l e a r ?x − block)
(handempty)
(ho ld ing ?x − block)
)

(: a c t i on pick−up
: parameters (? x − block)
: p r e cond i t i on (and (c l e a r ?x)

(ontab le ?x)
(handempty))

: e f f e c t
(and (not (ontab le ?x))

(not (c l e a r ?x))
(not (handempty))
(ho ld ing ?x)))

(: a c t i on put−down
: parameters (? x − block)
: p r e cond i t i on (ho ld ing ?x)
: e f f e c t
(and (not (ho ld ing ?x))

(c l e a r ?x)
(handempty)
(ontab le ?x)))

(: a c t i on stack
: parameters (? x − block ?y − block)
: p r e cond i t i on (and (ho ld ing ?x) (c l e a r ?y))
: e f f e c t
(and (not (ho ld ing ?x))

(not (c l e a r ?y))
(c l e a r ?x)
(handempty)
(on ?x ?y)))

(: a c t i on unstack
: parameters (? x − block ?y − block)
: p r e cond i t i on (and (on ?x ?y)

(c l e a r ?x)
(handempty))

: e f f e c t
(and (ho ld ing ?x)

(c l e a r ?y)
(not (c l e a r ?x))
(not (handempty))
(not (on ?x ?y)))))

Figure 1.1: The domain for blocksworld, as used in IPC2.

3

(d e f i n e (problem BLOCKS−EXAMPLE)
(: domain BLOCKS)
(: ob j e c t s A B C − block)
(: i n i t (c l e a r A) (c l e a r B) (ontab le B) (ontab le C)

(on A C) (handempty))
(: goa l (AND (on A B) (on B C))))

Figure 1.2: A simple instance of blocksworld.

Figure 1.3: The initial state (left) and goal state (right) of the example
blocksworld problem.

There are a number of different definitions for parallel plans. Important
to Planning as Boolean formulae are ∀-step semantics, process semantics and
∃-step semantics.

In ∀-step semantics actions can be applied in parallel as long as they could
be applied sequentially in any total order terminating in the same state. So, for
every total ordering a1, a2, . . . , am of complex action A:

(((Sa1i)a2) . . .)am ≡ Si+1.

For STRIPS this can be achieved by applying in parallel only actions that are not
mutually exclusive. Two actions, 〈P1, E1〉, 〈P2, E2〉 ∈ A are mutually exclusive
if ∃f ∈ F such that:

• ¬f ∈ E1 and f ∈ E2;

• ¬f ∈ E2 and f ∈ E1;

• ¬f ∈ E1 and f ∈ P2;

• ¬f ∈ E2 and f ∈ P1;

• f ∈ E1 and ¬f ∈ P2; or

• f ∈ E2 and ¬f ∈ P1.

A ∀-step plan is a sequence T : {A1, A2, . . . , An} of complex actions, in which
each set forms an independent set with respect to mutual exclusivity.

A process plan is a ∀-step plan T : {A1, A2, . . . , An} in which there is no
i ∈ 2, 3, . . . , n and a ∈ Ai such that T : {A1, A2, . . . , Ai−1

⋃
{a}, Ai\{a}, . . . , An}

is also a valid plan. The earliest appearance semantics reduces the number of

4

valid plans, but does not affect plan existence. This can easily be seen in that
for every ∀-step plan with makespan n a plan valid under process semantics
can be obtained by repeatedly moving actions violating the condition one time
point earlier. The idea of process semantics has been explored in other problems
[3, 23, 45] and formalised in Planning [90].

In ∃-step semantics actions can be applied in parallel as long as there exists
at least one way in which they could be applied sequentially under a total
order. This definition allows for much greater parallelism, and possibly shorter
makespans. An important difference from ∀-semantics is that the result of
applying a complex action A to a state Si does not lead to a unique state Si+1.
It is necessary to make the order of operators implicit in their descriptions. The
idea was proposed by Dimopoulos et al. [24] and later formalised [90].

The formulae presented here use ∀-step semantics, although the choice of
parallel plan semantics is orthogonal to the choice between different SAT and
QBF translations.

1.1.4 Planning as Satisfiability

Planning as SAT is one of the best known and effective techniques for classical
Planning: satplan [55] was an award-winning system in the deterministic track
for optimal planners in the first International Planning Competition (IPC) in
1998, the 4th IPC in 2004, and the 5th IPC in 2006. The basic idea is to encode
the existence of a plan with n + 1 (or fewer) steps as a propositional (SAT)
formula obtained by unfolding, n times, the symbolic transition relation of the
automaton described by the Planning problem.

In the following, we use X to denote the whole set of variables, i.e., F
⋃
A.

The SAT encoding of a Planning problem is a 4-tuple 〈I, σ, τ,G〉 where

• I is a an interpretation of F and represents the initial state;

• σ is a Boolean formula over X that represents the state constraints within
the automaton;

• τ is a Boolean formula over X ∪X ′ where X ′ = {x′ : x ∈ X} is a copy of
the set of variables and represents the transition relation of the automaton
describing how (complex) actions affect states (we assume X ∩X ′ = ∅);

• G is a Boolean formula over F and represents the set of goal states.

The only assumption that we make is that the description is deterministic: there
is only one state satisfying I and the execution of a (complex) action α in a state
S can lead to at most one state S′. More formally, for each state S and complex
action α there is at most one interpretation extending S ∪ α and satisfying τ .

Consider a Planning problem 〈I, σ, τ,G〉. As standard in Planning as SAT,
the existence of a plan with makespan n (or lower) is proved by building a
propositional formula with n copies of the set of variables. In the following,

• by Xα we denote one such copy of the set of variables;

• by I(Xα) (resp. G(Xα)) we denote the formula obtained from I (resp. G)
by substituting each x ∈ X with the corresponding variable xα ∈ Xα;

5

• by σ(Xα) we denote the formula obtained from σ by substituting each
variable x ∈ X with the corresponding variable xα ∈ Xα;

• by τ(Xα, Xβ) we denote the formula obtained from τ by substituting each
variable x ∈ X with the corresponding variable xα ∈ Xα and similarly
each x′ ∈ X ′ with the corresponding xβ ∈ Xβ .

For n ≥ 1, the Planning problem Π with makespan n is the Boolean formula
Πn defined as

I(X1) ∧
n+1∧
i=1

σ(Xi) ∧
n∧
i=1

τ(Xi, Xi+1) ∧G(Xn+1) (n ≥ 0) (1.1)

and a plan for Πn is an interpretation satisfying (1.1).

1.1.5 Example of Planning as Satisfiability

Consider the simple Planning problem in Figure 1.1 and Figure 1.2. Described
in this subsection is one example of encoding a Planning problem as a Boolean
formula. After grounding we obtain the set X : F

⋃
A, which contains variables

representing the 19 fluents:

(onAA), (onAB), (onAC), (onB A), (onB B),
(onB C), (onC A), (onC B), (onC C),
(ontableA), (ontableB), (ontableC),

(clear A), (clear B), (clear C),
(holding A), (holding B), (holding C),

(handempty)

and 24 actions:

(stack AA), (stack AB), (stack AC), (stack B A), (stack B B),
(stack B C), (stack C A), (stack C B), (stack C C),

(unstack AA), (unstack AB), (unstack AC), (unstack B A), (unstack B B),
(unstack B C), (unstack C A), (unstack C B), (unstack C C),

(put-downA), (put-downB), (put-downC),
(pick-upA), (pick-upB), (pick-upC).

The encoding of this problem is the 4-tuple 〈I, σ, τ,G〉.

1. For set of fluents F0 ⊆ X,

F0 : { (onAC), (ontableB), (ontableC),
(clear A), (clear B), (handempty)

}

I(X) |= F0 and I(X) |= ¬f, ∀f /∈ F0.

2. σ(X) models the mutual exclusion relations and the action preconditions:

• σ(X) |= ¬a1 ∨ ¬a2, ∀a1, a2 ∈ X such that a1 and a2 are mutually
exclusive; and

• σ(X) |= a→ p, ∀p ∈ Pa, for example:

(unstack AC)→ (onAC) ∧ (clear A) ∧ (handempty).

6

3. τ(Xα, Xβ) ensures that the effects of an action applied in Xα are present
in Xβ , and that a fluent made true in Xβ implies a supporting action, or
fact in Xα. More formally:

• τ(Xα, Xβ) |= a→ e, ∀e ∈ Ea for each a ∈ Xα and e ∈ Xβ ; and

• τ(Xα, Xβ) |= fβ → (fα ∨ Af), for each f ∈ F , where fα represents
the copy of f in set Xα and similarly for fβ . Af ⊆ Xα represents the
achievers of f , that is, all actions a such that f ∈ Ea.

For example, consider action (pick-upA) and fact (holding A). τ(Xα, Xβ)
would contain the constraints:

(pick-upA)α →
(holding A)β ∧ ¬(ontableA)β ∧ ¬(clear A)β ∧ ¬(handempty)β

and
(holding A)β → (holding A)α ∨ (pick-upA)α

∨(unstack AA)α ∨ (unstack AB)α ∨ (unstack AC)α.

4. G(X) |= Fg for the goal facts Fg{(onAB), (onB C)}.

It is easy to check that there exists a plan for the problem for any makespan
n ≥ 6. Indeed, from our definitions, it is enough to construct the propositional
formula (1.1) for a sufficiently large n and then check its satisfiability.

The encoding used here is an example of a simple state-based encoding with
∀-step semantics first presented by Kautz and Selman [55]. Other encodings
will be reviewed in Chapter 2.

1.2 Quantified Boolean Formulae

Quantified Boolean Formulae (QBF), which is PSPACE-complete [93, 94], is
perhaps the most fundamental problem in PSPACE. An instance of the QBF
problem is typically presented as a Boolean expression in conjunctive normal
form (CNF), which is a conjunction of disjunctions of literals. These literals
are instances of Boolean variables in either positive or negative phase. The
expression is prefixed by a quantifier layer in which every variable present in
the expression is quantified either existentially or universally.

The decision problem is stated as: given ϕ, a Boolean expression in CNF,
with Boolean variables x1, . . . , xn partitioned into m sets X1, . . . , Xm, is it true
that there exists an assignment to variables X1 such that for all assignments
made to X2 there exists an assignment to X3 (and so on) such that ϕ is satisfied?
In other words,

∃X1,∀X2,∃X3, . . . ,∃Xm ϕ?

For example:

∃x1, x2,∀x3,∃x4((¬x1 ∨ ¬x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ ¬x4))

is false, since there is no assignment to variables x1, x2 and x4 that will satisfy
the expression for both values of x3.

The QBF instance can be thought of as a binary tree with conjunctive and
disjunctive leaves. The outermost quantifier can be expanded, removing it from

7

the problem. Where φ[x/>] is the result of assigning x→ true in φ (and simi-
larly for φ[x/⊥]) the formula after expanding the outermost variable x becomes
φ[x/>]∨φ[x/⊥] if x is quantified existentially and φ[x/>]∧φ[x/⊥] if x is quan-
tified universally. After every variable is expanded the formula is reduced to
true or false.

This idea of expansion is useful in various proofs, especially in Chapter 3.
Variables that are not of the outermost set can also be expanded, but the defi-
nition differs. Only variables quantified after the expanded variable are copied
into a new formula, while the preceding variables are present in both halves of
the expansion. When given the expression

∃X1,∀y,∃X2, . . . ,∃Xm(ϕ),

expanding y will produce the equivalent formula:

∃X1(
∃X2, . . . ,∃Xm(ϕ[y/>])
∧∃X ′2, . . . ,∃X ′m(ϕ[y/⊥])

).

Expanding every universally quantified variable in the problem will produce
its existential closure, flattening the formula to an exponentially larger SAT
instance.

1.3 Quantified Boolean Formulae in Planning

An encoding of reachability into QBF that is logarithmic in the number of
timesteps was described by Rintanen [80] as a motivating example. Consider
the formula reachn(I,G) that represents a transition sequence of length 2n

between two states I and G. This formula could encode problems as QBF by
recursively folding the transition sequence around the midpoint:

reacho(I,G) := τ(I,G)
reachn+1(I,G) := ∃S∀y(

¬y → reachn(I, S) ∧ y → reachn(S,G)).

This encoding is formalised in Chapter 3 as the Flat Encoding.
QBF has also been considered in the context of conformant Planning [79], but

not as a practical approach to classical Planning until now. Conformant Plan-
ning is the problem of finding conditional plans in a setting where the initial state
is unknown, only partially known, or action effects are non-deterministic [43].
We can assume that all action effects are deterministic and all uncertainty is
contained in the initial state without any loss of expressivity.

With such an assumption, a Conformant Planning problem is the 4-tuple
〈F ,A, I, G〉 in which:

• F is a set of observable fluents that decide how plan execution proceeds;

• A is a set of actions;

• I is a formula over F , describing the set of initial states; and

• G is a formula over F representing the goal.

8

A conditional plan determines for all possible initial states an execution that
reaches a state S |= G.

Encodings of Conformant Planning as QBF use the greater expressive power
to quantify universally over the initial state. In this way conditional plans are
found with executions that find a state satisfying the goal for any possible initial
state. Encodings of this type are discussed further in Chapter 2.

QBF has not been seriously considered for use in classical Planning because
it has not been evident that its expressive power can be exploited when all parts
of the problem are determined. Also, SAT has produced excellent results for
classical Planning and there has not been a strong drive to find ways to improve
on these using richer SAT methods. Given the maturity of research into SAT
solving compared to solving QBF it is not surprising that straighforward trans-
lations of Planning problems into QBF yield very poor performance. However,
SAT-based Planning, though quite successful, suffers from the weakness that
it is easy to come up with problems in which the number of steps required, or
number of grounded variables, is large, making it impossible to even encode
the original problem as a propositional formula. The same problem arises in
bounded model checking [7].

We propose that QBF, being PSPACE-complete, is a more natural candidate
for translation. This has been proposed before as a possibility for overcoming
these shortcomings of the SAT-based approach [22, 52, 63]. In particular, Jussila
and Biere [52] and Rintanen [80] present an encoding that is logarithmic in the
makespan, resembling the proof of the PSPACE-hardness of solving QBFs [93,
94]. However, no practical encoding method has yet been proposed. While
obvious translations do not work, the idea explored in this thesis is that QBF
encodings can lead to more efficient solution than SAT encodings when the right
encoding is used.

1.4 Statement of Thesis

This thesis explores the claim that QBF encodings lead to more efficient solu-
tion of Planning problems than SAT encodings when the right encoding is used.
We present two such translations with the potential to be exponentially smaller
than the equivalent SAT translation of the same makespan. The first transla-
tion is based upon the iterative squaring formulation of Rintanen [80], folding
the formula recursively from the mid-time-step, while the second exploits the
universal quantification to describe a plan in a manner that is only partially
grounded.

We describe experiments performed on these encodings to determine their
effectiveness, and present results showing that the first translation is a marked
improvement upon the previous formulations and that, while still not yet com-
petitive with SAT-based techniques, the translation has the potential to be a far
more scalable approach to Planning as Boolean formulae. The competitiveness
result is not surprising, given the relative maturity of SAT solving compared
to QBF. We also present results that show our second approach is competitive
with SAT-based techniques on domains that benefit from domain level lifting,
finding problems that are practically impossible to encode in SAT and conse-
quently are unsolvable, but which can be encoded and solved using our QBF
approach.

9

Chapter 2

Background

2.1 Planning as Satisfiability

Planning as Satisfiability was pioneered by Kautz and Selman, beginning with
a translation from Planning into propositional satisfiablity [55]. This section
will outline further evolutions and approaches in this field. The contributions
described here mainly fall into one of three categories: an alternate encoding of
state or transition relation; the embedding of additional, or alternate, Planning-
specific knowledge; or Planning-specific improvements to the SAT solver. Many
of these ideas are orthogonal to the choice of representation between SAT and
QBF; improvements to Planning as SAT are applicable, usually directly, to
Planning as QBF. After a short description of the beginnings of Planning as
Satisfiability, contributions to the field are described, and their relevance to this
work outlined, in three subsections corresponding to these categories.

Kautz and Selman first presented a translation from Planning to propo-
sitional satisfiability as a complementary approach to deductive systems [55];
stating as their idea:

In the Planning as satisfiability approach, a Planning problem is not
a theorem to be proved; rather, it is simply a set of axioms with the
property that any model of the axioms corresponds to a valid plan.

The encoding they presented had a one-to-one correspondence between the flu-
ents and actions at each time-step and the variables in the SAT formula. The
constraints of the problem were:

• an action implies both its preconditions and effects;

• exactly one action occurs at each time-step;

• the initial state is completely specified; and

• classical frame axioms hold for all actions.

Classical frame axioms state that if an action does not change the truth value
of a fluent then the fluent remains true or remains false when the action occurs.
The number of classical frame axioms becomes very large as the number of
operators is increased [54] and later encodings, including those presented in this
paper, move away from them, for that reason.

10

Kautz and Selman used the idea of operator splitting to significantly reduce
the size of the resulting encoding. The basic idea is to reduce the arity of op-
erators by replacing operators that take three or more parameters by several
operators that take no more than two parameters. For example, a (move x y z)i
operator for moving a block x directly from the top of block y to the top of
block z at time-step i would be replaced by three split operators: (move x)obji ,
(move y)srci and (move z)desti . Kautz and Selman liken this procedure to “lift-
ing” the Planning problem, and the same idea forms the basis of the encoding
presented in Chapter 4: a Partially Grounded QBF Encoding, and in the en-
coding by Robinson et al. [92] presented later in this section.

2.1.1 Alternate Encodings of Planning Problems

Encodings here are presented in roughly chronological order with reference to
the ways in which they relate to the QBF encodings in Chapters 3 and 4. The
current state-of-the-art in terms of Planning as SAT are the relaxed ∃-step
encodings of Wehrle and Rintanen [96], the Split Representation of Robinson
et al. [92], and the SAS+-based encoding of Huang et al. [50, 51]. All three
approaches are directly applicable to encodings described in this work, and the
third bears very strong parallels to the encoding in Chapter 4.

Graphplan-based Encodings

The Graphplan system from Blum and Furst [8] instigated a new approach to
encoding Planning problems as SAT. The Graphplan system converts a STRIPS-
style Planning problem into a Planning graph; a directed, levelled graph with
alternating layers of nodes. Edges in the graph only exist between nodes in
adjacent layers. The layers alternate between fluent and action layers, the nodes
of which represent fluents and actions respectively. Each layer is indexed by the
time-step for that layer. For example, the first layer contains fluents true at time
1, the second contains possible actions at time 1, and the third layer contains
fluents that are possible at time 2. For every fluent there also exists a no-op
“maintain” operator that simply has that fluent as a precondition and effect.

A node is added to the first layer for each fluent that is true in the initial
state; all possible actions whose preconditions exist in the previous layer are
added; and all add effects of actions in layer i are added to layer i+ 1. Edges in
the explicitly represent relations between actions and propositions. Each action
node in level i is connected by “precondition edges” to their preconditions in
layer i − 1, by “add-edges” to their add effects, and by “delete-edges” to their
delete effects in layer i + 1. The plan graph reaches a fix point when the new
layer is identical to the previous.

The constraints upon the Planning graph are weaker than those imposed
upon a valid plan. In particular, an action layer contains all possible actions
applicable at that time. The advantage is that the Planning graph can be
constructed relatively quickly, in polynomial time. Planning graphs have the
important property that:

If a valid plan exists using n or fewer time-steps, a valid plan exists
as a subgraph of a Planning graph with n action layers.

11

A solution is a subgraph that contains in the final layer a set of fluents that
satisfies the goal, contains no two mutually exclusive actions in the same layer,
for each fluent node contains at least one supporting action node in the previous
layer (unless it is in the first layer), and for each action node contains every fluent
node comprising its preconditions in the previous layer. This solution belongs
to the family of ∀-step semantic plans described in Section 1.1.3.

An integral part of the Planning graph is to compute mutual exclusion rela-
tions between fluents and actions. Not all relations are discovered, specifically
only those which are noticed by the following rules, which extend those described
in section 1.1.3:

• Interference: Two actions a and b are mutually exclusive if there exists
fluent f such that ¬f ∈ Ea and (f ∈ Pb) ∨ (f ∈ Eb). This corresponds to
the notion of mutual exclusivity already introduced.

• Competing Needs: Two actions a and b are also mutually exclusive if there
exist two fluents f1 and f2 such that f1 ∈ Pa and f2 ∈ Pb and f1 and f2
are mutually exclusive in the previous layer.

• Fluent mutual exclusions: Two fluents f1 and f2 are mutually exclusive if
all actions which achieve f1 are mutually exclusive with all actions that
achieve f2 in the previous layer.

Graphplan is faster on many domains than the linear encodings of SAT-
PLAN [58]. Kautz and Selman speculated that this was partly due to the
mutual exclusion computations performed by Graphplan, pruning nodes from
the graph during instantiation. Noting that a Planning graph is very similar to
their linear encodings Kautz et al. [54, 58] were able to automatically convert
Planning graphs into CNF notation. Kambhampati [53] describes the encoding
as posing the extraction of a subgraph as a SAT problem.

The advantage of this formulation is that the classical frame axioms are no
longer required. Instead each fluent implies the disjunction of possible causes.
This is an example of explanatory frame axioms, which say that when the truth
value of a fluent changes, then one of the actions which adds or deletes it must
have occurred. While classical frame axioms require O(n|A||F|) clauses, ex-
planatory frame axioms require only O(n|F|) clauses. Although the clauses
are larger, they are limited by the number of causes that explain the change
in a fluent’s truth value and in practice the size of the encodings is much re-
duced [56]. Consequently, later encodings, including the encodings presented
here, use explanatory frame axioms.

The resulting system, called Blackbox [57], was able to automatically cre-
ate encodings from PDDL by:

1. generating a Planning graph to the layer at some fixed level k;

2. converting the Planning graph into CNF, and running a general simplify-
ing algorithm on the result;

3. solving the SAT problem with a fast SAT solving system;

4. converting a model, if one is found, into the corresponding plan; otherwise,
incrementing k and repeating the process.

12

Blackbox came first in the 1st IPC in 1998 [68].
The encodings in this work use a Planning graph as an initial step, im-

plemented in an efficient fashion [34]. The plan graph is used for its mutual
exclusion computations and also to generate a set of reachable fluents and ac-
tions, pruning large numbers of variables before translation.

State- and Action-based Encodings

Kautz et al. introduced the idea of state- and action-based encodings [54, 56]
as a refinement of their linear and Graphplan-based encodings that enjoys the
advantages of both approaches. The key idea behind the encodings is that
they emphasise the use of axioms to assert the constraints upon individual
states, giving a secondary role to the axioms describing operators. This step is
inherent in every encoding presented in this work; the example SAT encoding
(formula (1.1)) presented in Section 1.1.4 makes a clear separation between the
state constraints (σ) and the transition relation (τ). Behind this decision is the
reasoning that a well-defined, internally consistent state requires only a small
number of axioms to define the transition relation.

These encodings, while no more compact than Graphplan encodings, can
be significantly simplified. The arity of operators can be reduced, as described
above. Also, variables can be compiled away, to the extreme of compiling away
all of the variables representing either the actions or the fluents. The second of
these, a purely action-based encoding, was used as the basis for SATPLAN’04,
a successor to Blackbox. SATPLAN’04 came first in the 4th IPC in 2004 [48].

Consider the fluents (onAB), (clear A), and (holding A) along with the
action (unstack AB). In an encoding using explanatory frame axioms and both
fluent and action variables, the constraints upon the preconditions and support
for these fluents are separate:

(holding A)i+1 → (unstack AB)i ∨ (holding A)i
∧

(unstack AB)i → (onAB)i ∧ (clear A)i.

Compiling away the action variables, in this case unstack(A,B), we instead
use a single constraint that relates the fluent holding(A) with clear(A) and
on(A,B):

(holding A)i+1 → ((onAB)i ∧ (clear A)i) ∨ (holding A)i.

This technique, while reducing the number of variables significantly, obviously
increases the size of the constraints. Consider the simple Blocksworld example
and imagine that there are several more blocks for A to be resting upon – already
the constraint involves a large disjunction of conjunctions. Converting this into
conjunctive normal form would create a large encoding indeed. Kautz et al.
make the observation that compiling away actions can lead to an exponential
blow-up in the size of the encoding, but compiling away fluents gives only a
polynomial (in |Domain|) increase in size [54]. This should be obvious as the
Graphplan no-op actions implicitly encode the fluent information.

Despite the increase in size of state-based encodings, experimental results
were encouraging [56], and action-based encodings proved to be even better in
SATPLAN’04. The encodings presented in Chapter 3 both use an action-only
encoding.

13

SATPLAN’06 [59] – the updated version of SATPLAN’04 – uses both
fluent and action variables, encodes only a subset of the mutual exclusion con-
straints and performs some post-processing on the solution to remove some of
the unnecessary actions. SATPLAN’06 came first in the 5th IPC in 2006 [36].

Lifted Causal Encodings

Lifted causal encodings were first introduced by Kautz et al. [54] alongside their
Graphplan-based encodings, inspired by the lifted version of the SNLP causal
link planner of McAllester and Rosenblitt [66].

The lifted causal encoding is completely different from the state-based en-
codings in that there is no proper notion of a state. Kautz et al. [54] introduced
two encodings, the first a translation of ground causal Planning to SAT, which
is not nearly as concise as the lifted encoding, and the second a translation of
lifted causal Planning to lifted SAT, which is then reduced to SAT.

Ground causal Planning involves all grounded actions of the domain, two
actions representing the initial and goal states and a set of plan steps o0 . . . on.
The initial state is represented by an action a with Ea ≡ I, the goal state is
represented by an action a with Pa ≡ G. A ground causal link is an assertion
of the form oi →p oj where oi and oj are plan steps. The assertion is true if
p ∈ Poj ; p ∈ Eoi ; and there is no step between oi and oj that either adds or
deletes p.

