
Research Article
An Improved Task Scheduling Algorithm for Intelligent Control
in Tiny Mechanical System

Jialiang Wang, Hai Zhao, Yuanguo Bi, Xingchi Chen, Ruofan Zeng, and Yu Wang

College of Information Science & Engineering, Northeastern University, Shenyang 110819, China

Correspondence should be addressed to Yuanguo Bi; biyuanguo@ise.neu.edu.cn

Received 28 February 2014; Accepted 1 April 2014; Published 22 April 2014

Academic Editor: Weichao Sun

Copyright © 2014 Jialiang Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wireless sensor network (WSN) has been already widely used in many fields in terms of industry, agriculture, and military,
and so forth. The basic composition is WSN nodes that are capable of performing processing, gathering information, and
communicating with other connected nodes in the network. The main components of a WSN node are microcontroller,
transceiver, and some sensors. Undoubtedly, it also can be added with some actuators to form a tiny mechanical system.
Under this case, the existence of task preemption while executing operating system will not only cost more energy for
WSN nodes themselves, but also bring unacceptable system states caused by vibrations. However for these nodes, task I/O
delays are inevitable due to the existence of task preemption, which will bring extra overhead for the whole system, and
even bring unacceptable system states caused by vibrations. This paper mainly considers the earliest deadline first (EDF)
task preemption algorithm executed in WSN OS and proposes an improved task preemption algorithm so as to lower the
preemption overhead and I/O delay and then improve the system performance. The experimental results show that the
improved task preemption algorithm can reduce the I/O delay effectively, so the real-time processing ability of the system is
enhanced.

1. Introduction

WSN consists of spatially distributed autonomous sensors
to monitor physical or environmental conditions, such as
temperature, sound, and pressure.TheseWSN nodes cooper-
atively pass their data through the network to amain location.
Energy issue and system performance of WSN have always
been considered because WSN nodes always work in some
harsh environment. Energy is the scarcest resource for WSN
nodes, and it finally determines the lifetime ofWSNs. Energy
consumption of the sensor nodes should be minimized
since their limited energy resource determines their lifetime
[1]. For the WSN OS used in some practical application
of connecting some actuators, the task preemption will
inevitably bring I/O delay and even unacceptable system
states caused by the vibrations [2]. Nowadays, while WSN
nodes formed a tiny mechanical system by adding actuators,
how to decrease the system extra overhead and improve the
system performance caused by the vibrations becomes very
important.

Currently, there are many researches about improving
system performance for WSN nodes; for example, [3] used
error and kernel density approach of sleeping nodes in
cluster-based WSNs; [4] used low energy online self-test of
embedded processor in dependable WSN nodes. Reference
[5] studied low-energy symmetric key distribution in WSN;
[6] used a dynamic programming approach for QoS-aware
power management in wireless video sensor. Reference [7]
used virtual backbone scheduling to maximize the lifetime
of WSNs. Reference [8] used hybrid-storage units to extend
runtime of low-power WSN nodes. Reference [9] studied
distributed tracking with energy management in wireless
sensor networks. Reference [10] used joint routing and sleep
scheduling to maximize lifetime of WSN. Thus it can be
seen that most solutions are implemented by the way of
utilizing extra resources. But the innovation for this paper is
to improve the lifetime of WSN nodes in terms of real-time
operating system itself and the task scheduling algorithm to
be exact. The decrease of system overhead and the improve-
ment of system performance are implemented by reducing

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 307869, 8 pages
http://dx.doi.org/10.1155/2014/307869



2 Mathematical Problems in Engineering

543210
Time

109876

Preemption!Preemption! Preemption!Preemption!

Task T1

Task T2

Task T3

J1,1 J1,2 J1,3 J1,4 J1,5

J2,1 J2,2 J2,3 J2,4

J3,1 J3,1 J3,1 J3,2J3,2 J3,2

(a)

543210
Time

109876

Preemption ! Preemption !

Task T1

Task T2

Task T3
J3,1 J3,1 J3,2J3,2

J1,1 J1,2 J1,3 J1,4 J1,5

J2,1 J2,2 J2,3 J2,4

(b)

Figure 1: Execution case of EDF task scheduling before and after optimization.

the overhead of task preemptions. The most important is
that this method can be combined with all of the others to
achieve better system performance in tinymechanical system
composed of WSN nodes, as this improvement is focused on
the real-time operating system itself.

2. EDF Task Scheduling Analysis

Compared with fixed priority task scheduling algorithm,
dynamic priority algorithm allocates different priorities to
every period task, so the task priority is constantly changing.
EDF task scheduling algorithm has already been widely used
as a classic dynamic priority scheduling algorithm in WSN
[11].

EDF task scheduling algorithm assigns tasks with dif-
ferent priority according to execution deadline of task, the
earlier task execution deadline, and the higher task priority.
In a word, system allocates the highest priority to task having
the earliest task execution.

