12 research outputs found

    Design and development of a kinetic energy harvester device for oceanic drifter applications

    Get PDF
    A novel electronic energy harvester (EH) has been developed for oceanic undrogued drifter applications. First, spherical body motion simulation has been performed at sea environment in Orcaflex. Results help to understand the acceleration and forces applied on the drifter where the device will be placed. Second, the design of the EH is presented, consisting on a gyroscope pendulum system capable to transform the oscillations into rotation on a flying wheel. This rotation is converted into a DC current by a micro generator and further processed by a power management unit (PMU). Both, the generator and the PMU are characterized. Preliminary results in a water tank show that an average power of 0.22 mW can be produced. Finally, the feasibility of the proposed harvester is assessed as a backup power of a drifter using SigFox for coastal communications at low tracking rates.Postprint (author's final draft

    Design optimisation of a wireless sensor node using a temperature-based test plan

    Get PDF

    Design and testing of a kinetic energy harvester embedded into an oceanic drifter

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A novel Kinetic Energy Harvester (KEH) has been developed for powering oceanic undrogued drifters. It consists on a double pendulum system capable of transforming the wave oscillations into rotation on a flywheel. This rotation is converted into DC current by an electrical generator and further processed by a power management unit (PMU). The PMU includes a “maximum power point tracking” system to maximize energy production by the generator. An oceanic drifter has also been designed to embed the KEH and a custom-made measurement system to perform real sea tests. It counts on an Inertial Measurement Unit to study the motion of the drifter and an embedded measurement system to estimate the rotation speed of the generator and the power at both the input and output of the PMU. A Wi-Fi connection is also included for data transfer at short distances. The generator was firstly characterized at the laboratory; the drifter was then placed on a linear shaker to assess its performance. Finally, the drifter was deployed in a controlled sea area with average values of wave height and frequency of 1.43 m and 0.29 Hz, respectively. In these conditions, the drifter showed horizontal and vertical oscillations with peak-to-peak accelerations of 0.8 g and power spectra centered around 1.5 Hz and 1 Hz, respectively. As a result, the KEH generated a mean output power of 0.18 mW, with peaks of 2.5 mW.Peer ReviewedPostprint (author's final draft

    Publicacions 2010. Campus del Baix Llobregat UPC

    Get PDF
    En aquest document s'han recopilat totes les publicacions realitzades pel professorat del Campus del Baix Llobregat de la UPC durant el període comprés entre l'1 de Gener i el 31 d'Octubre de 2010.Preprin

    Desarrollo de sistemas de sensores para teleasistencia

    Full text link
    Con el paso de los años, y el envejecimiento de la población, se ha llegado a una situación en la cual hay una gran cantidad de personas dependientes, pero el número de cuidadores disponibles no es tan alto. Esto ha llevado a la búsqueda de alternativas a la hora de cuidar a esta parte de la población. Una de estas alternativas viene dada por el uso de las redes de sensores, que van a permitir a un solo cuidador monitorizar a diferentes personas al mismo tiempo de un modo mucho más cómodo, ya que ni siquiera es necesario que se encuentre en el hogar de dicha persona. En el presente Trabajo Fin de Máster se pretende diseñar y fabricar un primer prototipo a partir del cual pueda crearse una red de sensores inalámbrica, cuyo principal objetivo será el de monitorización de personas dependientes. Mediante el uso de dicha red, podrán obtenerse datos sobre lo que está ocurriendo en el hogar monitorizado (temperatura de las distintas habitaciones, humedad, ventanas abiertas…) así como detectar situaciones anómalas (el anciano se levanta de la cama durante la noche y no vuelve en un tiempo razonable). Todos estos datos son enviados a un nodo central, que es el encargado de tomar las distintas decisiones sobre el sistema y enviarlos al exterior (enviar notificaciones al cuidador si alguna medida está fuera de lo normal, pedir medidas nuevas a los sensores, etc.). Debido al uso al que pretende dedicarse el producto, habrá que tener en cuenta ciertos aspectos de cara al diseño del sistema, fundamentalmente su tamaño y sus consumos. En este Trabajo Fin de Máster se mostrará cómo se ha llevado a cabo el diseño tanto hardware como software del primer prototipo, así como las diferentes decisiones sobre este que se han ido tomando. También se mostrarán las pruebas que se han realizado sobre el sistema para comprobar su correcto funcionamiento.Over the years, and the aging of population, a situation has been reached where there is a great amount of dependant people whilst the number of available caregivers is not so big. This situation has led to seek alternatives to take care properly of this fraction of the population. One of these alternatives comes as the use of sensor networks, which lets just one caregiver monitor different people at the same time on a more comfortable way, since he would not even have to be at the person’s home. The main goal of this work is designing and making a first prototype from which a wireless sensor network can be developed, and that will be aimed to monitor dependant people. By using such network, data about what is happening at the monitored home will be obtained (temperature on the different rooms of the house, humidity, open windows…). In addition, some anomalous situations could be detected (the elder gets up during the night and does not go back to bed in a reasonable time). All this data will be sent to a central node that will take the different decisions about the system (it will send notifications to the caregiver if some of the measures are out of the ordinary range, it will order the sensors to take new measures, etc.). Because of the use the product will have, some aspects of the design will have to be taken into consideration, such as the size of the nodes or the consumption they will have. In this work, the hardware and software designs, as well as the different decisions taken for the development of the first prototype of the system will be shown. In addition, the tests conducted to check the proper operation of the system will be shown