A causal plan is an assignment of ground actions to plan steps such that:

1. If action a is assigned to a plan step oi there exists a causal link of the
form oj →p oi for all p ∈ Pa.

2. Every causal link is true: oj →p oi implies that oj < oi and any plan step
ok, k 6= i, j, assigned an action that adds or deletes p, (ok < oj)∨(oi < ok).

3. The plan steps can be placed in a total order that does not violate any
ordering constraints.

This can be translated into SAT using the constraints described in Figure 2.1.
The size of the encoding (in variables) is dominated by the causal link variables,
of which there are O(n2|F|) and the assign variables of which there are O(n|A|).
The size of the resultant formula is dominated by size of constraint 7 which is
O(n3|F|).

The lifted SAT problem consists of first-order clauses – disjunctions of first-
order literals, possibly containing free variables. The problem is satisfiable if
there is a ground substitution such that the resulting SAT problem is satisfiable.
For example:

P (x)→ Q(x)
Q(x)→W (x)
P (y)
x = a ∨ x = b
P (a),¬W (a), P (b),¬W (b)

is unsatisfiable, because x must be a or b, and in either case one of the first two
clauses must be violated.

Kautz et al. described a translation from Planning to lifted SAT without
grounding, followed by a reduction from lifted SAT to SAT. The result of these
two translations produced their most compact encoding.

14

1. assign(a1, oi) ∨ . . . ∨ assign(am, oi) for all i = 1 . . . n

2. ¬(assign(a, oi) ∧ assign(b, oi)) for all i = 1 . . . n and a, b ∈ A|a 6= b.

3. ¬adds(I, p) for all p ∈ F − I

4. needs(G, p) for all p ∈ G

5. needs(oi, p)→ (o1 →p oi ∨ . . . ∨ on →p oi) for all i = 1 . . . n and p ∈ F

6. oi →p oj → adds(oi, p) for all i = 1 . . . n− 1; j = 2 . . . n; and p ∈ F

7. oi →p oj ∧ dels(ok, p) → (ok < oi ∨ oj < ok) for all i = 1 . . . n − 1;
j = 2 . . . n; k 6= i, j; and p ∈ F

8. ¬(oi < oi) for all i = 1 . . . n

9. oi < oj ∧ oj < ok → oi < ok for all i, j, k = 1 . . . n

Figure 2.1: Constraints for the translation of grounded causal Planning to SAT
from Kautz et al. [54].

The variables included in the encoding consist of:

• n sets denoted A1 . . . An, copies of every operator in the domain for each
Planning step oi as ungrounded first-order functions, the variables of which
are disjoint from all operations appearing in other plan steps;

• assign(op, o) for each operator op ∈ Ai and plan step o ∈ O;

• Pre(Ai), Add(Ai) and Del(Ai) for each plan step, representing all the
preconditions, add effects and delete effects of the set of actions. Pre(Ai)
denotes all of action Ai’s preconditions while Pre(oi, p) denotes that fluent
p is a precondition of the action assigned to step oi.

V ars(A) denotes the set of all variables appearing in AI
⋃
A1

⋃
. . .

⋃
An

⋃
AG

and Dom is the set of all objects in the domain with which the variables are
substituted.

The constraints involved are described by Figure 2.2.
Satisfying constraints 1 and 2 are analogous to choosing which operator to

apply in each Planning step, then objects are bound to the parameters of the
operator by satisfying constraint 3. Constraints 4 and 5 assert the precondi-
tions of each action. Constraint 6 selects the causal source of every precondition.
Constraints 7 and 8 ensure that the causal source is ordered before the precondi-
tion and contains the add effect, while constraints 9, 10 and 11 select equations
between elements in the add and precondition lists. For example we might have:

Adds(o1, (clear x3))→ ((clear x3) = (clear y1))

with the actions:
(unstack x1 y1)
(pick-up x3).

15

1. assign(a1, o) ∨ . . . ∨ assign(an, o) for all o ∈ O

2. ¬(assign(a, o) ∨ assign(b, o)), for all o ∈ O and a, b ∈ Ao with a 6= b

3. x = c1 ∨ . . . ∨ x = cm, for all x ∈ V ars(A) and ci ∈ Dom

4. assign(a, o)→ Pre(o, p) for all o ∈ O; a ∈ Ao; and p ∈ Pre(Ao)

5. Pre(G, p) for all p ∈ G

6. Pre(oi, p)→ (I →p oi ∨ o1 →p oi ∨ . . . ∨ on →p oi) for all oi ∈ O
⋃
G and

p ∈ Pre(Ai)

7. oi →p oj → oi < oj for all oi ∈ O
⋃
I; oj ∈ O

⋃
G; and p ∈ Pre(Aj)

8. oi →p oj → Adds(o, p) for all oi ∈ O
⋃
I; oj ∈ O

⋃
G; and p ∈ Pre(Aj)

9. assign(o, a) ∧ Adds(o, p)→ (p = q1 ∨ . . . ∨ p = qm) for all o ∈ O; a ∈ Ao;
p ∈ Pre(Ao

⋃
G); and qi ∈ Adds(a)

10. Adds(I, p)→ (p = qi ∨ . . . ∨ p = qm) for all p ∈ Pre(A) and qi ∈ I

11. ¬Adds(I, p) for all p ∈ F − I

12. assign(a, o)∧(p = q)→ Dels(o, p) for all o ∈ O; a ∈ Ao; p ∈ Pre(Ao
⋃
G);

and q ∈ Dels(a)

13. oi →p oj∧Dels(ok, p)→ (ok < oi∨oj < ok) for all oi ∈ O
⋃
I; oj ∈ O

⋃
G;

ok ∈ O − oi, oj ; and p ∈ Pre(Ao)

14. oi < oj ∧ oj < ok → oi < ok for all oi, oj , ok ∈ O
⋃
I,G

15. ¬(oi < oi) for all oi ∈ O
⋃
I,G

Figure 2.2: Constraints for the translation of lifted causal Planning to lifted
SAT from Kautz et al. [54].

16

Once the equations are selected the truth of these equalities is checked by the
semantics of lifted SAT. In the example the equation ((clear x3) = (clear y1))
ensures that the identity of the blocks substituted into y1 and x3 is the same.

Constraints 12 and 13 assert the delete effects and ensure they do not inter-
fere with causal links. Finally constraints 14 and 15 ensure that there exists a
valid totally ordered plan from the partially ordered plan steps.

The size of every constraint set is either linear or quadratic in the number
of plan steps, with the exception of constraints 13 and 14, which are cubic.

Kautz et al. follow up the translation with a reduction into SAT that yields
a polynomial sized encoding [54].

The lifted causal encoding bears important similarities to the encoding pre-
sented in Chapter 4. Both encodings encode operators and predicates without
grounding, using the expressive power of their respective target formalisms to
bind the parameters to objects implicitly. The Partially Grounded QBF encod-
ing uses QBF rather than lifted SAT to provide the necessary expressivity and
encodes the plan in a total order, resulting in a combination between the lifted
causal encoding and state/Graphplan-based encodings.

∃-step Semantics

∃-step semantics have been used in recent encodings by Wehrle and Rinta-
nen [84, 85, 86, 96]. The idea is based on the work of Dimopoulos et al. in
encoding Planning problems as nonmonotonic logic programs [24]. Dimopoulos
et al. drew on the ideas from Graphplan [8] and SATPLAN [58] to gener-
ate a translation from Planning to nonmonotonic logic with the stable model
semantics [35] of SMODELS [73].

In their encoding, Dimopoulos et al. introduced the idea of a parallel plan
being post-serializable. A set of actions in a parallel plan is post-serializable if
there exists at least one order in which they can be applied without violating
any preconditions. By exploiting this structure it is possible in some domains
to gain much more parallelism than the ∀-step semantics of previous encod-
ings. The post-serialization property can be described more formally using the
preconditions-effects graph of a set of actions A.

The graph, AG, is a directed graph that contains a node for each action in
A, and an edge 〈ai, aj〉 exists if the preconditions of ai are inconsistent with the
effects of aj . The set of actions is then post-serializable if:

1. the union of their preconditions is consistent, which is to say that

f ∈ P → ¬f /∈ P

where P := Pa0
⋃
. . .

⋃
Pan for all ai ∈ A;

2. the union of their effects is consistent; and

3. AG is acyclic.

After plan generation the actions are serialized in a post-processing phase by
iteratively removing all nodes from AG that have in-degree 0. This process
creates a ∀-step plan in which each action set is applied in parallel in the order
in which they are removed from AG.

17

Rintanen et al. [89] applied post-serialization to Planning as satisfiability,
calling it 1-Linearization Semantics and found the encoding to be very efficient,
later reformalising the step semantics as ∃-step semantics [90]. ∃-step semantics
uses a disabling graph rather than a preconditions-effects graph. While related,
the disabling graph often has far fewer edges and much smaller strongly con-
nected components. This property leads to a much more efficient encoding of
the step-semantic constraints. A disabling graph for a set of actions A is the
graph AD in which each action is represented by a node and if an edge 〈ai, aj〉
exists then:

1. the union of the preconditions of ai and aj is consistent;

2. there exists a reachable state s |= P , where P := Pai
⋃
Paj ;

3. the union of the effects of ai and aj is consistent; and

4. the effects of ai are inconsistent with the preconditions of aj .

Computing minimal disabling graphs is NP-hard due to the consistency
checks and PSPACE-hard due to the reachability test. Rintanten et al. compute
non-minimal disabling graphs by approximating these conditions.

The actions of each action set corresponding to a strongly connected com-
ponent of the disabling graph are then given some arbitrary order, a0, . . . an.
Mutual exclusion constraints, similar to those in ∀-step semantics, are included
for two actions ai and aj if they are mutually exclusive and i < j. This ensures
that there exists a valid serialization of the actions within each parallel step
corresponding to the arbitrary ordering of the strongly connected components.
This also means that the encoding only models a subset of the number of parallel
plans that accord to the semantics. However, the approach does not lose com-
pleteness as fewer actions are applicable in parallel if the graph is not minimal.
The resulting encoding allows for greater parallelism than ∀-step semantics and
also a smaller number of mutual exclusion constraints.

Wehrle and Rintanen [96] extended this idea to further relax the parallelism
constraints. Previously actions could only be applied in parallel if all of their
preconditions were satisfied at the beginning of the time-step. Wehrle and
Rintanen allow actions to be applied in parallel if they are instead enabled by
some action executed in the same time-step. In order to achieve this Wehrle
and Rintanen introduced alternate precondition and parallelism axioms, which
are described below.

One necessary condition to the relaxed ∃-step semantics is that two actions
applied in parallel cannot conflict. Consider two actions ai and aj . If there are
literals mi ∈ Pai and mj ∈ Paj such that:

1. there is no reachable state s |= mi ∧mj ; and

2. there is no action a such that:

• mj ∈ Ea,

• Ea is consistent with Paj , and

• Ea,Eai and Ea,Eaj are consistent,

18

then ai and aj conflict in the ordering ai < aj . If they conflict in both orderings,
then they conflict.

In order to capture the subsets of actions that could be applied in parallel
a new graph is used, the disabling-enabling graph; a generalised version of the
disabling graph. The disabling-enabling graph ADE for a set of actions A is the
graph 〈A,E〉. There exists an edge 〈ai, aj〉 if:

1. ai and aj do not conflict;

2. there is a literal l such that l ∈ Eai and l ∈ Paj (enabling), or ¬l ∈ Eaj
and l ∈ Pai (disabling); and

3. there is a reachable state s |= Eai
⋃
Eaj .

As with the disabling graph, the disabling-enabling graph calculated is non-
minimal, but computed in polynomial time. Any set of actions which form
a subset of a strongly connected component of the disabling-enabling graph
cannot be applied in parallel. Each strongly connected component S is given
a fixed ordering, a0 < . . . < an. The successor set of an action in a strongly
connected component is defined as:

succ(S, ai) := {aj ∈ S, j > i}.

Consider an example precondition constraint in a ∀-step semantic encoding:

a→ p, ∀p ∈ Pa.

With this constraint, applying action a in state s ensures that s |= Pa. Instead
the relaxed semantics allow the preconditions of a to be achieved by actions
applied in parallel with a. These actions are called enabling actions. Possible
enabling actions are identified for each action per precondition. An action ai is
an enabling action for a with respect to precondition p if

• ai 6= a;

• ai and a do not conflict in the ordering ai < a;

• ai has consistent effects with a; and

• p ∈ Eai .

All the enabling actions for a with respect to p are represented by en(a, p). The
precondition constraint becomes:

a→ (p ∨
∨

ai ∈ {en(a, p)\succ(S, a)}
ai)), ∀p ∈ Pa

where S is the unique strongly connected component in which a occurs.
With this definition of the precondition constraints it is sufficient for the

parallelism constraints to ensure that no action disables another when applied
in parallel. An action aj that is disabled by action ai, where ai is ordered before
aj in the strongly connected component, must be applied in a later time-step.

19

Similar to Rintanen et al. [90], Rintanen and Wehrle achieve this with the
chain-formula for each strongly connected component S:

ai → mj
p, i < j, ai ∈ Dp, {aj ∈ S | p ∈ Paj}, {ai+1, . . . , aj−1} ∩Dp = ∅

∧
mi
p → mj

p, i < j, ai, aj ∈ Dp, {ai+1, . . . , aj−1} ∩Dp = ∅
∧

mj
p → ¬aj , {aj ∈ S | p ∈ Paj}

where Dp := {a ∈ S|¬p ∈ Ea} is the set of actions in S which delete p. The
auxiliary variable mj

p is true if there is an action ai ∈ Dp that is applied, with
i < j. The intuition behind this formula is that once an action that falsifies p
becomes true, any action ordered afterwards and requiring p as a precondition
cannot be applied. The number of auxiliary variables is linear in the number of
actions.

The relaxed ∃-step semantics are used in the 2010 planner Madagascar,
developed by Rintanen [86], representing the state-of-the-art in step semantics
for state-based SAT encodings. Relaxed ∃-step semantics can be applied as-is
to the QBF encodings presented in Chapter 3.

Split Representation of Actions

Originally proposed by Kautz and Selman [55] the idea of operator splitting
was implemented in the planner MEDIC by Ernst et al. [26]. This planner,
following the original ideas of Kautz and Selman, operated in a linear encoding,
not a parallel one. Robinson et al. noted that this suffered from size blowup and
proposed an encoding that used the split operator representations of MEDIC
in a semi-parallel setting [91]. This encoding disallowed some valid parallel
applications of actions that the action representation was not expressive enough
to capture.

This work was extended by Robinson et al. from the approximate to the
optimal parallel setting with the planner SOLE [92]. The motivation behind this
encoding was to treat the size problems inherent in SAT encodings of Planning
problems using a smarter action representation.

In previous work operators were split based on their parameters, for example
the operator (stack ?b1 ?b2) would become (stack[1] ?b) and (stack[2] ?b). Robin-
son et al. called this simple splitting and outlined two benefits and one drawback
of the representation. The first advantage is one of size. Once grounded, the
number of variables in a direct encoding would be reduced from |B|2 to 2|B|,
where |B| is the number of blocks. The second advantage is the reduction in
the number of constraints required to represent these actions, such as frame
axioms, precondition, effect and mutual exclusion constraints. For example the
constraint:

(unstack ?bB)i → (clear B)i+1

would be replicated for each block b ∈ Dom. A split action representation
instead requires only a single variable (unstack[2]B)i for each grounding of
(unstack ?bB)i and a single constraint of the form:

(unstack[2]B)i → (clear B)i+1.

20

The main disadvantage to simple splitting is interference between actions in
a parallel plan encoding. For example, using a simply-split action representa-
tion the actions (unstack AB)i and (unstack C D)i executed in parallel would
involve four split actions:

(unstack[1]A)i, (unstack[1]C)i, (unstack[2]B)i and (unstack[2]D)i.

As the actions (unstack C B)i and (unstack AD)i involve the same split actions,
it is ambiguous which split actions are paired.

Robinson et al. combat this deficiency with a precisely split representation.
To begin with they reformulate the operators of the Planning problem into sets
of pre and post-conditions. Operators are then represented as a set of composite
conditions. For example, the operator O:

(: a c t i on stack
: parameters (? x − block ?y − block)
: p r e cond i t i on (and (ho ld ing ?x) (c l e a r ?y))
: e f f e c t
(and (not (ho ld ing ?x))

(not (c l e a r ?y))
(c l e a r ?x)
(handempty)
(on ?x ?y)))

is represented in the form 〈O,C〉, where C is a set of condition composites:

〈(stack ?x ?y),
{PRE(holding ?x), DEL(holding ?x)},
{PRE(clear ?y), DEL(clear ?y)},
{ADD(handempty)},
{ADD(on ?x ?y)},
{ADD(clear ?x)}〉.

This representation is then grounded.
The precisely split representation has the important property that any set of

actions applied in parallel is represented by a unique conjunct of the condition
variables, except in the case of redundant actions. An action a is said to be
redundant if there is a parallel execution of action set A and any state reached
from the application of A is indistinguishable to those reached by A\a. There-
fore, precise splitting can be used to encode step-optimal parallel Planning.

The encoding used by SOLE is a Graphplan-based encoding. It involves a
variable for each ground condition, fluent and some auxiliary variables: auxiliary
conditions used in mutex constraints and condition copies used in parallel step
semantic constraints. The notation OCa will be used for ground condition C
of operator O and action a and ÔC

a
for auxiliary condition variables of ground

condition OC corresponding to action a. C represents the set of all ground
conditions.

The first step is the generation of dependency trees. A dependency tree is
generated from each condition that includes an ADD term with the ground
condition as the root node n0. parent(n) is used for the parent of n, prefix(n)
for the root path of n and children(n) for the children of n. The possible
children of a node are the ground conditions with which it co-occurs in a conjunct

21

Figure 2.3: The restricted dependency tree of the ground condition
〈(unstack ?x ?y), {ADD(holding A)}〉.

representing a whole action. The actual children are those that only instantiate
and exhaust the instantiations of one ungrounded condition. For example the
constraint C0, 〈(unstack ?x ?y), {ADD(holding A)}〉, has the associated ground
conditions:

C1 := {PRE(clear A), DEL(clear A)}
C2 := {PRE(handemtpy), DEL(handempty)}
C3 := {PRE(onAB), DEL(onAB)}
C4 := {PRE(onAC), DEL(onAC)}
C5 := {ADD(clear B)}
C6 := {ADD(clear C)}.

The conditions C1 and C2 are omitted from the tree as they are present in
any conjunction that forms the instantiation of the unstack operator. Their
dependency is instead represented by a straight implication C0 → C1∧C2. The
dependency tree of C0 is represented in Figure 2.3. Constraint (10) in Figure 2.4
then ensures that the whole action is executed.

The constraints involved in the encoding are described by Figure 2.4. Con-
straints (1) and (2) assert the initial state and goal. Constraints (3), (4), and
(5) assert action preconditions and effects, while constraint (6) is an example of
an explanatory frame axiom. Fluent mutual exclusion is asserted as constraint
(7). Fluent mutual exclusion in combination with constraints (3), (4), and (5)
deal with most action mutual exclusion relations leaving only those of the form:
OxC

a
i → pi and OyC

a
i → ¬pi+1. This situation is dealt with in two ways: when

Ox 6= Oy by constraint (8) and when Ox = Oy by constraint (9).
Constraint (8) asserts that the ground condition belonging to one of the

mutually exclusive actions must be false.
Constraint (9) involves the auxiliary condition variables and constrains the

case when there are mutually exclusive actions a and b instantiated from the
operator O. For example the split actions (stack AB) and (stack AC) have a
mutually exclusive relationship involving the ground constraint

〈(stack ?x ?y), {PRE(holding A), DEL(holding A)}〉

not covered by the fluent mutual exclusivity constraints. In this case auxiliary

condition variables ÔC
a

and ÔC
b

are instantiated and made mutually exclusive.

In the grounding support constraints (10) a→ ÔC
a

and b→ ÔC
b

are enforced.
Constraint (10) ensures that whole actions are executed, rather than just

individual conditions.

22

1. (p ∈ I)↔ p0

2. (p ∈ G)→ pn

3.
∧PRE(p)∈C
OC (OCi → pi), i = 1, . . . , n

4.
∧ADD(p)∈C
OC (OCi → pi+1), i = 1, . . . , n− 1

5.
∧DEL(p)∈C
OC (OCi → ¬pi+1), i = 1, . . . , n− 1

6. pi+1 → (pi ∨
∨

OC ∈ ach(p)
OCi), where ach(p) is the set of all ground

conditions OC such that ADD(p) ∈ OC, i = 2 . . . n

7. ¬pi ∨¬p′i for each pair of fluents p, p′ that are mutually exclusive in layer
i of the plangraph, i = 1 . . . n

8. ¬O1C
a
i ∨ ¬O2C

b
i for each pair of ground conditions O1C

a 6= O2C
b such

that there exists fluent p where PRE(p) ∈ O1C
a and DEL(p) ∈ O2C

b,
i = 1 . . . n

9. (¬ ˆO1Cai ∨ ¬ ˆO1Cbi) for each ground condition O1C such that there exist
two mutually exclusive actions a and b, i = 1 . . . n

10. (

∧
nx ∈ prefix(n)

⋃
{n},

|children(parent(nx))| > 1

OCnxi) ∧ OCnoi →
∨

ny ∈ children(n)
OCnyi ,

i = 1 . . . n

Figure 2.4: Constraints for the split action encoding used by SOLE.

23

The constraints provided by the dependency tree and (10) are overly re-
strictive, not allowing as much parallelism as the semantics dictate. In order
to relax this restriction it is necessary to deal with the case where two actions
instantiated from the same operator that are not mutually exclusive, but share
a common ground condition, can be applied in parallel. This is accomplished
by the addition of condition copy variables.

Robinson et al. found that SOLE dominated SATPLAN’06 in terms of
compactness of encoding. The precisely split operator representation can be
applied directly to the QBF encodings presented in Chapter 3. The QBF en-
coding presented in Chapter 4 already uses the simply-split operator represen-
tation, and the precisely split operator representation could be used instead;
however, since the encoding is not grounded it is not clear whether a more
compact encoding would be obtained.

SAS+-based encodings

The simple action structures (SAS+) formalism was described by Bäckström [2]
as a modification of the traditional STRIPS formalism of Fikes and Nilsson [29].
SAS+ uses multi-valued state variables rather than propositional ones and a pre-
vail condition in addition of pre- and post-conditions. The formalism is com-
pact, with enough structural information to garner interest for use in deriving
heuristics [47], landmarks [77] and stronger mutual exclusions [16].

Huang et al. developed a translation from Planning to SAT using the SAS+

formalism which they call the SASE encoding [50, 51]. While previous trans-
lations encoded actions and fluents as variables in the SAT formula, either di-
rectly or split, the new encoding contains variables representing transitions in
the multi-valued variables of the underlying SAS+ formulation of the problem.

A Planning task in the SAS+ formalism is defined as the 4-tuple 〈X ,A, I, G〉
in which:

• X := {x1, . . . , xn} is a set of state variables with associated domains
Dom(xi);

• A is a set of actions;

• I is a full set of assignments to X representing the initial state; and

• G is a partial set of assignments to X specifying the goal.

A transition for some given variable xi is a re-assignment of xi. The re-
assignment from xi = f to xi = g, f, g ∈ Dom(xi), will be written as δxif→g. The

state reached from applying transition δ in state s is denoted sδ. Transitions
are one of three types: regular, prevailing, and mechanical :

• A regular transition δxf→g is applicable to a state s iff s(x) = f and

sδ(x) = g.

• A prevailing transition δxf→f is applicable to a state s iff s(x) = f and

sδ = s.

• A mechanical transition δx∗→g is applicable in any state s and sδ(x) = g.

24

1.
∨
δxf→g,1 such that I |= (x = f)

2.
∨
δxf→g,n such that G |= (x = g)

3. δxf→g,i+1 →
∨
δxf ′→f,i for all i = 1 . . . n

4. ¬δ1 ∨ ¬δ2, for all pairs of mutually exclusive transitions, δ1, δ2, and for
i = 1 . . . n

5.
∨
δxi for all x ∈ X and i = 1 . . . n

6. ai →
∧
δi for i = 1 . . . n and δ ∈ a

7. δi →
∨
ai for all i = 1 . . . n and a | δi ∈ a

8. ¬a1 ∨ ¬a2, ∀a1, a2 ∈ A such that a1 and a2 are mutually exclusive, for
i = 1 . . . n

Figure 2.5: Constraints for the SAS+-based encoding used by SASE.

Each type is treated differently in the encoding. An action a ∈ A is comprised of
a set of transitions. Huang et al. describe transitions as the atomic elements of
state transitions and note that there are usually far fewer actions in the domain.
The SASE encoding encodes the transitions directly, a second set of constraints
forming a second layer of logic.

The SASE encoding includes a variable at every time-step for each transition
δ ∈ T and for each action a ∈ A. There are eight classes of constraint upon
these variables that make up τ and σ. These are shown in Figure 2.5.

In these constraints δxf→g,i, or simply δi, refer to the variable representing
the transition in time-step i. Constraints (1) and (2) specify the initial and
goal states. Constraint (3) constrains the transitions to follow a valid plan by
ensuring that changes to the assignment of a variable correspond to an applied
transition in the domain. Two transitions are mutually exclusive if they act
upon the same variable; neither are mechanical; both are mechanical; or exactly
one is mechanical and they transit to the same assignment. With this definition,
constraints (4) and (5) ensure that exactly one transition is applied to each state
variable. Constraints (6) and (7) form the second layer of logic, linking the
transitions to actions, while constraint (8) enforces action mutual exclusions.

A number of methods for reducing the size of the encoding were proposed by
Huang et al. [50], taking into account the clique structure of mutual exclusions
among transitions, subsumption of transition sets between actions, and unary
actions with only one transition.

Huang et al. [51] found that the SASE encoding was more efficient than
SATPLAN’06 in terms of both memory and time to solve. The VSIDS heuris-
tic [70], used in most existing SAT algorithms, selects variables based on the
frequency with which they it appear in clauses. This value changes as new
learned clauses are introduced and previous scores are scaled down. Huang
et al. show through experimentation that the transition variables are scored
much higher than action variables and chosen more often for branching, per-
haps indicating that the transition variables provide more powerful propagation,
explaining the improved solution time.