2.1. Judging Whether the System Is Schedulable. Supposing
that system has 𝑛 independent and preemptive period tasks
𝜏
𝑖
(1 ≤ 𝑖 ≤ 𝑛). 𝐸

𝑖
, 𝐷
𝑖
, and 𝑇

𝑖
represent the execution

time, relative deadline, and period of task 𝜏
𝑖
, respectively.

The sufficient condition for EDF task scheduling algorithm
in single processor is given by

𝑛

∑

𝑖=1

𝐸
𝑖

min (𝐷
𝑖
, 𝑇
𝑖
)

≤ 1. (1)

While task 𝜏
𝑖
(1 ≤ 𝑖 ≤ 𝑛) has max block time 𝑏

𝑖
, the above

sufficient condition will be expressed as
𝑛

∑

𝑖=1

𝐸
𝑖
+ 𝑏
𝑖

min (𝐷
𝑖
, 𝑇
𝑖
)

≤ 1. (2)

If this formula can be met for all tasks, the system is
regarded as schedulable. The all below discussions are all
based on formula (2).

2.2. Task PreemptionOptimization about EDFTask Scheduling
Algorithm. Use the attribute set (𝑇

𝑖
, 𝐸
𝑖
) to describe a period

task, where 𝑇
𝑖
is the period of task and 𝐸

𝑖
is the execution

time of the task, while using 𝐽
𝑚,𝑛

to describe one specific job
in a task, which means that the task 𝑚 has 𝑛 jobs totally. For
example, supposing that there are three jobs in the task 𝑇

1
,

the first one is 𝐽
1,1
, the second one is 𝐽

1,2
, and the last one is

𝐽
1,3
.
Suppose that there are three period tasks 𝑇

1
(2, 0.8), 𝑇

2
(3,

0.4), and 𝑇
3
(5, 2.1) in the single processor system. For these

three tasks, their super period is 30.
As Figure 1(a) shows, task 𝑇

1
, 𝑇
2
, and 𝑇

3
are all released

at time 0, but their execution deadline is 2, 3, and 5, so task
𝑇
1
has the highest priority and it begins to run firstly. At

time 0.8, task 𝑇
2
begins to run as it has higher priority than

task 𝑇
3
. Till time 1.2, task 𝑇

3
begins to run. While at time

2, task 𝑇
1
is released again, task 𝑇

3
is preempted by task

𝑇
1
then. Figure 1(a) shows the whole execution case before

optimization for these three tasks during the time period
[0, 10].

Figure 1(a) shows that the beginning time for jobs on
task 𝑇

1
, 𝑇
2
, and 𝑇

3
is {0, 2, 4.5, 6, 8}, {0.8, 3, 6.8, 9.4}, and

{1.2, 2.8, 3.4, 5.3, 7.2, 8.8}, respectively. We can see from the
results that the jobs of task 𝑇

3
are preempted 4 times totally,

and each time point of preemption is shown as in Figure 1(a).
Figure 1(b) shows the execution case after optimization

during the time period [0, 10]; the beginning time for
jobs of tasks 𝑇

1
, 𝑇
2
, and 𝑇

3
becomes {0, 2.2, 4.5, 6, 8.6},

{0.8, 3, 6.8, 9.4}, and {1.2, 3.4, 5.3, 7.2}, respectively. Under
this case, task 𝑇

3
is preempted 2 times totally, and in the

meanwhile, task 𝑇
1
and 𝑇

2
do not exceed their deadline. This



Mathematical Problems in Engineering 3

is implemented by postponing the execution of some jobs for
task 𝑇

1
and 𝑇

2
, which means that nonpreemptive scopes are

added for some jobs in task 𝑇
3
, and the below discussion will

describe the process of implementation in detail.

2.3. Extra Overhead Caused by Task Preemption. Pree
𝑖,𝑢

is a
task preemptive set, which describes that task 𝜏

𝑖
is executed 𝑢

times totally. The number of elements for Pree
𝑖,𝑢

is signed as
𝑤
𝑖,𝑢
, which means the times that task 𝜏

𝑖
is preempted totally,

so the total amount for all these tasks are given by

𝑁pree (𝐼, 𝑡) =
𝑛−1

∑

𝑖=1

⌈𝑡/𝑇𝑖⌉−1

∑

𝑢=0

𝑤
𝑖,𝑢
. (3)

If a low priority task is preempted by another one, then
the extra cost for the preemption is 𝐶pree. While there is no
preemption exists and then the extra cost is 𝐶nonpree, for any
task, no matter whether it is preempted, the total extra cost
for the system is 𝐶pree − 𝐶nonpree [11].

