5,364 research outputs found

    Runtime visualisation of object-oriented software

    Get PDF
    Software is a complex and invisible entity, yet one which is core to modem life. The development and maintenance of such software includes one staple task, the need to understand the software at the implementation level. This process of program comprehension is difficult and time consuming. Yet, despite its importance, there remains very limited tool support for program comprehension activities. The results of this research show the role that runtime visualisation can play in aiding the comprehension of object-oriented software by highlighting both its static and dynamic structure. Previous work in this area is discussed, both in terms of the representations used and the methods of extracting runtime information. Building on this previous work, this thesis develops new representations of object-oriented software at runtime, which are then implemented in a proof of concept tool. This tool allowed the representations to be investigated on real software systems. The representations are evaluated against two feature-based evaluation frameworks. The evaluation focuses on generic software visualisation criteria, due to the lack of any specific frameworks for visualising dynamic information. The evaluation also includes lessons learnt in the implementation of a prototype visualisation tool. The object-oriented paradigm continues to grow in popularity and provides advantages to program comprehension activities. However, it also brings a number of new challenges to program comprehension due to the discrepancies between its static definition and its runtime structure. Therefore, techniques that highlight both the static definition and the runtime behaviour of object-oriented systems offer benefits to their comprehension. Software visualisation offers an approach to aid program comprehension activities through providing a means to deal with the size and complexity of the software and its invisible nature. This thesis highlights the generic issues that software visualisation faces, before focusing on how the visualisation of runtime information affects these issues. Many of the issues are compounded by the dynamic nature of the information to be visualised and the explosive growth in the volume of information that this dynamism can bring. Wider results of this research have allowed the proposal of the necessary concepts that should be considered in the design and evaluation of runtime visualisations. Software visualisation at runtime is still a relatively unexplored area and there remains many research challenges within it. This thesis aims to act as a first step to addressing these challenges and aims to promote interest and future development within this area

    A comparative evaluation of dynamic visualisation tools

    Get PDF
    Despite their potential applications in software comprehension, it appears that dynamic visualisation tools are seldom used outside the research laboratory. This paper presents an empirical evaluation of five dynamic visualisation tools - AVID, Jinsight, jRMTool, Together ControlCenter diagrams and Together ControlCenter debugger. The tools were evaluated on a number of general software comprehension and specific reverse engineering tasks using the HotDraw objectoriented framework. The tasks considered typical comprehension issues, including identification of software structure and behaviour, design pattern extraction, extensibility potential, maintenance issues, functionality location, and runtime load. The results revealed that the level of abstraction employed by a tool affects its success in different tasks, and that tools were more successful in addressing specific reverse engineering tasks than general software comprehension activities. It was found that no one tool performs well in all tasks, and some tasks were beyond the capabilities of all five tools. This paper concludes with suggestions for improving the efficacy of such tools

    Framework for software architecture visualization assessment.

    Get PDF
    In order to assess software architecture visualisation strategies, we qualitatively characterize then construct an assessment framework with 7 key areas and 31 features. The framework is used for evaluation and comparison of various strategies from multiple stakeholder perspectives. Six existing software architecture visualisation tools and a seventh research tool were evaluated. All tools exhibited shortcomings when evaluated in the framework

    Software visualisation for object-oriented program comprehension

    Get PDF
    Software visualisation is the process of modelling software systems for comprehension. The comprehension of software systems both during and after development is a crucial component of the software process. The complex interactions inherent in the object-oriented paradigm make visualisation a particularly appropriate comprehension technique, and the large volume of information typically generated during visualisation necessitates tool support

    Applying inspection to object-oriented software

    Get PDF
    The benefits of the object-oriented paradigmare widely cited. At the same time, inspection is deemed to be the most cost-effective means of detecting defects in software products. Why then, is there no published experience, let alone quantitative data, on the application of inspection to object-oriented systems? We describe the facilities of the object-oriented paradigm and the issues that these raise when inspecting object-oriented code. Several problems are caused by the disparity between the static code structure and its dynamic runtime behaviour. The large number of small methods in object-oriented systems can also cause problems. We then go on to describe three areas which may help mitigate problems found. Firstly, the use of various programming methods may assist in making object-oriented code easier to inspect. Secondly, improved program documentation can help the inspector understand the code which is under inspection. Finally, tool support can help the inspector to analyse the dynamic behaviour of the code. We conclude that while both the object-oriented paradigm and inspection provide excellent benefits on their own, combining the two may be a difficult exercise, requiring extensive support if it is to be successful

    RootJS: Node.js Bindings for ROOT 6

    Get PDF
    We present rootJS, an interface making it possible to seamlessly integrate ROOT 6 into applications written for Node.js, the JavaScript runtime platform increasingly commonly used to create high-performance Web applications. ROOT features can be called both directly from Node.js code and by JIT-compiling C++ macros. All rootJS methods are invoked asynchronously and support callback functions, allowing non-blocking operation of Node.js applications using them. Last but not least, our bindings have been designed to platform-independent and should therefore work on all systems supporting both ROOT 6 and Node.js. Thanks to rootJS it is now possible to create ROOT-aware Web applications taking full advantage of the high performance and extensive capabilities of Node.js. Examples include platforms for the quality assurance of acquired, reconstructed or simulated data, book-keeping and e-log systems, and even Web browser-based data visualisation and analysis.Comment: 7 pages, 1 figure. To appear in the Proceedings of the 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2016

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research
    • …
    corecore