25

The SASE encoding bears some similarities to SOLE in the way in which
actions are broken down into elements which may belong to more than one
instantiating action. The approach of SASE is directly applicable to the QBF
encodings in Chapter 3, in much the same way as the approach of SOLE. Both
encodings specify a new set of variables and constraints τ and σ which are not
specific to SAT.

More interesting are the possibilities for combining the ideas of SASE and
the QBF encoding in Chapter 4. The encoding used by SASE could be trans-
formed into a partially grounded QBF in the same way that the encoding used
by SATPLAN’06 corresponds to the encoding described in Chapter 4. The
SAS+ formalism is a natural target for ungrounded representations and would
lead to a more intuitive encoding. This has been left for future work.

2.1.2 Embedding Planning-Specific Knowledge

Initial analysis on the Planning problem can provide additional constraints to be
embedded in the formula. Making the problem more constrained in this way can
lead to better solve times, even with the overhead of the initial analysis. Two
approaches are discussed here, symmetry in Planning and long-distance mutual
exclusions. Both have been explored in the Planning as SAT setting. The
former extends σ, the state constraints, and can be applied in the same way
to any of the QBF encodings presented here. The latter involves constraints
between time-steps and therefore cannot be applied directly to the encodings
presented in Chapter 3. In general any constraints used in Planning as SAT
that extend σ or τ can be applied to any QBF encoding in the same way.
Constraints that involve non-adjacent states may require additional variables
to link involved states that lie in different contexts of the QBF encodings in
Chapter 3. This will limit, or remove, the benefit obtained from applying the
additional constraints in the first place. The QBF encoding in Chapter 4 does
not share this limitation as the states are distinctly described in the same way
as in a SAT representation.

Symmetry in Planning as Satisfiability

Planning problems often have a high degree of underlying symmetry. For exam-
ple, consider the domain in Figure 2.6 and problem in Figure 2.7, which will be
used as an example in this section. The problem, which involves a robot moving
balls from one room to another, has a high degree of symmetry. The balls are
identical, as are the two grippers. This problem is easy to solve, but if the sym-
metries are not recognised proving optimality becomes very difficult. Exploring
every permutation of ball ordering and gripper assignments is computationally
expensive.

Fox and Long [31, 33] showed that the symmetries could be discovered and
exploited during the search process of a Graphplan-style Planning system. Rin-
tanen [81] proposed an improvement for propositional logic-based systems in
which more symmetry is discovered, introducing symmetry-breaking constraints
with the intention to break symmetry over symmetric transitions, not just states
or single actions.

Rintanen described a state-based encoding with classical frame axioms as a
basis upon which to apply the new symmetry-breaking constraints.

26

(d e f i n e (domain gr ipper−typed)
(: requ i rements : typing)
(: types room b a l l g r i ppe r)
(: cons tant s l e f t r i g h t − g r ippe r)
(: p r e d i c a t e s (at−robby ? r − room)

(at ?b − b a l l ? r − room)
(f r e e ?g − g r ippe r)
(car ry ?o − b a l l ?g − g r ippe r))

(: a c t i on move
: parameters (? from ? to − room)
: p r e cond i t i on (at−robby ? from)
: e f f e c t (and

(at−robby ? to)
(not (at−robby ? from))))

(: a c t i on pick
: parameters (

? obj − b a l l
?room − room
? gr ippe r − g r ippe r)

: p r e cond i t i on (and (at ? obj ?room)
(at−robby ?room)
(f r e e ? g r ippe r))

: e f f e c t (and (car ry ? obj ? g r ippe r)
(not (at ? obj ?room))
(not (f r e e ? g r ippe r))))

(: a c t i on drop
: parameters (

? obj − b a l l
?room − room
? gr ippe r − g r ippe r)

: p r e cond i t i on (and
(car ry ? obj ? g r ippe r)
(at−robby ?room))

: e f f e c t (and (at ? obj ?room)
(f r e e ? g r ippe r)
(not (car ry ? obj ? g r ippe r)))))

Figure 2.6: Gripper domain, adapted from the AIPS-98 Planning competition.

27

(d e f i n e (problem gr ippe r2)
(: domain gr ipper−typed)
(: o b j e c t s roomA roomB − room b a l l 1 b a l l 2 − b a l l)
(: i n i t

(at−robby roomA)
(f r e e l e f t)
(f r e e r i g h t)
(at b a l l 1 roomA)
(at b a l l 2 roomA))

(: goa l (and (at b a l l 1 roomB) (at b a l l 2 roomB))))

Figure 2.7: A simple instance of gripper.

First symmetries are identified between objects by looking at the operators
in the domain description and goal definition. Only identical objects which
do not appear individually in operators and have the same goal state (if they
appear in a goal at all) are considered to be symmetrical. Once this is done
an ordering is placed upon the actions involving the symmetrical objects. For
example, in the gripper domain and problem in Figures 2.6 and 2.7, ball1 and
ball2 are symmetrical, as are left and right. Let the imposed ordering be
ball1 < ball2 and left < right, then the actions instantiated from the operator
pick are ordered:

(pick ball1 roomA left) < (pick ball1 roomAright)
(pick ball2 roomA left) < (pick ball1 roomAright)
(pick ball1 roomA left) < (pick ball2 roomA left)

(pick ball1 roomAright) < (pick ball2 roomAright).

A constraint can be introduced to break the symmetry upon these objects
by first checking whether the objects are in the same state, with respect to their
symmetry, and then only applying the first symmetrical action. This takes the
form1:

((v1 ↔ v′1) ∧ . . . ∧ (vn ↔ v′n))→ (a1 ← a2)

where v1, . . . , vn are the state variables involving the first object; vi, v
′
i are pairs

of state variables obtained by replacing occurrences of the first object with the
second; and a1 and a2 are the action pairs symmetric with respect to the objects,
with a1 < a2. In the case of the example of the pair of actions in the fourth row
the constraint is:

(

(at ball1 roomA)↔ (at ball2 roomA)
∧(at ball1 roomB)↔ (at ball2 roomB)
∧(carry ball1 left)↔ (carry ball2 left)
∧(carry ball1 right)↔ (carry ball2 right)

)

→
(pick ball1 roomAright)← (pick ball2 roomAright).

1This constraint is presented as described in Rintanen 2003 [81]. The implication
(a1 ← a2) seems incorrect, but should be read a1 is applied instead of a2. Similarly for
(pick ball1 roomA left) and (pick ball1 roomAright) in the example constraint, the left arrow
is used to mean instead of.

28

Rintanen further improved this approach by taking into consideration par-
allel application of actions. For example if the action (pick ball1 roomA left)
were applied it should be possible to apply in parallel (pick ball2 roomAright),
under any of the parallel step-semantics described earlier. However, due to the
ordering constraints (pick ball1 roomAright) is to be applied instead, which is
mutually exclusive with (pick ball1 roomA left). This is handled by using mod-
ified constraints of the form:

((v1 ↔ v′1) ∧ . . . ∧ (vn ↔ v′n)
¬â1 ∧ . . . ∧ ¬âm)→ (a1 ← a2)

where â1, . . . , âm are the actions ordered before a1 that are mutually exclusive
with a1. The modified example constraint becomes:

(

(at ball1 roomA)↔ (at ball2 roomA)
∧(at ball1 roomB)↔ (at ball2 roomB)
∧(carry ball1 left)↔ (carry ball2 left)
∧(carry ball1 right)↔ (carry ball2 right)

∧¬(pick ball1 roomA left)

)

→
(pick ball1 roomAright)← (pick ball2 roomAright).

These constraints, quadratic in the number of actions, can greatly increase
the size of the resultant encoding. Experimentation on the gripper domain
showed that they improve both time to solve and the scalability of the approach.
Rintanen was able to show that using the constraints, proof of optimality was
possible for up to 20 balls in a gripper problem, and without the constraints
optimality could not be proved for even 8 balls.

As mentioned this approach is an extension of the state-constraints (σ) and
can be applied directly to the QBF encodings presented in this work.

Long-Distance Mutual Exclusion

Chen et al. [16, 17] proposed a generalisation of mutual exclusion relations to
capture constraints over fluents and actions across multiple time-steps. These
constraints are derived from the SAS+ representation [2] of the Planning prob-
lem and can be easily encoded in propositional logic. Chen et al. describe
two types of long-distance mutual exclusion (londex) constraint, londex1 and
londexm. The latter is an extension of the londex1 constraints made stronger
by the inclusion of causal dependencies.

First londex constraints between fluents are discovered; londex constraints
between actions are then derived from them. Suppose we have mutually ex-
clusive fluents f and f ′ and states si |= f and si′ |= f ′. Intuitively a londex
constraint models the lower bound on the number of time-steps that must occur
between the two states. That is, a lower bound on i′−i. These lower bounds are
computed from the domain transition graphs of the problem and are denoted
d(f, f ′).

A domain transition graph (DTG) for a SAS+ variable x ∈ X is the directed
graph Gx with nodes Dom(x). An edge exists between nodes (f, g) if there is a
transition between the two assignments, δxf→g.

A londex1 constraint models a long-distance mutual exclusion from a single
DTG. Given two fluents f and f ′ which both correspond to assignments to the

29

same variable x, and therefore correspond to unique nodes in the same DTG, the
shortest path between them is computed. d(f, f ′) is the length of the shortest
path. If f is true at time-step i and f ′ at i′ there exists no plan for which:

0 ≤ i′ − i < d(f, f ′).

The following constraint set is added to the formula, in addition to the usual
mutual exclusion constraints, if fluent variables are used:

fi → ¬f ′j

for all f ′ mutually exclusive with f and j = i+ 1, . . . , (d(f, f ′)− 1).
Action londex constraints are derived from fluent londex constraints. Sup-

pose for mutually exclusive fluents f and f ′, d(f, f ′) = r. We have two fluents a
and b associated with f and f ′ respectively. The action londex constraints are
included in the encoding in the same way as are the fluent londex constraints
using the following rules:

• if f ∈ Ea and f ′ ∈ Eb then d(a, b) ≥ r;

• if f ∈ Ea and f ′ ∈ Pb then d(a, b) ≥ r + 1;

• if f ∈ Pa and f ′ ∈ Eb then d(a, b) ≥ r − 1;

• if f ∈ Pa and f ′ ∈ Pb then d(a, b) ≥ r.

Since action londex constraints are derived from fluent londex constraints the
method for finding londexm constraints is only stronger for fluents. The action
londex constraints are derived from the stronger fluent constraints using the
same rules. Longdexm constraints improve upon londex1 constraints by taking
into account the dependencies between DTGs. Suppose a transition in DTGx,
δxf→g, belongs to action a with precondition f ′ ∈ Pa, where f ′ corresponds to
the assignment x′ = h. Then h appears as a node in DTGx′ . We say that DTGx

depends upon DTG′x.
Chen et al. [17] construct a causal dependency graph between DTGs in which

a directed edge exists between DTGs (v, v′) if and only if v depends on v′. They
also construct an invariant connectivity graph (ICG). This graph corresponds to
invariants [32] and can be thought of as a partially grounded causal dependency
graph. Two methods are described for obtaining strong londex constraints using
the ICG [16], a technique based on shared preconditioning and bridge analysis.

The idea of shared preconditions stems from the consideration that some
transitions in one DTG always require transitions in another DTG upon which
it is dependent. For example consider two fluents f and f ′ in DTG Gx for
which the minimum distance is d1(f, f ′) using londex1. Suppose we restrict
ourselves to looking only at the shortest path between these fluents that passes
through fluents v and w, ξ := (f, v, . . . , w, g). If δf→v has the precondition p
and δw→f ′ has the precondition p′ with both p, p′ ∈ Gx′ and d(p, p′) ≥ d(f, f ′)
then the minimum distance between f and f ′ passing through v and w can be
updated with d(p, p′)+1. This procedure can be repeated for each pair of v and
w such that there exist transitions δf→v and δw→f ′ and both transitions have
a precondition in the same DTG upon which Gx is dependent. The minimum
distance d(f, f ′) between f and f ′, without other constraints upon the path, is
then the minimum distance computed over all combinations of v and w.

30

This procedure can be completed recursively, the minimum distance between
d(p, p′) being updated in the same way by looking at the DTGs upon which Gx′

is dependent. Chen et al. break cycles in the ICG by constructing a spanning
tree using as a root node of the DTG in which the relevent fluents reside. The
tighter bound is denoted Υ(f, f ′). It is important to note that the lower bound
upon the distance between two fluents is for parallel plans with ∀-step semantics.

Bridge analysis provides tighter bounds on Υ(f, f ′) in the case where there
are no fluent pairs v and w, successors and predecessors of f and f ′ respectively,
that share common preconditions. In this case the possible paths between f and
f ′ are analysed to find a bridge pair.

A pair of fluents x and y are called a bridge pair of v and w if any path
between v and w through the DTG must pass through x and y in order. The
path between x and y is then called a bridge. If d(x, y) is improved to Υ(x, y)
through shared preconditions then any pair of fluents v, w for which x, y is a
bridge pair can be updated:

Υ(v, w) = d(v, x) + Υ(x, y) + d(y, w).

DTGs are usually sparse and the existence of bridge pairs common.
Mutual exclusion relations form the majority of clauses in Graphplan and

state-based encodings and adding londex constraints increases the number of
mutual exclusion clauses. Chen et al. noted that these binary constraints are
responsible for the majority of the propagation during search and such an in-
crease in them should lead to faster solution times. They discovered through
experimentation that this was indeed the case. Chen et al. incorporated londex
constraints into both SATPLAN’04 and SATPLAN’06. The former, using an
action-only encoding, was called Maxplan [17] and came first in the 5th IPC
in 2006 [36] (jointly with SATPLAN’06).

The disadvantage of including londex constraints is that the increased num-
ber of clauses can make the encoding untenably large. Chen et al. [16] devised
an on-the-fly method of using the londex constraints in a modified version of
minisat [25] as non clausal constraints.

Longdex constraints are unusual in that they are not easily applied in a
clausal form to all of the QBF encodings presented in this work. Specifically
the encodings in Chapter 3 do not explicitly represent every time-step with
unique variables. Due to this it is not possible to simply represent a constraint
between elements in separate time-steps without the inclusion of more variables
in an earlier quantifier set. This will negatively impact the effectiveness of this
technique in the QBF encoding.

2.1.3 Solver Modifications and Search Algorithms

The techniques presented in this section fall into two categories: modifications
to a SAT solver; modifications to the solving algorithm.

The former category, modifications to the SAT solver, is based upon the
premise: once translated into a propositional formula the underlying structure
of the original Planning problem persists, but is largely ignored. Modifications
to SAT solvers to take advantage of Planning-specific knowledge and techniques
can provide huge improvements in time to solve. This comes with the dis-
advantage that the SAT-based Planning system no longer improves alongside

31

improvements in SAT solving, as the latest SAT solvers must first be modified
and cannot just be run “off the shelf”. The solver modifications can be applied
directly to QBF solvers as long as there is sufficient similarity between the QBF
encodings presented in this paper and SAT-based encodings underlying these
techniques, and there is sufficient similarity between the solving algorithm of
the QBF and SAT solvers. The modifications described here are all applicable
to the encodings presented in Chapters 3 and 4. In the work described be-
low, modified SAT solvers rely on replacing the heuristic in some variant of the
Davis–Putnam [20] search algorithm. The new heuristic, used to pick variables
upon which to branch, can be used in a number of QBF solvers; in particular
QUBE and DepQBF.

The latter category, modifications to the solving algorithm, can be seen as
changes to the top-level algorithm of the Planning system. These change the way
in which the encodings are generated and passed to the solver. These techniques
are all possible with the encodings presented in this work. In particular the work
of Ray and Ginsberg [76] has already been implemented using the Compact Tree
Encoding described in Chapter 3 with the solver QUBE.

Planning-specific Heuristics for SAT Solvers

Rintanen [88] wrote that the performance gap between SAT-based planners and
the best planners overall has been percieved to be prohibitively wide. However,
with the the introduction of Planning-specific heuristics to SAT solving the
gap disappears. His Planning system Madagascar [86] uses this approach to
achieve competitive performance.

This idea is not new; Giunchiglia et al. [37] implemented a modified Plan-
ning system, generating encodings with Medic [26] and solving them with
Tableau*, a modified version of Tableau [19]. Their modifications stemmed
from the consideration that the fluents at any time point are derived determinis-
tically from the initial state and the sequence of actions applied up to that point.
They use this knowledge to drastically reduce the size of the search space used
by the SAT solver, limiting the branching to variables that represent actions.

Consider the standard Davis–Putnam algorithm for solving SAT problems
described in Figure 2.8. Selecting a literal upon which to branch in step (8)
involves a heuristic and is the only non-deterministic step. Generic SAT solvers
commonly use the conflict-directed clause learning (CDCL) algorithm, an ex-
tension of the DPLL algorithm introduced by the SAT solver Grasp [65]. As
with the algorithm in Figure 2.8 the choice of branching literal can be arbitrary,
and therefore based upon a heuristic. Modern SAT solvers commonly use the
VSIDS heuristic [70].

Giunchiglia et al. experimented with a number of encodings including: par-
allel and sequential semantics; regular, simply-split and bitwise action represen-
tations; and explanatory and classical frame axioms. If we assume a regular
action representation and explanatory frame axioms, the SAT encoding would
include clauses of the following form:

ai → fi, ∀f ∈ Pa
∧

ai → fi+1, ∀f ∈ Ea

32

1: procedure DP(Π,M) . Set of clauses Π with partial model M
2: if Π = ∅ then
3: return true;
4: else if ∅ ∈ Π then
5: return false;
6: end if
7: Unit-propogate(Π,M);
8: L := a literal such that (L ∈ Π) ∨ (¬L ∈ Π);
9: return DP(Π ∪ {L})∨DP(Π ∪ {¬L});

10: end procedure

11: function Unit-propagate(Π,M)
12: while there is a unit clause {L} ∈ Π do
13: M := M ∪ {L};
14: for every clause C ∈ Π do
15: if L ∈ C then Π := Π\{C};
16: else if ¬L ∈ C then C := C\{¬L};
17: end for
18: end while
19: end function

Figure 2.8: The Davis–Putnam algorithm for SAT.

for each action a; and

fi →
∨

a∈ach(f)

ai−1

for each fluent f . Note that selecting an action a and assigning it true leaves
a set of unit clauses that Unit-propagate will discover, making assignments
to all fluents f ∈ Ea ∪ Pa. Choosing a fluent variable and assigning it true
does not have the same effect. Giunchiglia et al. propose that the selection
in step (8) of the algorithm in Figure 2.8 be limited to only the literals which
represent the choice of an action. Their experimental results indicate that on
some problems this simple idea can provide solving times that are up to four
orders of magnitude faster.

Rintanen [84, 85] introduced a Planning-specific heuristic that does more
than restrict the search space, instead completely governing the choice of lit-
eral. The new heuristic is used in the Planning system Madagascar [86].
Madagascar uses the ∃-step semantics of Rintanen et al. [90] and an alternate
top-level strategy described in the next subsection as Algorithm B.

The new Planning-specific heuristic takes into consideration the state of the
SAT solver, in particular the partial assignment to the variables. The heuris-
tic bears some similarities to open condition resolution in least commitment
Planning. The selection is based upon goal, or subgoal fluents that are not
yet supported by an action or the initial state. In this case a subgoal refers to
the preconditions of an applied action. The selection algorithm considers every
goal and subgoal on each iteration, beginning with the goal literals in the final
time-step. The heuristic algorithm begins by choosing a goal literal l and the
earliest time-step at which:

33

1: procedure support(Stack,M) . Top-level goals and partial Model M
2: while Stack is on-empty do
3: fi := pop(Stack);
4: found:= 0;
5: t = i− 1;
6: while found6= 1 and t ≥ 0 do
7: if ∃a such that (at ∈M) ∧ (f ∈ Ea) then
8: for all f ′ ∈ Pa do push(f ′t , Stack);
9: found:= 1;

10: else if ¬ft ∈M then
11: a := any a ∈ A | (f ∈ Ea) ∧ (¬at /∈M);
12: return {at};
13: end if
14: t = t− 1;
15: end while
16: end while
17: return ∅;
18: end procedure

Figure 2.9: Rintanen’s algorithm for finding (sub)goal support.

1. an action a is taken such that l ∈ Ea;

2. the initial state is represented and I |= l; or

3. the state s |= ¬l.

In case (1) the literals representing the preconditions of action are chosen
as subgoals and their support discovered in the same way. In case (2) nothing
needs to be done. In case (3) there will exist an action that can be used as
support for the goal. This action is selected as the next branching literal. The
algorithm is shown in more detail in Figure 2.9.

If no subgoal requiring support can be found then the current partial assign-
ment represents a plan. A complete model for the SAT instance can be found
by assigning false to any remaining action variables. The fluent variables will
then be determined automatically.

Rintanen [85] demonstrated that the new heuristic outperforms the VSIDS
heuristic on Planning benchmarks when proofs of makespan optimality are not
required. The heuristic was then generalised to actions with expressive repre-
sentation, including conditional effects [87]. The new Planning-specific heuristic
can be applied to any of the DPLL-based QBF solvers, such as QuBE or De-
pQBF. Opportunities for future research lie in the experimentation of adapting
stronger Planning-based heuristics to the Boolean formula arena with analysis
such as Landmarks [49, 75] and Causal Graphs [46].

Top-level Strategies for Planning as Satisfiability

The basic algorithm for Planning as propositional logic, introduced by Kautz
and Selman [55] finds makespan optimal plans by encoding at iteratively larger
makespans and making multiple calls to a SAT solver. The basic algorithm is

34

1: procedure plan(Π) . Planning problem Π
2: n := 0;
3: M := ∅
4: repeat
5: n := n+ 1;
6: Πn := an encoding of Π in propositional logic with makespan n;
7: M :=solve(Πn); . Pass Πn to solver, returning the satisfying

model if satisfiable, ∅ otherwise.
8: until M 6= ∅
9: return M ;

10: end procedure

Figure 2.10: The basic algorithm for Planning as Satisfiability.

{5,¬6}
{6, 7,¬8}
{¬7,¬9}
{8,¬9}
{9, 10}
{9,¬10}
{9, 11}
{¬5}

Figure 2.11: A simpe SAT problem.

1. Assign : ¬5
→ ¬6

2. Assign : 9
→ ¬7→ ¬8
→ 8

Figure 2.12: Solving the SAT prob-
lem leads to a conflict.

shown in Figure 2.10. Each encoding formed represents the question: “is there
a plan of length n?”

There are certain drawbacks to this method. Firstly all learned information
is thrown out between encodings. Each encoding is very similar to the last.
Consider the basic state-based encoding described in Section 2.1.1 and used
as an example in Chapter 1: the difference between Πn and Πn+1 becomes
increasingly small as the value of n increases. The two encodings differ only in
that Πn+1 includes a single extra set of variables X with clause sets τ and σ.
Information on partial assignments and learned conflicts is lost between calls to
the SAT solver, even though much of the encoding remains the same.

Nabeshima et al. [71] implemented the Lemma-Reusing Planner (LRP) with
the aim of avoiding this disadvantage. The idea is that conflict clauses learned
by the CDCL algorithm [65] are extracted from one encoding and simply added
to the next problem, creating tighter constraints and greater propagation, lead-
ing to a faster solution. Conflict clauses are learned when implications for setting
a variable both true and false occur.

Figures 2.11 and 2.12 show this procedure in more detail using the example
found in Nabeshima et al [71] with the SAT solver chaff [70]. Variable 9 is
chosen as a decision variable at decision level 2 and this leads to an empty clause.
Variable 9 is selected as the unique implication point (UIP). A variable x is a
UIP at level l iff any implication path from the decision variable at decision
level l must pass through x. Variable 9 is a UIP. Variables assigned up to and
including the UIP are on the reason side, while the rest are on the conflict side.

35

The learned conflict clause consists of the complement of all literals that are
directly connected to the reason side. In this example the learned clause

{6,−9}

is added to the original SAT problem. In future searches, as soon as variable 6
is assigned true, variable 9 is assigned false, pruning away the conflict that has
already been encountered.

Nabeshima et al. [71] give formal correctness to the lemma-reusability con-
dition between two similar SAT problems, which was proposed by Eén and
Sörensson [25] and is defined as follows. For two SAT instances P and Q, if P
includes a non-unit clause x, then Q contains x. This condition certainly holds
for any two Graphplan or state-based encodings of Planning problems that differ
only in the number of time-steps.

Learned conflicts are an important part of both DPLL-based QBF and SAT
solvers. Since lemma-reusing only extracts learned constraints and adds them to
the next encoding it is possible to apply this technique to the latest DPLL-based
solvers for both approaches to Planning as SAT.

Ray and Ginsberg [76] approached the same problem in a more direct way.
Instead of remembering information between encodings, they generate only one
encoding and make a single call to a modified SAT solver, ensuring that no
information is lost, while still retaining optimality. The idea is surprisingly
simple; the encoding used by SATPLAN’06 [59] is augmented with a new
variable at each time-step that is true iff the goal is satisfied at that level. The
SAT problem file contains an extra line specifying a predetermined branching
order for the SAT solver to follow. This branching order contains the new
variables set to true, from the earliest time-step to the latest. This ensures that
the makespan optimal solution is found, if it exists.

Effectively the Planning system is still using a ramp-up approach, iteratively
deepening until it finds a solution. However, this process has been moved inside
the solver and no longer requires multiple encodings. Ray and Ginsberg [76]
named their Planning system Cricket as it takes large jumps through the
search space. They found that the new system could find solutions up to an
order of magnitude faster than SATPLAN’06.

This approach has been applied to the Compact Tree Encoding described
in Chapter 3 using QuBE7-p, a modified version of QuBE7. This technique
is very natural for the Compact Tree Encoding as the number of time-steps in
any given encoding are double that of the previous one. More constraints are
required for traditional iterative deepening.