    Runtime extension of low-power wireless sensor nodes using hybrid-storage units

    No full text
    The sensor nodes of wireless sensor networks remain inactive most of the time to achieve longer runtimes. Power is mainly provided by batteries, which are either primary or secondary. Because of its internal impedance, a significant voltage drop can appear across the battery terminals at the activation time of the node, thus preventing the extraction of all the energy from the battery. Additionally, internal losses can also be significant. Consequently, the runtime is reduced. The addition of a supercapacitor in parallel with the battery, thus forming a hybrid-storage device, has been proposed under pulsed loads to increase the power capabilities and reduce both the voltage drop and the internal losses at the battery. However, this strategy has not yet thoroughly been analyzed and tested in low-power wireless sensor nodes. This paper presents a comprehensive theoretical analysis that extends previous works found in the literature and provides design guidelines for choosing the appropriate supercapacitor. The analysis is supported by extensive experimental results. Two low-capacity (< 200 mAh) batteries were tested together with their hybrid-storage unit counterparts when using an electronic load as a pulsed current sink. The hybrid-storage units always achieved a higher runtime. One of the batteries was also tested using a sensor node. The runtime extension was 16% and 33% when connecting the hybrid-storage unit directly and through a dc–dc switching regulator to the sensor node, respectively.Peer Reviewe

    Bandwidth Based Methodology for Designing a Hybrid Energy Storage System for a Series Hybrid Electric Vehicle with Limited All Electric Mode

    Get PDF
    The cost and fuel economy of hybrid electrical vehicles (HEVs) are significantly dependent on the power-train energy storage system (ESS). A series HEV with a minimal all-electric mode (AEM) permits minimizing the size and cost of the ESS. This manuscript, pursuing the minimal size tactic, introduces a bandwidth based methodology for designing an efficient ESS. First, for a mid-size reference vehicle, a parametric study is carried out over various minimal-size ESSs, both hybrid (HESS) and non-hybrid (ESS), for finding the highest fuel economy. The results show that a specific type of high power battery with 4.5 kWh capacity can be selected as the winning candidate to study for further minimization. In a second study, following the twin goals of maximizing Fuel Economy (FE) and improving consumer acceptance, a sports car class Series-HEV (SHEV) was considered as a potential application which requires even more ESS minimization. The challenge with this vehicle is to reduce the ESS size compared to 4.5 kWh, because the available space allocation is only one fourth of the allowed battery size in the mid-size study by volume. Therefore, an advanced bandwidth-based controller is developed that allows a hybridized Subaru BRZ model to be realized with a light ESS. The result allows a SHEV to be realized with 1.13 kWh ESS capacity. In a third study, the objective is to find optimum SHEV designs with minimal AEM assumption which cover the design space between the fuel economies in the mid-size car study and the sports car study. Maximizing FE while minimizing ESS cost is more aligned with customer acceptance in the current state of market. The techniques applied to manage the power flow between energy sources of the power-train significantly affect the results of this optimization. A Pareto Frontier, including ESS cost and FE, for a SHEV with limited AEM, is introduced using an advanced bandwidth-based control strategy teamed up with duty ratio control. This controller allows the series hybrid’s advantage of tightly managing engine efficiency to be extended to lighter ESS, as compared to the size of the ESS in available products in the market

    Contributions to the design of energy harvesting systems for autonomous sensors in low power marine applications