If the phase position is 𝐼 for the real-time task set
𝜏
0
, . . . , 𝜏

𝑛−1
, the extra overhead caused by task preemption

during the time period [0, 𝑡] is described as

𝑂preempt (𝐼, 𝑡) =
𝑛−1

∑

𝑖=1

⌈𝑡/𝑇𝑖⌉−1

∑

𝑢=0

𝑤
𝑖,𝑢
⋅ (𝐶pree − 𝐶nonpree) . (4)

So we can know that the task preemption will bring extra
overhead for the whole system. As saving energy is very
important for WSN nodes that formed a tiny mechanism
system, how to reduce the task preemption becomes very
necessary.

3. Analysis of I/O Delay for
EDF Task Scheduling

For the release time of all jobs in set 𝑆, there exists a max I/O
delay for certain job [11, 12].

3.1. Analysis of I/O Delay Caused by Task Preemption. Sup-
posing that allocated preemptive threshold PT

𝑖
equals 𝐸

𝑖

and ignoring the restrain of preemptive threshold time, then
according to the analysis of time requirement, the max I/O
delay for preemptive task scheduling of 𝜏

𝑖
is given by

𝐼𝑂𝐿
𝑖 (
𝑎) = max {𝐸

𝑖
, 𝐿
𝑖 (
𝑎) − 𝑎} , (5)

where 𝑎 is the release time of job; then,𝐿
𝑖
(𝑎) can be calculated

by

𝐿
(0)

𝑖
(𝑎) = 0,

𝐿
(𝑚+1)

𝑖
(𝑎) = 𝑊

𝑖
(𝑎, 𝐿
(𝑚)

𝑖
(𝑎)) + (1 + ⌊

𝑎

𝑇
𝑖

⌋)𝐶
𝑖
.

(6)

While 𝐿(𝑚+1)
𝑖

(𝑎) = 𝐿
(𝑚)

𝑖
(𝑎), the above iterative calculation

will end.

For task 𝜏
𝑖
, while the release time of its one job is 𝑎, the

job load of higher priority can be represented as

𝑊
𝑖 (
𝑎, 𝑡) = ∑

𝑗 ̸= 𝑖

𝐷𝑗≤𝑎+𝐷𝑖

min{⌈ 𝑡

𝑇
𝑗

⌉ , 1 + ⌊

𝑎 + 𝐷
𝑖
− 𝐷
𝑗

𝑇
𝑗

⌋} ⋅ 𝐸
𝑗
.

(7)

A preemptive threshold PT
𝑖
(0 ≤ PT

𝑖
≤ 𝐸
𝑖
) is assigned

to task 𝜏
𝑖
, and the I/O delay should be calculated by the

preemptive part and nonpreemptive part, respectively, as
below [11].

The max I/O delay of preemptive part for task 𝜏
𝑖
is given

by

𝐼𝑂𝐿
pree
𝑖

(𝑎) = max {PT
𝑖
, 𝐿

pree
𝑖

(𝑎) − 𝑎} 𝑖 = 1, 2, . . . , 𝑛; (8)

𝐿
pree
𝑖

(𝑎) = 𝑊
𝑖
(𝑎, 𝐿

pree
𝑖

(𝑎))

+ ⌊

𝑎

𝑇
𝑖

⌋ ⋅ 𝐸
𝑖
+ PT
𝑖
+ max
𝐷𝑗>𝐷𝑖

(𝐸
𝑗
− PT
𝑗
) ,

(9)

where 𝐿pree
𝑖

(𝑎) is the max value of formula (9), and it can be
calculated by the initialization value 𝐿pree(0)

𝑖
= 0.

The max I/O delay of nonpreemptive part for task 𝜏
𝑖
is

represented as

𝐼𝑂𝐿
nonp
𝑖

= (𝐸
𝑖
− PT
𝑖
) 𝑖 = 1, 2, . . . , 𝑛; (10)

so the max I/O delay for task 𝜏
𝑖
based on EDF scheduling

algorithm is described as

𝐼𝑂𝐿
max
𝑖

= 𝐼𝑂𝐿
pree
𝑖

(𝑎) + 𝐼𝑂𝐿
nonp
𝑖

= max {PT
𝑖
, 𝐿

pree
𝑖

(𝑎) − 𝑎} + (𝐸𝑖
− PT
𝑖
)

𝑖 = 1, 2, . . . , 𝑛.

(11)

While PT
𝑖
≥ 𝐿

pree
𝑖

(𝑎) − 𝑎, then

𝐼𝑂𝐿
max
𝑖

= PT
𝑖
+ (𝐸
𝑖
− PT
𝑖
) = 𝐸
𝑖
. (12)

Under this case, the I/O delay is a constant value, and it is
irrelevant to task attribute.

