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From the analysis of the traditional social cognitive optimization (SCO) in theory, we see that traditional SCO is not guaranteed
to converge to the global optimization solution with probability one. So an improved social cognitive optimizer is proposed,
which is guaranteed to converge to the global optimization solution. The global convergence of the improved SCO algorithm is
guaranteed by the strategy of periodic restart in use under the conditions of participating in comparison, which helps to avoid
the premature convergence. Then we give the convergence proof for the improved SCO based on Solis and Wets’ research results.
Finally, simulation results on a set of benchmark problems show that the proposed algorithm has higher optimization efficiency,
better global performance, and better stable optimization outcomes than the traditional SCO for nonlinear programming problems
(NLPs).

1. Introduction

Swarm intelligence (SI) is the collective behavior of decentral-
ized, self-organized systems, natural or artificial in artificial
intelligence field. Swarms often are large groups of small
insects in which eachmember performs a simple role, but the
action produces complex behavior as a whole.The emergence
of such complex behavior extends beyond swarms. Similar
complex social structures also occur in higher-order animals
and insects that do not swarm: colonies of ants, flocks of birds,
packs of wolves, or colonies of bees, and so on.

Human has higher adaptability and social intelligence
than insect swarm, and human intelligence derives from
the interactions of individuals, including interacting with
the environment, in a social world from the study of social
cognitive theory. Xie et al. [1] present social cognitive opti-
mization (SCO) algorithm which is a novel heuristic swarm
intelligence optimization algorithms. SCO algorithm has a
probabilistic iterative procedure of lots of learning agents.
A learning agent obtains vicarious capability by tourna-
ment selection and shares information by the knowledge
library with symbolizing capability. Because SCO algorithm
fully makes use of the interactions and share of the entire
social swarm, it greatly improves the convergence speed and

accuracy of the swarm intelligence algorithm and makes it
better than many other well-used intelligent optimization
methods, such as PSO and ACO, in many applications.
Such applications include nonlinear programming problems
(NLPs), nonlinear complementarity’s problem (NCP) [2],
fractional programs [3], nonlinear system of equation [4],
engineering design problems [5], and Web service composi-
tion selection [6].

Many researchers improved the traditional SCO. Wang
et al. [7] improved SCO algorithm through joining self-
organizing migrating algorithm (SOMA) migration in the
process of SCO and adding two parameters in SCO algorithm
to solve the SAT problem, which showed the improved
SCO may obtain the quick convergence rate in the opti-
mization early and only small effect on the last result. Ma
et al. [8] brought in the chaos and Kent mapping function
to modify and optimize the conditions of neighborhood
search and got more reasonable knowledge points which
were distributed more uniformly for solving the nonlinear
constraint problems. Sun et al. [9] presented a hybrid social
cognitive optimization algorithm based on elitist strategy
and chaotic optimization is proposed to solve constrained
nonlinear programming problems, which partitions learning
agents into three groups in proportion: elite learning agents,
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chaotic learning agents, and common learning agents. Zhi-
zhong et al. [10] improve the social cognitive optimization,
put the improved SCO algorithm into the framework of
culture algorithm, constructed a novel algorithm, culture
social cognitive optimization (C-SCO), and used C-SCO to
solve the QoS-aware cloud service composition problem. Sun
et al. [11] present a social cognitive optimization algorithm
(SCO) to generate optimal evidence weight values for the
Dempster-Shafer (D-S) evidence model based on historical
training data.

These improved algorithms, called hybrid optimization
algorithms, are mainly based on empirical analysis of the
experiment while the global convergence analysis of hybrid
algorithm has not been studied in theory. Because the
SCO is originated from simulation social cognitive progress
and involves sophisticated stochastic behavior, it is hard to
perform theoretical analysis, resulting in the lack of solid
theoretical foundation. Particularly, the performance of SCO
as optimization techniques requires theoretical support. The
lack of theoretical foundation injures the further develop-
ment of SCO and blocks the application of SCO in problems
where serious algorithms are required.