The second disadvantage to the algorithm in Figure 2.10 is linked to the
iteratively deepening approach of the algorithm. Rintanen [82] showed that
the most time-consuming encodings are those closest to an optimal solution yet
still unsatisfiable. In some problems the final unsatisfiable encoding cannot be
solved in any reasonable time, even though the first satisfiable encoding in the
next iteration may be solved quickly.

Alternative top-level strategies which attempt to deal with this disadvantage,
such as solving parallel encodings; taking different step sizes; and ramp down
strategies, have all been applied to Planning as SAT [17, 82, 86, 95]. They are
all applicable in the same way to Planning as QBF.

Rintanen [82] introduced two novel top-level algorithms. These procedures,
called Algorithm A and Algorithm B, are shown in Figures 2.13 and 2.14.

36

1: procedure plan(Π, n) . Planning problem Π on n processes
2: P := {Π1, . . . ,Πn}; . encodings of Π in propositional logic
3: M := ∅;
4: repeat
5: P ′ := P ;
6: for all Πi ∈ P ′ do
7: continue execution of Π for ε seconds;
8: if evaluation of Π is terminated then
9: n := n+ 1;

10: P := P
⋃
{Πn}\{Πi};

11: if Πi is satisfied then M := satisfying model for Πi; end if
12: end if
13: end for
14: until M 6= ∅
15: return M ;
16: end procedure

Figure 2.13: Algorthim A for Planning as Satisfiability, using n parallel pro-
cesses.

The idea behind both algorithms is that several encodings can be run in
parallel. Once an encoding is found to be satisfiable, meaning that a plan has
been found, all processes can be terminated. This will avoid spending time on
the hardest unsatisfiable instances – as in the sequential approach – at the cost of
optimality guarantees. Rintanen notes that in some cases the earliest satisfiable
encodings are not cheaper than the unsatisfiable ones. Rintanen argues that in
many settings optimality is not required, or that a different kind of optimality,
such as number of actions, is required and in a parallel plan makespan optimality
does not imply a good quality plan.

Rintanen [82] shows that Algorithm A can lead to significant speed ups as
the number of parallel processes increases. Algorithm B is much more stable,
finding solutions faster that Algorithm A for low values of n and γ. The value
of n in Algorithm A has a large impact on the solution time. In contrast the
choice of γ in Algorithm B has much smaller significance, avoiding the difficulty
in choosing n.

Streeter and Smith [95] introduced a method for using decision procedures
efficiently for optimization, experimenting upon both Planning and job shop
scheduling. The approach makes use of the notion that the more difficult in-
stances are the closest to the optimal bound and the time to solve for other
instances falls off evenly as the bound increases or decreases. Similar to Al-
gorithm A presented by Rintanen [82], the query to the SAT solver is only
given a certain amount of time. Streeter and Smith [95] gradually increase this
time limit in conjunction with smart upper and lower bounds to home in on an
optimal solution. The algorithm is shown in Figure 2.15.

Streeter and Smith [95] generalised this algorithm to allow for varied time
increments; choice of k; and balance between exploring the upper and lower
bounds.

37

1: procedure plan(Π, γ) . Planning problem Π
2: P := {Π1, . . . ,Πn}; . encodings of Π in propositional logic
3: T := {t1 . . . , tn}, ti := 0, ∀ti ∈ T ;
4: M := ∅;
5: t := 0;
6: repeat
7: P ′ := P ;
8: T ′ := T ;
9: t := t+ δ;

10: for all Πi ∈ P ′ do
11: if ti + nε ≤ tγi for some maximal n ≥ 1 then
12: continue execution of Π for nε seconds;
13: ti := ti + nε;
14: if evaluation of Π is terminated then
15: n := n+ 1;
16: P := P

⋃
{Πn}\{Πi};

17: T ′ := T
⋃
{tn}\{ti}, tn := 0;

18: if Πi is satisfied then
19: M := satisfying model for Πi;
20: end if
21: end if
22: end if
23: end for
24: until M 6= ∅
25: return M ;
26: end procedure

Figure 2.14: Algorthim B for Planning as Satisfiability, using geometric division
of CPU use based on parameter γ where δ is some time increment.

38

1: procedure plan(Π, U) . Planning problem Π with upper bound U
2: T := 2, l := 1, u := U ;
3: tl :=∞, tu := −∞;
4: while l < u do
5: if [l, u− 1] ⊆ [tl, tu] then
6: T := 2T ;
7: tl :=∞, tu := −∞;
8: end if
9: u′ = u− 1;

10: k :=

l+u′

2 if [l, u′]and [tl, tu]are disjoint or tl =∞
l+tl−1

2 if [l, u′]and [tl, tu]intersect and tl − l > u′ − tu
tu+1+u′

2 if [l, u′]otherwise;
11: execute Πk for T seconds; . encoding of Π in propositional logic
12: if Πi is satisfied then
13: M := satisfying model for Πk;
14: u := k;
15: else if Π is unsatisfiable then
16: l := k + 1;
17: else
18: tl := min(tl, k), tu := max(k, tu);
19: end if
20: end while
21: return M ;
22: end procedure

Figure 2.15: A simple top-level strategy for optimisation proposed by Streeter
and Smith [95].

39

2.2 Model-Checking and Planning with Quanti-
fied Boolean Formulae

This section reviews the current use of QBF with respect Planning and reach-
ability. This is largely limited to two approaches: Planning under uncertainty
and Planning as Model-Checking. One exception is provided by Rintanen [80].
Rintanen described a QBF encoding of reachability that is logarithmic in the
number of time-steps. This encoding was briefy described in Section 1.3 and is
formalised in Chapter 3.

2.2.1 Planning Under Uncertainty

Until now QBF has been considered in the context of Conformant Planning [79],
but not as a practical approach to classical Planning. Conformant Planning is
the problem of finding conditional plans in a setting where the initial state is
unknown, only partially known, or action effects are non-deterministic [43]. We
can assume without any loss of expressivity that all action effects are determin-
istic and all uncertainty is contained in the initial state.

With such an assumption, a Conformant Planning problem is the 4-tuple
〈F ,A, I, G〉 in which:

• F is a set of observable fluents that decide how plan execution proceeds;

• A is a set of actions;

• I is a formula over F , describing the set of initial states; and

• G is a formula over F representing the goal.

A conditional plan determines for all possible initial states an execution that
reaches a state S, such that S |= G.

Rintanen [79] showed that Conformant Planning is Πp
2-hard by providing a

translation from any QBF with quantifier prefix ∀∃ to Conformant Planning.
Rintanen outlined several translations from Conformant Planning to QBF with
a ∃∀∃ prefix, later optimising the encoding to drop the outermost existential
quantifier [83].

The encodings use the quantifier prefix:

∃P∀C∃E

where: P contains variables that represent the plan; C the universal variables
that enumerate the uncertainty in the initial state; and E the variables respon-
sible for evaluating the execution of a plan. Rintanen presented a number of
encodings using this quantifier prefix, all of which use the idea of embedding
within the translation a finite-state-automata that dictates which actions are to
be applied, according to conditions upon the observable fluents of the domain.
In each case the universal quantification afforded by the QBF is used to rep-
resent the non-determinism – either by using auxiliary variables that map to
balanced pairs of conditions in the FSM, or by directly representing the fluents
of the initial state.

Giunchiglia [39] proposed a SAT-based procedure for Conformant Planning,
which was further simplified and extended by Ferraris and Giunchiglia [28]. Sim-
ilar to the approaches presented in this work, Ferraris and Giunchilglia made

40

it clear that their approach was applicable with any action representation and
Planning strategy. Although the translations were to SAT, a universal quantifi-
cation is implicit in the top-level strategy, and is made explicit in later work by
Rintanen [83] as a translation to QBF.

De Luca et al. [21] used a QBF representation in order to capture safety
constraints in a possibly non-deterministic setting. The safety constraints were
described by Quantified Linear Temporal Logic (QLTL) [30]. The encoding used
the extra expressivity of the QBF to represent these safety properties. During
the Planning process, all possible plans are enumerated – corresponding to all
possible satisfying assignments to the QBF – then checked for validity and safety
using the techniques described by Giunchiglia [39].

These techniques for incorporating non-determinism into QBF encodings of
Planning problems can be applied to the translations described in this work.
However, this area of research is otherwise orthogonal to ours, and we present
encodings only for classical, deterministic Planning.

2.2.2 Model-Checking with QBF

Model-Checking [9, 18] is concerned with the automatic verification of programs
and/or specifications. Similar to Planning, Model Checking is an automatic
state exploration and as such there exists the possibility for cross-fertilization
between these two areas of research; Giunchiglia and Traverso [42] and Mag-
azzeni [62] have implemented Planning systems based on Model Checking. In
fact Biere et. al. [6] have shown that it is possible to apply the DPLL algorithm
to Model Checking problems, building on the work of Kautz et. al. [55, 56]
described earlier.

Biere et al. [7] noted that Binary Decision Diagrams (BDDs), traditionally
used as the underlying expression for symbolic model checkers [69], suffer from
space efficiency issues. Motivated by this, Biere et al. introduced semantics
for Bounded Model-Checking (BMC), translating the Model-Checking problem
to a SAT instance that is linear in the size of the domain, and quadratic in
the time-step bound. These translations resemble the state-based encodings of
Kautz et al. [55, 56], with the addition of Linear Temporal Logic formulae and
loops. They note that the translation is a first step in applying SAT procedures
to symbolic Model-Checking, in particular:

...it would be interesting to study efficient decision procedures for
QBF. Combining bounded model checking with other state space re-
duction techniques presents another interesting problem.

which is the subject of this thesis.
Dershowitz et al. evaluated the use of QBF in BMC [22], using an encoding

logarithmic in the number of time-steps – similar to the encodings presented in
Chapter 3. The encoding they used is described by Papadimitriou as a reduction
of Reachability to QBF [74], the basic idea being to encode only a single copy
of the transition relation, using universal quantification to apply it to all states:

Rk(X0, Xk) := ∃X1, . . . , Xk−1 (
I(X0) ∧G(Xk) ∧ ∀U, V (

(
∨k−1
i=0 (U ↔ Xi) ∧ (V ↔ Zi+1))→ τ(U, V)

))

41

The disadvantage of this encoding is that it contains more variables than an
equivalent SAT encoding, and that there are a large number of equality con-
straints, offsetting the advantage gained from reducing the number of transi-
tions. General-purpose QBF solvers find these encodings extremely difficult,
for instance, QuBE [41] only solves a small number of the generated problems.
Dershowitz et al. implemented a specialized QBF solver, jSAT, that was able
to solve the BMC problems much faster, and although not as fast as comparable
SAT translations, avoiding the space overhead of SAT.

In comparison to this approach, the QBF encodings logarithmic in the num-
ber of time-steps presented in Chapter 3 differ greatly in construction, reducing
the number of variables as well as clauses. In addition, by avoiding universal
quantification of states, they are easier to solve. We apply general-purpose QBF
solvers to these encodings, achieving similar results to Dershowitz et al.

2.3 Solving Quantified Boolean Formulae

Research into solving QBF lacks the maturity of the research into solving SAT;
however there are a large number of solvers boasting different approaches to the
problem. This section will outline the most common methods, which are used
in the experiments in Chapter 5. The solvers can be found in the QBFLIB [38]
(QBFLIB is a collection of instances, solvers, and tools related to Quantified
Boolean Formulae). Knowledge of these algorithms will give insight into the per-
formance of the various QBF encodings of Planning problems on these solvers.

2.3.1 DPLL-based Solvers

Cadoli et al. introduced a top-down technique for solving QBFs closely related
to the DPLL procedure for SAT [10]. The algorithm, now commonly known
as QDPLL, is guaranteed to work in polynomial space. The algorithm closely
resembles that of DPLL, described in Figure 2.8. The main differences are the
choice of branch variable; propagation techniques, which will not be discussed
here; and treatment of sub-formulae upon a branch.

Branching on a variable, as described by line 9 in Figure 2.8, is performed
differently depending upon the quantification of that variable. Given a set of
clauses Π and variable v such that v ∈ Π ∨ ¬v ∈ Π. If the variable v is
existentially quantified the procedure (QDPLL) recurses as:

QDPLL(Π ∪ {v}) ∨QDP (Π ∪ {¬v});

whereas if v is quantified universally the procedure recurses as:

QDPLL(Π ∪ {v}) ∧QDP (Π ∪ {¬v}).

The choice of branch variable in QDPLL is restricted to the outermost quan-
tified variable, or a variable belonging to the outermost quantified set. QDPLL
solvers are known as top-down solvers due to this behaviour. This is the most
significant difference when considering how the algorithm performs upon the en-
codings presented in this work. In a SAT encoding of a Planning problem there
is no restriction on the choice of branch variable; the search can be directed at
any part of the plan and at any time-step. With the QBF encodings presented

42

problem 1 2 3 4 5 6 7 8 9 10

variables 302 437 482 581 677 393 983 1055 1436 1817
resolved 25 0 0 0 0 65 0 0 0 18

Table 2.1: Variables resolved by sQueezeBF using Q-resolution per problem
in the driverlog domain.

here the search is restricted in scope. This restriction affects the encodings
presented in Chapter 3 and Chapter 4 differently.

In the encodings presented in Chapter 4 the restriction has little impact.
The search is restricted to a portion of each state, but not restricted in terms
of time-steps. Propagation is unhindered inside each state.

The encodings presented in Chapter 3, those logarithmic in the number of
time-steps, are more seriously affected. Due to the structure of these encodings,
the top-down algorithm is restricted to only branching upon variables that rep-
resent the mid-point state of the plan. Once an assignment is made to every
variable in the outermost set the algorithm recurses on the first and second half
of the plan. This means that the information in the initial state and goal state
is not propagated until the innermost existential states are reached. Intuitively
the algorithm can be described as guessing each even-numbered state and back-
tracking in the event that they do not immediately form a plan. For this reason
the top-down solvers perform abnormally poorly on the encodings presented in
Chapter 3, scaling poorly with the number of quantifier alternations and ex-
hibiting a large variance in memory use and time to solve. The structure of
these encodings is described in Chapter 3; the performance of two top-down
solvers is examined in Chapter 5.

We use two QDPLL-based search solvers: QuBE7.0 [41] and DepQBF
(v0.1) [61] both with conflict-driven clause learning – as in DPLL – and solution-
driven cube learning. QuBE6.1, the predecessor to QuBE7.0 developed by
Giunchiglia et al. was the strongest mono-engine solver in the 2008 QBF Eval-
uation [38]. Before QuBE7.0 begins the search process it runs a preprocessing
step with the preprocessor sQueezeBF [40]. This preprocessor applies four
different operations to the input formula:

1. propagating unit and pure literals, and eliminating subsumed clauses;

2. identifying variables that are defined by a logical combination of other
variables;

3. processing equivalences; and

4. performing Q-resolution.

Operations 1, 2, and 3 have no effect on the encodings presented in this
work. Operation 4, Q-resolution, has a small impact, illustrated by Table 2.1.
This table shows the number of variables simplified by Q-resolution on problems
in the driverlog domain.

Q-resolution is performed by removing an existential variable x from the
problem by replacing the set of clauses where x appears positively, Sx, and the
set of clauses where x appears negatively, S¬x with the set Sx ·S¬x obtained by
resolving on x all the pairs of clauses from Sx and S¬x. For example, consider

43

the clauses:
Sv : {(¬r ∨ v), (s ∨ v), (x ∨ y ∨ v)}
S¬v : {(¬v ∨ r), (¬v ∨ ¬x ∨ ¬y ∨ r)}.

Resolving on all six resolutions between pairs produces three trivial resolvents,
the others are:

(s ∨ r)
(x ∨ y ∨ r)
(s ∨ ¬x ∨ ¬y ∨ r).

Q-resolution was introduced by Quantor [4].
DepQBF (v0.1) [60] participated in the 2010 QBF Evaluation [38] and was

placed first according to a score-based ranking. The key feature of DepQBF is
the inclusion of dependency schemes as compact dependency graphs. A number
of techniques, not specific to the solver, are also included, such as: watched data
structures; removal of learned constraints; and restarts.

2.3.2 Non-QDPLL Solvers

We use two non-QDPLL solvers: Quantor (v3.0) [4], a resolution-based solver;
and CirQit2.1 [44], a circuit-based QBF solver.

When solving a QBF in prenex cnf, the quantifier order of variables must
be respected. The QDPLL approach works from the outermost to innermost
variables in a top-down manner. Quantor, implemented by Biere [4], instead
uses a bottom-up approach, working from the innermost to outermost quantified
variables.

Existential variables are removed using Q-resolution and universal variables
are removed through expansion. Q-resolution alone, although complete, is im-
practical due to the large number of clauses it generates. In Quantor memory
use is carefully monitored and only the cheapest variables are picked for res-
olution, and only from the innermost existentially quantified set. In addition,
Q-resolution is only invoked when the size of the formula will not increase too
much, otherwise universal variable are expanded, as described in Section 1.2.

CirQit2.1 [44] solved the most problems in the non-prenex non-cnf track
of the 2010 QBF Evaluation [38] and applies QBF solving techniques, such as
clause and cube learning, to a circuit based representation. Specifically CirQit
operates upon the ISCAS-85 format along with a quantifier prefix, solving the
circuit using DPLL search. An encoding of Planning problems into ISCAS-85
was implemented, equivalent to the QBF encodings logarithmic in time-steps
presented in Chapter 3. The ISCAS-85 formalism has the potential to be a
more compact representation for QBF problems. However, the solver does not
perform well on the encodings of Planning problems, as is explained in more
detail in Chapter 5.

44

Chapter 3

QBF Encodings with
Exponential Time-steps

In this Chapter we will describe two translations from Planning to QBF. Both
translations share the property that the number of variable sets representing a
state is logarithmic in the number of time-steps represented by the formula. In
other words, some variables are reused to represent multiple states in the plan.

Figures 3.1, 3.2 and 3.3 illustrate the intuition behind these encodings. In
the figures the square boxes represent sets of existentially quantified variables,
the circles represent a universally quantified variable. The nodes representing
universally quantified variables have two branches, corresponding to the two
subformulae produced by making an assignment. The aggregation of all exis-
tentially quantified sets in each diagram corresponds to the expansion of all its
universal variables, as described in Section 1.2.

Figure 3.1 shows the expansion of the Flat Encoding, described in Sec-
tion 3.1. Each existentially quantified set X represents a state in the plan-
ning problem, in exactly the same way as in formulae 1.1, reproduced here for
convenience:

I(X1) ∧
n+1∧
i=1

σ(Xi) ∧
n∧
i=1

τ(Xi, Xi+1) ∧G(Xn+1) (n ≥ 0) (1.1)

Xst represents the midpoint of the plan. The two subformulae obtained
through the expansion of y represent the first and second half of the plan.
Figure 3.2 shows the constraints between these existential sets that enforce
equality between states, or the transition constraints. The equality constraint
Xα ↔ Xβ ensures that: xα ↔ xβ for each xα ∈ Xα with corresponding xβ ∈ Xβ .

As can be seen from this figure, two transitions are made, one at each leaf
node of the tree. As each leaf node is actually the same existential variables
copied due to expansion it is necessary to only state the transition constraints
once. By recursing with this formulation a number of transitions can be de-
scribed equal to 2k where k is the depth of the tree.

The intuition behind the second encoding, the Compact Tree Encoding de-
scribed in Section 3.2, is to use the same recursive formulation, but remove
the redundancy. This means that each combination of existentially quantified

45

Figure 3.1: The tree formed by expanding universal quantifiers in the Flat En-
coding (k = 1) with a generic state-based representation. Each box corresponds
to a set of existentially quantified variables; each circle a universally quantified
variable. Variables beneath the universal variable are copied to represent its
expansion.

variable set and context prescribed by assignments to universally quantified vari-
ables will correspond to a unique state in the final plan. Figure 3.3 shows the
expansion of the Compact Tree Encoding. The basic structure of this encod-
ings resembles that of the Flat Encoding: the outermost existentially quantified
variable, X0, represents the midpoint of the plan and the two subformulae ob-
tained through the expansion of y represent the first and second half of the plan.
However, there are some important differences:

• the transitions exist between each node in the tree, rather than at each
leaf node; and

• the encoding uses fewer variable sets to represent a larger number of states.

The encodings are described in more detail below, then compared in Chap-
ter 5.

3.1 Flat Encoding

Rintanen [80] introduced Flat Encoding as an approach to general reachability.
It is presented here specific to Planning. Consider the formula

I(XI) ∧ Ek(XI , XG) ∧G(XG) (3.1)

where k ≥ 0 and represents the folding parameter. In the following, given two
finite sets Xα and Xβ of variables, ∃XαXβ denotes the result of existentially
quantifying each variable in Xα ∪Xβ , and

Xα ↔ Xβ

stands for ∧
x∈X

(xα ↔ xβ).

46

Figure 3.2: The tree formed by expanding universal quantifiers in the Flat En-
coding (k = 1) with a generic state-based representation. Equality constraints
are represented by dark arrows, transition constraints by red arrows with the
label τ . The dashed arrow shows a pair of states that are made implicitly equal.

Figure 3.3: The tree formed by expanding universal quantifiers in the Compact
Tree Encoding with a generic state-based representation. Each box corresponds
to a set of existentially quantified variables; each circle a universally quantified
variable. Variables beneath the universal variable are copied to represent its
expansion. Transition constraints are shown by arrows with the label τ .

Ek(XI , XG) is defined as follows:

Ek(XI , XG) := ∃Xst∀y∃XsXt(
(¬y ⇒ ((Xst ↔ Xt) ∧ (XI ↔ Xs)))
∧
(y ⇒ ((Xst ↔ Xs) ∧ (XG ↔ Xt)))
∧
Ek−1(Xs, Xt))

if k > 0, and

E0(XI , XG) := ∃X1∃X2

((XI ↔ X1) ∧ σ(X1) ∧ τ(X1, X2) ∧ σ(X2) ∧ (X2 ↔ XG))

when k = 0.

47

The correspondence between the basic SAT formula (1.1) and the Flat En-
coding is clear when k = 0. When k > 0, by expanding the universal quantifiers,
we find again a correspondence between the two formulae, as established by the
following proposition and proof.

Proposition 1 For each k ≥ 0, if n = 2k the existential closures of (1.1) and
(3.1) are equivalent.

Proof : We prove, by induction on k, that Ek(XI , XG) is equivalent to

∃X1 . . . ∃Xn+1

((XI ↔ X1) ∧
∧n+1
i=1 σ(Xi) ∧

∧n
i=1 τ(Xi, Xi+1) ∧ (Xn+1 ↔ XG))

with n = 2k.

k = 0: In this case n = 1 and the proposition trivially holds.

k = m+ 1: By expanding the outermost universal quantifier, Ek(XI , XG) be-
comes

Em+1(XI , XG) = ∃Xst(
∃XsXt(
((XI ↔ Xs) ∧ (Xst ↔ Xt))∧
Em(Xs, Xt))
∧
∃X ′sX ′t(
((Xst ↔ X ′s) ∧ (XG ↔ X ′t))∧
Em(X ′s, X

′
t)))

By the induction hypothesis this is equivalent to:

∃Xst(
∃X1 . . . ∃X2m+1(

(XI ↔ X1) ∧
∧2m+1
i=1 σ(Xi) ∧

∧2m

i=1 τ(Xi, Xi+1) ∧ (X2m+1 ↔ Xst))
∧
∃X ′1 . . . ∃X ′2m+1(

(Xst ↔ X ′1) ∧
∧2m+1
i=1 σ(X ′i) ∧

∧2m

i=1 τ(X ′i, X
′
i+1) ∧ (X ′2m+1 ↔ XG)))

which can be rewritten as

∃X1 . . . ∃X2m+1+1(

(XI ↔ X1) ∧
∧2m+1+1
i=1 σ(Xi) ∧

∧2m+1

i=1 τ(Xi, Xi+1) ∧ (Xn+1 ↔ XG))

which is the proposition. �

The above formulation involves (3k+ 2)|X| existential variables and k universal
variables. Further, the Flat Encoding can be converted into prenex conjunc-
tive normal form (corresponding to the QDIMACS format used by most QBF
solvers) with 4(2k+1)|X|+ |τ |+2|σ| clauses, where |τ | is the number of clauses
in the transition relation and |σ| the number of clauses in the state constraints
of the original Planning problem.

48

3.2 Compact Tree Encoding

This section describes a new encoding that removes redundancy and requires
considerably fewer variables than the Flat Encoding.

Given a QBF in the Compact Tree Encoding with k universal quantifiers,
the expansion corresponding to the QBF forms a tree of depth k and removes
all redundancy from the formula by only specifying equivalent states once. The
key novelty of this encoding lies in the traversal of its tree structure, in which
transitions are encoded from each leaf node to one of the nodes in the preceding
layers of the tree. This leads to a formula that encodes 2k+1 − 2 transitions
in a tree with k layers. The transition constraints are only applicable under
certain contexts, described by assignments to universal variables. The formula
is quadratic in k because every transition to and from level i requires k − i− 1
terms to express the context. The Flat Encoding does not require these contexts
and therefore is linear in k. However, twice as many variables are required
to enforce equivalence of sets of existentially quantified variables on different
branches as are required in our second encoding to describe the traversal of the
tree.

Intuitively, the Flat Encoding describes a one-to-one correspondence between
the states traversed and the leaves of the expansion corresponding to the QBF.
By contrast, in our second encoding, which we call a tree-structured encoding,
there is a one-to-one correspondence between the states traversed and the nodes
of the tree corresponding to the QBF. Every existentially quantified layer in the
QBF is used to represent at least one distinct state.

The encoding in question can be written as the formula:

I(XI) ∧Qk(XI , XG) ∧G(XG) (3.2)

where
Qk(XI , XG) := ∃Xk∀yk . . . ∃X1∀y1∃X(

(σ(X) ∧
∧k
i=1 σ(Xi))

∧
((
∧k
i=1 ¬yi)⇒ (XI ↔ X))

∧
((
∧k
i=1 yi)⇒ (X ↔ XG))

∧∧k
i=1(((¬yi ∧

∧i−1
j=1 yj)⇒ τ(X,Xi))

∧
((yi ∧

∧i−1
j=1 ¬yj)⇒ τ(Xi, X))))

This formula states that the goal state XG is reachable in 2k+1− 2 applications
of the transition relation. Only k + 1 states are quantified (Xk to X1 and X).