While PT
𝑖
< 𝐿

pree
𝑖

(𝑎) − 𝑎,

𝐼𝑂𝐿
max
𝑖

= 𝐼𝑂𝐿
pree
𝑖

(𝑎) + 𝐼𝑂𝐿
nonp
𝑖

= 𝐿
pree
𝑖

(𝑎) − 𝑎 + (𝐸𝑖
− PT
𝑖
)

= 𝑊
𝑖
(𝑎, 𝐿

pree
𝑖

(𝑎)) + ⌊

𝑎

𝑇
𝑖

⌋ ⋅ 𝐸
𝑖
+ PT
𝑖

+ max
𝐷𝑗>𝐷𝑖

(𝐸
𝑗
− PT
𝑗
) − 𝑎 + (𝐸

𝑖
− PT
𝑖
)

= 𝑊
𝑖
(𝑎, 𝐿

pree
𝑖

(𝑎)) + (1 + ⌊

𝑎

𝑇
𝑖

⌋) ⋅ 𝐸
𝑖

+ max
𝐷𝑗>𝐷𝑖

(𝐸
𝑗
− PT
𝑗
) − 𝑎.

(13)

From the above formulas, we can know that PT
𝑖
is the

main factor for 𝐼𝑂𝐿max
𝑖

, and the next section will describe
how to assign PT

𝑖
for jobs.



4 Mathematical Problems in Engineering

(1) Input: 𝑛, 𝑇
𝑖
, 𝐸
𝑖
, 𝐷
𝑖
(𝑖 = 1, 2, . . . , 𝑛);

(2) PT
1

min∗ = 𝐸
1
, and allocating preemptive threshold PT1 = 𝐸

1
to task 𝜏

1
.

(3) Initializing 𝑖 = 1;
(4) Calculating 𝑏

𝑖

∗ by formula (19);
(5) Assigning 𝑏

𝑖+1

∗
, 𝑏
𝑖+2

∗
, . . . , 𝑏

𝑛

∗ to 𝑏
𝑖

∗ separately;
(6) 𝑖 = 𝑖 + 1, returning to Step (4) till all 𝑏

𝑖

∗ are calculated.
(7) for 𝑖 = 1, 2, . . . , 𝑛,
(8) Obtaining all preemptive time threshold by formula (20) and (21).
(9) endfor
(10) for tasks 𝜏

𝑖
(𝑖 = 1, 2, . . . , 𝑛)

(11) Calculating max 𝐼/𝑂 delay 𝐼𝑂𝐿
𝑖

max, and min 𝐼/𝑂 delay min 𝐼/𝑂 delay.
(12) endfor
(13) Output: PT1,PT2, . . . ,PT𝑛, 𝐼𝑂𝐿 𝑖

max and 𝐼𝑂𝐿
𝑖

min.

Algorithm 1

3.2. Improved Task Preemption Scheduling Algorithm. In the
EDF task scheduling algorithm, task is indexed by the relative
time slice. For task 𝜏

𝑖
, the bigger the index, the bigger relative

time slice. So only the task with big relative time slice can
block the task with smaller one and the time requirement
of preemptive part for task 𝜏

𝑖
having below restriction of

preemptive time threshold [11]. Consider

𝑤
pree
𝑖

(𝑎,PT
1
,PT
2
, . . . ,PT

𝑛
)

= 𝑊
𝑖
(𝑎, 𝐿

pree
𝑖

(𝑎)) + ⌊

𝑎

𝑇
𝑖

⌋𝐸
𝑖
+ PT
𝑖
+ 𝑏
𝑖
,

𝑏
𝑖
= max
𝐷𝑗>𝐷𝑖

(PT
𝑗
) .

(14)

The max execution time of nonpreemptive part is 𝐸
𝑗
−

PT
𝑗
for task 𝜏

𝑖
, so the necessary condition that task can be

schedulable is there is existing 𝑎 (𝑎 ∈ 𝑆), which meets the
below formula:

𝑤
pree
𝑖

[𝑎,PT
1
,PT
2
, . . . ,PT

𝑛
] + 𝐸
𝑖
− PT
𝑖
≤ 𝑎 + 𝐷

𝑖
(15)

as 𝑆 is the detecting set, and it is given by

𝑆 =

𝑛

⋃

𝑝=1

𝑆
𝑝
,

𝑆
𝑝
= {𝐷

𝑝
+ 𝑘𝑇
𝑝
− 𝐷
𝑖
, 𝑘 ∈ 𝑁,

⌈

𝐷
𝑖
− 𝐷
𝑝

𝑇
𝑝

⌉ ≤ 𝑘 < ⌈

𝐿 + 𝐷
𝑖
− 𝐷
𝑝

𝑇
𝑝

⌉} ,

(16)

where 𝑎 ∈ 𝑆, and it meets the following formula:
𝑛max
𝑗=𝑖+1

(𝐸
𝑗
− PT
𝑗
)

≤ 𝑎 + 𝐷
𝑖
−𝑊
𝑖
(𝑎, 𝐿

pree
𝑖

(𝑎)) + ⌊

𝑎

𝑇
𝑖

⌋𝐸
𝑖
+ PT
𝑖
+ 𝑏
𝑖
,

𝑏
𝑖
= max
𝐷𝑗>𝐷𝑖

(𝐸
𝑗
− PT
𝑗
) .