In this paper, from the analysis of the traditional social
cognitive optimization (SCO) in theory, we see that tra-
ditional SCO is not guaranteed to converge to the global
optimization solution with probability one. So a novel
social cognitive optimizer is called stochastic SCO that is
guaranteed to converge to the global optimization solution.
The global convergence of the improved SCO algorithm
is guaranteed by the strategy of periodic restart in use
under the conditions of participating in comparison, which
helps to avoid the premature convergence. Then we give the
convergence proof for the stochastic SCO based on Solis and
Wets’ research results [12]. Finally, simulation results on a set
of benchmark problems show that the proposed algorithm
has higher optimization efficiency, better global performance,
and better stable optimization outcomes than the traditional
SCO for NLPs.

The remainder of this paper is organized as follows. In
Section 2, we survey the traditional SCO and analyse global
convergence of traditional SCO algorithm. In Section 3, our
improvement to traditional SCO is described concretely
and the proof of the global convergence of the proposed
algorithms is presented. In Section 4 the typical experiments
are employed to evaluate the performance of the improved
SCO and the conclusions are showed in Section 5, and
finally the last section presents the acknowledgment and the
appendix.

2. Convergence Analysis of Traditional
SCO Algorithm

2.1. Social Cognitive Optimization Algorithm (SCO). Social
cognitive theory (SCT) agrees that people learn by observing
others, with the environment, behavior, and cognition all
as the chief reciprocal factors in influencing development.
Human learning possesses the abilities to symbolize, learn
from others, plan alternative strategies, regulate one’s own

behavior, and engage in self-reflection. So human has higher
adaptability and social intelligence than insect swarm. By
introducing human social intelligence based on SCT to
artificial system, Xie et al. [1] proposed social cognitive
optimization (SCO) algorithm in 2002. In SCO optimization
procedure, a knowledge library with symbolizing capability
consists of a number of knowledge points which are denoted
by the location 𝑥 in search space 𝑆 and its fitness values;
learning agents, on behalf of human individuals, in pos-
session of a knowledge point in the knowledge library, act
observational learning via the neighborhood local searching
by observing the selected model from tournament selection.
The neighborhood local searching for 𝑥

2
referring to 𝑥

1
is

finding a new point 𝑥, which is for 𝑑 dimension

𝑥


𝑑
= 𝑈 (𝑥

1,𝑑
, 𝑥
𝑚,𝑑
) , (1)

where 𝑈(𝑎, 𝑏) is a uniform distribution which is usually
generated by linear congruential method within [𝑎, 𝑏], 𝑥

𝑚,𝑑
=

2∗𝑥
2,𝑑
−𝑥
1,𝑑
. SCO algorithm basic steps are clearly described

in [1].

2.2. Basic Conception and Theory for Global Convergence
Theorem. The general global optimization problem (𝑃) used
here is defined as

min
𝑥∈𝑆

𝑓 (𝑥) , (2)

where 𝑥 is a vector of 𝑛 decision variables, 𝑆 is an 𝑛-
dimensional feasible region and is assumed to be nonempty, a
subset of 𝑅𝑛, and 𝑓(𝑥) is a real-valued function defined over
𝑆 from 𝑅𝑛 to 𝑅. The goal is to find a value for 𝑥 contained
in 𝑆 that minimizes 𝑓. Notice that the feasible region may
include both continuous and discrete variables. Denote the
global optimal solution to (𝑃) by (𝑥∗∗, 𝑦∗∗), where

𝑥
∗∗
= argmin

𝑥∈𝑆

𝑓 (𝑥) ,

𝑦
∗∗
= 𝑓 (𝑥

∗∗
) = min
𝑥∈𝑆

𝑓 (𝑥) .

(3)

Solis and Wets [12] provide a convergence proof, in
probability, to the global minimum for general step size
algorithms with conditions on the method of generating the
step length and direction.

Conceptual algorithm [12] is as follows.

Step 0. Find 𝑥0 in 𝑆 and set 𝑘 = 0.

Step 1. Generate 𝜉𝑘 from the sample space (𝑅𝑛, 𝐵, 𝜇
𝑘
).

Step 2. Set 𝑥𝑘+1 = 𝐷(𝑥𝑘, 𝜉𝑘), choose 𝜇
𝑘+1

, set 𝑘 = 𝑘 + 1, and
return to Step 1.
(𝑅
𝑛
, 𝐵, 𝜇
𝑘
) is probability space on iteration 𝑘. The 𝜇

𝑘
are

probabilitymeasures corresponding to distribution functions
defined on 𝑅𝑛 as conditional probability measures. The 𝐵 is
Borel subsets of𝑅𝑛.𝐵 is the𝜎-algebra of subset of𝑅𝑛.Themap
𝐷 with domain 𝑆 ×𝑅𝑛 and 𝑆 satisfies the following condition.

