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Abstract

The benefits of the object-oriented paradigm are widely cited. At the same time, inspection

is deemed to be the most cost-effective means of detecting defects in software products.

Why then, is there no published experience, let alone quantitative data, on the application

of inspection to object-oriented systems? We describe the facilities of the object-oriented

paradigm and the issues that these raise when inspecting object-oriented code. Several

problems are caused by the disparity between the static code structure and its dynamic

runtime behaviour. The large number of small methods in object-oriented systems can

also cause problems. We then go on to describe three areas which may help mitigate

problems found. Firstly, the use of various programming methods may assist in making

object-oriented code easier to inspect. Secondly, improved program documentation can

help the inspector understand the code which is under inspection. Finally, tool support

can help the inspector to analyse the dynamic behaviour of the code. We conclude that

while both the object-oriented paradigm and inspection provide excellent benefits on their

own, combining the two may be a difficult exercise, requiring extensive support if it is to

be successful.
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1 Introduction

The inspection process was first described by Michael Fagan in 1976 [8]. It is a

structured method for statically validating documents. A team consisting of the author

of the document, a moderator, a recorder, and a number of inspectors proceed to inspect

the document using a multi-stage process. The inspection starts with a period of

planning, where the participants are selected and materials prepared. The next stage

is the overview, where the group receive a briefing on the document under inspection.

During preparation, each member of the team individually becomes familiar with the

material and starts to gather defects. The preparation stage is then followed by the actual

inspection meeting, which involves the entire team. At this point the team categorise

each defect for type, class and severity and record it for the author to fix. This meeting

is followed by a period of rework, where the author addresses each defect. Finally, a

follow-up is carried out to ensure each defect has been addressed.

The benefits of inspection are widely known. In addition to Fagan’s papers de-

scribing his experiences [8, 9], there are many other favourable reports. For example,

Doolan [6] reports a 30 times return on investment for every hour devoted to inspections.

Russell [22] reports a similar return of 33 hours of maintenance saved for every hour of

inspection invested. Davis [5] indicates that inspection can cut development costs by

25 to 30 percent.

The last decade or so has seen an explosion in the use of object-oriented techniques,

with several new programming languages being developed to provide the facilities

required to implement object-oriented systems. One of the most popular is C++, a

hybrid object-oriented language developed from C by Bjarne Stroustrup [24]. Another

is Eiffel, developed by Bertrand Meyer [19]. The object-oriented paradigm provides

several new concepts. The most fundamental is the class, which encapsulates data

and the methods used to access that data in one package. Similar to the use of ADTs

in traditional programming, classes provide a means to enforce data privacy. Classes

cannot be used directly, instead an instance of the class (an object) has to first be

created. This is similar to declaration of a variable in a procedural programming

language. Inheritance allows the features of one class to be used and extended by a
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derived class. It allows an existing class to be reused, instead of coding the new class

from scratch, but also provides the means to add new facilities. Polymorphism is the

ability of a declaration to refer to objects of more than one class, provided they are

related by a common base class. For example, if class B inherits from class A, wherever

a reference is made to an instance of class A, an instance of class B can be substituted.

This is allowed because an instance of class B will include all the properties of class A,

although it may also define further properties. Finally, the concept of genericity is the

ability to design classes which can be parameterised with respect to type and operations,

so that, for example, we may have a generic stack class which can be instantiated to

perform stack operations with any type of object.

The object-oriented paradigm is generally perceived to provide several benefits.

Firstly, it provides the means for producing a good design. Classes provide a natural

way to encapsulate data, while also making the system very modular. Since a class

tends to be designed around a set of data and the functions associated with that data,

classes are usually highly cohesive, yet the coupling between them is weak. These are

usually deemed to be required properties of any good design. Another potentially major

benefit is code reuse [15], which occurs in two ways. Reuse within a system is achieved

through inheritance. Also, a good object-oriented system should produce classes which

can be reused in other systems. In fact, there is a major interest in producing reusable

libraries of classes. Generic classes are always good candidates for reuse. Yet another

quoted benefit is reduced maintenance effort. As the details of the implementation

of the class are kept hidden from the client, the maintainer is free to make changes

to the class internals, provided the interface is not changed. Similarly, inheritance,

along with polymorphism, reduces the maintenance need when extending the system.

Class functionality can easily be extended by subclassing, and these subclasses can then

be used wherever their parent class is already used. A final claim of object-oriented

programming is that it is more natural [2]. This is due to its data-centred nature. The

system is built by modelling an abstraction of the real world, with everything based on

real objects.

Given that inspection is supposedly the most cost-effective means of finding defects,

and the popularity of object-oriented programming languages, it is surprising that there
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is little, if any, work on inspecting object-oriented code, as indicated by Jones [12] and

supported by our own search of the literature. In this paper we will describe some of the

issues in applying inspection to object-oriented software, and some of the techniques

that may be applicable in improving the effectiveness of such inspection.

The rest of this paper is organised as follows. Section 2 describes existing work

which has relevance to inspection of object-oriented software: this includes testing and

maintenance of object-oriented software. Section 3 is devoted to providing examples

of the difficulties that can be found in inspecting object-oriented code. We provide

examples in both a pure object-oriented language (Eiffel) and a hybrid language (C++).

Between them, these two languages demonstrate almost all the features available in

any object-oriented programming language. Section 4 describes some of the tech-

niques which can be applied to help reduce these difficulties. Section 5 contains our

conclusions.
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2 Related Work

As indicated in the introduction, there is no published experience on applying inspection

to object-oriented software. However, there has been other work on object-oriented

systems which has relevance to inspection. Here we describe testing and maintenance

of object-oriented software, as well as program understanding. We also describe some

qualities of object-oriented code that may be subject to inspection.

2.1 Testing Object-Oriented Software

One area that has relevance to the inspection of object-oriented software is that of

testing. For example, Jüttner et al. [13] describe some of the problems that object-

oriented systems can present for integration testing. Since object-oriented software is

characterised by objects and classes which interact using message passing, inheritance

and using relationships, integration testing requires a different approach to that used for

procedural software, where the system consists of modules linked by function calls and

common data. In fact, according to Jüttner et al. [13], the relationships within object-

oriented code are much more intense than those in procedural software, which blurs

the distinction between class and integration testing, as compared with the equivalent

module and integration testing of procedural systems. Furthermore, there is no simple

hierarchical system structure to which a systematic testing strategy can be applied.