(17)

The necessary and sufficient condition for EDF task
scheduling is described as

𝑛

∑

ℎ=1

𝐸
ℎ
+ 𝑏
𝑖

min (𝐷
ℎ
, 𝑇
ℎ
)

≤ 1,

𝑏
𝑖
= max
𝐷𝑗>𝐷𝑖

(𝐸
𝑗
− PT
𝑗
) .

(18)

Then 𝑏
𝑖
can be calculated by

𝑏
𝑖
≤ min (𝐷

𝑖
, 𝑇
𝑖
)(1 −

𝑛

∑

ℎ=1

𝐸
ℎ

min (𝐷
ℎ
, 𝑇
ℎ
)

) . (19)

To make the task 𝜏
𝑖
schedulable, the min value of PT

𝑖+1
is

given by

PTmin
𝑖+1

= 𝐸
𝑖+1

−min (𝐷
𝑖
, 𝑇
𝑖
) ⋅ (1 −

𝑛

∑

ℎ=1

𝐸
ℎ

min (𝐷
ℎ
, 𝑇
ℎ
)

) .

(20)

So to make all tasks schedulable, the min value of PT
𝑖+1

is
represented as

PTmin∗
𝑖+1

=

𝑖max
𝑗=1

(PTmin
𝑗+1

) . (21)

From the above analyses, system allocates the PT
1

=

PTmin∗
1

= 𝐸
1
to the task 𝜏

1
that has the smallest relative

deadline. The PT value of other jobs will also be allocated by
formula (21).

The system obtains block time 𝑏
𝑖
for every task and

calculates threshold of tasks whose relative time slices are
larger than PT

𝑗
according to 𝑏

𝑖
and then allocates threshold

to task 𝑖 = 2, 3, . . . , 𝑛 by Algorithm 1.
Algorithm 1 implements an optimization allocation of

preemptive time threshold for each job. From the above
formula (18) and (19), we can know that the time complexity
of this algorithm is 𝑂(𝑛).

TID = {tid
1
, tid
2
, . . . , tid

𝑁
} which corresponds to task

release time. If several tasks are released at the same time, then
the system uses the task TID having the highest priority.



Mathematical Problems in Engineering 5

(1) Input: 𝑛, 𝛽, 𝑇
𝑖
, 𝐸
𝑖
, 𝜑
𝑖
(𝑖 = 1, 2, . . . , 𝑛);

(2) Initializing 𝜉
𝑖
= 0; 𝑝𝑟𝑒𝑒

𝑖
(𝛽) = 0, (𝑖 = 1, 2, . . . , 𝑛); 𝑝𝑟𝑒𝑒 (𝛽) = 0;

(3) Constructing TID = {𝑡𝑖𝑑
1
, 𝑡𝑖𝑑
2
, . . . , 𝑡𝑖𝑑

𝑁
} and Set 𝑆(𝑟) = {𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑁
}; // N

≤

𝑛

∑

𝑖=1

⌊

𝜏 − 𝜑
𝑖

𝑇
𝑖

⌋ + 𝑛

(4) for 𝑘 = 1 to𝑁;
(5) Detecting release time of all tasks;
(6) 𝑡 = 𝑟

𝑘
;𝑚 = 𝑡𝑖𝑑

𝑘
;

(7) if 𝑠
𝑚
(𝑡) − 𝑠

𝑚
(𝜉
𝑚
) ≤ 0 then

(8) Ending this loop, and detecting next release time;
(9) endif
(10) if 𝑠

𝑛
(𝑡) − 𝑠

𝑛
(𝜉
𝑛
) > 0 then

(11) Refreshing 𝜉
𝑖
= 𝑡 (𝑖 = 𝑚,𝑚 + 1, . . . , 𝑛);

(12) Ending this loop, and detecting next release time;
(13) endif
(14) System finds the index 𝜆 = 𝑖 in𝑚 + 1,𝑚 + 2, . . . , 𝑛, and makes 𝑠

𝑖−1
(𝑡) − 𝑠

𝑖−1
(𝜉
𝑖−1
) > 0 and

𝑠
𝑖
(𝑡) − 𝑠

𝑖
(𝜉
𝑖
) ≤ 0;

(15) if 𝑠
𝜆
(𝑡) − 𝑠

𝜆
(𝜉
𝜆
) ̸= 0 then

(16) 𝑝𝑟𝑒𝑒
𝜆
(𝛽) = 𝑝𝑟𝑒𝑒

𝜆
(𝛽) + 1;