The Compact Tree Encoding (3.2) has k universal variables and (k + 1)|X|
existential variables. Further, with (3.2) we check the existence of plans hav-
ing makespan equal to 2k+1 − 1, i.e. twice the makespan allowed by the Flat
Encoding. However, the conversion of (3.2) to prenex conjunctive normal form
has 2k|τ |+ (k + 1)|σ| clauses.

49

Proposition 2 For each k ≥ 0, if n = 2k+1 the existential closures of (1.1)
and (3.2) are equivalent.

Proof : We prove, by induction on k, that Qk(XI , XG) is equivalent to

∃X1 . . . ∃Xn+1

((XI ↔ X1) ∧
∧n+1
i=1 σ(Xi) ∧

∧n
i=1 τ(Xi, Xi+1) ∧ (Xn+1 ↔ XG))

with n = 2k+1 − 2.

k = 0: In this case, Qk(XI , XG) becomes

∃X((XI ↔ X) ∧ σ(X) ∧ (X ↔ XG))

and the proposition trivially holds.

k = p+ 1: Expanding the outermost universal variable, yp+1:

The goal and initial state constraints

((
∧p+1
i=1 ¬yi)⇒ (XI ↔ X))

∧
((
∧p+1
i=1 yi)⇒ (X ↔ XG))

each appear in only one half of the expansion. Additionally the transition
constraints

p+1∧
i=1

(((¬yi ∧
∧i−1
j=1 yj)⇒ τ(X,Xi))

∧
((yi ∧

∧i−1
j=1 ¬yj)⇒ τ(Xi, X)))

when i = p+ 1 both produce one constraint that is only applicable in one
branch of the expansion:

(

p∧
i=1

¬yi)⇒ τ(Xp+1, X)

when yi |= > and

(

p∧
i=1

yi)⇒ τ(X,Xp+1)

when yi |= ⊥. The remaining constraints when i < p+ 1 become

p∧
i=1

(((¬yi ∧
∧i−1
j=1 yj)⇒ τ(X,Xi))

∧
((yi ∧

∧i−1
j=1 ¬yj)⇒ τ(Xi, X))).

50

Therefore, after expansion Qk(XI , XG) becomes

∃Xp+1(
∃Xp∀yp . . . ∃X1∀y1∃X(

(σ(X) ∧
∧p
i=1 σ(Xi))

∧((
∧p
i=1 ¬yi)⇒ (XI ↔ X))

∧((
∧p
i=1 yi)⇒ τ(X,Xp+1))

∧
∧p
i=1(((¬yi

∧i−1
j=1 yj)⇒ τ(X,Xi))

∧((yi
∧i−1
j=1 ¬yj)⇒ τ(Xi, X))))

∃X ′p∀y′p . . . ∃X ′1∀y′1∃X ′(
(σ(X ′) ∧

∧p
i=1 σ(X ′i))

∧((
∧p
i=1 ¬y′i)⇒ τ(Xp+1, X

′))
∧((

∧p
i=1 y

′
i)⇒ (X ′ ↔ XG))

∧
∧p
i=1(((¬y′i

∧i−1
j=1 y

′
j)⇒ τ(X ′, X ′i))

∧((y′i
∧i−1
j=1 ¬y′j)⇒ τ(X ′i, X

′))))).

The first half of the expansion,

∃Xp+1(
∃Xp∀yp . . . ∃X1∀y1∃X(

(σ(X) ∧
∧p
i=1 σ(Xi))

∧((
∧p
i=1 ¬yi)⇒ (XI ↔ X))

∧((
∧p
i=1 yi)⇒ τ(X,Xp+1))

∧
∧p
i=1(((¬yi

∧i−1
j=1 yj)⇒ τ(X,Xi))

∧((yi
∧i−1
j=1 ¬yj)⇒ τ(Xi, X)))))

can be rewritten to include an equivalence relation, and so conforms to
the form presented in (3.2).

∃Xp+1, X
′
p+1(τ(X ′p+1, Xp+1)∧

∃Xp∀yp . . . ∃X1∀y1∃X(
(σ(X) ∧

∧p
i=1 σ(Xi))

∧((
∧p
i=1 ¬yi)⇒ (XI ↔ X))

∧((
∧p
i=1 yi)⇒ (X ↔ X ′p+1))

∧
∧p
i=1(((¬yi

∧i−1
j=1 yj)⇒ τ(X,Xi))

∧((yi
∧i−1
j=1 ¬yj)⇒ τ(Xi, X)))))

and so, by induction hypothesis, is equivalent to

∃Xp+1, X
′
p+1(

τ(X ′p+1, Xp+1)∧
∃X1 . . . ∃X2p+1−1(

(XI ↔ X1) ∧
∧2p+1−1
i=1 σ(Xi)

∧
∧2p+1−2
i=1 τ(Xi, Xi+1) ∧ (X2p+1−1 ↔ X ′p+1)).

The second half of the expansion can be equated to a similar expression
in an analogous fashion – with the exception that the chain of transitions
are between Xp+1 and XG, as they represent the second half of the plan.

51

Thus, we have

∃Xp+1(
∃X ′p+1, X1 . . . ∃X2p+1−1(
τ(X ′p+1, Xp+1)

∧(XI ↔ X1) ∧
∧2p+1−1
i=1 σ(Xi)

∧
∧2p+1−2
i=1 τ(Xi, Xi+1) ∧ (X2p+1−1 ↔ X ′p+1))

∃X ′′p+1, X
′
1 . . . ∃X ′2p+1−1(

τ(Xp+1, X
′′
p+1)

∧(X ′′p+1 ↔ X ′1) ∧
∧2p+1−1
i=1 σ(X ′i)

∧
∧2p+1−2
i=1 τ(X ′i, X

′
i+1) ∧ (X ′2p+1−1 ↔ XG))

)

and by combining these transition chains we arrive at

∃X1 . . . ∃X2p+2−1(

(XI ↔ X1) ∧
∧2p+2−1
i=1 σ(Xi) ∧

∧2p+2−2
i=1 τ(Xi, Xi+1) ∧ (X2p+2−1 ↔ XG))

which is the proposition. �

3.3 Comparison between Flat and Compact Tree
Encoding

The following simple abstract example emphasises the difference between the
Compact Tree Encoding and the Flat Encoding.

If we build an expression containing two universal quantifiers using the Com-
pact Tree Encoding, we express the existence of a plan of makespan 8. Below
is a simple example of this, excluding the state constraints for readability.

∃X2∀y2∃X1∀y1∃X(
(¬y2 ∧ ¬y1 ⇒ τ(I,X))
∧(y2 ∧ y1 ⇒ τ(X,G))
∧(¬y2 ∧ y1 ⇒ τ(X,X2))
∧(y2 ∧ ¬y1 ⇒ τ(X2, X))
∧(¬y1 ⇒ τ(X,X1))
∧(y1 ⇒ τ(X1, X))).

It should be noted that the last two transitions are both invoked twice: once in
the context where y1 is true and once in the context where it is false. The other
transitions are all invoked once, accounting for all 8 transitions.

By contrast, two universally quantified variables using the Flat Encoding
produces:

∃X1∀y1∃X2∃X3(
(y1 ⇒ (I ↔ X2) ∧ (X1 ↔ X3))
∧(¬y1 ⇒ (X1 ↔ X2) ∧ (X3 ↔ G))
∃X4∀y2∃X5∃X6(

(y2 ⇒ (X2 ↔ X5) ∧ (X4 ↔ X6))
∧(¬y2 ⇒ (X4 ↔ X5) ∧ (X3 ↔ X6))
∃X7∃x8(

(X5 ↔ X7) ∧ (X8 ↔ X6) ∧ τ(X7, X8)))).

52

The single transition is invoked in all of the contexts generated by assignments
to y1 and y2. This is only 4 contexts, so the encoding expresses the existence of
a plan of makespan 4.

It can be seen that the Flat Encoding uses twice as many variables as the
Compact Tree Encoding for the same number of universal quantifiers. Also, by
expanding the universal quantifiers in both Flat and Compact Tree Encoding,
we get propositional formulae, in which the latter has twice as many transition
relations.

3.4 Leaf-based Encodings

In Section 2.1.1 several different SAT-based encodings were described, and it
was noted that it is possible to use these encodings when translating to QBF; the
CTE or Flat Encoding can be used with many different state descriptions and
constraints. In this section two new approaches will be described, applicable to
the CTE framework, that are not possible to apply to translations of Planning to
SAT. The technique relies upon the expressivity of the QBF, and specifically, the
tree-like structure of the CTE. The resulting formulae contain fewer variables
and clauses than do other state-based representation strategies.

The tree-structure of the CTE comes from the expansion of the universal
quantifiers. Each level in the tree corresponds to a set of existentially quantified
variables, and represents 2k states, where k is the depth of the level. A plan
corresponds to a traversal of the tree. In the encoding of state described in
Section 2.1.1 the actions and the fluents were present in every layer; unless they
were compiled away. These ideas are illustrated in Figure 3.4.

Figure 3.4: The tree formed by expanding universal quantifiers in the CTE
with a generic state-based representation. Each level corresponds to a set of
existentially quantified variables; each node represents a unique combination of
context and variable set. Transitions between states are noted with arrows.

53

The intuition behind the new approach is to load all of the actions, or all
of the fluents, into the innermost quantified layer. The result is that the leaf
nodes represent a larger portion of the plan, and since these are the variables
that appear under the largest number of contexts the same number of variables
capture a greater amount of information. Depending upon which set of variables
is moved to the innermost layer we call this representation the Action-leaf or
the Fluent-leaf CTE.

We will describe the Action-leaf CTE in detail. The Fluent-leaf CTE is
almost identical in construction, with the fluents moved in place of the actions,
with one important distinction that will be described later.

The quantification layer of the Action-leaf CTE is:

∃Fk∀yk . . . ∃F1∀y1∃A0, F,A1

where Fi and Ai are copies of the set of fluents and actions, respectively. This
differs from the quantification of the generic CTE described in section 3.2 in
which the existential sets represent a whole state: F

⋃
A.

The transition constraints τ are also modified. In the general CTE τ(X,X ′)
enforces action effects and the frame axioms. In the Action-leaf encoding half
of the transitions enforce action effects and frame axioms (τe(F,A, F

′)), and the
other half enforce action preconditions and frame axioms (τp(F,A, F

′)). Simi-
larly, the state constraints are modified. Only those variables in the innermost
quantified set are constrained. These constraints, σa(A,F,A′), enforce the pre-
condition constraints of A′, effects of A, and other state constraints. σa, τp, and
τe are described in more detail along with an example below.

The resulting formula is

I(XI) ∧Qak(XI , XG) ∧G(XG) (3.3)

where
Qak(XI , XG) := ∃Fk∀yk . . . ∃F1∀y1∃A0, F,A1(
σ(A0, F,A1)
∧
((
∧k
i=1 ¬yi)⇒ (XI ↔ F

⋃
A1))

∧
((
∧k
i=1 yi)⇒ (XG ↔ F

⋃
A1))

∧∧k
i=1(((¬yi ∧

∧i−1
j=1 yj)⇒ τe(F,A1, Fi))

∧
((yi ∧

∧i−1
j=1 ¬yj)⇒ τp(Fi, A0, F))))

and is represented by Figure 3.5.

3.5 Example of the Action-leaf CTE

Recall the simple example in Section 1.1.5 on Planning as Satisfiability. The
Planning problem is described in Figure 1.1 and Figure 1.2. Described in this
subsection is an example of encoding the same problem as a QBF, using the
Action-leaf CTE.

54

Figure 3.5: The tree formed by expanding universal quantifiers in the Action-leaf
CTE. Each level corresponds to a set of existentially quantified variables; each
node represents a unique combination of context and variable set. Transitions
between states are noted with arrows.

After grounding we obtain two sets, F and A:

F := {(onAA), (onAB), (onAC), (onB A), (onB B),
(onB C), (onC A), (onC B), (onC C),
(ontableA), (ontableB), (ontableC),

(clear A), (clear B), (clear C),
(holding A), (holding B), (holding C),

(handempty)}

and

A := {(stack AA), (stack AB), (stack AC), (stack B A), (stack B B),
(stack B C), (stack C A), (stack C B), (stack C C),

(unstack AA), (unstack AB), (unstack AC), (unstack B A), (unstack B B),
(unstack B C), (unstack C A), (unstack C B), (unstack C C),

(put-downA), (put-downB), (put-downC),
(pick-upA), (pick-upB), (pick-upC)}.

We construct the formula 3.3 for a sufficiently large k, in which:

1. I(X) |= F0 and I(X) |= ¬f, ∀f /∈ F0 where

F0 : { (onAC), (ontableB), (ontableC),
(clear A), (clear B), (handempty)

}

2. G(X) |= FG and G(X) |= ¬f, ∀f /∈ FG where

FG := {(onAB), (onB C)}

55

3. σa(A,F,A′) models

• mutual exclusion relations in both A and A′.

σa(A,F,A′) |= ¬a1 ∨ ¬a2

∀a1, a2 ∈ A and ∀a1, a2 ∈ A′ such that a1 and a2 are mutually
exclusive. For example:

(pick-upA)→ ¬(pick-upB)
(pick-upA)′ → ¬(pick-upB)′

• action effects between A and F .

σa(A,F,A′) |= a→ e

∀a ∈ A, e ∈ F with e ∈ Ea. For example:

(pick-upA)→
(holding A) ∧ ¬(ontableA) ∧ ¬(clear A) ∧ ¬(handempty)

• precondition relations between F and A′.

σa(A,F,A′) |= a→ p

∀a ∈ A′, p ∈ F with p ∈ Pa. For example:

(unstack AC)′ → (onAC) ∧ (clear A) ∧ (handempty)

4. τe(F,A, F
′) ensures

• the effects of an action applied in A are present in F ′

τe(F,A, F
′) |= a→ e

∀a ∈ A, e ∈ F ′ with e ∈ Ea. For example:

(pick-upA)→
(holding A)′ ∧ ¬(ontableA)′ ∧ ¬(clear A)′ ∧ ¬(handempty)′

• that a fluent made true in F ′ implies a supporting action, or fluent
in F

τe(F,A, F
′) |= fβ → (fα ∨Af)

∀fβ ∈ F ′ with corresponding fluent fα ∈ F . Af ⊆ A represents the
achievers of fβ , that is, all actions a such that f ∈ Ea. For example:

(holding A)′ → (holding A) ∨ (pick-upA)
∨(unstack AA) ∨ (unstack AB) ∨ (unstack AC)

5. τp(F,A, F
′) ensures

• that the preconditions of an action applied in A are present in F

τp(F,A, F
′) |= a→ p

∀a ∈ A, p ∈ F with p ∈ Pa For example:

(unstack AC)→ (onAC) ∧ (clear A) ∧ (handempty)

56

• that a fluent made true in F ′ implies a supporting action, or fluent
in F . This is identical to the description provided for τe.

Comparing the Action-leaf CTE (Qa) to a CTE (Q) that uses a regular
state-based representation, we find that there are less variables and less clauses.
The number of existential variables in the Q is (k + 1)(|F |+ |A|), and with Qa
is only (k + 1)|F | + 2|A|. The number of universal variables, and maximum
makespan remain the same.

The number of clauses is similarly reduced. Consider the constraints broken
down into the following components: precondition P , effect E, mutual exclusion
M , and frame axiom R. In Q there are

(k + 1)(|P |+ |M |) + 2k(|R|+ |E|)

clauses; where |M | represents the number of clauses required to enforce the
mutual exclusion relationships, and similarly for the the other components. In
Qa there are only

2|M |+ (k + 1)(|E|+ |P |) + 2k|R|

clauses. Using the Action-leaf CTE eliminates (k−1)(|M |+|E|) clauses, assum-
ing k > 0. Table 3.1 illustrates this reduction, listing the number of variables
and clauses in various encodings of Planning benchmark problems. The bench-
marks are introduced more properly in Chapter 5. The time-step bounds on the
encodings shown in this table were provided by the fix point of the plan graph,
as described in Section 2.1.1. This bound is often much lower than the optimal
makespan of the solution, in practice the size difference of encodings produced
while planning is much greater. As the time-step bound grows so too does k,
and as stated the size difference grows linearly in k.

The solution times for the Action-leaf CTE and regular state-based CTE are
compared in Chapter 5.

The Fluent-leaf CTE is built in a similar fashion to the Action-leaf CTE,
with the positions of the action and fluent sets swapped. Each non-leaf node
represents a set of actions, each leaf node represents two sets of fluents and
a set of actions. In addition to this, each action set in a non-leaf node must
also contain a set of noop actions. This is a major difference between the two
Leaf-based state representations.

These new variables must be included because of the frame axiom con-
straints. The constraints that model the frame axioms involve variables in
adjacent sets of fluents, that is, two sets of fluents variables that represent
states connected by a transition relation. In the Action-leaf CTE any two sets
of fluents that are adjacent are in leaf and non-leaf nodes of the tree. Both τe
and τp model the frame axioms. In the Fluent-leaf representation two sets of
fluents that are adjacent are either both in the same leaf node, or in different
leaf nodes.

The frame axiom constraints between fluent sets in a single leaf node can be
included once, in the same manner as the action mutual exclusion constraints
in the Action-leaf representation.

The frame axioms between different leaf nodes are more problematic, and
additional variables – the noop action variables – are required to model these
constraints.

57

The Fluent-leaf CTE (Qf) therefore requires:

(k + 1)|A|+ (k + 2)|F |

variables, and
(k + 1)(|P |+ |M |+ |E|+ |R|) + 2|F |

clauses. The additional 2|F | clauses correspond to the precondition and effect
constraints of the new noop actions. Considering |F | = |R| when using explana-
tory frame axioms, it is clear that the Qf generally contains fewer clauses than
Q, at the cost of |F | more variables.

CTE Action-leaf CTE
problem variables clauses variables clauses

depots01 362 5777 380 4378
depots02 818 31267 792 21442
depots09 9467 2662347 6631 1376475
depots10 3038 369516 2620 218347

driverlog01 302 4760 286 2198
driverlog02 437 5533 409 3478
driverlog14 3794 180770 3106 71478
driverlog15 8339 771703 6535 233230

freecell01 545 41420 651 35975
freecell02 3113 938905 2328 502131
freecell03 4661 1945422 3447 1040000

opticaltelegraph01 386 5418 498 4424
opticaltelegraph02 578 10539 746 8220
opticaltelegraph13 2690 172998 3474 119672
opticaltelegraph14 2882 197415 3722 136140
pipesnotankage01 207 4209 281 3511
pipesnotankage02 416 8709 398 6582
pipesnotankage19 8323 2774250 5615 1406993
pipesnotankage20 9675 3753986 6383 1924198

rovers01 296 4662 303 3739
rovers02 163 2243 219 2269
rovers19 9602 2607502 7488 1764391
rovers20 13370 4445202 10354 2983691

Table 3.1: Formula sizes for CTE and Action-leaf CTE; time-step bound pro-
vided by the fix point of the plan graph.

58

Chapter 4

Partially Grounded QBF
Encoding

The following formula exploits the expressivity of the QBF problem in order
to achieve partial grounding of the Planning instance. This means that not
all of the propositions and operators of the domain will be grounded with the
instance to form fluents and actions. The resulting formula is decreased in size
by a possibly exponential amount. This reduction depends upon the number of
objects in the problem instance. Intuitively, by not grounding, we are describing
an abstract copy of an object type and then using the expansion of the tree to
copy these variables for every object. In a domain and problem in which there
are a great many objects of one type then a great reduction in variables and
clauses may be made. In other domains in which there are few objects of each
type no savings may be made at all.

The makespan of the problem will be encoded linearly, as in the SAT trans-
lations. It is possible to combinine partially grounded QBF encodings with
QBF translations whose makespans are exponentially larger than their number
of states, such as the Flat and Compact Tree encodings, but this is left for future
work.

The principle idea behind the Partially Grounded QBF (PGQBF) Encoding
is illustrated in figures 4.1 and 4.2. The figures show portions of a SAT and
PGQBF encoding that correpsond to pigeons and the place action described in
the example domain below, in figure 4.3.

Figure 4.1 shows the SAT formulation. In this encoding, each action and
each fluent is represented by a unique variable. This means that for two time-
steps (with one action step between them) there are 3P variables required to
represent the fluents and actions for this portion of the problem, where P is the
number of pigeons.

Figure 4.2 shows the PGQBF formulation of the same problem. Universally
quantified variables are included before the variables that represent the fluents
and actions. The quantification layer corresponding to this diagram would be:

∃lockplace1 . . . lockplacem

∀a1 . . . am
∃placed(pigeon)i, place(pigeon), placed(pigeon)i+1

59

where 2m = p. This includes only 2m+ 3 variables.

Figure 4.1: Part of a SAT formulation of the pigeonhole problem, with existen-
tially quantified variables represented by square boxes. The state representation
is a Graphplan-based encoding with split actions, as described in Section 2.1.

Figure 4.2: Part of a partially grounded QBF formulation of the pigeonhole
problem, with existentially quantified variables represented by square boxes and
universally quantified variables represented by circles. Expanding the universal
quantifiers will produce a tree with 2m = P branches, each corresponding to a
unique pigeon.

Upon the expansion of the universal variables, as described in Section 1.2
the fluent and action variables are copied the same number of times they are in-
cluded in the SAT formulation. The lock variables are used for mutual exclusion
between ungrounded actions, and are described in more detail below.

The new encoding will be introduced in two parts. First the state represen-
tation will be described. This will be followed by an in-depth description of the
state and transition constraints. Both parts are brought together afterwards in
a summary of the constraints as they apply to an example.

The pigeonhole problem will be used as an example to illustrate the encoding.
This domain was chosen as it is very simple to understand and an obvious
candidate for lifting. The domain is described in Figure 4.3.

4.1 Partially Grounded QBF Encoding

4.1.1 Splitting propositions and operators

Kautz and Selman [55] used the idea of operator splitting to significantly reduce
the size of the resultant encoding. The basic idea is to reduce the arity of

60

(d e f i n e (domain PIGEONHOLE)
(: requ i rements : s t r i p s : typing)
(: types pigeon p igeonho l e)
(: p r ed i c a t e s (in ?p − pigeon ?h − p igeonho le)

(p laced ?p − pigeon)
(empty ?h − p igeonho l e)
)

(: a c t i on p lace
: parameters (?p − pigeon ?h − p igeonho le)
: p r e cond i t i on (and (empty ?h)

(not (p laced ?p)))
: e f f e c t
(and (not (empty ?h))

(p laced ?p))))

Figure 4.3: The domain for the pigeonhole problem with operator place and
propositions placed, empty, and in.

operators by replacing operators that take three or more parameters by several
operators that take no more than two parameters. For example, a place (?p −
pigeon, ?h−pigeonhole) operator for placing a pigeon p into pigeonhole h would
be replaced by two split operators: place[1](?p) and place[2](?h).

Operator splitting has been explored and implemented in more detail in
more recent SAT-based planners [26, 91, 92] and bears some similarity to the
alternative state-representation used by Huang et al. [51]. These approaches are
described in more detail in Section 2.1.

The encoding presented here uses a split representation similar to that of
Kautz and Selman [55] in a semi-parallel setting. An operator with multiple
parameters will be split into a number of split operators equal to the number
of parameters to remain ungrounded plus one. For example, if only pigeons
were to remain ungrounded in the example, splitting the place operator will
result in the split operators place[1](?p) and place[2](?h). However, if both
objects were to remain ungrounded then the operator is split into three parts:
place[0]; place[1](?p); and place[2](?h). The purpose of this third split operator,
place[0], is to ensure consistency between the leaves of the QBF. This role will
be explained in detail later.

The propositions are also split; however, no extra split proposition is added.
Instead the proposition is split into a number of parts equal to the number
of ungrounded parameters and each of these split propositions has an arity
of the number of grounded parameters. For example, when both pigeons and
pigeonholes remain ungrounded, the proposition in(?p, ?h) becomes: in[1](?p)
and in[2](?h).

Once this is combined with partial grounding, a proposition with arity 3 is
described with only 3 variables, as opposed to grounding fully without splitting,
in which case there are 3|O| grounded action fluents. |O| is the number of objects
in the problem.

61

4.1.2 Partially grounded state representation

After splitting, the split propositions and operators that correspond to param-
eters which are not to be lifted are grounded. The resulting sets are encoded
as sets of Boolean variables: grounded split fluents (F); grounded split action
fluents (A); ungrounded split propositions (P); and ungrounded split operators
(O). A variable from one of these sets is given a subscript to represent the
parameter of which it is representative. For example oα ∈ O is a split operator
variable representing the parameter α. Each state is encoded as the set X,
comprising two parts: Xg and Xu, where Xg := A

⋃
F and Xu := P

⋃
O.

Additional variables are required to ensure that the ungrounded parts of the
plan are consistent between contexts of the QBF. These variables will be called
lock variables. In each case, m is the number of universal variables. For each
split operator variable oα a set of lock variables is added to Xg:

{lockoα0 , . . . , lockoαm } ∈ Xg.

The operator lock variables ensure that a variable such as place[1](?p) can only
be made true in one context of the QBF at each time-step. This is important as
otherwise we could place all the pigeons into a single pigeonhole with a single
action.

For each split proposition pα a set of lock variables is added to Xu for each
other ungrounded parameter of the proposition. For example, consider split
proposition:

pα := in[1](?p).

A lock is added to Xu corresponding to the other ungrounded parameter pβ :=
in[2](?h). These variables are denoted

{lockpβ0 , . . . , lock
pβ
m } ∈ Xu.

Similarly for split proposition pβ := in[1](?h) a set of lock variables is added:

{lockpα0 , . . . , lockpαm } ∈ Xu.

The proposition lock variables ensure that the same object is bound to the
proposition between time-steps. For example, if in[1](?p) and in[2](?h) were
both true in two different contexts of the QBF, the proposition lock variables
are required to know which pigeon is in which pigeonhole.