Some of the difficulties found when testing object-oriented software are as follows

[13]. Inheritance poses a difficulty for class testing. Although it is reasonable to expect

that a class may be tested in isolation, the use of inheritance may mean there are hidden

interactions between inherited code and the new class. Therefore, both the old and

new methods, along with their interactions, must be tested. There is also a problem in

trying to trace control flow. The code for each class in no way describes the order in

which the methods may be called. This is compounded by polymorphism and dynamic

binding, which precludes the static prediction of which methods will actually be called

at runtime. Stubbing is also made more difficult, due to a combination of the different

system structure, increased encapsulation, and mutual dependencies between methods.
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Finally, the use of short methods moves the complexity from method bodies to the

interactions between them. Again, when combined with polymorphism and dynamic

binding, this results in complex interactions which hinder testing.

Although inspection is affected by the same features that make testing of object-

oriented code more difficult, inspection is fundamentally different from testing in that

the code is never actually run while under scrutiny. Instead, inspection is a form of

static analysis where the key task is understanding the code to discover defects in the

program logic. This static nature of inspection has implications for object-oriented

code, especially where such features as polymorphism and genericity, which depend on

the dynamic behaviour of the code, are concerned. When these features are used, the

dynamic structure of the system is very different to the static structure defined by the

source code. In fact, the problems that this creates for inspection are not dissimilar to

those found when trying to understand object-oriented code to perform maintenance.

2.2 Maintaining Object-Oriented Software

Wilde et al. [27] describe two prerequisites for successful maintenance. First of all

the system has to be easy to change. This is a prime goal of the object-oriented

paradigm, and is achieved, to some degree, by the encapsulation mechanism of the

class. The second requirement is an in-depth understanding of the software which is

being maintained. In both this paper and an earlier paper by Wilde and Huitt [26], the

authors describe the problems that object-oriented software pose for maintenance.

The first problem described by Wilde et al. [27] is the tracing of dependencies in

a system which makes use of inheritance. The method being examined may not only

be used with the class it is declared in, but also with any subclasses which may inherit

from this class. Similarly, any declarations referred to may exist in this class or in

some superclass. The severity of this problem depends on the depth of the inheritance

hierarchy. There is also a problem where the system contains a large number of small

methods. For example, in one Smalltalk system described, of the 450 methods present,

over 80% consisted of two lines or less [27]. The large number of methods increases

the number of relationships that exist in the system, many of which must be understood
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by the maintainer to ensure the correctness of any changes made. It may also be the

case that what is considered to be a single unit of functionality in a procedural program

is spread over several classes in an object-oriented system. To understand one piece of

functionality then requires the study of several classes and their interactions.

Wilde and Huitt’s earlier paper describes some additional issues [26]. The use of

polymorphism and dynamic binding prevent the exact method invocation from being

predicted statically. Instead, the maintainer has a set of methods, any one of which

may be invoked. It is therefore more difficult to identify dependencies within the

system. There is also a problem when the maintainer becomes familiar with one or

two versions of a method. This may lead to the assumption that all versions of that

method have the same behaviour, when in fact each method has a slightly different

behaviour. Furthermore, there may be far more possible dependencies within an object-

oriented system than within a procedural system. All of these problems hinder the

program understanding task which the maintainer must perform to undertake a correct

modification to the system.

2.3 Delocalised Plans and Program Understanding

In addition to work on object-oriented systems, some work on understanding procedural

systems has relevance. For example, Soloway et al. [23] describe a problem that is

found in trying to understand procedural programs which is equally applicable to object-

oriented systems, referred to as the presence of “delocalised plans”. A delocalised plan

is defined as being when “pieces of code that are conceptually related are physically

located in non-contiguous parts of the program”. The large number of small methods

found in object-oriented systems may mean they contain many of these delocalised

plans. Soloway and his colleagues describe two studies they performed. The first used

professional programmers from the Jet Propulsion Laboratory to study the design of

software documentation for maintenance (this is also described in an earlier work by two

of the authors [17]). The second study involved protocol analysis of a code inspection

performed at IBM.

The subjects in the maintenance study appeared to employ two strategies for program
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understanding: micro-strategies, which were used when trying to understand lines of

code, and macro-strategies, which were used at a higher level. A typical micro-strategy

used was an “Inquiry Episode”. Here, the subjects followed a pattern consisting of

several steps: read some code, ask a question about it, form a conjecture, perform a

search for confirmation, then come to some answer. These inquiry episodes are triggered

when a subject comes across a delocalised plan. However, in object-oriented code the

vital step of searching for confirmation may be hard, because methods tend to be more

distributed. This is complicated by the use of inheritance and polymorphism, as will be

described later.

Soloway et al. also identified two types of macro-strategies. A systematic strategy

involved the programmer trying to understand the entire program, while an as-needed

strategy was used by programmers wishing only to understand the portion necessary to

implement a change. For inspection, the systematic strategy may be the most appropri-

ate, since the inspector must understand all the code to evaluate it for defects. However,

as the authors point out, a systematic strategy can only be applied to small programs.

The complexity and size of larger systems prevent anyone from understanding the entire

system (in reasonable time), and so there must be some means of splitting the system

into logically cohesive, but independent units.

Finally, the authors also demonstrate that program understanding is crucial to in-

spection. In their study of code inspection meetings, they found that 34% of the time

was spent on achieving clarity of the code. The more complex the code is, the longer

it takes to understand. Since object-oriented systems tend to consist of large numbers

of interactions such as message passing and inheritance, this may make them harder

to understand and therefore more time-consuming to inspect. Object-oriented systems

shift the complexity from method bodies to the interactions between them [13].

2.4 Inspecting for Quality

In addition to inspecting for defects in the code, where ‘defect’ roughly equates to

‘bug’, there are other qualities which code can be inspected for. Fagan [9] indicates

some of these, including portability, installability, and usability. While it is intuitively
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obvious that we require code of good quality, and while many people feel that they can

differentiate between low quality and high quality code, it is difficult to define such an

attribute. One attempt to define quality for object-oriented code is the “Law of Demeter”

[16], a style rule for the construction of methods which minimises the number of objects

which a method can send messages to. The authors start by defining an acquaintance

class as a class which is not an argument or instance variable of a method, but which

supplies a method used in this method. A preferred acquaintance class is a class of

global variables used in the method or a class of objects created within the method.