(17) endif
(18) Refreshing 𝜉

𝑖
= 𝑡 (𝑖 = 𝑚,𝑚 + 1, . . . , 𝜆 − 1);

(19) endfor
(20) Output: 𝑝𝑟𝑒𝑒

𝑖
(𝛽), (𝑖 = 1, 2, . . . , 𝑛); the amount of task 𝑖 is preempted

𝑝𝑟𝑒𝑒 (𝛽) = ∑
𝑛

𝑖=1
𝑝𝑟𝑒𝑒
𝑖
(𝛽); the amount of all preemptions

Algorithm 2

At any given time 𝑡, 𝑠
𝑖
(𝑡) = 𝑡 − ∑

𝑖

𝑘=1
⌈(𝑡 − 𝜑

𝑘
)/𝑇
𝑘
⌉ ⋅ 𝐸
𝑘
is

used to express the time difference between system supplying
and finishing the all jobs whose priority is no less than job 𝑖
during time period [0, 𝑡).

For any one task set based on EDF task scheduling algo-
rithm, system can calculate the amount of task preemption
by task attribute during the time period [0, 𝛾] according to
Algorithm 2.

The above algorithms describe the implementation of
postponing the execution of some jobs for some tasks; at
the meanwhile, nonpreemptive scope is added for some jobs
in others tasks, and the below discussion will describe the
experiments about the performance test.

4. Experimental Platform

In order to test the performance of the improved task
scheduling algorithm, we used the hardware platform of
Webit&NEU [13] and its operating system Webit&NEU OS
which were implemented by our China Liaoning Province
Embedded Technique Key Laboratory.

4.1. Hardware Platform. Webit&NEU (Atmega128L Proces-
sor) uses the basic structure of Webit2.0. It can collect and
handle the data collected from the CC2520 and store the core
data to data memory.

Webit2.0 (AT90S8515 Processor) is an embedded Internet
device that has implemented the function about making
the standard industry device that can access the Internet.
Webit2.0 has successfully been developed by our China
Liaoning Province Embedded Technique Key Laboratory

and has been manufactured by our China Shenyang Neu-
Era Information Technology Stock CO., LTD. The most
important is that Webit2.0 has also achieved the China’s
product patent (numbers ZL 00 2 52482.1 andZL01 2 29725.9)
[14].

4.2. Software Platform. A real-time operating system must
have the ability to respond to external events fast. In order
to coordinate and execute tasks effectively, Webit&NEU OS
system provides the following services: interrupt handlers,
intertask communication facilities, task synchronization,
internal memory management, timing services, task priority
assignment, and so on as Table 1 shows [15, 16]. Webit&NEU
OS supports up to 16 tasks, which is committed to achieve
low cost application in the IoT. These tasks have 8 different
priorities of 0–7.The bigger the value, and higher the priority.

All of these functions implemented by the unique design
of system call can easily execute real-time applications. Sys-
tem call is a program supported to user by operating system,
while users need to implement certain system function; then,
what they need to do is to call the accordingly system call in
the application program; thus, it is very convenient for users
to use the system kernel.

All the system calls arewritten inAVRassembly language.
One of the important advantage forAVRassembly language is
that it can flexibly and easilymanage a certain storage location
in memory, even its certain bit of the storage location, so
system can effectively handle task, interruption, message,
timing, and so on.

All of these functions can easily implement real-time
applications, so the Webit&NEU OS system can well be



6 Mathematical Problems in Engineering

Table 1: The structure of Webit&NEU OS kernel.

Function module Implementation of system calls

(a) Task management services
(i) CREATE TASK: Creating and scheduling a system task dynamically.
(ii) DELETE TASK: Deleting a specific system task.
(iii) GET FUNCTION ID: Obtaining task’s function ID (00H to 0FFH).
(iv) SUSPEND TASK: Suspending a task of being executed.

(b) Intertask communication services
(i) ALLOCATE: Allocating buffer space where a task creates a message for sending.
(ii) SENDMESSAGE: Sending a message to the specific destination.
(iii) WAIT MESSAGE: Causing a task to wait for receiving a message.
(iv) DEALLOCATE: Returning a buffer allocated to the system buffer.

(c) Internal memory management services
(i) GET MEMORY: Getting the address of a block of internal memory with specific
length is currently available in the system.
(ii) RELESE MEMORY: Returning a block of memory of specific length to the system
memory pool.

(d) Interrupt-handling services
(i) DISABLE INTERRUPT: Disabling specific interrupts.
(ii) ENABLE INTERRUPT: Reenabling disabled interrupts.
(iii) SYNCHRONIZE: Synchronizing tasks with interrupts.

(e) Timing services (i) SET INTERVAL: Setting a time interval when the interval event has occurred.
(ii) WAIT TIME: Waiting for interval event or timeout to occur.

Table 2: Case of task preemption comparison before and after algorithm optimization.