    Get PDF
    Tesi en modalitat de compendi de publicacionsOceanographic sensor platforms provide biological and meteorological data to help understand changes in marine environment and help to preserve it. Lagrangian drifters are autonomous passive floating platforms used in climate research to obtain surface marine data. They are low-cost, versatile, easy-to-deploy and can cover large extensions of the ocean when deployed in group. These deployments can last for years, so one of the main design challenges is the autonomy of the drifter. Several energy harvesting (EH) sources are being explored to reduce costs in battery replacement maintenance efforts such as solar panels. Drifters must avoid the impact of the wind because this may compromise proper surface current tracking and therefore, should ideally be mostly submerged. This interferes with the feasibility of solar harvesting, so other EH sources are being explored such as the oscillatory movement of the drifter caused by ocean waves. Wave energy converters (WEC) are the devices that turn this movement into energy. The motion of the drifter can principally be described by 3 oscillatory degrees of freedom (DoF); surge, heave and pitch. The heave motion includes the buoyancy’s response of the drifter, which can be explained by a mass-spring-damping model. By including the wave’s hydrodynamic load in this model, it is converted into a nonlinear system whose frequency response includes the wave’s frequency and the natural frequencies from the linear system. A smart option to maximize the captured energy is to design the inner WEC with a natural frequency similar to that of the drifter's movement. In this thesis, a 4 DoF model is obtained. This model includes the heave, the surge and the pitch motion of the drifter in addition to the inner pendulum motion relative to the buoy. Simultaneously, different pendulum-type WECs for small-size oceanic drifters are proposed. One of these converters consists of an articulated double-pendulum arm with a proof mass that generates energy through its relative motion with the buoy. Different experimental tests are carried out, with a prototype below 10 cm in diameter and 300 g of total mass, proving the capability of harvesting hundreds of microwatts in standard sea conditions EH sources require an additional power management unit (PMU) to convert their variable output into a constant and clean source to be able to feed the sensor electronics. PMUs should also ensure that the maximum available energy is harvested with a maximum power point tracking (MPPT) algorithm. Some sources, such as WECs, require fast MPPT as its output can show relatively rapid variations. However, increasing the sampling rate may reduce the harvested energy. In this thesis, this trade-off is analyzed using the resistor-based fractional open circuit voltage-MPPT technique, which is appropriate for low-power EH sources. Several experiments carried out in marine environments demonstrate the need for increasing the sampling rate. For this purpose, the use of a commercial PMU IC with additional low-power circuitry is proposed. Three novel circuits with a sampling period of 60 ms are manufactured and experimentally evaluated with a small-scale and low-power WEC. Results show that these configurations improve the harvested energy by 26% in comparison to slow sampling rate configurations. Finally, an EH-powered oceanographic monitoring system with a custom wave measuring algorithm is designed. By using the energy collected by a small-size WEC, this system is capable of transmitting up to 22 messages per day containing data on its location and measured wave parameters.Les plataformes d’observació oceanogràfiques integren sensors que proporcionen dades físiques i biogeoquímiques de l’oceà que ajuden a entendre canvis en l’entorn marí. Un exemple d’aquestes plataformes són les boies de deriva (drifters), que són dispositius autònoms i passius utilitzats en l’àmbit de la recerca climàtica per obtenir dades in-situ de la superfície marina. Aquests instruments són de baix cost, versàtils, fàcils de desplegar i poden cobrir grans superfícies quan s’utilitzen en grup. L’autonomia és un dels principals desafiaments en el disseny de drifters. Per tal d’evitar els costos en la substitució de bateries, s’estudien diferents fonts de captació d’energia com per exemple la solar. Els drifters utilitzats per l’estudi dels corrents marins superficials han d’evitar l’impacte directe del vent ja que afecta al correcte seguiment de les corrents i, per tant, cal que estiguin majoritàriament submergides. Això compromet la viabilitat de l’energia solar, fet que requereix l’estudi d’altres fonts de captació com el propi moviment de la boia causat per les onades. Els convertidors d’energia de les onades (WEC, wave energy converters) compleixen aquesta funció. El moviment dels drifters pot explicar-se bàsicament a través de 3 graus de llibertat oscil·latoris: la translació vertical i la horitzontal i el balanceig. La translació vertical inclou la flotabilitat del dispositiu, que es pot descriure mitjançant el model massamolla- amortidor. Incloure la càrrega hidrodinàmica de l’onada en aquest model el converteix en un sistema no lineal amb una resposta freqüencial que inclou la de l’onada i les naturals del sistema lineal. Una opció per maximitzar l’energia captada és dissenyar el WEC amb una freqüència natural similar a la del moviment de la boia. En aquesta tesis es proposa un model de 4 graus de llibertat per a l’estudi del moviment del drifter. Aquest inclou els 3 graus de llibertat de la boia i el moviment del pèndul relatiu a ella. En paral·lel, es proposen diferents WEC del tipus pendular per drifters de reduïdes dimensions. Un d’aquests WEC consisteix en un doble braç articulat amb massa flotant que genera energia a través del seu moviment relatiu al drifter. S’han dut a terme diferents proves experimentals amb un prototip inferior a 10 cm de diàmetre i 300 g de massa, les quals demostren la seva capacitat de captar centenars de microwatts en condicions marines estàndard. Utilitzar fonts de captació d’energia requereix incloure una unitat gestora de potència (PMU, power management unit) per tal de convertir la seva sortida variable en una font constant i neta que alimenti l’electrònica dels sensors. Les PMU també tenen la funció d’assegurar que es recull la màxima energia mitjançant un algoritme de seguiment del punt de màxima potència. Els WEC requereixen un seguiment d’aquest punt ràpid perquè la seva sortida consta de variacions relativament ràpides. Tanmateix, augmentar la freqüència de mostreig pot reduir l’energia captada. En aquesta tesi, s'analitza a fons aquesta relació utilitzant la tècnica de seguiment de la tensió en circuit obert fraccionada basada en resistències, que és molt adequada per a fonts de baixa potència. Diversos experiments realitzats en el medi marí mostren la necessitat d'augmentar la freqüència de mostreig, així que es proposa l'ús de PMU comercials amb una electrònica addicional de baix consum. S’han fabricat tres circuits diferents amb un període de mostreig de 60 ms i s’han avaluat experimentalment en un WEC de reduïdes dimensions. Els resultats mostren que aquestes configuracions milloren l'energia recollida en un 26% en comparació a PMU amb mostreig més lent. Finalment, s’ha dissenyat un sistema autònom de monitorització marina que inclou un algoritme de mesura d'ones propi. Aquest sistema és capaç de transmetre fins a 22 missatges al diaPostprint (published version