A method’s preferred supplier classes are either preferred acquaintance classes or an

instance variable or argument class of this method. The Law of Demeter then has

two forms. The first is the class form, which has two versions. The minimisation

version states “Minimise the number of acquaintance classes over all methods.” The

strict version states “All methods may have only preferred supplier classes.” The

object form of the law states “All methods may have only preferred-supplier objects,”

where preferred-supplier objects are argument variables, the current object and any

subparts of the current object, any directly created objects or any global objects. These

laws restrict object communication and are intended to reduce dependencies between

classes, promoting maintainability and understandability. While it is the programmer’s

responsibility to apply the Law of Demeter, a compiler can be used to enforce the class

form’s strict version. The object version is more difficult, however, and cannot be

enforced at compile time. Currently, the only technique which may be used to check

for its use is inspection, but it may be difficult to inspect large amounts of code for

compliance with the law. Every method must be checked for its use by classifying

all objects used within that method. With large systems, this is time-consuming and

error-prone. Other indicators of code quality have similar problems.

Another quality which object-oriented code can be inspected for is reusability. Over

the last ten years, there has been increasing interest in the area of object-oriented domain

analysis [1]. Domain analysis is the study of a specific application area to identify

potential reuse of analysis, design and code. Where identification of reusable code is

concerned, inspection would seem to be the ideal time to conduct such activities. This

would be achieved by the inclusion of a domain analyst in the inspection. The analyst

9



RR-95-188 [EFoCS-14-95] University of Strathclyde

would then be able to give input on the suitability of code for reuse. If necessary, the

analyst can give guidance on making appropriate changes to “almost reusable” code to

allow full reuse. Since reusability is deemed to be a major benefit of the object-oriented

paradigm, inspecting for reusability should be an important part of object-oriented code

inspection.

Code quality and reusability are two qualities of object-oriented code that are judged

using inspection. It is therefore important that object-oriented code is amenable to such

inspection, not just to remove defects but to ensure that the code itself is of a high

standard and is capable of being maintained and reused in the manner which the object-

oriented paradigm is reputed to support.

10
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Method Invocation

End of chain
of invocations

Figure 1: A sequence of method invocations in an object hierarchy.

3 Issues in Applying Inspection to Object-Oriented Soft-

ware

3.1 Method Size and Distribution

A typical object-oriented system consists of many small methods, each of which pro-

vides only a little functionality (for examples of this, see [27]). Therefore to understand

more than just trivial parts of the system, large numbers of these methods must be cog-

nitively grouped together. It may be difficult to reconstruct the meaning of this code,

however, and we have described Soloway et al.’s [23] work on “delocalised plans,”

which occur when conceptually related code is spread over spatially distributed parts of

the program.

The method distribution problem can be easily illustrated. Consider Figure 1 which

depicts an object hierarchy. The arrow on the lower left object indicates an invocation of

one method. However, it may be found that this method in turn invokes other methods,

which in turn invoke yet other methods, and so on. It quickly becomes apparent that

there may be a large of chain of method invocations which must be followed. This

11
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is illustrated by the arrow moving through several objects. It must also be considered

that each method may invoke multiple methods, which themselves invoke multiple

methods. This greatly increases the paths that must be followed. It follows that the

complexity of the system is transferred from method bodies to the interactions between

them. Inspection is then made harder by having to understand all these interactions to

predict the effect of a single method call.

3.2 Inheritance

Inheritance is perhaps the most powerful feature of object-oriented programming, and is

one of the major differences between object-based and object-orientedcode. Inheritance

allows the behaviour of one class to be reused and extended by another class. The derived

class (subclass or child class) has all the features of the base class (superclass or parent

class), but adds further behaviour which generally indicates some type of specialisation.

For example, in categorising a population of students, we may have some

class student which has properties common to all students, such as name,

matriculation number and so forth. However, we may require a class called

post graduate student, which has all the attributes of student, but also re-

quires additional details such as supervisor and topic. We could create a completely

separate class, and paste in the code from student but this is wasteful and could

make maintenance difficult, as any changes in the common code must be made to both

classes. Instead, we define post graduate student to inherit from student,

then add only the new information. Any change made tostudent is then automatically

reflected in post graduate student.

Despite the advantages of inheritance, including code reuse and reduced mainte-

nance effort, there is difficulty in understanding such code due to the distribution of

behaviour over several classes. These problems are detailed below.

3.2.1 Single Inheritance

Given the code in Figure 2, and an instance new manager of class MANAGER, when

we inspect the line

12
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feature
calculate_tax is

end

...

end -- EMPLOYEE

class EMPLOYEE

class SALESPERSON

inherit

EMPLOYEE

feature
...

end -- SALESPERSON

class MANAGER

inherit

EMPLOYEE

feature

award_bonus is

do

bonus := sales_increase * bonus_rate

end

end -- MANAGER

Figure 2: Example Eiffel code for single inheritance

new_manager.calculate_tax

we immediately wish to find the definition of calculate tax to ensure that this

is also correct. The logical starting point is to inspect the MANAGER class. But as

the feature calculate tax is common to both SALESPERSON and MANAGER it

is actually defined in EMPLOYEE and inherited. Finding the definition then involves

traversing the hierarchy examining each inherited class. In deeper hierarchies with

many inherited classes the definition may take some time to locate.

A similar problem is encountered with the definition of award bonus in class

MANAGER. Within this definition there are three references which may need to be

followed. These can be defined anywhere within the MANAGER class or its inherited

class(es). As these paths are followed, we move further and further away from the

13
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class parent1 {

public:

parent1() {...};

void function1() {...};

};

parent2() {...};

public:

class parent2 {

int function2(int z) {...};

};

child() {x = 0};

public:

class child : parent1, parent2 {

...
x = function2(y);

...

void call_me(int y) {

}

private:

int x;

};

Figure 3: Example C++ code for multiple inheritance

original code. As we get further away from the original code, it becomes more difficult

to remember the context in which we were searching in this direction. The effectiveness

of the inspection may then start to decrease.