System load U 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Before optimization 4 6 9 11 15 18 24 29 34 37 45 49 56 61 72 80 91 99
After optimization 2 3 5 6 8 10 13 16 19 21 26 28 33 36 44 50 59 66
Preemption
optimization rate 50.0% 50.0% 44.4% 45.5% 46.7% 44.4% 45.8% 44.8% 44.1% 43.2% 42.2% 42.9% 41.1% 41.0% 38.9% 37.5% 35.2% 33.3%

used to effectively manage data collection, wireless com-
munication in the field of WSN, and it has successfully
been developed by our China Liaoning Province Embedded
Technique Key Laboratory.

5. Performance Analysis of Improved EDF
Scheduling Algorithm

For system load 𝑈 = 0.05, 0.1, 0.15, . . . , 0.9, the system
generates 18 period task sets totally, and each set includes
6 period tasks generated at random. Table 2 shows the case
of task preemption comparison before and after algorithm
optimization.

From the experimental results, we can know that the
optimization scope ranges from 50.0% to 33.3%; with the
increase of system load, the preemption optimization rate
decreases correspondingly, which means that system can get
better optimization while system load is lower [17–19].

We used the tools of logic analyzer (TLA603), arbitrary
waveform generator (AWG2021), and digital storage oscil-
loscope (TDS1012). In the test programs, we added some
control codes by transforming the value of high and low levels
of pulses through I/O pin while task is preempted.

The I/O pin of Webit&NEU is connected to the digital
storage oscilloscope (TDS1012). While there are the task
preemptions happening, the system will alter the current
value of pulses when certain task is about to be preempted;
accordingly, the system will also change the current value
of pulses again while the preempted task begins to execute
again. So from the waveform of the experimental results in

Table 3: Comparison of system kernel size (KB).

Operating system System kernel code size
Webit&NEU OS 3.856
Webit&NEU OS with improved algorithm 4.031
𝜇COS-II About 12

the digital storage oscilloscope, we can obtain the whole time
𝑇
𝑤
for the whole process. Besides, we can also get the whole

execution time of the preemption task 𝑇
𝑒
. So I/O delay time

𝑇I/O delay can be calculated by 𝑇I/O delay = 𝑇
𝑤
− 𝑇
𝑒
.

Under the case of different system load, we obtained
the I/O delay according to the above method, and the
experimental results are shown in Figure 2.

As Figure 2 shows, while the system load is 0.05, system
can achieve the best optimization rate of 50.8%; however,
even the system load is 0.9 and the optimization rate can
still reach 31.6%. Obviously, the proposed improved task
scheduling algorithm can well decrease the I/O delay for the
real-time operating system.The system I/O delay is obviously
reduced because of the decrease of task preemption, which
also means that the system overhead is also reduced. Con-
sequently system real-time ability is enhanced, and at the
meanwhile, energy consumption is also obviously decreased
[20].

Table 3 shows the system kernel code size of Webit5.0
OS (the fifth version operation system for Webit2.0),
Webit&NEU OS, and 𝜇C/OS-II separately. Because
Webit&NEUOS supports only up to 16 tasks, it is committed



Mathematical Problems in Engineering 7

0

30

60

90

120

150

180

210

240

270

300

330

Before optimization
After optimization

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
System load

I/O
 d

el
ay

 (𝜇
s)

Figure 2: I/O delay comparison before and after algorithm optimization.

to low cost application in the IoT, so its kernel code size is
smaller than 𝜇C/OS-II who manages up to 64 tasks. This
is just the design goal of light-weight operating systems for
Webit&NEU OS.

As the code memory of Atmega128L is 128KB, the code
size of Webit&NEU OS with improved algorithm (4.031 KB)
is 4.34% larger thanWebit&NEUOS’s (3.856KB); its size only
occupies 3.15% of the whole code memory, so it still leaves
enough space for user applications.

6. Conclusions

Compared with other current common solutions to increase
the lifetime of WSN nodes, this paper aims to improve
the lifetime and system performance by optimizing task
scheduling algorithm when WSN nodes are applied to actu-
ator applications. On the premise that these jobs can be
executed within their execution deadline, system postpones
executing some jobs to ensure that more jobs can better
be executed, which can reduce task preemption greatly. By
executing the improved task scheduling algorithm in the
platform ofWebit&NEU andWebit&NEUOS both designed
and implemented by our laboratory, the experimental results
show that the system I/O delay and overhead are decreased
effectively and the occurrences of unacceptable system states
caused by vibrations are also reduced, due to the reduction
of task preemption in tiny mechanical system composed of
WSN nodes.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is partly supported by National Natural Science
Foundation of China (no. 61101121), National High Technol-
ogy Research and Development Program (863 Program) (no.
2013AA102505), Key Laboratory Project Funds of Shenyang
Ligong University under Grant (no. 4771004kfs03), and
Educational Committee of Liaoning Province Science and
Technology Research Projects under Grant (no. L2013096).
The authors thank Jan Vitek, Ales Plsek, and Lei Zhao for
their help during their studying at Purdue University in USA
from September 2010 to September 2012.They also thank the
anonymous reviewers for their valuable comments.