In the pigeonhole example, in which both objects are ungrounded, the set
X := Xg

⋃
Xu is

Xg
i := {
place[0]i,

lock
place[1]i
0 , . . . , lock

place[1]i
m ,

lock
place[2]i
0 , . . . , lock

place[2]i
m }

Xu
i := {
place[0]i, place[1]i,
in[0]i, in[1]i,
placedi, emptyi,

lock
in[0]i
0 , . . . , lock

in[0]i
m ,

lock
in[1]i
0 , . . . , lock

in[1]i
m }.

62

As the number of pigeons or pigeonholes is increased, the size of the lock variable
sets grow logarithmically. No other variables are added.

A number of variables are quantified universally between Xg and Xu. An
encoding of a Planning problem with makespan n contains n + 1 copies of X,
and so the quantification layer is:

∃Xg
1 . . . X

g
n+1∀a1 . . . am∃Xu

1 . . . X
u
n+1.

The universal variables a1, . . . , am define 2m contexts – leaves of the QBF
tree – each of which encodes a unique object of each ungrounded type.

The Partially Grounded QBF (PGQBF) encoding of a Planning problem
with makespan n is the Quantified Boolean formula Φn containing n+ 1 copies
of X and is defined by:

∃Xg
1 . . . X

g
n+1∀a1 . . . am∃Xu

1 . . . X
u
n+1 · (

I(Xg
1 ∪Xu

1) ∧G(Xg
n+1 ∪Xu

n+1)
∧
∧n
i=1 τqbf (Xg

i ∪Xu
i , X

g
i+1 ∪Xu

i+1)
∧
∧n
i=1 σqbf (Xg

i ∪Xu
i)).

(4.1)

A plan for Φn is an interpretation satisfying (4.1).
The state constraints σqbf (Xg

i ∪Xu
i) ensure that Oi

⋃
Ai represents a valid

action choice, and that their preconditions hold inXi. The transition constraints

τqbf (Xg
i ∪X

u
i , X

g
i+1 ∪X

u
i+1)

ensure that the effects of each action applied in step i hold in step i + 1, and
also enforce the frame axioms.

4.1.3 State constraints

The state constraints σqbf (Xg
i ∪ Xu

i) ensure that if an action is to be applied
then:

1. exactly one split action variable is made true for each grounded parameter;

2. for each ungrounded parameter, the corresponding split operator variable
is made true in exactly one context of the QBF;

3. any action with which it is mutually exclusive cannot be applied; and

4. its preconditions hold.

In the following the time-step subscript i is omitted for simplicity.
Constraint (1) is defined by:

aα → ¬bα for all aα, bα ∈ A, aα 6= bα
oα → (aβ,1∨, . . . ,∨aβ,j) for all oα ∈ O and aβ ∈ A

where aβ,i represents the ith grounded split action fluent representing the pa-
rameter β. j is the number of grounded split action fluent variables representing
this action and parameter combination in A.

These constraints ensure that only a single split action fluent for each param-
eter is made true and that if a split operator variable is made true, representing

63

an ungrounded part of the action, the grounded part must also be made true.
For example, if both pigeons are grounded, but pigeonholes remain ungrounded:

(place[1]((pigeoni)→ ¬place[1](pigeonj),
for each i, j ∈ |P |, i 6= j

(place[2](?h)→
place[1](pigeon1) ∨ . . . ∨ place[1](pigeon|P |)).

In the case where both object types are ungrounded:

(place[1](?p)→ place[0])∧
(place[2](?h)→ place[0]).

Constraint (2) makes use of the lock variable set associated with the split
operator:

oα → (lockoαj ↔ aj), for j = 1, . . . ,m.

aβ ∧
∧m
j=1(lockoαj ↔ aj)→ oα

The first constraint ensures that the split operator variable oα is true in at most
one context of the QBF. The second constraint ensures that if a grounded split
action fluent is made true then the split operator variable oα is true in exactly
one context of the QBF. For example, consider

place[1](?p)→ (lock
place[1](?p)
1 ↔ a1)

in an encoding with m=1.
If place[1](?p) |= > in the context defined by

a1 |= ⊥

then the associated lock variable lock
place[1](?p)
1 |= ⊥.

Now, when a |= >, place[1](?p) cannot be true, as this implies lock
place[1](?p)
1

must be true, which causes a conflict. The key is that lockplace[1](?p) is quantified
before the universal variables, and so is not copied upon expansion.

The second constraint:

place[0] ∧ (lock
place[1](?p)
j ↔ aj)→ place[1](?p)

∧
place[0] ∧ (lock

place[2](?h)
j ↔ aj)→ place[2](?h)

simply ensures that both halves of place(?p, ?h) are performed. If a grounded
part of the action is true, then all of the split operators corresponding to un-
grounded parameters of the action must also be performed. Otherwise only part
of an action is performed. It is for this reason that the additional split operator
(place[0]) is created.

The use of operator lock variables to enforce disjunction between instances
of the same variable in different contexts of the QBF is the most important
contribution of this encoding.

Constraint 3 is easily enforced in exactly the same way as a SAT encod-
ing, with binary disjunctions between the negations of grounded split action
variables.

64

(: a c t i on remove
: parameters (?p − pigeon ?h − p igeonho le)
: p r e cond i t i on (in ?p ?h)
: e f f e c t
(and (not (in ?p ?h)

(and (empty ?h))
(not (p laced ?p))))))

Figure 4.4: The operator remove for the pigeonhole domain.

Constraint 4 is enforced in two parts. Firstly:

oα → pα
aα → fα

for each oα ∈ O with associated split proposition precondition pα, and each split
action fluent aα ∈ A with associated split fluent precondition fα. For example:

place[1](?p)→ ¬placed(?p)
∧
place[2](?h)→ empty(?h).

Secondly a constraint is required to ensure that the split propositions and
split fluents constituting the preconditions belong to the same fluent.

For example, consider the new action remove(?p, ?h) in Figure 4.4. It is not
enough to ensure that in[0](?p) and in[1](?h) are true in the correct contexts.
It must also be ensured that both halves connect in the same whole fluent.
Otherwise, if pigeon1 was in pigeonhole1 and pigeon2 in pigeonhole2 it would
be possible to remove pigeon1 from pigeonhole2. This is avoided by adding the
constraint:

oα →
∧m
i=1(lock

oβ
i ↔ lock

pβ
i)

for each split operator oα with precondition pα that forms part of a whole fluent,
and for each other ungrounded split proposition pβ of that fluent.

Using remove as an example: the first ungrounded split operator variable
remove[1](?p) implies that the pigeon is in a pigeonhole (in[1](?p)) and also
that the in[1](?p) split proposition is related to the correct pigeonhole.

The pigeonhole object is remembered by the proposition lock variables

lock
in[2](?h)
0 , . . . , lockin[2](?h)m .

The correct pigeonhole means the pigeonhole from which it is being removed,
as stored in the operator lock variables

lock
remove[2](?h)
0 , . . . , lockremove[2](?h)m .

The resulting constraints are:

remove[1](?p)→∧m
i=1(lock

remove[2](?h)
i ↔ lock

in[2](?h)
i)

∧
remove[2](?h)→∧m

i=1(lock
remove[1](?p)
i ↔ lock

in[1](?p)
i)

and ensure that the pigeon is removed only from its own pigeonhole.

65

4.1.4 Transition constraints

The transition constraints τqbf (Xi, Xi+1) ensure that:

1. Xi+1 models the effects of the actions applied in Xi;

2. fluents true in Xi+1 and not added by an action in Xi were true in Xi.

Consider τ(X,X ′); in the following description of the constraints we will use
v and v′ to distinguish between variables belonging to the two sets, where v ∈ X
and v′ ∈ X ′.

Constraint (1) is enforced in much the same way as constraint (4) of the
state constraints.

oα → p′α
aα → f ′α

for each oα ∈ O with associated split proposition effect pα, and each split action
fluent aα ∈ A with associated split fluent effect fα. Note that the effects may
be negations. For example:

place[1](?p)→ placed′(?p)
∧
place[2](?h)→ ¬empty′(?h).

Additionally, the proposition lock variables must be set:

oα →
∧m
i=1(lock

oβ
i ↔ lock

p′β
i)

for each split operator oα with effect pα that forms part of a whole fluent, and
for each other ungrounded split proposition pβ of that fluent. For example:

place[1](?p)→
∧m
i=1(lock

place[2](?h)
i ↔ lock

in′[2](?h)
i)

∧
place[2](?h)→

∧m
i=1(lock

place[1](?p)
i ↔ lock

in′[1](?p)
i).

Constraint 2 enforces the frame axioms. These enforce the requirement
that split fluents and split propositions retain the correct value between states,
and also that the locks are maintained. The first part of this is expressed with:

pα → p′α ∨
∨
Dpα

fα → f ′α ∨
∨
Dfα

¬pα → ¬p′α ∨
∨
Apα

¬fα → ¬f ′α ∨
∨
Afα

for each p ∈ P and each f ∈ F . Dpα is the set of split operators oα that include
p′α as a delete effect. Apα is the set of split operators oα that includes p′α as an
add effect. Dfα and Afα are similarly defined sets of action fluents.

In the example:

empty(?h)→ empty′(?h) ∨ place[2](?h)
∧
placed(?h)→ placed′(?h)
∧
¬empty(?h)→ ¬empty′(?h)
∧
¬placed(?h)→ ¬placed′(?h) ∨ place[1](?p).

66

The locks are maintained using the constraints:

p′α →
∨
Apα ∨

∧m
i=1(lockpβ ↔ lock′pβ)

for each pα ∈ P and each other parameter β of the whole fluent. For example:

in[1]′(?p)→
(lock

in[2](?h)
i ↔ lock

′in[2](?h)
i) ∨ place[1](?p)

∧
in[2]′(?h)→

(lock
in[1](?p)
i ↔ lock

′in[1](?p)
i) ∨ place[2](?h).

These constraints ensure that the split proposition locks refer to the context in
which the linked split proposition resides.

4.2 Example of the Partially Grounded QBF En-
coding

Putting everything together we arrive at the QBF instance Φn, constructed
according to formula 4.1, with the quantification layer:

∃Xg
1 . . . X

g
n+1∀a1 . . . am∃Xu

1 . . . X
u
n+1

where
Xg
i := {
place[0]i,

lock
place[1]i
0 , . . . , lock

place[1]i
m ,

lock
place[2]i
0 , . . . , lock

place[2]i
m }

}

Xu
i := {
place[0]i, place[1]i,
in[0]i, in[1]i,
placedi, emptyi,

lock
in[0]i
0 , . . . , lock

in[0]i
m ,

lock
in[1]i
0 , . . . , lock

in[1]i
m }

and the constraints are defined by Figure 4.5. Constraints 1 and 2 represent the
initial and goal states respectively.

Constraints 3 to 8 ensure that only a single place action is attempted at each
time-step, and that each split operator variable representing this action is true
in only one context of the QBF.

Constraints 9 and 10 enforce action preconditions, while constraints 11 to
14 enforce the effects of these actions.

Constraints 15 to 24 are the frame axioms. Constraints 23 and 24 maintain
the proposition locks, effectively ensuring that the same pigeons remain in the
pigeonholes between time-steps.

The number of variables is small, dominated by the lock variables of which
there are 4m(n + 1) in a problem with 2m pigeons and pigeonholes and n + 1
states. The size of the formula in terms of clauses is dominated by the equiva-
lences between the locks, which are O(m(n+ 1)).

67

1. ¬placed0 ∧ empty0 ∧ ¬in[0]0 ∧ ¬in[1]0
2. placedn+1

3. place[1]i → place[0]i, for all i = 1 . . . (n+ 1)

4. place[2]i → place[0]i, for all i = 1 . . . (n+ 1)

5. place[1]i → (lock
place[1]i
j ↔ aj), for all i = 1 . . . (n+ 1) and j = 1 . . .m

6. place[2]i → (lock
place[2]i
j ↔ aj), for all i = 1 . . . (n+ 1) and j = 1 . . .m

7. place[0]i ∧
∧m

j=1(lock
place[1]i
j ↔ aj)→ place[1]i, for all i = 1 . . . (n+ 1)

8. place[0]i ∧
∧m

j=1(lock
place[2]i
j ↔ aj)→ place[2]i, for all i = 1 . . . (n+ 1)

9. place[1]i → ¬placedi, for all i = 1 . . . n

10. place[2]i → emptyi, for all i = 1 . . . n

11. place[1]i → placedi+1, for all i = 1 . . . n

12. place[2]i → ¬emptyi+1, for all i = 1 . . . n

13. place[1]i → (lock
place[2]i
j ↔ lock

in[2]i+1

j), for all i = 1 . . . n and j = 1 . . .m

14. place[2]i → (lock
place[1]i
j ↔ lock

in[1]i+1

j), for all i = 1 . . . n and j = 1 . . .m

15. emptyi → place[2]i ∨ emptyi+1, for all i = 1 . . . n

16. ¬emptyi → ¬emptyi+1, for all i = 1 . . . n

17. ¬placedi → place[1]i ∨ ¬placedi+1, for all i = 1 . . . n

18. placedi → placedi+1, for all i = 1 . . . n

19. in[1]i → in[1]i+1, for all i = 1 . . . n

20. ¬in[1]i → place[1] ∨ ¬in[1]i+1, for all i = 1 . . . n

21. in[2]i → in[2]i+1, for all i = 1 . . . n

22. ¬in[2]i → place[2] ∨ ¬in[2]i+1, for all i = 1 . . . n

23. in[1]i → (lock
in[2]i
j ↔ lock

in[2]i+1

j), for all i = 1 . . . n and j = 1 . . .m

24. in[2]i → (lock
in[1]i
j ↔ lock

in[1]i+1

j), for all i = 1 . . . n and j = 1 . . .m

Figure 4.5: The constraints QBF instance Φn representing a pigeonhole problem
with 2m pigeons and pigeonholes, and n+ 1 states.

68

Chapter 5

Results

5.1 Comparing Encodings with Exponential
Time-steps

Chapter 3 presented two encodings with sizes logarithmic in the number of
time-steps, the Flat encoding, first presented in Rintanen [80]; and the Compact
Tree encoding (CTE), which is novel. We showed that both are semantically
equivalent to SAT-based encodings from formula (1.1) presented in Section 1.1.4.
This section aims to investigate how these encodings behave in practice. In
particular we hypothesise that:

• the CTE is smaller and uses less memory than the Flat encoding (Section
5.1.1);

• the QBF solvers find solutions faster with the CTE, compared to the Flat
encoding (Sections 5.1.2, 5.1.3, and 5.1.4);

• the number of quantifier alternations in the encoding is an important
factor in this performance improvement (Section 5.1.2);

• the QBF-based encodings are much smaller than SAT-based encodings,
and require far less memory to solve (Section 5.1.5);

• there is a performance gap between the QBF-based encodings solved with
QDPLL solvers and similar SAT-based encodings (Section 5.1.5); and

• there is a similar performance gap between the QBF-based encodings and
the current state-of-the-art SAT-based Planning systems (Section 5.1.5).

It is difficult to estimate the amount of time required by a solver to solve
a QBF instance, and the results vary depending upon the solver used. In this
section the solver characteristics described in Section 2.3 are used to explain
the performance of various QBF-based encodings and experimental results are
provided to support the explanation. We use four different solvers for the main
experiments: QuBE7.0 [41, 64]; DepQBF (v0.1) [61]; CirQit2.1 [44]; and
Quantor (v3.0) [4].

QBF-based encodings that are logarithmic in the number of time-steps are
not yet competitive with similar SAT-based encodings. Although semantically

69

equivalent to SAT encodings, the QBF representation is much more difficult to
solve.

The problems from the small hard track of the QBF Evaluation in 2010
(QBFEval’10) [38] have up to ∼2000 variables, a similar size to many encodings
of Planning instances. However, the encodings presented in Chapter 3 do not
benefit from any preprocessing, such that as performed by sQueezeBF [40],
the preprocessor for QuBE7.0.

5.1.1 Comparing the size of CTE and Flat encodings

When comparing the size of CTE and Flat encodings of the same Planning
problem there are three aspects to consider:

• the number of variables and clauses;

• the memory footprint during solving; and

• the number of quantifier alternations.

As demonstrated in Section 3.3 there will be fewer variables and alternations
in the CTE encoding than in the Flat encoding. This can be shown as follows.
Assume that both encodings, which are state-based encodings, use the same
variable set X to represent the state. This can be an actions-only, SAS+-
based, Graphplan-based or any other state-based representation. To represent
a plan of n time-steps the CTE requires log2(n + 1)|X| variables where |X|
is the number of variables in X. These states are arranged in log2(n + 1) −
1 alternations. In comparison, the Flat encoding requires (3log2(n) + 2)|X|
existential variables arranged in log2(n) alternations. The sizes of encodings of
various Planning problems from the International Planning Competition (IPC)
are shown in Table 5.2. The number of alternations present in encodings of
different makespans is shown in Table 5.1.

As shown in Table 5.2 the CTE contains a smaller number of variables, but
many more clauses, resulting in a larger formula. The encodings presented in
Table 5.2 were solved using a variety of solvers. The experiments were run to
illustrate that:

• the larger formula size is negligible when compared to the memory use
during solving; and

• the CTE often uses less memory than the Flat encoding despite the larger
formula size.

The encodings generated for Table 5.2 were passed to the QDPLL-based
solvers QuBE7.0 and DepQBF as well as the resolution solver Quantor. The
solvers were run on machines with 8GB of memory and the amount of mem-
ory used by the solver was recorded at small time intervals during the solution
process. The results are presented in two ways: maximum and average. The
average memory is the mean of all readings giving a more accurate approxima-
tion of the average memory used over time. The results are shown in Tables 5.3,
5.4, and 5.5. Figures 5.1, 5.2, and 5.3 chart the average memory use shown in
the tables.

70

Quantifier Alternations
Makespan 2 3 4 5 6 7 8 9

CTE 1 1 2 2 2 2 3 3
Flat 1 2 2 3 3 3 3 4

Table 5.1: Number of quantifier alternations for various makespans.

CTE Flat
Problem variables clauses variables clauses

depots01 362 5777 1323 4271
depots03 1979 131391 5437 42125
depots10 3038 369516 11135 124280
depots16 4922 818214 18043 277408

driverlog01 302 4760 1103 3134
driverlog03 482 6517 1763 5171
driverlog13 3557 260072 13038 50606
driverlog15 8339 771703 30572 172653
freecell01 545 41420 2178 21062
freecell03 4661 1945422 17086 542587
gripper01 41 243 162 420
gripper03 89 895 354 1036
gripper08 209 3925 834 2996
gripper10 257 5697 1026 3948

opticaltelegraph01 386 5418 1411 4262
opticaltelegraph03 770 17268 2819 10012
opticaltelegraph12 2498 150189 9155 54301
opticaltelegraph14 2882 197415 10563 68235

philosophers01 212 1730 773 2130
philosophers03 422 4788 1543 4580
philosophers18 1997 70053 7318 33155
philosophers20 2207 84399 8088 38325

pipesnotankage01 207 4209 826 2917
pipesnotankage03 770 28724 2050 10153
pipesnotankage18 7655 2304186 26786 632155
pipesnotankage20 9675 3753986 33856 1008796

rovers01 296 4662 786 2839
rovers03 362 5058 1323 4460
rovers18 6623 687668 24280 279466
rovers20 13370 4445202 49019 1576696

tpp01 47 187 168 405
tpp03 113 491 410 1005
tpp18 22483 1323829 61823 414921
tpp20 27191 1470445 95162 560925

zeno01 26 261 52 190
zeno03 968 41157 2578 18539
zeno12 4907 611491 13082 218841
zeno14 20567 6208928 54842 2097420

Table 5.2: Number of variables and clauses for encodings of various problems in
the IPC benchmark suite. The time-step bound for each encoding is provided
by the fix point of the plan graph.

71

DepQBF

average maximum

Problem CTE Flat CTE Flat

depot02 97092 89877 144832 177116

driverlog02 91113 159937 139772 250604

driverlog04 11139 13097 14888 129312

driverlog05 19232 82021 31292 173980

driverlog06 4354 102236 5208 19512

driverlog07 4505 119064 6192 185668

driverlog10 79380 178593 155660 306380

gripper04 2132 7706 2132 10808

pipesnotankage02 29705 67511 38760 112840

pipesnotankage03 35776 150743 50700 285556

pipesnotankage04 51588 195679 79796 347636

rovers05 7811 22868 10144 46364

rovers06 118970 341414 164552 502552

rovers07 6970 38803 9640 73248

rovers09 118277 444591 179360 857304

rovers12 41547 344861 59284 559468

Table 5.3: Memory used solving problems using the Compact Tree Encoding
(CTE) and Flat Encoding, solving QBFs with DepQBF; sizes to the nearest
kb.

QuBE7.0

average maximum

Problem CTE Flat CTE Flat

depots02 523978 338500 817140 572568

driverlog04 58792 188588 76412 263980

driverlog05 214205 149449 304140 230936

driverlog06 42580 45334 43060 51932

driverlog07 43815 130147 47576 222808

driverlog08 76121 139567 136280 226228

freecell01 753847 327463 1138380 503608

gripper04 39192 42781 39192 45792

pipesnotankage02 55235 495809 66164 721212

pipesnotankage03 66856 497625 88236 840516

pipesnotankage04 118570 371777 209516 564488

rover05 54363 54501 65964 77964

rover06 96410 365736 156948 693828

rover07 44292 53918 46940 70168

Table 5.4: Memory used solving problems using the Compact Tree Encoding
(CTE) and Flat Encoding, solving QBFs with QuBE7.0; sizes to the nearest
MB.

72

Figure 5.1: Average memory use for problems solved using the CTE against
Flat encoding; solving QBFs with DepQBF; memory in kb.

Figure 5.2: Average memory use for problems solved using the CTE against
Flat encoding; solving QBFs with QuBE7.0; memory in kb.

73

Quantor

average maximum

Problem CTE Flat CTE Flat

depots02 24630 13292 33076 13292

depots03 71780 82220 107876 121080

depots08 466702 522555 611224 677996

depots10 224821 246330 407468 466608

depots13 258005 295838 528024 587964

depots16 333407 283102 748700 500336

driverlog09 21901 27742 25440 28320

driverlog10 17240 19987 17240 22496

driverlog11 33428 49033 48032 53208

freecell01 75149 88082 133996 139524

freecell02 498139 433331 999668 582148

freecell03 761051 821409 1099752 1063204

gripper05 4436 4483 4436 4828

pipesnotankage05 16243 28636 26300 28636

pipesnotankage06 21530 28884 26484 28884

pipesnotankage07 25449 33351 46596 47320

pipesnotankage08 29140 43968 46596 47584

pipesnotankage09 83248 63018 117868 66984

pipesnotankage11 320087 360006 470132 521272

pipesnotankage13 488553 525060 707672 783816

rovers06 15382 17095 21788 22784

rovers07 4736 6092 4736 6092

rovers09 32626 32767 48900 55396

rovers11 75235 75104 117248 123764

Table 5.5: Memory used solving problems using the Compact Tree Encoding
(CTE) and Flat Encoding, solving QBFs with Quantor; sizes to the nearest
MB.

As can be seen from tables 5.3, 5.4, and 5.5 the CTE usually requires far
less memory than the Flat Encoding in order to solve Planning problems. This
can be partly ascribed to the number of alternations, and so states, that are
required. As described in Section 3.3 the CTE requires one less alternation than
the Flat Encoding for certain makespans. Most problems will pass through one
or more of these makespans during the process of iterative deepening. The QBF
instances generated at this point for the Flat Encoding contain an additional
state, comprising 3|X| existential variables and accompanying clauses.

That the formula size is negligible when comparing the memory use of the
two QBF encodings is illustrated by pipesnotankage03. Despite the CTE con-
taining almost three times as many clauses as the Flat Encoding, the average
amount of memory used when solving with the solver DepQBF is almost four
times lower. When solving with QuBE7.0 the CTE requires roughly an eighth
of the memory required by the Flat Encoding.

74

Figure 5.3: Average memory use for problems solved using the CTE against
Flat encoding; solving QBFs with Quantor; memory in kb.

5.1.2 Timing CTE and Flat encodings with DPLL solvers

When using search-based (QDPLL) QBF solvers the number of alternations
is an important factor in the time to solve. QDPLL-based solvers suffer from
the restricted selection of the variable upon which to branch. As described in
Section 2.3.1 the variable selection phase is limited to variables in the outermost
quantified set. For both the CTE and the Flat encoding this represents the
midpoint of the plan. These variables are as far as possible from the tightest
constraints: those representing the initial state and the goal state. Due to
this restricted selection the solver must make a guess at the midpoint of the
plan, only considering the state constraints, σ. Upon recursion the midpoint
must again be guessed at, until the innermost existential layer is reached, at
this point τ , I and G are considered and pruning performed. This procedure
involves a large amount of backtracking and is very inefficient.

Experiments were run to determine whether:

• the CTE performs better than the Flat encoding on both QDPLL-based

75

Solver CTE Flat
QuBE7.0 23 0
DepQBF 9 0
Quantor 3 1

Table 5.6: Number of Planning problems solved by the CTE or Flat encoding
that were not solved by the other.

solvers; and

• QDPLL-based solvers still perform poorly on both encodings, in terms of
the number of backtracks.

The time taken to encode and solve various Planning problems was recorded
for QDPLL-based solvers QuBE7.0 and DepQBF. The problems were solved
on a machine with 8GB of memory and a 3.2GHz processor, using the iterative
deepening technique described in Figure 2.10. The solvers were given a time
limit of 4 hours per encoding. Total times were recorded for solving over all
time-step bounds. These times are shown in Tables 5.7 and 5.8 for QuBE7.0
and DepQBF respectively. Figures 5.4 and 5.5 give a clear comparison of these
times. Table 5.6 shows the number of problems that were solved using one
encoding and could not be solved using the other.