3.2.2 Multiple Inheritance

Given the C++ code in Figure 3, which implements a simple example of multiple

inheritance, and assuming a declared instance MyChild of class child, then on

finding the call

MyChild.function1;

we must find the definition of function1. We start by examining the child class,

but there is no reference to function1. We then assume that it is declared in a parent

14
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class. But which one? And how far up the hierarchy must we look? Four or five levels

of inheritance is not uncommon. This can mean the exploration of up to ten classes,

assuming two parent classes. If there are more than two parent classes, then the number

is proportionately bigger. If the parent classes use multiple inheritance, then the number

of possibilities is further increased. A similar situation occurs with

MyChild.call_me(2);

Although we initially know that call me is declared somewhere in child or its

parents, there is now another level of indirection: where is function2 declared?

The possibilities include child, parent1 and parent2, along with any of their

ancestors. Note that we assume C++ is being used in the strict object-oriented sense.

Instead, it may be that there are functions declared which are not part of any class, with

function2 being one of them. In this case, the declaration could exist practically

anywhere.

3.2.3 Further Issues Concerning Inheritance

In addition to single and multiple inheritance, as described above, there are concepts

which can complicate the situation. Also, there are concepts which can ease the task

of inspection. We start by describing some Eiffel characteristics allowing the features

inherited from the base class to be adapted in several ways. We also describe several

idiosyncrasies from C++.

Repeated inheritance is an Eiffel concept which can cause confusion. It is generally

used when we wish to reimplement an inherited feature by adding some behaviour in

addition to that which it already has. We could simply inherit it, then define another

feature which calls the first and then implements the required behaviour, but this means

the new feature must have a different name. If we inherit it, then redefine it to keep the

same name, we no longer have access to the original feature, and hence must repeat the

code in the new feature. Repeated inheritance allows us to inherit the feature once to

redefine it (allowing us to use the name) and then inherit it a second time to rename it

(which gives us access to the feature, albeit under a different name). We then simply

define our new feature using the old name, and use the new name to access the old

15
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code. As can be seen from this description, repeated inheritance is by no means a trivial

concept. When inspecting code which uses repeated inheritance, it can be very easy to

lose track of which code is actually being used. An inspector may miss the repeated

inheritance and assume the code being called is simply that in the base class, missing

out the additional code in the derived class. If the inspector does spot the repeated

inheritance, he has to find the original feature in the inherited class, inspect it, then

inspect the new code in the derived class.

Also in Eiffel, the use of rename allows a feature in the base class to be renamed

when it is inherited in the derived class. Finding the feature involves searching the

derived class for the feature definition, or for a rename clause. If the feature has been

renamed then the clause gives an idea of which route through the parent classes should

be followed, but gives no indication of how far up the class hierarchy one must travel.

The Eiffel redefine clause can remove some problems. If a feature is redefined

for this class, then the definition must occur in this class, and can be found easily. By its

nature, however, redefinition is almost always bound to use features declared towards

the top of the class hierarchy. To inspect properly, these definitions must also be found.

In a similar vein, the undefine keyword removes the definition of the corresponding

feature for this class, leaving it in a deferred state. The definition of the feature must

now occur either in this class, or any class which may inherit from it, reducing the

amount of which must be inspected for the definition. Finally, the join mechanism that

exists in Eiffel consolidates several inherited methods, possibly via multiple inheritance,

from two different classes. This consolidation provides an anchor point from which

the definition of the method can be searched for. Again, this can reduce the number of

classes which may have to be inspected.

The friend keyword is a controversial C++ feature. A function declared to be

a friend of a class will have unrestricted access to all private data of that class,

thus completely circumventing the usual encapsulation mechanism. While there is

an argument in using friend for efficiency reasons, or to allow the usual implicit

parameter of the function to be made explicit, thus allowing coercion, friend can

hinder inspection by removing much of the logical structure of the system.

A redeeming aspect of C++ is the control of feature visibility provided by the
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class A {

private:

int a;

};

class B : public A {

void b(){a = 1;}; // Illegal - B has no access to a

public:

};

Figure 4: An example of visibility restriction in C++.

keywords public, protected and private. These keywords limit the access of

both non-member functions and derived classes to class features. For example, given

the code in Figure 4, the method b declared in class B makes an illegal reference to

the variable a declared in class A. This reference is illegal because a has been declared

as private in A and is not available to any other classes. Similar access rules can

apply when inheriting base classes. By restricting access to features, we improve the

encapsulation of the class and reduce the possible interactions between that class and

any other classes. Intelligent interpretation of such access restrictions can therefore

be used to limit the amount of code which has to be inspected. However, as class

features may be declared as public, protected or private and classes may then

be inherited as public, protected or private, the visibility rules involved are

fairly complex. It may be difficult for inspectors to decipher exactly what interface is

presented by each class when they inspect code to ensure that the interfaces presented

are the minimum required and nothing more. Feature visibility can also be restricted in

Eiffel, where a feature can be made visible only to a certain class clientele, defined by

the parameters given after the feature keyword. Similar issues arise here.

3.3 Polymorphism and Dynamic Binding

Polymorphism is the ability to take more than one form. In object-oriented program-

ming, it generally denotes the ability of a reference to refer to more than one class
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class X

feature

process is

do 

put_string("In class X.")

end

end -- X

class Y

inherit

end

X redefine process

process is

feature

do

put_string("In class Y.")

end

end -- Y

feature

make is

local

local_x : X

local_y : Y

do

local_x:=local_y -- local_x now refers to an object of class Y

end

end -- Test

local_x.process   -- Y.process is called

local_x.process   -- X.process is called

!!local_y.create   -- local_y refers to an object of class Y

!!local_x.create   -- local_x refers to an object of class X

class Test

Figure 5: An example of polymorphism and dynamic binding.

of object. Polymorphism goes hand in hand with dynamic binding, which allows the

function associated with such a reference to be inferred at run time. This contrasts with

static binding, where the exact function call is known at compile time and can never be

changed while the program is executing.