    Piezoelectric energy harvesting utilizing metallized poly-vinylidene fluoride (PVDF)

    Get PDF
    The primary objective of the enclosed thesis was to identify and develop a viable concept for an autonomous sensor system that could be implemented onto the surface of a road. This was achieved by an analysis of combinations of materials, sensing methods, power sources, microsystems, energy storage options, and wireless data transmission systems; the sub-systems required for an autonomous sensor. Comparison of sensing methods for the application of an on-road, autonomous sensor yielded a piezoelectric material as the ideal choice. A 52μm thin film of poly- vinylidene fluoride (PVDF) was chosen and coated with Ag electrodes on both sides.This was due to many constraints imposed by the intended environment including: physical, electrical, thermal, and manufacturing characteristics. One major hurdle in providing an autonomous sensor is the power source for the sensing, encoding, and transmission of data. Research involved determining the option best suited for providing a power source for the combination of sensors and wireless telemetry components. An energy budget of 105μJ was established to determine an estimate of energy needed to wirelessly transmit data with the selected RF transmitter. Based on these results, several candidates for power sources were investigated, and a piezoelectric energy harvesting system was identified to be the most suitable. This is an ideal case as the sensor system was already based on a piezoelectric material as the sensing component. Thus, a harvesting circuit and the sensor can be combined into one unit, using the same material. By combining the two functions into a single component, the complexity, cost and size of the unit are effectively minimized. In order to validate the conclusions drawn during this sensor system analysis and conceptual research, actual miniaturized systems were designed to demonstrate the ability to sense and harvest energy for the applications in mind. This secondary aspect of the research was a proof-of-concept, developing two prototype energy harvesting/sensing systems. The system designed consisted of a PVDF thin film with a footprint of 0.2032 m x 0.1397m x 52μm. This film was connected to an energy-harvesting prototype circuit consisting of a full-wave diode bridge and a storage capacitor. Two prototypes were built and tested, one with a 2.2μF capacitor, the other with a 0.1mF capacitor. The film was first connected to an oscilloscope and impulsed in an open circuit condition to determine the sensor response to a given signal. Secondly, the energy harvesting circuits were tested in conjunction with the film to test the energy supply component of the system. Lastly, the film and both energy-harvesting systems underwent full scale testing on a road using a vehicle as the stimulus. Both systems showed excellent rectification of the double polarity input with an evident rise in voltage across the capacitor, meaning energy was harvested. Typical results from the tests yielded 600-800mV across the 2.2μF capacitor, harvesting only a few μJ of energy. The 0.1mF capacitor system yielded approximately 4V per vehicle axle across the capacitor, harvesting 400-800μJ of energy. This equates to 4-8 times the required energy for wireless data transmission of the measurement data, which was estimated by other research groups to be on the order of 105μJ for the given system, and therefore proves the concept both, for bench-top and full-scale on-road experiments under controlled laboratory conditions
    corecore