Hypothesis 1 (H1). Consider 𝑓(𝐷(𝑥, 𝜉)) ≤ 𝑓(𝑥); if 𝜉 ∈ 𝑆, then
𝑓(𝐷(𝑥, 𝜉)) ≤ 𝑓(𝜉).
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Clearly, the monotone sequence {𝑓(𝑥𝑘)}
∞

𝑘=1
converges to

the infimum of 𝑓 on 𝑆. In order to avoid excluding some
pathological situations, we replace the search for the infimum
by that for 𝛼, the essential infimum of 𝑓 on 𝑆, defined as
follows:

𝛼 = inf {𝑥 | V (𝑧 ∈ 𝑆 | 𝑓 (𝑧) < 𝑥) > 0} , (4)

where V is a nonnegative measure defined on the (Borel)
subsets 𝐵 of 𝑅𝑛 with V(𝑆) > 0. Typically V(𝐴) is simply the
n-dimensional volume of the set 𝐴; more generally V is the
Lebesgue measure.

Hypothesis 2 (H2). For any subset 𝐴 of 𝑆 with V(𝐴) > 0 we
have that

∞

∏

𝑘=0

(1 − 𝜇
𝑘
(𝐴)) = 0. (5)

It means that given any subset 𝐴 of 𝑆 with positive
Lebesgue measure the probability of repeatedly missing the
set𝐴, when generating the random samples 𝜉𝑘, must be zero.

This requires that the sampling strategy determined by
the choice of the 𝜉𝑘 cannot rely exclusively on distribution
functions concentrated on proper subsets of 𝑆 of lower
dimension (such as discrete distributions), or that the sam-
pling strategy consistently ignore a part of 𝑆 with positive
“volume” (with respect to V).

Theorem 1 (convergence theorem (global search)). Suppose
that 𝑓 is a measurable function. 𝑆 is a measurable subset of 𝑅𝑛

and (Hypotheses 1 and 2) is satisfied. Let {𝑥𝑘}
+∞

𝑘=1
be a sequence

generated by the algorithm. Then

lim
𝑘→∞

𝑃 [𝑥
𝑘
∈ 𝑅
𝜀
] = 1, (6)

where 𝑃[𝑥𝑘 ∈ 𝑅
𝜀
] is the probability that, at step 𝑘, the point 𝑥𝑘

generated by the algorithm is in 𝑅
𝜀
. 𝑅
𝜀
is the optimality region.

2.3. Convergence Analysis of Traditional SCO Algorithm.
Although traditional SCO may outperform other evolution-
ary algorithms in the early iterations, its performance may
not be competitive as the number of generations is increased.
Traditional SCO algorithm is not guaranteed to converge
to global optimal solution. If the optimization algorithm
satisfies the Hypotheses 1 and 2, general convergence proofs
are given.

The traditional SCO algorithm saves the best solution
in the knowledge, so it obviously satisfies Hypothesis 1.
But, global optimization point GB

𝑃
of the agents in SCO

algorithm will not be set at a random solution in the search
space in the end of every generation. It is obvious that
the algorithm does not satisfy Hypothesis 2 and is not
an optimization algorithm with global search convergence
properties according to Theorem 1. So the traditional SCO
algorithm is not guaranteed to converge to global optimal
solution with probability one.

Set the parameters and

library and agent initialization

Yes No

No

Eps > variation

Random
generator

Tournament selection

Observational learning

Library refreshment

Finished?

End

Figure 1: Flowchart of SSCO.

3. Method

3.1. Overview. Swarm intelligence optimization algorithms
are also calledmetaheuristic algorithms because they provide
a high-level framework which can be adapted to solve
optimization problems. So, when swarm intelligence is used
to solving a specific problem, it must be modified to fit the
problem.

The SCO’s iterative procedure is rooted in human intel-
ligence with the social cognitive theory. When the learning
agent falls into the local optimal, learning agents learn
without observation, but with full randomicity by stochastic
search, which helps to increase the global ergodicity of the
knowledge library and to avoid premature convergence.