The concepts of polymorphism and dynamic binding can best be described by

example. Consider the code in Figure 5 (based on Figure 5 from [15]). local x

is initially created to be of class X, whilst local y is of class Y. On the first call of

local x.process, IN CLASS X. is printed. Although, on the surface, local x

and local y appear to be instances of completely different classes, the assignment

statement local x:=local y is allowed because class Y is derived from class X,

18



Department of Computer Science RR-95-188 [EFoCS-14-95]

therefore an instance of class Y already contains all the details of an instance of class

X, and may also contain much more. Y is said to conform to X. This type of behaviour

is the essence of polymorphism. Note that local y:=local x is not legal, since an

object of class X may not have enough information to completely fill an instance of Y.

Since local x now refers to an object of class Y, the next time local x.process

is called, IN CLASS Y. is printed. This is dynamic binding at work: the actual process

feature called depends on the dynamic type of local x, not its static type.

Further polymorphism can occur with parameter passing. If we define a feature to

take a parameter of class X, then in addition to an instance of class X, we can also pass an

instance of class Y, or indeed any derived class of X. This can cause difficulties in C++

,where multiple methods can be declared which differ only in their parameter lists, both

in number of parameters and parameter types. It then becomes more difficult to predict

which method is called at run-time, taking into account any coercion of parameters

which may take place.

The concept of polymorphism is very powerful, but this power comes with a price.

Like recursion, polymorphism is simple in theory, but hard in practice. Ponder and Bush

have written about the problems that polymorphism causes for program understanding

due to dependence on the dynamic data state of the program [21]. The problem is

especially acute when combined with inheritance. Ponder and Bush show data from a

Smalltalk-80 system, where, for example one method is defined 90 times, and where

there are 89 procedures which are received by 486 different types. This leads to

“considerable ambiguity,” an understatement of immense proportions. Consider the

second call of local x.process in Figure 5. When inspectors reach this call they

must know the current type of local x. It is simple to find in this example, but in

larger systems, the type assignment may be much further away. It is also possible for

confusion to occur when multiple type changes occur.

A specific case occurs with a popular demonstration of polymorphism: iterating

over an array of heterogeneous types. Consider the following Eiffel declaration:

my_array : ARRAY[X]

In this case, elements in the array my array may be of class X, Y or any other class
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derived from X. To call the same feature process for every element of the array, we

simply write:

my_array.item(i).process

for each value of i. However, when we inspect this code, we must check every possible

definition ofprocess that may be used. It can be difficult to find all implementations of

the feature, due mainly to the distribution definitions over several classes. More impor-

tantly, we must ensure that every implementation has consistent behaviour, producing

the same ‘result’, however ‘result’ is defined. Things may be further complicated if

different implementations deliberately have slightly different behaviours. If inspectors

believe they understand one implementation, they may incorrectly assume all imple-

mentations produce the same behaviour. This may occur when naming conventions are

not adhered to.

Polymorphism used in feature parameters causes similar problems. Any features

of the parameter that are used must be checked for consistent behaviour, since the

implementation which is called at run time may not be known. If one implementation

has slightly different behaviour from the others, it may introduce subtle bugs. We must

find exactly which implementation is being used.

3.4 Genericity

Genericity is the ability to define classes that are parameterised with respect to type.

They are usually used to define container classes which can then be used to hold any

type of data. Some common examples include lists, hash tables and trees. Without

genericity, a new class would have to be written every time we wished to store a new

type of data. We would then have multiple classes defining exactly the same behaviour,

which would cause maintenance and administrative difficulties. Genericity also allows

the use of static type-checking.

Genericity in C++ is implemented using templates. Class templates are used to

define a related family of classes. The class is defined with one or more type parameters

which can then be used as normal types within the class definition. When the template
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is instantiated with the appropriate type, all instances of the argument are replaced by

the new type to produce a new class. Similarly, function templates can be used to

define a related family of functions, defining similar operations on multiple types. An

instantiated version of the function is created for each type which uses it. Both class

and function templates can have multiple type arguments.

In Eiffel, genericity is achieved with generic classes which take a list of type

parameters. Eiffel defines two types of genericity. Unconstrained genericity is simply

when the type which can be supplied is not limited in any way. In this case, there is little

common behaviour which we can rely on having access to. Therefore, it is used only

for the simplest generic classes. Much more useful is constrained genericity, where

the parameters are constrained to be derived from a certain class. This constraining

class specifies the minimum behaviour which we can expect from any class which may

instantiate the generic class. In fact, unconstrained genericity is simply constrained

genericity where the constraining class is class ANY (every non-basic class which has

no explicit inheritance clause inherits from class ANY, hence every class conforms to

class ANY). In this situation, it is usual to leave out the constraining class altogether.

An example of constrained genericity is given in Figure 6. Here, we define class

SEARCHTREE, which can be instantiated by any class, as long as it conforms to class

COMPARABLE. This constraint is necessary because we require use of a comparison

operator to insert new elements into the tree. However, there is a problem for inspection

in relying on the implementation of such behaviour. In this case, COMPARABLE is a

well-defined class and the meaning of the less-than operator is well-known. However, it

may be the case that the constraining class is less well-defined, with far more complex

operations. Derived classes may have redefined key behaviour in an inconsistent way.

Therefore, what works for one instantiation may produce slightly different behaviour for

another instantiation. This implies that a generic class must be inspected with respect to

each instantiating class. This can be problematic with respect to the number of possible

classes, and the possibility of new classes being added as time goes on.
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feature {SEARCHTREE}

class SEARCHTREE[G -> COMPARABLE]

root : NODE[G]

do

end

end

end

insert_into(element, current.right)

else

insert_into(element, current.left)

if element < curr.value then

!!current.make_leaf(element)

else

if current = void then

feature

insert(element : G) is

do

insert_into(element, root)

end

end -- class SEARCHTREE

insert_into(element : G; current : NODE[G]) is

left:=leftchild

class NODE[G]

creation make_leaf

feature{SEARCHTREE}

value : G

left, right : NODE[G]

do
value:=avalue

right:=rightchild

end

end -- class NODE

make_leaf(avalue : G; leftchild : NODE[G]; rightchild : NODE[G]) is

Figure 6: An example of genericity in Eiffel.
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3.5 Partitioning Object-Oriented Code for Inspection

The previous sections have assumed the entire system is capable of being inspected at

once. The inspector browses the code until he becomes familiar with it and understands

its structure, and can then start to examine the code for defects, perhaps aided by a

checklist. In reality, most systems will be far too complex to be inspected in a single

step, and will be split into chunks. The amount of code inspected is also limited by

the two-hour rule: an inspector should not spend more than two hours at a time on

individual preparation, and an inspection meeting should not last more than two hours.