In Figures 5.4 and 5.5 any data points above the line correspond to problems
from the benchmark set that were solved faster using the CTE. From the results
it can be seen that the CTE outperforms the Flat encoding on every problem
domain tested and using both solvers, for many problems finding a makespan
optimal solution an order of magnitude faster. This time improvement scales
with the size of the problem, producing a series of points in the figures parallel
to the central diagonal. This is to be expected as both encodings provide a
logarithmic reduction in the number of time-steps, and scale similarly as a result.

The CTE outperforms the Flat encoding largely due to the smaller number
of quantifier alternations for most makespans. Table 5.1 shows the number
of universal variables present in encodings of Planning problems with various
makespans. As shown in Section 3.3 the CTE has one fewer alternation than
the Flat encoding, with the exception of makespans 2k where k ∈ Z.

Encodings with fewer alternations are much easier to solve. To illustrate this
Figures 5.6 and 5.7 show the ratio of solution times for CTE vs. Flat encoding
for encodings of the benchmark problems at various makespans. Comparing
Table 5.1 with Figures 5.6 and 5.7 reveals that the CTE solves problems much
faster than the Flat encoding on any encoding of a makespan for which the
number of alternations differ. On makespans four and eight, although the CTE
still dominates, the ratio is more even. This corresponds exactly with the plan
lengths at which the number of alternations is equal.

In practice most problems have optimal makespans larger than the lower
bound provided by the Plan Graph. As a result several encodings must be
solved for every problem, if the iterative deepening strategy described by 2.10
is being used. Supposing a lower bound n+ 1 is determined for a problem, and
the problem has an optimal makespan of m > n. Using the iterative deepening
strategy m−n encodings are generated, which are likely to encompass levels at
which the CTE contains fewer quantifier alternations as does the Flat encoding.

76

QuBE7.0

Problem CTE Flat Problem CTE Flat

depots01 760 7072 philosophers18 3252524 -
depots02 1005356 - philosophers19 1760582 -

driverlog01 375 1227 philosophers20 1669300 -
driverlog03 1529 17787 pipesnotankage01 85 675
driverlog04 33175 - pipesnotankage02 43159 -
driverlog05 1207393 724462 pipesnotankage03 35703 -
driverlog06 1352 22122 pipesnotankage04 466321 -
driverlog07 10934 459226 rovers01 763 2718
driverlog08 199054 - rovers02 100 444
freecell01 1924055 - rovers03 1059 5324
gripper01 44 41 rovers04 182 812
gripper02 42 92 rovers05 34595 80103
gripper03 692 2846 rovers06 643805 -
gripper04 1132 9328 rovers07 13564 133544

opticaltelegraph01 1110578 - tpp01 77 199
philosophers01 3964 17450 tpp02 75 243
philosophers02 17629 64621 tpp03 83 280
philosophers03 30665 132153 tpp04 89 294
philosophers04 102270 292926 tpp05 732 2096
philosophers05 246870 472545 tpp06 29547 115144
philosophers06 401424 888691 tpp07 48000 123493
philosophers07 504276 1056309 tpp08 127773 284190
philosophers08 504864 1410098 tpp12 39 -
philosophers09 962146 1195237 zeno01 19 61
philosophers10 921106 - zeno02 955 35577
philosophers11 205713 2234704 zeno03 9704 479426
philosophers12 1021774 - zeno04 6548 250395
philosophers13 1667595 - zeno05 8156 -
philosophers14 1805404 - zeno06 1001120 -
philosophers15 2320674 - zeno07 62754 -
philosophers16 2478535 - zeno08 835653 -

Table 5.7: Time taken to solve instances using the Compact Tree Encoding
(CTE) and Flat Encoding, solving QBFs with QuBE7.0; times in ms. “-”
means the encoding ran out of time.

77

DepQBF

Problem CTE Flat Problem CTE Flat

depots01 140 643 philosophers16 565841 1770275
depots02 101095 573636 philosophers17 576066 2111995

driverlog01 68 310 philosophers18 753490 2258978
driverlog02 1224555 - philosophers19 743177 2338140
driverlog03 932 12998 philosophers20 964156 2990766
driverlog04 35319 1192730 pipesnotankage01 60 95
driverlog05 323176 960710 pipesnotankage02 58334 434578
driverlog06 1195 7755 pipesnotankage03 55743 544104
driverlog07 7499 276473 pipesnotankage04 284712 834895
driverlog08 71619 - rovers01 181 788
driverlog10 821889 - rovers02 48 106
freecell01 513071 - rovers03 552 2172
gripper01 19 22 rovers04 73 179
gripper02 14 18 rovers05 3599 34092
gripper03 395 1532 rovers06 1084477 -
gripper04 762 3891 rovers07 7886 43319

opticaltelegraph01 186104 907674 rovers09 1261677 2085207
opticaltelegraph02 799036 2755832 rovers12 146931 -
opticaltelegraph03 2240081 - tpp01 16 17

philosophers01 2232 7025 tpp02 11 18
philosophers02 5006 16236 tpp03 13 28
philosophers03 9817 37327 tpp04 16 38
philosophers04 20622 56363 tpp05 204 901
philosophers05 31684 103403 tpp06 10040 29347
philosophers06 47097 133095 tpp07 19060 55662
philosophers07 49323 234373 tpp08 23693 82967
philosophers08 69093 315842 zeno01 91 37
philosophers09 108724 412922 zeno02 1693 4744
philosophers10 124423 506484 zeno03 14505 82659
philosophers11 158224 699470 zeno04 9851 79918
philosophers12 173314 868314 zeno05 54010 298783
philosophers13 234561 1241162 zeno06 368960 -
philosophers14 265193 1309122 zeno07 280907 941122
philosophers15 393328 1665619 zeno08 964849 -

Table 5.8: Time taken to solve instances using the Compact Tree Encoding
(CTE) and Flat Encoding, solving QBFs with DepQBF; times in ms.

78

Figure 5.4: Times on problems solved using the CTE against Flat encoding;
solving QBFs with QuBE7.0; times in ms.

Figure 5.5: Times on problems solved using the CTE against Flat encoding;
solving QBFs with DepQBF; times in ms.

79

Figure 5.6: Ratio of solution times, (CTE/Flat) on encodings with various
makespans; solving QBFs with DepQBF.

Figure 5.7: Ratio of solution times, (CTE/Flat) on encodings with various
makespans; solving QBFs with QuBE7.0.

80

Problem CirQit DepQBF(CTE)
depots01 374279 140

driverlog01 422526 68
driverlog03 1964828 932

gripper01 30 19
gripper02 48 14
gripper03 33351 395
gripper04 153140 762

pipesnotankage01 2048 60
rovers01 104075 181
rovers02 3083 48
rovers03 488406 552
rovers04 137015 73

tpp01 29 16
tpp02 44 11
tpp03 88 13
tpp04 76 16
tpp05 9514 204

zeno01 179 91
zeno02 864750 1693

Table 5.9: Time taken to solve some instances using the ISCAS-85 translation
of the CTE, solving QBFs with CirQit2.1; times in ms.

5.1.3 Timing CTE and Flat encodings with other solvers

The same experiments were run using non QDPLL-based solvers, Quantor [4]
and CirQit2.1 [44]. CirQit2.1 uses the non-CNF representation format
ISCAS-85, as described in Section 2.3. The circuit specification does not rep-
resent axioms in the same way as a clausal QBF and the redundant variables
in the Flat encoding can be removed without adding new constraints. The re-
sulting ISCAS-85 encoding is identical to the CTE translation to ISCAS-85.
For this reason only one set of encodings were solved by CirQit2.1. The time
taken to solve the problems is displayed in Tables 5.9 and 5.10.

From the tables it can be seen that CirQit2.1 performs very poorly on
this kind of problem, only solving a fraction of the problems in the benchmark
set. Quantor performs well, solving more problems than either QDPLL-based
solver. Quantor resolves much of the problem to SAT, resulting in faster times
at the expense of memory use. The increased memory can be seen by comparing
Table 5.5 to Tables 5.3 and 5.4. However, this is still a smaller memory footprint
than that used by SAT, as described below.

81

Quantor

Problem CTE Flat Problem CTE Flat

depots01 166 201 philosophers14 16821 13015
depots02 2148 1765 philosophers15 20714 15763
depots03 49763 38796 philosophers16 25293 19541
depots07 54610 39759 philosophers17 30885 24297
depots08 1518408 1242955 philosophers18 37052 29431
depots10 265283 236035 philosophers19 43451 35401
depots13 209085 169113 philosophers20 51151 42552
depots16 406147 299706 pipesnotankage01 44 59

driverlog01 33 43 pipesnotankage02 365 450
driverlog02 645 718 pipesnotankage03 772 740
driverlog03 181 233 pipesnotankage04 827 785
driverlog04 419 458 pipesnotankage05 2049 1924
driverlog07 314 446 pipesnotankage08 8067 8024
driverlog08 488 671 pipesnotankage09 65654 74406
driverlog09 8206 16208 pipesnotankage11 766268 693314
driverlog10 2723 3166 pipesnotankage13 1560164 1428158
driverlog11 7206 9065 rovers01 176 185
freecell01 36541 26272 rovers02 63 76
freecell02 1228708 988268 rovers03 357 353
freecell03 1468227 1357045 rovers04 92 109
gripper01 21 22 rovers05 1121 1079
gripper02 21 40 rovers06 8028 7195
gripper03 111 139 rovers07 1228 1187
gripper04 133 183 rovers09 12568 10952
gripper05 7137 6485 rovers11 112884 96757

opticaltelegraph01 2952 2557 rovers12 25324 20252
opticaltelegraph02 7964 5883 rovers14 34349 26904
opticaltelegraph03 18841 11923 tpp01 17 19
opticaltelegraph04 39166 23606 tpp02 15 22
opticaltelegraph05 70293 47280 tpp03 16 22
opticaltelegraph06 118031 80692 tpp04 15 18
opticaltelegraph07 186368 127855 tpp05 61 93
opticaltelegraph11 697263 567679 tpp09 2555 3070
opticaltelegraph12 897333 739620 tpp10 2983 3656
opticaltelegraph13 1169080 955417 tpp11 22647 21347
opticaltelegraph14 1456770 1175442 tpp12 24244 24358

philosophers01 317 338 tpp13 29431 27854
philosophers02 471 545 tpp18 314362 -
philosophers03 725 817 zeno01 21 -
philosophers04 1037 1204 zeno02 678 619
philosophers05 1484 1588 zeno03 1523 1428
philosophers06 2014 2211 zeno04 1235 1127
philosophers07 2708 2834 zeno05 4330 3545
philosophers08 3630 3601 zeno06 6703 5713
philosophers11 8342 7448 zeno09 60450 50197
philosophers12 10606 8975 zeno10 69223 -
philosophers13 13452 10732 zeno11 - 171838

Table 5.10: Time taken to solve some instances using the Compact Tree En-
coding (CTE) and Flat Encoding, solving QBFs with Quantor; times in ms.
Some results are excluded from the table due to space constraints.

82

Solver CTE Action-leaf CTE
QuBE7.0 5 6

Table 5.11: Number of Planning problems solved by the CTE or Action-leaf
CTE encoding that were not solved by the other.

5.1.4 Timing CTE using Leaf-based state representations

The experiments were also run using the action-leaf alternative state represen-
tation described in Section 3.4. The encodings were solved using QuBE7.0 and
the times are shown in Figure 5.8. The figure compares the times with those
for solving the CTE using a regular state-based representation.

As can be seen from the figure the action-leaf representation outperforms
the regular state-based representation on almost every problem when solving
the CTE with QuBE7.0.

Table 5.11 shows the number of problems solved uniquely using the two
representations. Although the representations performed better on certain do-
mains, the action-leaf representation performing better overall, the number of
solved problems remained similar; the CTE with the action-leaf representation
solving only one problem more.

Figure 5.8: Times on problems solved using the CTE against Action-leaf CTE;
solving QBFs with QuBE7.0; times in ms.

5.1.5 Comparison with SAT-based encodings

The same problems were solved using two SAT-based solvers: SATPLAN’04
and Madagascar [86].

SATPLAN’04 was chosen as it uses the same state-representation as the
CTE and Flat encoding. All three encodings are state-based encodings using
an actions-only state representation, as described in Section 2.1.1.

83

It is possible for alternative state representations to be used with the CTE
or Flat encoding, such as the fluent and action encoding of SATPLAN’06 [59];
split action representation of SOLE [92]; or SAS+ representation of SASE [50].
However, in order to obtain the clearest measure of the gap between SAT and
QBF-based techniques it is necessary only that the state representations are the
same and that both approaches use the same top-level strategy, solver modifi-
cations and embedded Planning-specific knowledge. SATPLAN’04 and both
QBF approaches use the same state representation and top-level strategy, shown
in Figure 2.10, and no other modifications.

The results from Madagascar represent the current state-of-the-art for
Planning as SAT. These results are useful as a comparison between SAT-
PLAN’04 and more sophisticated SAT-based Planners. Madagascar includes
a modified solver (Figure 2.9), alternative top-level strategy (Figure 2.14), and
∃-step parallel-step semantics. A full description of the Planner can be found in
Section 2.1.3 and in Rintanen 2010 [86]. These improvements could be included
using both CTE and Flat encoding approaches. It is also important to note
that Madagascar does not provide optimal solutions.

Comparing Solving Times

The experiments were run under the same conditions and time limits as be-
fore. The results for SATPLAN’04 are displayed in Table 5.12 and Figure 5.9.
The QDPLL solvers scale much more poorly than SATPLAN’04, as expected.
Quantor also scales more poorly, but performs comparably to SAT, with almost
identical performance on the easier instances. This is also to be expected, as
Quantor resolves the QBF to SAT during the solution process.

These results show a clear gap in the performance between the CTE and
SAT. QBF encodings with exponential time-steps are not yet competitive with
SAT techniques.

Also presented in Table 5.12 and Figure 5.9 are the times taken to solve
using an Action-Leaf state representation: a state representation not possible to
apply in a SAT-based encoding. These encodings were solved using QuBE7.0.
As can be seen from the table and figure, the alternative state representation is
an improvement over that used by SATPLAN’04, when solving the CTE using
QuBE7.0.

Figure 5.10 compares the solution times for SATPLAN’04 and Madagas-
car. As can be seen from the figure, the state-of-the-art solver scales far better
on the benchmark problems. The solver, although not finding makespan op-
timal solutions, finds solutions within five time-steps of makespan optimal up
to 100 times faster than SATPLAN’04. The possibility of applying the im-
provements of Madagascar (modified solver, alternative top-level strategy,
and ∃-step semantics) to the QBF approaches is discussed in for future work in
Section 6.2.

84

Figure 5.9: Solution times for QBF encodings (CTE) against solution times for
SATPLAN’04, solving QBFs with a variety of solvers; times in ms.

Figure 5.10: Solution times for Madagascar against solution times for SAT-
PLAN’04; times in ms.

85

QuBE7.0
Problem SATPLAN Quantor Action-leaf QuBE7.0 DepQBF

depots01 101 166 1839 636 140
depots02 773 2148 - 1239214 101095

driverlog01 49 33 177 628 68
driverlog03 110 181 1396 2373 932
driverlog04 373 419 6477 92483 35319
driverlog05 418 524 - 1152402 323176
driverlog06 192 242 1905 3507 1195
driverlog07 159 314 5404 22302 7499
driverlog08 445 488 24538 279380 71619
driverlog10 2069 2723 498757 - 821889
freecell01 2961 36541 - 496439 513071
gripper01 14 21 19 25 19
gripper02 10 21 17 20 14
gripper03 62 111 549 1108 395
gripper04 107 133 705 2104 762

opticaltelegraph01 11518 2952 1104844 2609927 186104
philosophers01 455 317 4911 7680 265193
philosophers02 421 471 15595 39943.5 2232
philosophers03 606 725 41426 205569 5006
philosophers04 893 1037 109151 374160 9817
philosophers05 1215 1484 127132 528924 20622
philosophers06 1647 2014 349801 873563 31684
philosophers07 1949 2708 510493 1243037 47097
philosophers08 2423 3630 742869 1370321 49323
philosophers09 5092 4988 1121133 896935 69093
philosophers10 4102 6458 744713 1470890 108724
philosophers11 4144 8342 1388551 904039 124423
philosophers12 4765 10606 1724330 2354893 158224
philosophers13 5516 13452 - - 173314
philosophers14 6317 16821 1846049 - 234561
philosophers15 7084 20714 2178180 - 393328

Table 5.12: Time taken to solve instances using the CTE and SATPLAN’04,
solving QBFs with with a variety of solvers; times in ms.

86

Comparing Memory

The memory usage was recorded for SATPLAN’04 over small time intervals dur-
ing the solving of each domain. The average value of the readings on mutually
solved problems was was taken for each domain – this differs from the previous
memory results for the QBF-based encodings, which were taken per instance;
the decreased time to solve for SATPLAN’04 proved too short to take sufficient
readings per problem. The QBF encodings were solved using DepQBF.

The average memory used is charted in Figure 5.11. It can be seen that the
QBF approach has a much smaller memory footprint than SAT, using roughly
a fifth of the memory used by the SAT-based solver. This is to be expected, as
by using QBF to encode Planning problems we are trading time for space.

Figure 5.11: Average memory usage over time for SAT and QBF encodings per
domain, solving QBFs with DepQBF, SAT instances with picosat; memory
in kb.

5.2 Solving Partially Grounded QBF Encodings

Experiments were run on several domains to determine the effectiveness of the
encoding. We hypothesised that:

• as the size of the problem increased, the Partially Grounded QBF (PGQBF)
approach would scale better than the SAT approach in both encoding time
and solving time;

• as the size of the problem increased, PGQBF would find solutions faster
than the SAT approach;

87

• we would find problems that were too large to encode in SAT within the
time limit allowed, but that could be encoded and solved using PGQBF.

The domains selected for experimentation were the pigeonhole, gripper and
blocksworld domains. These domains were chosen as they work well with un-
grounded approaches. In other domains in which there is very little or no benefit
from lifting, the partially grounded QBF encoding resembles the SAT encoding.

For each domain a number of problems were generated, gradually increasing
the size of the domain. These problems were then translated into SAT and
PGQBF encodings. The time-step bound for each encoding was the smallest
at which the formula is satisfiable. The time taken for this translation was
recorded. We used the SAT encoding used by SATPLAN’06 [59] as it used
the same STRIPS-based fluent/action representation as the PGQBF encoding.
Other SAT encodings, and additional constraints can also be used as a basis for
partially grounded QBF encodings.

The sizes of these encodings can be seen in Table 5.13. This table highlights
the difference in scaling between the approaches. The size of the SAT encoding
very quickly becomes unreasonable, while the PGQBF encodings scale much
better; in the case of the pigeonhole problem PGQBF encoding grows linearly
with the number of objects. This linear growth is due to the increased number
of time-steps in the optimal solution.

Table 5.13 shows that there are a number of problems that cannot be encoded
in SAT using the 2 hour time limit given, but can be encoded as PGQBF.

SAT PGQBF
problem variables clauses variables clauses
gripper2 120 657 129 488
gripper4 432 3267 290 1240
gripper8 1632 18183 643 2984

gripper16 6336 113679 1412 6952
gripper32 24960 782367 3077 15848

blocksworld2 72 261 109 331
blocksworld4 504 3891 352 1191
blocksworld8 3600 82503 963 3415

blocksworld16 26784 2265615 2422 8807
blocksworld32 - - 5801 21415
blocksworld64 - - 13468 50215

pigeonhole2 30 90 35 81
pigeonhole4 180 1232 79 207
pigeonhole8 1224 25008 177 501

pigeonhole16 8976 641696 399 1187
pigeonhole32 68640 18500160 901 2769
pigeonhole64 - - 2027 6367

Table 5.13: Formula sizes for partially grounded QBF and SAT based encodings.
“-” means the encoding ran out of time.

The encodings were solved using the SAT solver picosat-535 [5] and the QBF
solver quantor-3.0 [4]. The times are recorded in Table 5.14 for both encoding
and solving. The experiments were all given a time limit of 2 hours and run

88

on a machine with 8GB of RAM (no artificial bound on the amount of memory
was used).

SAT PGQBF
problem encoding solving encoding solving

pigeonhole2 0.04 0.00 0.04 0.00
pigeonhole4 0.09 0.00 0.04 0.00
pigeonhole8 0.33 0.12 0.06 0.00

pigeonhole16 5.53 5.06 0.1 0.09
pigeonhole32 155.71 * 0.13 0.58
pigeonhole64 - - 0.16 22.8

gripper2 0.06 0.00 0.07 0.00
gripper4 0.13 0.03 0.1 0.01
gripper8 0.28 6.61 0.12 0.35

gripper16 1.22 1171.49 0.16 180.19
gripper32 7.03 - 0.3 -

blocksworld2 0.05 0.00 0.04 0.00
blocksworld4 0.11 0.01 0.09 0.02
blocksworld8 0.93 0.56 0.13 0.16

blocksworld16 13.43 20.47 0.18 1.16
blocksworld32 - - 0.32 5834.88
blocksworld64 - - 0.68 -

Table 5.14: Time taken to encode and solve problems using PGQBF encodings
and SAT based encodings. All times are in seconds. “-” means the time limit
was reached, “*” means that the encoding ran out of memory.

As can be observed, PGQBF was able to encode and solve all of the pigeon-
hole instances considered, within the 2 hour limit, while SAT could not encode
pigeonhole64, and was unable to solve pigeonhole32 or pigeonhole64 in the time
available. PGQBF was able to encode all of the instances across all domains in
under one third of a second, while the time required by SAT to encode larger
instances grew exponentially.

Both approaches exhibit exponentially growing solution times, although the
PGQBF curve increases more slowly than the SAT curve. Neither approach
was able to solve gripper32. These results support our first and second hy-
potheses, that PGQBF scales better than SAT in both encoding and solution
time, and that PGQBF solves problems faster than SAT. Our third hypothesis
is supported by pigeonhole64 and blocksworld32, which demonstrates that there
are indeed instances that cannot be encoded by SAT, but can be encoded and
solved by PGQBF, within a fixed time limit.

89

Chapter 6

Conclusion

As stated in the Introduction, this thesis aims to explore the idea of encoding
classical Planning problems as Quantified Boolean Formulae. Two different
approaches were presented, in Chapter 3 and Chapter 4. These approaches
were evaluated in Chapter 5.

This section is split into three parts: first summarizing the contributions
of this thesis; then presenting ideas for future work relating directly to the
encodings, that is, improving upon or combining the approaches; and finally
detailing future work that is motivated by, but not an extension of, the encodings
themselves.

6.1 Summary

6.1.1 The Compact Tree Encoding

The Compact Tree Encoding (CTE) is a novel approach to translating Classical
Planning into Quantified Boolean Formulae.

Similar to Rintanen’s translation that we call the Flat encoding, it encodes
Planning problems in a Boolean formula with a fixed makespan that is exponen-
tial in the number of states represented. This property is the key attraction for
both the Flat encoding and the CTE. Our encoding is novel in its construction,
in that the plan trajectory corresponds to a traversal of the tree prescribed by
the expansion of the universal quantifiers.

Implicit in the design of the encoding is the idea that constraints – in this
case transition constraints – can be made between two nodes of the QBF tree
that are formed from the same variables. This is done by using an intermediary
set of variables higher in the quantification order – in the CTE these variables
represent the midpoint state between the two nodes.

SAT-based planners work on encodings in which every variable represents
some aspect of the Planning problem. However, in the Flat encoding the ma-
jority of the variables are redundant – essentially serving only as machinery to
allow the problem to be represented in QBF. In the CTE we include only vari-
ables that represent distinct aspects of the underlying Planning problem, much
like SAT.

As a result the CTE uses fewer universally and existentially quantified vari-
ables than the Flat encoding when encoding problems with a given makespan.

90

In fact, for plans encoded with the same depth of universal quantification, the
Compact Tree Encoding describes a plan of double the makespan of that de-
scribed by the Flat encoding.

We consider this to be the more natural translation of Planning to QBF, as
well as the more elegant.

We have experimented with sets of problem instances taken from the IPC
benchmarks, and we have shown that the CTE leads to both a faster solution
(and proof of unsolvability) of the harder problems in these sets and on average
uses less overall memory in doing so. Our experiments also show that the
improved time to find a solution during iterative deepening stems from the
makespans at which the CTE requires one less quantifier alternation – a product
of its unique structure.

6.1.2 Leaf-Based Encodings

The Leaf-Based Encodings are extensions of the CTE that use novel state rep-
resentations specific to QBF encodings logarithmic in the number of time-steps.

These state representations, the Action-leaf and Fluent-leaf representations,
exploit the tree structure of the CTE in order to further reduce the number of
variables and clauses required to model a state-based reachability problem.

6.1.3 The Partially Grounded QBF Encoding

The PGQBF encoding is a novel approach to translating Classical Planning into
QBF.

The PGQBF encoding actually introduces a general approach to lifting SAT
encodings of Planning problems – and other problems – into QBF. The encoding
presented in Chapter 4 is an example of this general approach applied to the
SAT-based translations of Kautz et al. [55, 56]. The same approach is applicable
to any of the state-based representations discussed in Section 2.1.1, or either of
the QBF encodings presented in Chapter 3: the CTE and the Flat encoding.

Lifting objects into equivalence classes is a very powerful idea, being explored
in different ways by a number of researchers in Planning [72, 78]. It is well-known
that grounding of Planning domains is infeasible for very large problems and
that techniques for lifting Planning instances can help with the solution of very
large instances containing very large numbers of objects of the same type.

The PGQBF approach is inspired by earlier work in least-commitment Plan-
ning. The approach is used to construct QBF encodings that both lift sets of
similar objects into representative variables, and ensure consistent reasoning
when the specific objects involved in transitions are not yet committed to.

The approach makes use of a number of novel constraints in order to ensure
consistent reasoning. Those relating to the operator lock variables are the most
important. These variables allow the formula to include a disjunction between
parts the model that are represented by the same variables. In the case of the
PGQBF this means imposing a disjunction on a set of actions that are repre-
sented using the same variable. Without the lock variables, and the constraints
equating them to the universal variables, this type of constraint is not possible.
It should be emphasised that this approach, integral to the PGQBF encoding,
is applicable in modelling as QBF in many other scenarios.