In this paper, a novel stochastic social cognitive opti-
mization (SSCO) algorithm based on periodic partial reini-
tialization is proposed to solve NLPs to improve the global
convergence speed of social cognitive optimization (SCO)
algorithm. Simulation results show that the performance of
SSCO is evidently better than traditional SCO for NLPs.

3.2. Stochastic Social Cognitive Optimization (SSCO) Algo-
rithm. In our study, we incorporate the periodic partial
reinitialization of the population into the SCO to enhance
the overall performance of the algorithm. Figure 1 shows the
flowchart of SSCO.The SSCO is described as follows.

Step 1 (initialization). (a) Set the parameters of SSCO: 𝑁
𝑝
,

𝑁
𝑎
, 𝑇, 𝜏

𝑊
, 𝜏
𝐵
, 𝑇
𝑅
, 𝜀
𝑅
, where 𝑁

𝑝
denotes the number of

knowledge points in knowledge library; 𝑁
𝑎
denotes the

number of learning agents. 𝑇 denotes the times of maximum
learning cycle; 𝜏

𝐵
denotes the tournament width; and 𝑇

𝑅
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Table 1: Summary of eight test cases.

Func. 𝑛 Type of func. 𝑝 LI NE NI 𝑎

𝐺
1

13 Quadratic 0.0111% 9 0 0 6
𝐺
2

20 Nonlinear 99.8474% 0 0 2 1
𝐺
3

5 Quadratic 52.1230% 0 0 6 2
𝐺
4

2 Cubic 0.0066% 0 0 2 2
𝐺
5

10 Quadratic 0.0003% 3 0 5 6
𝐺
6

2 Nonlinear 0.8560% 0 0 2 0
𝐺
7

7 Polynomial 0.5121% 0 0 4 2
𝐺
8

8 Linear 0.0010% 3 0 3 6

denotes the maximum iterate number of reinitialization; 𝜀
𝑅

denotes the maximum variation of fitness in 𝑇
𝑅
generation.

(b) Randomly create𝑁
𝑝
knowledge points in knowledge

library (KL), and then evaluate their fitness values basis on
objective function, and save the global optimization point
GB
𝑃
: the best point with the best fitness.
(c) Assign a knowledge point in KL to a learning agent

randomly, but not repeatedly.

Step 2. For each learning agent, SCA learning cycle is as
follows.

(a) If the variation of fitness of the global optimization
point SCA in the previous 𝑇

𝑅
generation is less than

𝜀
𝑅
, a new point TS

𝑂
is randomly generated; if the new

point TS
𝑂
is better than GB

𝑃
, TS
𝑂
is assigned to GB

𝑃
.

(b) Otherwise, we have the following.

(1) Tournament selection: select a best knowledge
point TS

𝑃
from arbitrary 𝜏

𝐵
knowledge points

in KL not repeatedly with SCA itself.
(2) Observational learning: compare the fitness of

TS
𝑃
with that of SCA. The neighborhood local

searching for the better referring to the worse
is finding a new point TS

𝑂
according to (1); if

the new point TS
𝑂
is better than GB

𝑃
, TS
𝑂
is

assigned to GB
𝑃
.

(c) Library refreshment: remove the worst knowledge
point TS

𝑤
in KL, and add the new point into KL.

Step 3. Repeat Step 2 until a stop condition (e.g., maximum
number of iterations or a satisfactory fitness value). The total
evaluation times are 𝑇

𝑒
= 𝑁
𝑝
+ 𝑁
𝑎
∗ 𝑇.

3.3. Convergence Analysis of SSCO Algorithm. Traditional
SCO algorithm is not guaranteed to converge to global opti-
mal solution with probability one. According to Theorem 1,
the proof presented here casts the SSCO into the framework
of a global stochastic search algorithm, thus allowing the use
of Theorem 1 to prove convergence. It remains to show that
the SSCO satisfies both (H1) and (H2).

Let {GB
𝑃,𝑡
} be a sequence generated by the SSCO algo-

rithm, where GB
𝑃,𝑡

is the current best position of the swarm
at time 𝑡.