There is a general belief that the effectiveness of any inspection is greatly reduced when

such limits are exceeded. Finally, there may be guidelines in place on the rate at which

code should be inspected, which may be as low as one or two pages an hour. Again,

exceeding these limits may decrease the effectiveness of the inspection. These three

factors produce the problem of deciding how to split the code. For a simple object-based

system, this problem is no worse than for modular procedural code.

For a system with a large inheritance hierarchy, the problem is much more difficult.

As demonstrated in the previous sections, there are many dependencies which must be

resolved when inspecting object-oriented code. If the system is arbitrarily split, then

inspectors may be left with references to code which they have no access to, preventing

them from properly completing the inspection. When inheritance is involved there is

a problem similar to that found in testing, where although it is tempting to test a class

in isolation, it must actually be tested in context of its parent classes because of the

possibility of hidden interactions. The same is true of inspection. Each class must be

inspected in the context of any parent classes. There may be many such parent classes,

which combine to produce a very large body of code to be inspected. On the other

hand, a single method may be too small a unit to inspect, even before considering the

number of references that may be left unresolved by inspecting the method on its own.

A one- or two-line method has very little semantic information to allow an accurate

characterisation of the behaviour of the system.
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4 Assisting Inspection of Object-Oriented Software

4.1 Programming Techniques

From the previously described problems caused by inheritance, it is apparent that there

is a need to control the use of inheritance. Korson and McGregor point this out, and

suggest a “very disciplined” use of inheritance [15]. Gamma et al., in their book on

patterns for object-oriented design [10], suggest one principle of object-oriented design

is:

Favour object composition over class inheritance.

They argue that the use of object composition allows you to keep each class encap-

sulated and dedicated to one task. It also inhibits the growth of class hierarchies into

“unmanageable monsters.” Such hierarchies will be very difficult to inspect, as demon-

strated in Section 3.2. A guideline for programming is the Law of Demeter, described

above, which limits message passing to a reduced set of related objects. By rationalising

communication patterns between objects, the system may be easier to understand and

inspect [16].

Van Emden [25] describes a method of inspection called structured inspection, which

make use of what he refers to as the inspection protocol. The inspection protocol defines

what is to be carried out at the inspection. In a traditional inspection, as described by

Fagan [8], the protocol may only consist of a checklist to assist in defect finding. For a

structured inspection, the code to be inspected is written with the goal of inspectability

in mind. Comments are placed in the code to guide the inspection. The comments are

assertions about the state of the program at that point, with each being a well-defined

inspection item. The inspection then consists of examining each of these items in turn,

checking that the code between two assertions ensures the truth of the latter assertion.

This idea may greatly increase the focus of the inspection, as well as breaking the code

into more manageable chunks for inspection, thus alleviating one problem identified.

The assertion checking system provided in Eiffel would seem to be an ideal vehicle to

make use of such an idea.
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int *p, pivot;

p = partition(left, right, pivot);

}
}

if(find_pivot(left, right, &pivot)) {

quicksort(p, right);

{

quicksort(left, p-1);

void quicksort(int *left, int *right) FUNCTION NAME: quicksort(int *left, int *right)
PURPOSE: To implement the Quicksort algorithm

to sort an array of integers. ‘left’ is a pointer to the

CALLS: find_pivot, partition
CALLED-BY:

IMPORTANT INTERACTIONS WITH OTHER FUNCTIONS:
find_pivot returns 1 if it successfully found a pivot point

first element of the array, ‘right’ is a pointer to the last.

Figure 7: An example of Soloway et al.’s program documentation method.

Eiffel assertions also provide an opportunity to ensure that all implementations of a

polymorphic method have the same behaviour. This can reduce confusion where more

than one implementation exists, but where each implementation has a slightly different

behaviour.

4.2 Supporting Documentation

With specific reference to delocalised plans, Soloway et al. [23] present a type of pro-

gram documentation which explicitly identifies relationships which form delocalised

plans. The documentation consists of the program text on the left side of a page. The

right hand side contains explicit descriptions of interactions which form delocalised

plans. For example, any subroutine called in the program fragment would be docu-

mented in the accompanying text, indicating its purpose, and any routines which it may

call. There may also be comments which describe the interactions occurring in the

code. These are linked by arrows to the appropriate line. An example of the docu-

mentation is shown in Figure 7, using code based on that given for an implementation

of Quicksort in [14]. While this idea may be useful to make explicit the dependencies

within object-oriented code (for example “This method relies on method X in the parent

class”), there is no obvious support for describing dynamic behaviour. The technique

fails due to its static nature.

A similar, but far more refined method is proposed by Parnas et al. [20]. They
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void quicksort(int *left, int *right)
{
int *p, pivot;

if (find_pivot(left, right, &pivot) == yes) {
p = partition(left, right, pivot);
quicksort(left, p-1);
quicksort(p, right);

}
}

Program

Specifications of Invoked Programs

partition rearranges the array so that all elements in the lower part of
the array are smaller than the pivot value, and all items in the upper
part of the array are larger

find_pivot returns a value to be used to partition the array

find_pivot

partition

of the array, right is a pointer to the end of the array
quicksort sorts an array of integers using the QuickSort algorithm. left is a pointer to the start

Specification

Figure 8: An example of Parnas et al.’s Display Method.

assert that successful software systems will have more people reading the code than

writing it. Furthermore, while it is easy to understand isolated details of the program,

it is far harder to make sense of the overall structure. It is therefore important that

a system is well documented, with the structure being made apparent. Parnas et al.

propose a solution with their “Display Method”. In this method, each fragment of the

program is represented by a display. The set of displays associated with a program

is supplemented by a lexicon, containing definitions of all the terms in the program,

and an index of all the variables and program fragments along with where they occur.

