917 research outputs found

    Identifying Vulnerabilities of Industrial Control Systems using Evolutionary Multiobjective Optimisation

    Full text link
    In this paper we propose a novel methodology to assist in identifying vulnerabilities in a real-world complex heterogeneous industrial control systems (ICS) using two evolutionary multiobjective optimisation (EMO) algorithms, NSGA-II and SPEA2. Our approach is evaluated on a well known benchmark chemical plant simulator, the Tennessee Eastman (TE) process model. We identified vulnerabilities in individual components of the TE model and then made use of these to generate combinatorial attacks to damage the safety of the system, and to cause economic loss. Results were compared against random attacks, and the performance of the EMO algorithms were evaluated using hypervolume, spread and inverted generational distance (IGD) metrics. A defence against these attacks in the form of a novel intrusion detection system was developed, using a number of machine learning algorithms. Designed approach was further tested against the developed detection methods. Results demonstrate that EMO algorithms are a promising tool in the identification of the most vulnerable components of ICS, and weaknesses of any existing detection systems in place to protect the system. The proposed approach can be used by control and security engineers to design security aware control, and test the effectiveness of security mechanisms, both during design, and later during system operation.Comment: 25 page

    A Guaranteed Global Convergence Social Cognitive Optimizer

    Get PDF
    From the analysis of the traditional social cognitive optimization (SCO) in theory, we see that traditional SCO is not guaranteed to converge to the global optimization solution with probability one. So an improved social cognitive optimizer is proposed, which is guaranteed to converge to the global optimization solution. The global convergence of the improved SCO algorithm is guaranteed by the strategy of periodic restart in use under the conditions of participating in comparison, which helps to avoid the premature convergence. Then we give the convergence proof for the improved SCO based on Solis and Wets’ research results. Finally, simulation results on a set of benchmark problems show that the proposed algorithm has higher optimization efficiency, better global performance, and better stable optimization outcomes than the traditional SCO for nonlinear programming problems (NLPs)

    Identifying vulnerabilities of industrial control systems using evolutionary multiobjective optimisation

    Get PDF
    In this paper, we propose a novel methodology to assist in identifying vulnerabilities in real-world complex heterogeneous industrial control systems (ICS) using two Evolutionary Multiobjective Optimisation (EMO) algorithms, NSGA-II and SPEA2. Our approach is evaluated on a well-known benchmark chemical plant simulator, the Tennessee Eastman (TE) process model. We identified vulnerabilities in individual components of the TE model and then made use of these vulnerabilities to generate combinatorial attacks. The generated attacks were aimed at compromising the safety of the system and inflicting economic loss. Results were compared against random attacks, and the performance of the EMO algorithms was evaluated using hypervolume, spread, and inverted generational distance (IGD) metrics. A defence against these attacks in the form of a novel intrusion detection system was developed, using machine learning algorithms. The designed approach was further tested against the developed detection methods. The obtained results demonstrate that the developed EMO approach is a promising tool in the identification of the vulnerable components of ICS, and weaknesses of any existing detection systems in place to protect the system. The proposed approach can serve as a proactive defense tool for control and security engineers to identify and prioritise vulnerabilities in the system. The approach can be employed to design resilient control strategies and test the effectiveness of security mechanisms, both in the design stage and during the operational phase of the system

    Saving local searches in global optimization

    Get PDF

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure

    Identifying and Detecting Attacks in Industrial Control Systems

    Get PDF
    The integrity of industrial control systems (ICS) found in utilities, oil and natural gas pipelines, manufacturing plants and transportation is critical to national wellbeing and security. Such systems depend on hundreds of field devices to manage and monitor a physical process. Previously, these devices were specific to ICS but they are now being replaced by general purpose computing technologies and, increasingly, these are being augmented with Internet of Things (IoT) nodes. Whilst there are benefits to this approach in terms of cost and flexibility, it has attracted a wider community of adversaries. These include those with significant domain knowledge, such as those responsible for attacks on Iran’s Nuclear Facilities, a Steel Mill in Germany, and Ukraine’s power grid; however, non specialist attackers are becoming increasingly interested in the physical damage it is possible to cause. At the same time, the approach increases the number and range of vulnerabilities to which ICS are subject; regrettably, conventional techniques for analysing such a large attack space are inadequate, a cause of major national concern. In this thesis we introduce a generalisable approach based on evolutionary multiobjective algorithms to assist in identifying vulnerabilities in complex heterogeneous ICS systems. This is both challenging and an area that is currently lacking research. Our approach has been to review the security of currently deployed ICS systems, and then to make use of an internationally recognised ICS simulation testbed for experiments, assuming that the attacking community largely lack specific ICS knowledge. Using the simulator, we identified vulnerabilities in individual components and then made use of these to generate attacks. A defence against these attacks in the form of novel intrusion detection systems were developed, based on a range of machine learning models. Finally, this was further subject to attacks created using the evolutionary multiobjective algorithms, demonstrating, for the first time, the feasibility of creating sophisticated attacks against a well-protected adversary using automated mechanisms
    • …
    corecore