91

In Chapters 3 and 4 we have shown that our approach can lead to exponen-
tially smaller encodings and allow larger problem instances to be solved than is
possible using SAT. In fact, our hypotheses that

• as the size of the problem increased, the PGQBF approach would scale
better than the SAT approach in both encoding time and solving time;

• as the size of the problem increased, PGQBF would find solutions faster
than the SAT approach; and

• we would find problems that were too large to encode in SAT within the
time limit allowed, but that could be encoded and solved using PGQBF.

were completely validated.

6.2 Future Work

6.2.1 Extending the Encodings

In this section we describe possibilities for improvements to the encodings and
Planning approaches described in this thesis, along with some improvements
that have already been implemented, but not yet evaluated.

Alternative Top-level strategies for the CTE

Ray and Ginsberg [76] introdued the idea of formula re-use, as described in
Section 2.1.3. Their approach has been applied directly to the CTE with only
minor adjustments.

In Cricket the SAT formula contains goal constraints at multiple levels
and a modified SAT solver attempts to satisfy these in an order that ensures
the plan is of an optimal makespan. If no plan is found, the makespan bound is
increased by some value, larger than one. Similarly, a QBF solver – QuBE7.0
– has been modified to branch upon specified literals in the outermost layer. We
call this branching order QBF-preferences. For example, in the following QBF
in QDIMACS format

c f 1 −2
e 1 2
−1 2

the first line contains the QBF-preferences; an ordered list of literals that define
the initial branching order of the (QDPLL) solver. Ordinarily there would
be three satisfying assignments: (−1, 2); (−1,−2); and (1, 2). However, the
variable 1 is branched upon first, leading to only the third solution – as long as
the solver reasons with QBF-preferences.

With the use of these preferences the CTE can be modified to return a
makespan optimal solution within the maximum bound described by the for-
mula. If no solution is found then the number of quantifier alternations is
incremented and the process repeated.

This technique is attractive for the QBF approach as it conforms to the
existent structure of the CTE; the makespan bound of the CTE doubles with
each iterative quantifier alternation. Without this technique a CTE with k

92

alternations can represent a plan with up to 2k+1 − 1 states. In order to search
for plans with makespan n, where 2k−1 < n < 2k+1−1, k alternations must be
used. Applying the layered formula technique with QBF-preferences diminishes
this redundancy.

The technique has been implemented. We use QuBE-p, our modified ver-
sion of QuBE7, to search with QBF-preferences. The encoding with prefer-
ences, which we call a layered encoding, is the CTE with a state representation
consisting of both fluent and action variables, as used by SATPLAN’04.

Structural Improvements to the CTE

Windowing is the name given to extending the nodes of the CTE to describe
additional states. A CTE with windowing in the innermost quantification level
(the leaf nodes) would have the quantification layer:

∃Xk∀yk . . . ∃X1∀y1∃X0,0, X0,1, X0,2.

In this case the size of the windows is three. Transition constraints are added
between the windowed states:

τ(X0,0, X0,1) ∧ τ(X0,1, X0,2).

Windowing is useful as it:

1. allows us to more finely control the number of states represented by the
formula;

2. allows us to increase the number of states represented without increasing
the number of quantifier alternations; and

3. provides opportunity to exploit domain-specific knowledge within the win-
dows, or in the placement of the windows.

(1) and (2) are obvious; in the above example the number of represented
states is increased from 2k+1 − 1 without windowing, to 2k+2 − 1. Placing the
windows of size one or two in non-leaf states allows for any number of states in
between to be represented.

Of particular interest is the idea of using windowing to manage iterative
deepening, rather than constraints or a layered encoding, as described above.

Exploiting domain-specific knowledge through the use of windows depends
upon the other techniques applied. As an example the londex constraints [16, 17]
described in Section 2.1.1 are difficult to apply to the CTE directly. In particular
we stated that:

the encodings in Chapter 3 do not explicitly represent every time-
step with unique variables. Due to this it is not possible to simply
represent a constraint between elements in separate time-steps with-
out the inclusion of more variables in an earlier quantifier set.

However, with windowing it becomes possible to include constraints that occur
between states at set distances, i.e. the size of a window.

The technique has been implemented, although with no consideration to
domain-specific knowledge, and has not yet been evaluated.

93

New representations with the PGQBF

The encoding presented in Chapter 4 uses a state-based representation described
by Kautz et al. [55, 56] augmented with simply-split operators and propositions,
in a semi-parallel setting. This is far from the state-of-the-art in state represen-
tation, as discussed in Section 2.1.1.

The PGQBF approach can be used with a number of state representations.
The most promising, with respect to the PGQBF approach are:

• the SAS+-based encoding of Huang et al. [50, 51]; and

• the split representation of Robinson et al. [92].

Both representations are ideal for partial grounding. In particular the SAS+-
based encoding is already formulated in terms of domain-transition and causal
graphs – in line with related work in domain level lifting [78].

Automatic generation of PGQBF encodings

Currently PGQBF encodings are hand coded, as the choice of objects to remain
ungrounded is carried out manually. In order for the approach to be integrated
into a fully automated Planning system the process of deciding which objects
to lift into equivalence classes, if any, must be carried out automatically. This
decision can be made easily, as the number of variables and clauses required for
grounding can be calculated in advance and weighed against the overhead for
lifting the object.

6.2.2 Related Work

In this section we describe works that are motivated by, or are other applications
of, the encodings and Planning approaches presented in this thesis.

QDPLL solvers and QBF encodings with exponential time-steps

As described in Section 2.3.1 QDPLL solvers perform poorly on the CTE and
Flat encoding. This is due to the top-down nature of the search, and the limited
propagation that results. This can be illustrated in a small example; consider
the following QBF:

∃x1∀x2∃x3((¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)).

This QBF has only two solutions: {¬x1,¬x3[¬x2], x3[x2]} and {¬x1,¬x3}. That
the variable x1 must satisfy the first clause is clear, as we know that under some
contexts x3 must be false. This becomes obvious when the universal variables
are expanded:

∃x1, x3(
(¬x1 ∨ x3)∧
(⊥ ∨ ¬x3)∧
(> ∨ ¬x3)).

However, this information is not propagated and QuBE7.0 [41] will attempt
to first assign x1 |= >, leading to a conflict, and backtrack. This sort of com-
bination of constraints – in which an inner existential variable is constrained

94

only under some contexts and influences the values of outer existential variables
– appears in the CTE as the initial state and goal constraints. That this in-
formation is not propagated until the innermost layers are reached is a huge
disadvantage for this combination of encoding and solver.

Improvements to QDPLL solvers – specifically propagation methods moti-
vated by this example – while not directly related to the work presented in
this thesis, have the potential to greatly improve the performance of these ap-
proaches on Planning problems.

Model-Checking

It has already been noted that the approaches, although discussed in the context
of Planning, are applicable to any state-based reachability problem. In fact the
QBF encoding presented by Papadimitriou [74] and implemented by Dershowitz
et al. [22], was used as a proof of the PSPACE-complexity of the Reachability
problem. Dershowitz et al. made encodings of instances of Model-Checking
problems; applying the encodings presented in this thesis to the field Model-
Checking has been suggested, and left for future work.

6.3 Final Word

The abstract of this thesis states that QBF is a promising setting for Planning
given that the problems have the same complexity. This similarity enables us
to generate encodings that, while less readable by human standards, describe
the state space and plan trajectory in a manner as succinct as the problem
description itself.

The CTE, although not yet competitive with SAT on the benchmark prob-
lems, furthers an interesting avenue of research: both forming the foundation
for more efficient and competitive encodings, such as the Leaf-based Encodings
and QBFs including top-level strategies such as used by Ray and Ginsberg [76];
and providing motivating examples for QBF solving strategies – most impor-
tantly highlighting the inability of top-down QDPLL solvers to propagate any
information from clauses involving only a single existential variable, unless it is
in the outermost quantification level.

PGQBF encodings are an orthogonal direction of research and have already
proved competitive with SAT-based approaches on the domain in which object-
level lifting is expected to provide the greatest advantage.

As QBF solving matures these encodings are likely to become ever more
viable alternatives to the SAT-based approaches. Improvements to the encod-
ings can be advised by the popular methods of solution, while at the same time
the encodings themselves provide difficult models with which to challenge the
solvers.

The aim of this thesis is to explore the idea of encoding classical Planning
problems as Quantified Boolean Formulae. This has been achieved; the thesis
explores in a number of ideas, specific to Planning in their description, but
applicable to a large number of problems and suitable for most improvements
and strategies employed by SAT-based approaches.

95

6.4 List of Publications

1. M. Cashmore and M. Fox. Planning as QBF. International Conference on
Automated Planning and Scheduling Doctoral Consortium (ICAPS 2010),
2010

2. M. Cashmore, M. Fox, and E. Giunchiglia. Planning as quantified boolean
formulae. In Proceedings of the 29th Workshop of the UK Planning and
Scheduling Special Interest Group (PlanSIG’11), 2011

3. M. Cashmore and M. Fox. Partially grounded planning as quantified
boolean formula. In Proceedings of the Workshop on Constraint Satis-
faction Techniques for Planning and Scheduling Problems (COPLAS’12),
2012

4. M. Cashmore, M. Fox, and E. Giunchiglia. Planning as quantified boolean
formulae. In Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI 2012), 2012

5. M. Cashmore, M. Fox, and E. Giunchiglia. Partially grounded planning as
quantified boolean formulae. Proceedings of the 23rd International Con-
ference on Automated Planning and Scheduling (ICAPS 2013), 2013

96

Bibliography

[1] F. Bacchus. Overview of the AIPS-00 planning competition, 2000.
http://www.cs.toronto.edu/aips2000/, last accessed Jan. 2013.

[2] C. Bäckström. Equivalence and tractability results for SAS+ planning. In
Proceedings of the 3rd International Conference on Principles on Knowl-
edge Representation and Reasoning (KR’92), pages 126–137, 1992.

[3] E. Best and R. Devillers. Sequential and concurrent behaviour in petri net
theory. Theoretical Computer Science, 55(1):87–136, 1987.

[4] A. Biere. Resolve and expand. In Proceedings of the 7th International
Conference on Theory and Applications of Satisfiability Testing (SAT04),
pages 238–246, 2004.

[5] A. Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling
and Computation (JSAT), 2008.

[6] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using SAT procedures instead of BDDs. In Proceedings of the 36th
Design Automation Conference (DAC’99), pages 317–320, 1999.

[7] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking with-
out BDDs. In Proceedings of the Fifth International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’99),
pages 193–207, 1999.

[8] A. Blum and M. Furst. Fast planning through planning graph analysis. In
Proceedings of the 14th International Joint Conference on Artificial Intel-
ligence (IJCAI’95), pages 1636–1642, 1995.

[9] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and Com-
putation, 98(2):142–170, 1992.

[10] M. Cadoli, M. Schaerf, M. Giovanardi, and M. Giovanardi. An algorithm
to evaluate quantified boolean formulae and its experimental evaluation.
Journal of Automated Reasoning, 28(2):101–142, 2002.

[11] M. Cashmore and M. Fox. Planning as QBF. International Conference on
Automated Planning and Scheduling Doctoral Consortium (ICAPS 2010),
2010.

97

[12] M. Cashmore and M. Fox. Partially grounded planning as quantified
boolean formula. In Proceedings of the Workshop on Constraint Satis-
faction Techniques for Planning and Scheduling Problems (COPLAS’12),
2012.

[13] M. Cashmore, M. Fox, and E. Giunchiglia. Planning as quantified boolean
formulae. In Proceedings of the 29th Workshop of the UK Planning and
Scheduling Special Interest Group (PlanSIG’11), 2011.

[14] M. Cashmore, M. Fox, and E. Giunchiglia. Planning as quantified boolean
formulae. In Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI 2012), 2012.

[15] M. Cashmore, M. Fox, and E. Giunchiglia. Partially grounded planning as
quantified boolean formulae. Proceedings of the 23rd International Confer-
ence on Automated Planning and Scheduling (ICAPS 2013), 2013.

[16] Y. Chen, R. Huang, Z. Xing, and W. Zhang. Long-distance mutual exclu-
sion for planning. Artificial Intelligence, 173(2):365–391, 2009.

[17] Y. Chen, Z. Xing, and W. Zhang. Long-distance mutual exclusion for
propositional planning. In Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence (IJCAI’07), pages 1840–1845, 2007.

[18] E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In 25 Years of Model
Checking, pages 196–215, 2008.

[19] J. Crawford and L. Auton. Experimental results on the crossover point in
satisfiability problems. In Proceedings of the 11th National Conference on
Artificial Intelligence (AAAI’93), pages 21–27, 1993.

[20] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM (JACM), 7(3):201–215, 1960.

[21] M. De Luca, E. Giunchiglia, M. Narizzano, and A. Tacchella. “Safe plan-
ning” as a QBF evaluation problem. In Proceedings of the 2nd Robocare
Workshop, ISTC-CNR, 2005.

[22] N. Dershowitz, Z. Hanna, and J. Katz. Bounded model checking with
QBF. In Proceedings of the 8th International Conference on Theory and
Applications of Satisfiability Testing (SAT’05), pages 408–414, 2005.

[23] V. Diekert and Y. Mtivier. Partial commutation and traces. Handbook of
Formal Languages, 3:457–534, 1997.

[24] Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems in
nonmonotonic logic programs. In Recent Advances in AI Planning, volume
1348 of Lecture Notes in Computer Science, pages 169–181. 1997.

[25] N. Eén and N. Sörensson. An extensible SAT-solver. In Proceedings of the
6th International Conference on Theory and Applications of Satisfiability
Testing (SAT’03), pages 502–518, 2003.

98

[26] M. D. Ernst, T. D. Millstein, and D. S. Weld. Automatic SAT-compilation
of planning problems. In Proceedings of the 15th International Joint Con-
ference on Artificial Intelligence (IJCAI’97), pages 1169–1176, 1997.

[27] K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidability and
undecidability results for domain-independent planning. Artificial Intelli-
gence, 76(1-2):75–88, 1995.

[28] P. Ferraris and E. Giunchiglia. Planning as satisfiability in nondeterminis-
tic domains. In Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI’00), 2000.

[29] R. Fikes and N. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3–4):189–208,
1971.

[30] J. Finger. Synthesis of Communicating Processes from Temporal Logic
Specifications. PhD thesis, Stanford University, 1982.

[31] M. Fox and D. Long. Extending the exploitation of symmetries in planning.
In Proceedings of the 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS’02), pages 83–91, 2002.

[32] M. Fox and D. Long. The automatic inference of state invariants in TIM.
Journal of Artificial Intelliigence Research, 9:367–421, 1998.

[33] M. Fox and D. Long. The detection and exploitation of symmetry in plan-
ning problems. In Proceedings of the 16th International Joint Conference
on Artificial Intelligence (IJCAI’99), pages 956–961, 1999.

[34] M. Fox and D. Long. Efficient implementation of the plan graph in STAN.
Journal of Artificial Intelligence Research, 10:87–115, 1999.

[35] M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. In Logic Programming: The 5th International Conference and
Symposium, pages 1070–1080, 1988.

[36] A. Gerevini. The 5th international planning competition. ICAPS’06 Re-
port, 1999.

[37] E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act, and the rest will
follow: Exploiting determinism in planning as satisfiability. In Proceedings
of the 15th National Conference on Artificial Intelligence (AAAI’98), pages
948–953, 1998.

[38] E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean For-
mulas Satisfiability Library (QBFLIB), 2001. www.qbflib.org, last accessed
Jan. 2013.

[39] E. Giunchiglia. Planning as satisfiability with expressive action languages:
Concurrency, constraints and nondeterminism. In Proceedings of the 7th
International Conference on Principles of Knowledge Representation and
Reasoning (KR’00), pages 657–666, 2000.

99

[40] E. Giunchiglia, P. Marin, and M. Narizzano. An effective preprocessor for
QBF pre-reasoning. In Proceedings of the 2nd International Workshop on
Quantification in Constraint Programming (QiCP’08), 2008.

[41] E. Giunchiglia, P. Marin, and M. Narizzano. QuBE7.0 system description.
Journal of Satisfiability., 7(8):83–88, 2010.

[42] F. Giunchiglia and P. Traverso. Planning as model checking. In Proceedings
of the 5th European Conference on Planning (ECP’99), pages 1–20, 1999.

[43] R. P. Goldman, M. S. Boddy, and L. Pryor. Planning with observations and
knowledge. In Theories of Action, Planning, and Robot Control: Bridging
the Gap: Papers from the 1996 AAAI Workshop, pages 78–85, 1996.

[44] A. Goultiaeva, V. Iverson, and F. Bacchus. Beyond CNF: A circuit-based
QBF solver. In Proceedings of the 12th International Conference on Theory
and Applications of Satisfiability Testing (SAT’09), pages 412–426, 2009.

[45] K. Heljanko. Bounded reachability checking with process semantics. In
Proceedings of the 12th International Conference on Concurrency Theory
(Concur’01), pages 218–232, 2001.

[46] M. Helmert. A planning heuristic based on causal graph analysis. In
Proceedings of the 14th International Conference on Automated Planning
and Scheduling (ICAPS’04), pages 161–170, 2004.

[47] M. Helmert. The fast downward planning system. Journal of Artificial
Intelligence Research, 26:191–246, 2006.

[48] J. Hoffmann and S. Edelkamp. The deterministic part of IPC-4: An
overview. Journal of Artificial Intelligence Research, 24:519–579, 2005.

[49] J. Hoffmann, J. Porteous, and L. Sebastia. Ordered landmarks in planning.
Journal of Artificial Intelligence Research, 22(1):215–278, 2004.

[50] R. Huang, Y. Chen, and W. Zhang. A novel transition based encoding
scheme for planning as satisfiability. In Proceedings of the 24th AAAI Con-
ference on Artificial Intelligence (AAAI’10), 2010.

[51] R. Huang, Y. Chen, and W. Zhang. SAS+ planning as satisfiability. Journal
of Artificial Intelligence Research, 43:293–328, 2012.

[52] T. Jussila and A. Biere. Compressing BMC encodings with QBF. Electronic
Notes in Theoretical Computer Science, 174(3):45–56, 2007.

[53] S. Kambhampati. Challenges in bridging plan synthesis paradigms. In
Proceedings of the 15th International Joint Conference on Artificial Intel-
ligence (IJCAI’97), pages 44–49, 1997.

[54] H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional
logic. In Proceedings of the 5th International Conference of Principles on
Knowledge Representation and Reasoning (KR’96), pages 374–384, 1996.

[55] H. Kautz and B. Selman. Planning as satisfiability. In Proceedings of
the 10th European Conference on Artificial Intelligence (ECAI’92), pages
359–363, 1992.

100

[56] H. Kautz and B. Selman. Pushing the envelope: planning, propositional
logic and stochastic search. In Proceedings of the 13th National Conference
on Artificial Intelligence (AAAI’96), pages 1194–1201, 1996.

[57] H. Kautz and B. Selman. BLACKBOX: A new approach to the application
of theorem proving to problem solving. In Working notes of the Workshop
on Planning as Combinatorial Search, held in conjunction with AIPS’98,
1998.

[58] H. Kautz and B. Selman. Unifying SAT-based and graph-based planning.
In Proceedings of the 16th International Joint Conference on Artificial In-
telligence (IJCAI’99), pages 318–325, 1999.

[59] H. A. Kautz, B. Selman, and J. Hoffmann. SatPlan: Planning as satisfia-
bility. In Abstracts of the 5th International Planning Competition, 2006.

[60] F. Lonsing and A. Biere. DepQBF: A dependency-aware QBF solver system
description. Journal on Satisfiability, Boolean Modeling and Computation.,
7:7176, 2010.

[61] F. Lonsing and A. Biere. Integrating dependency schemes in search-based
QBF solvers. In Proceedings of the 13th International Conference on Theory
and Applications of Satisfiability Testing (SAT’10), pages 158–171, 2010.

[62] D. Magazzeni. Explicit Model Checking Techniques applied to Control and
Planning Problems. PhD thesis, University of L’Aquila, 2009.

[63] H. Mangassarian, A. G. Veneris, and M. Benedetti. Robust QBF encodings
for sequential circuits with applications to verification, debug, and test.
IEEE Transactions on Computers, 59(7):981–994, 2010.

[64] P. Marin, E. Giunchiglia, and M. Narizzano. Conflict and solution driven
constraint learning in QBF. In Doctoral Program of Constraint Program-
ming Conference, 2010.

[65] J. P. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48:506–521,
1999.

[66] D. Mcallester and D. Rosenblitt. Systematic nonlinear planning. In Proceed-
ings of the 9th National Conference on Artificial Intelligence (AAAI’91),
volume 2, pages 634–639, 1991.

[67] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins. PDDL – the planning domain definition language.
Technical report, Yale Center for Computational Vision and Control, 1998.

[68] D. McDermott. The 1998 AI planning systems competition. AI Magazine,
21(2):35–55, 1998.

[69] K. L. McMillan. Symbolic model checking: an approach to the state explo-
sion problem. PhD thesis, Carnegie Mellon University, 1992.

101

[70] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference (DAC’01), pages 530–535, 2001.

[71] H. Nabeshima, T. Soh, K. Inoue, and K. Iwanuma. Lemma reusing for
SAT based planning and scheduling. In Proceedings of the 16th Inter-
national Conference on Automated Planning and Scheduling (ICAPS’06),
pages 103–113, 2006.

[72] X. Nguyen and S. Kambhampati. Reviving partial order planning, 2001.

[73] I. Niemelä and P. Simons. Efficient implementation of the well-founded
and stable model semantics. In Proceedings of the 1996 Joint International
Conference and Syposium on Logic Programming (JICSLP’96), pages 289–
303, 1996.

[74] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[75] J. Porteous and L. Sebastia. Extracting and ordering landmarks for plan-
ning. In Proceedings of UK Planning and Scheduling SIG Workshop (Plan-
sig’00), 2000.

[76] K. Ray and M. L. Ginsberg. The complexity of optimal planning and a
more efficient method for finding solutions. In Proceedings of the 18th Inter-
national Conference on Automated Planning and Scheduling (ICAPS’08),
pages 280–287, 2008.

[77] S. Richter, M. Helmert, and M. Westphal. Landmarks revisited. In Pro-
ceedings of the 23rd Conference on Artificial Intelligence (AAAI’08), pages
975–982, 2008.

[78] B. Ridder and M. Fox. Performing a lifted reachability analysis as a first
step towards lifted partial ordered planning. In Proceedings of UK Planning
and Scheduling SIG Workshop (Plansig’11), 2011.

[79] J. Rintanen. Constructing conditional plans by a theorem-prover. Journal
of Artificial Intelligence Research, 10:323–352, 1999.

[80] J. Rintanen. Partial implicit unfolding in the Davis-Putnam procedure
for quantified Boolean formulae. In Proceedings of the 8th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR’01), pages 362–376, 2001.

[81] J. Rintanen. Symmetry reduction for SAT representations of transition
systems. In Proceedings of the 13th International Conference on Automated
Planning and Scheduling (ICAPS’03), pages 32–41, 2003.

[82] J. Rintanen. Evaluation strategies for planning as satisfiability. In Proceed-
ings of the 16th European Conference on Artificial Intelligence (ECAI’04),
pages 682–687, 2004.

[83] J. Rintanen. Asymptotically optimal encodings of conformant planning
in QBF. In Proceedings of the 22nd Conference on Artificial Intelligence
(AAAI’07), pages 1045–1050, 2007.

102

[84] J. Rintanen. Heuristic planning with SAT: Beyond uninformed depth-first
search. In Proceedings of the 23rd Australasian Joint Conference on Arti-
ficial Intelligence (AI’2010), pages 415–424, 2010.

[85] J. Rintanen. Heuristics for planning with SAT. In Proceedings of the 16th
international conference on Principles and Practice of Constraint Program-
ming (CP’10), pages 414–428, 2010.

[86] J. Rintanen. Madagascar: Efficient planning with SAT. In The 7th Inter-
national Planning Competition: Description of Participant Planners of the
Deterministic Track, 2010.

[87] J. Rintanen. Heuristics for planning with SAT and expressive action defi-
nitions. In Proceedings of the 21st International Conference on Automated
Planning and Scheduling (ICAPS’11), 2011.

[88] J. Rintanen. Planning with specialized SAT solvers. In Proceedings of the
25th Conference on Artificial Intelligence (AAAI’11), 2011.

[89] J. Rintanen, K. Heljanko, and I. Niemel. Parallel encodings of classical
planning as satisfiability. In Logics in Artificial Intelligence, volume 3229
of Lecture Notes in Computer Science, pages 307–319. 2004.

[90] J. Rintanen, K. Heljanko, and I. Niemel. Planning as satisfiability: parallel
plans and algorithms for plan search. Artificial Intelligence, 170:1031–1080,
2006.

[91] N. Robinson, C. Gretton, D. N. Pham, and A. Sattar. A compact and
efficient SAT encoding for planning. In Proceedings of the 18th Inter-
national Conference on Automated Planning and Scheduling (ICAPS’08),
pages 296–303, 2008.

[92] N. Robinson, C. Gretton, D. N. Pham, and A. Sattar. SAT-based par-
allel planning using a split representation of actions. In Proceedings of
the 19th International Conference on Automated Planning and Scheduling
(ICAPS’09), 2009.

[93] W. J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and System Sciences, 4(2):177–
192, 1970.

[94] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time: Preliminary report. In Proceedings of the 5th Annual ACM Sympo-
sium on Theory of Computing (STOC’73), pages 1–9, 1973.

[95] M. J. Streeter and S. F. Smith. Using decision procedures efficiently for
optimization. In Proceedings of the 17th International Conference on Au-
tomated Planning and Scheduling (ICAPS’07), pages 312–319, 2007.

[96] M. Wehrle and J. Rintanen. Planning as satisfiability with relaxed ∃-step
plans. In Proceedings of the 20th Australian joint conference on Advances
in Artificial Intelligence (AI’07), pages 244–253, 2007.

103