An example of a display is given in Figure 8. A display consists of three parts. The

first parts presents a specification of the program fragment this display represents. The

second part contains the source code of the fragment under consideration. The final

part presents specifications for any subroutines invoked by this fragment. It is therefore
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possible to study the correctness of this program fragment without requiring access to

any other code which it may use.

While the display method is intended for use with procedural code, where Parnas et

al. [20] have reported great success in inspecting safety critical software, the principles

can be applied to object-oriented code. The proliferation of small methods provides

the ideal subject for this technique, although it may be that the average one- or two-

line method may be too small a unit to use. Such a method usually only consists of

a single method invocation, and has little semantic information, whichever way it is

described. Being designed for use with procedural code, there is also no policy to deal

with inheritance. Furthermore, like Soloway’s method, the technique is static, and is

therefore of limited use in describing the dynamic behaviour of object-oriented code

which is necessary to understand the system.

Although enhanced documentation can help an inspector, it is clear that the static

nature precludes the description of the dynamic behaviour of the system, which, as we

have seen, is far more important in an object-oriented system. Therefore it may be that

some form of tool support, possibly working in conjunction with the running system,

may be more appropriate.

4.3 Tool Support

Although there are already a number of tools to support the inspection process (see [18]

for a recent review of those available), none explicitly support the dynamic nature of

object-oriented code. Instead, the code is treated as a static document. From Section 3

it is clear that this is not sufficient.

An automated tool for viewing code statically, based on the work of Parnas et al. [20]

described in the previous section, is one possibility. Each display could be presented

on-screen, with hypertext-style links between the displays, allowing the inspector to

browse round the system. However, this still only represents the static structure of the

code. We still require some form of dynamic inspection tool to help inspect code which

makes use of dynamic object-oriented features.

A possibility lies in tools designed to support maintenance. Section 2 introduced
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int RCode= TheScale->Activate(DText, AttribList[CurrKey]);

DText->ShowAttribs(AttribList);

}

int GroupLine::Activate(Scale* TheScale, DisplayedText* DTex){

return(RCode)
DText->ShowLine(Value);

int GroupLine::Deactivate(Scale* TheScale, DisplayedText* DText){

return(TheScale->Deactivate(DText, AttribList[Currkey]));
}

void GroupLine::ChangeKey(int NewKey, Scale* TheScale){

HighlightColour = TheScale->HCol(AttribList[CurKey]);
}

CurKey = NewKey;

LineBar

Activator

ScaleGroup ScaleLine

Inheritance Hierarchy:Browser: GroupLine.cc

GetX()
GetY()

NumLines() Activate()
Deactivate()

ChangeKey()
Name() State()

HCol() Active()
HCol()
On()

ChangeKey()

GroupLine

Figure 9: An example maintenance tool set.

the idea that the requirements of inspection are similar to those of maintenance. It

is therefore obvious that tools which help understanding for maintenance could also

be used to support inspection. One example is Valhalla, a prototype object-oriented

development environment described by Wilde et al. [27]. This system provides object

animation capabilities for both the development and maintenance phases. The animation

allows viewing of messages passed between objects. This can aid understanding of the

dynamic properties of the system. Instead of analysing static pages of text, the inspection

would then consist of analysing these animations.

Another example of such support for maintenance is described by Crocker and

Mayrhauser [3]. They describe a suite containing four types of tool. Framework tools

are used to provide an infrastructure, and include a database which allows the sharing

of information among tools. Mundane tools are those used for information gathering,

including a cross-reference generator, control flow graph generator and test driver
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generator. Change tools are used to predict the effects of program modification. They

include a consistency checker and ripple effect analyser. From our point of view, the

most useful tools are those described as knowledge tools, which can assist in program

understanding. The inheritance hierarchy generator generates a graph of the inheritance

relationship in the system, which can then be studied to enhance understanding of the

system. The abstraction generator is used to help build new abstractions, and add and

delete methods. The abstraction generator takes a set of input functions and generates

a subset of functions which are related by common data. A subset of these can then be

used as the interface for a new class. A similar analysis can be used to decide which

data items are candidates for membership of the class. Finally, the remaining code is

analysed to indicate changes required to use the new class in place of the existing code,

for example removing references to encapsulated data. The analysis for the addition

and removal of methods is similar. The final tool described is a code browser which

displays the output produced by the other tools. This is used in conjunction with a code

slicer, which allows the view of the program to be limited by certain criteria, such as

occurrences of a certain variable or method call. An example of how such a toolset may

appear is given in Figure 9. The class hierarchy is displayed on the right-hand side,

with the text of the current class displayed on the left-hand side. The displayed code

may be a program slice on a variable usage or function call. It is then easy for the code

inspector to traverse the class hierarchy and inspect the required code.

These maintenance systems would suffer from one drawback if they were to be

applied to software inspection: they require the software system to be complete and

running. They are not designed to work with fragments of code, such as individual

classes. Browsing using the class hierarchy may also be limiting because it does not

reflect the dynamic nature of the code.

Given that a major problem in inspecting object-oriented code is tracing method

calls and references over several classes, it may be useful to have some form of reduced

representation which provides an overall view of the code being inspected. Such a

representation would be similar to that used be Seesoft, as described by Eick et al. [7].

Seesoft is a tool designed for visualising line-oriented software statistics. The main

window consists of a number of columns, each of which represents a source code file.
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Viewer:node_holder.e

end
ItemStack.push(CurrItem)

from
i  :=  1

until

loop
CurrItem := ItemArray.item(i)

push(Item : data)

Definition:stack.push()

i > NumItems

analyse.e

node_holder.e

node.e
sort.e list

.e
stack.e

queue.e
scale.e

100

200

300

400

500

0

600

Figure 10: How a reduced representation could be used to assist inspection of object-oriented
code

Within these columns, a horizontal line is used to represent a line of code within the

file. These lines are coloured according to the value of some attribute, e.g. age. A

separate scale is used to display the entire value range for this attribute. The user can

click on values in this scale, or the columns and lines themselves to toggle each value

on and off. This allows the display of code with just a certain value or a range of

values. Such manipulations allow the user to find useful patterns in the code, in effect

allowing interactive querying of a database of statistics. Seesoft also provides code

reading windows which allow the user to access the source code under consideration.