References

[1] http://en.wikipedia.org/wiki/Wireless sensor network.
[2] W. Sun, H. Gao, and B. Yao, “Adaptive robust vibration control

of full-car active suspensions with electro-hydraulic actuators,”
IEEE Transactions on Control Systems Technology, vol. 21, no. 6,
pp. 2417–2422, 2013.

[3] M. Peng, Y. Xiao, and P. P. Wang, “Error analysis and kernel
density approach of scheduling sleeping nodes in cluster-
basedwireless sensor networks,” IEEETransactions onVehicular
Technology, vol. 58, no. 9, pp. 5105–5114, 2009.

[4] A. Merentitis, N. Kranitis, A. Paschalis, and D. Gizopou-
los, “Low energy online self-test of embedded processors in
dependableWSN nodes,” IEEE Transactions on Dependable and
Secure Computing, vol. 9, no. 1, pp. 86–100, 2012.

[5] K. McCusker and N. E. O’Connor, “Low-energy symmetric key
distribution in wireless sensor networks,” IEEE Transactions on
Dependable and Secure Computing, vol. 8, no. 3, pp. 363–376,
2011.

[6] A. Fallahi and E. Hossain, “A dynamic programming approach
for QoS-aware power management in wireless video sensor



8 Mathematical Problems in Engineering

networks,” IEEE Transactions on Vehicular Technology, vol. 58,
no. 2, pp. 843–854, 2009.

[7] Y. Zhao, J. Wu, F. Li, and S. Lu, “On maximizing the lifetime
of wireless sensor networks using virtual backbone scheduling,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23,
no. 8, pp. 1528–1535, 2012.

[8] M. T. Penella and M. Gasulla, “Runtime extension of low-
power wireless sensor nodes using hybrid-storage units,” IEEE
Transactions on Instrumentation and Measurement, vol. 59, no.
4, pp. 857–865, 2010.

[9] N. Roseveare and B. Natarajan, “Distributed tracking with
energy management in wireless sensor networks,” IEEE Trans-
actions on Aerospace and Electronic Systems, vol. 48, no. 4, pp.
3494–3511, 2012.

[10] F. Liu, C.-Y. Tsui, and Y. J. Zhang, “Joint routing and sleep
scheduling for lifetime maximization of wireless sensor net-
works,” IEEE Transactions on Wireless Communications, vol. 9,
no. 7, pp. 2258–2267, 2010.

[11] J.W. S. Liu, Real-Time Systems, Higher Education Press, Beijing,
China, 2003.

[12] W. Sun, Y. Zhao, J. Li, L. Zhang, and H. Gao, “Active suspension
control with frequency band constraints and actuator input
delay,” IEEE Transactions on Industrial Electronics, vol. 59, no.
1, pp. 530–537, 2012.

[13] J. Wang, H. Zhao, J. Xu, and Y. Bi, “Webit&NEU: an embedded
device for the Internet of things,” International Journal of
Distributed Sensor Networks, vol. 2014, Article ID 839540, 10
pages, 2014.

[14] Z. Hai and C. Yan, Pervasive Computing, Northeastern Univer-
sity Press, Shenyang, China, 2005.

[15] Intel Corporation, “iRMX 51 DISTRIBUTED CONTROL
EXECUTIVE USER’S GUIDE for Release 2.0,” Intel Corpora-
tion, 1987.

[16] J. Wang, H. Zhao, P. Li, H. Li, and B. Li, “Analysis and compar-
ison of five kinds of typical device-level embedded operating
systems,” Journal of Software Engineering and Applications, vol.
3, no. 1, pp. 81–90, 2010.

[17] W. Sun, Z. Zhao, andH. Gao, “Saturated adaptive robust control
for active suspension systems,” IEEE Transactions on Industrial
Electronics, vol. 60, no. 9, pp. 3889–3896, 2013.

[18] W. Sun, H. Gao, andO. Kaynak, “Adaptive backstepping control
for active suspension systems with hard constraints,” IEEE
Transactions onMechatronics, vol. 18, no. 3, pp. 1072–1079, 2013.

[19] W. Sun, H. Gao Sr., and O. Kaynak, “Finite frequency𝐻
∞
con-

trol for vehicle active suspension systems,” IEEETransactions on
Control Systems Technology, vol. 19, no. 2, pp. 416–422, 2011.

[20] R. Majumder, G. Bag, and K.-H. Kim, “Power sharing and con-
trol in distributed generation with wireless sensor networks,”
IEEETransactions on Smart Grid, vol. 3, no. 2, pp. 618–634, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