This type of tool could be extended to assist inspection of object-oriented code as

follows. While inspecting code in a reading window the reduced representation would

highlight the current line of code. If this line was a method invocation, the definition of

that method would also be highlighted. The inspector could then immediately move to

that definition, and so on. The history of such a progression may be stored and when

the inspector comes to a suitable understanding of some method, it would be possible to

quickly backtrack to the previous method, where this understanding could be applied.
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This process would continue until the original starting point was reached. By speeding

the traversal between methods, it is easier for an inspector to gain an understanding of

the code. At the same time, the inspector is forming a mental picture of the system

with the reduced representation. A further use of such a system would be used to help

decide which code should be included in an inspection. By tracing method invocations,

the classes required to perform the inspection could quickly be found. An example of

how this may look is given in Figure 10. The window contains reduced representations

of all files under inspection. The file currently being accessed (node holder.e)

has a cursor over it, indicating the current line being inspected, as determined by the

browser window. The current line is shown in italics, and in this case is a call of method

push in class stack. The definition of this method has been found by the tool in file

stack.e, as indicated by the inverse patch on this file, and the definition is displayed

in the method window.

Other visualisation systems designed for object-oriented code may provide help

with inspection. For example, De Pauw et al. [4] describe a language independent

visualisation system. The system uses a preprocessor to instrument the subject programs

with code which generates events. These events can be received by a visualisation

application which can use the data to update one or more views of the program. The

authors describe several visualisations they have constructed. They include an allocation

matrix, showing the number of classes instantiated by each class, and an inter-class

call matrix, showing patterns of communication between each class. Although these

visualisations are intended for use in debugging and code tuning, and rely on having the

entire system available and running, the principles could be applied to smaller chunks of

code. Visualisation could allow the inspection team to provide summary information on

which methods and classes are used by each class. They can then use this information

to partition code for inspection.
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5 Conclusions

Inspection is widely believed to be the most effective means of finding defects in

software. At the same time, the object-oriented paradigm is cited as providing many

benefits in developing software. However, there is little published material on applying

inspection to object-oriented software.

We have described how some of the facilities of an object-oriented language can

inhibit inspection of code written in that language. Inheritance can impede the search

for the definition of class features. Polymorphism and dynamic binding combine to

hinder the static prediction of which methods will be invoked at runtime. Genericity

can prove problematic with respect to the number of classes that may have to be

inspected in conjunction with a single class, due to the dependence on the behaviour of

these instantiating classes. The last two problems stem from the disparity between the

static code structure and the dynamic, runtime system structure. Furthermore, object-

oriented systems tend to consist of a large number of small methods, which distributes

functionally related code over a wider area than procedural systems, making inspection

more difficult. This also increases the number of relationships which exist within the

system which have to be understood. Finally, while inspection is an ideal time to enforce

code quality, the notions of quality of object-oriented code are less well-defined than

those of procedural code, and may be difficult to enforce during inspection.

We have also described some techniques which may be applied to inspection of

object-oriented software to help obviate these problems. There are several programming

techniques which make code easier to inspect. Restricting the use of inheritance reduces

the complexity of the class hierarchy [10], whilst the Law of Demeter can reduce the

amount of unstructured communication between objects [16]. Code can also be written

with inspectibility in mind, by placing assertions about the state of the program as

comments in the code [25]. Eiffel assertions may be used for this purpose. In addition

they may be used to ensure all implementations of a polymorphic method have the same

behaviour. There are also several methods of documenting code to assist in inspection.

Soloway et al. [23] describe a documentation method for making delocalised plans

in the source code explicit. Parnas et al. [20] present a documentation system called
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the Display Method which allows portions of source code to be inspected in isolation

using the specifications of any other program fragments that may be called. Finally, we

described how tool support could assist with object-oriented code, especially with the

more dynamic properties. An automated version of Parnas et al.’s Display Method may

be one possibility, whilst another may be in the use of tools used to support maintenance,

such as the Valhalla system [27] or the maintenance suite described by Crocker and

Mayrhauser [3]. Finally, visualisation tools may be of some help, such as the static

Seesoft system [7] or the dynamic visualisation system described by De Pauw et al. [4].

We believe that this type of support is essential if inspection is to be successfully used

with the object-oriented paradigm. Lack of such support will reduce the benefits of our

most effective defect finding process.

33



RR-95-188 [EFoCS-14-95] University of Strathclyde

References

[1] E. V. Berard. Essays on Object-Oriented Software Engineering Volume 1. Prentice-

Hall, 1993.

[2] G. Booch. Object-Oriented Analysis and Design with Applications (2ed.). Ben-

jamin/Cummings, 1994.

[3] R. T. Crocker and A. Mayrhauser. “Maintenance Support Needs for Object-

Oriented Software,” Proceedings of COMPSAC ’93, pp. 63–69.

[4] W. De Pauw, R. Helm, D. Kimelman and J. Vlissides. “Visualizing the Behaviour

of Object-Oriented Systems,” Proceedings of OOPSLA ’93, pp. 326-337.

[5] A. M. Davis. “Fifteen Principles of Software Engineering,” IEEE Software, Vol.

11, No. 6, November 1994, pp. 94–101.

[6] E. P. Doolan. “Experience with Fagan’s Inspection Method,” Software - Practice

and Experience, Vol. 22, No. 2, February 1992, pp. 173–182.

[7] S. G. Eick, J. L. Steffen, E. E. Sumner Jr. “Seesoft - A Tool For Visualizing Line

Oriented Software Statistics,” IEEE Transactions on Software Engineering, Vol.

SE-18, No. 11, November 1992, pp. 957–968.

[8] M. E. Fagan. “Design and Code Inspections to Reduce Errors in Program Devel-

opment,” IBM System Journal, Vol. 15, No. 3, 1976, pp. 182–211.

[9] M. E. Fagan. “Advances in Software Inspection,” IEEE Transactions on Software

Engineering, Vol. SE-12, No. 7, July 1986, pp. 744–751.

[10] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1995.

[11] T. Gilb and D. Graham. Software Inspection. Addison-Wesley, 1993.

[12] C. Jones. “Gaps in the Object-Oriented Paradigm,” IEEE Computer, Vol. 27, No.

6, June 1994, pp. 90–91.

34



Department of Computer Science RR-95-188 [EFoCS-14-95]
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