Define function𝐷:

𝐷(GB
𝑃,𝑡
, 𝑥
𝑖,𝑡
) = {

GB
𝑃,𝑡
, 𝑓 (𝑔 (𝑥

𝑖,𝑡
)) ≥ 𝑓 (GB

𝑃,𝑡
)

𝑔 (𝑥
𝑖,𝑡
) , 𝑓 (𝑔 (𝑥

𝑖,𝑡
)) ≥ 𝑓 (GB

𝑃,𝑡
) ,

𝑓 (𝐷 (𝑥, 𝜉)) ≤ 𝑓 (𝑥) , if 𝜉 ∈ 𝑆, then 𝑓 (𝐷 (𝑥, 𝜉)) ≤ 𝑓 (𝜉) .
(7)

The definition of 𝐷 above clearly complies with hypothesis
H1, since the sequence 𝑥

𝑖,𝑡
is monotonic by definition because

of always saving the best solution in the knowledge.
If the SSCO algorithm satisfies hypothesis H2, the union

of the sample spaces of the agents must cover 𝑆, so that 𝑆 ⊆
⋃
𝑠

𝑖=1
𝑀
𝑖,𝑘

at time step 𝑡, where 𝑀
𝑖,𝑘

denotes the support of
the sample space of agent 𝑖. Because every learning agent has
a chance to get a random solution in the search space in every
generation when the iteration is static in a certain precision,
𝑀
𝑖,𝑘
= 𝑆, ⋃𝑠

𝑖=1
𝑀
𝑖,𝑘
= 𝑆. Define the Borel subset 𝐴 of 𝑆,

and 𝐴 = 𝑀
𝑖,𝑘
; then V(𝐴) > 0, 𝜇

𝑘
(𝐴) = ∑

𝑠

𝑖=1
𝜇
𝑘,𝑡
(𝐴) = 1.

Thus by hypothesis H2 satisfied by Theorem 1, SSCO can be
convergent to global best solution with probability one.

4. Numerical Experiment

4.1. Experimental Settings. Nonlinear programming prob-
lems (NLPs) always are nonconvex, highly nonlinear, nondif-
ferentiable, and discontinuous, which is a constrained global
optimization problem; the traditional deterministic algo-
rithms for solving the NLPs are very difficult. Furthermore,
the constrained global optimization is NP-hard [13], which
does not admit efficient deterministic solutions in practice.

In our experiments, the test cases of eight benchmark
NLPs from literature [1] and literature [13] in Table 1, except
four problems because of lack of result in the referenced
literatures, will be applied to show the way in which the
proposed algorithm works. The eight benchmark problems
almost include all the kinds of the constraints (linear inequal-
ities LI, nonlinear inequalities NI, and nonlinear equalities
NE). With respect to constraint handling of the NLPs in the
proposed algorithms, there are two effective methods [14],
basic constraint handing (BCH) rule for common inequalities
constraint and adaptive constraints relaxing (ACR) rule for
equalities constraint. The rules are described in detail in [15].

Table 1 lists the parameters of each test case: number of
variables, type of the function, relative size of the feasible
region in the search space given by the ratio 𝑝, the number of
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Table 2: Summary of results of the SSCO on eight test cases.

NLP. Type Opt. GA PSO SCO SSCO
Worst Best Avg. Avg. Avg. Worst Best Avg.

𝐺
1

min −15 −14.6154 −14.7864 −14.7082 −14.7951 −14.8891 −14.8767 −15.0000 −14.9953
𝐺
2

max 0.803553 0.79119 0.79953 0.79671 0.79592 0.75475 0.79124 0.80109 0.79638
𝐺
3

min −30665.5 −30645.9 −30645.5 −30645.3 −30655.429 −30665.539 −30665.539 −30665.539 −30665.539
𝐺
4

min −6961.814 −5473.9 −6952.1 −6342.6 −6781.913 −6961.812 −6961.805 −6961.814 −6961.813
𝐺
5

min 24.306 25.069 24.620 24.826 24.713 24.742 24.681 24.306 24.359
𝐺
6

max 0.095825 0.0291438 0.0958250 0.0891568 0.091573 0.095158 0.095231 0.095825 0.095811
𝐺
7

min 680.63 683.18 680.91 681.16 690.642 680.699 680.811 680.631 680.671
𝐺
8

min 7049.33 9659.3 7147.9 8163.6 7531.9 7407.7 7296.35 7049.41 7124.72

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t/100

F
no

rm

SSCO
SCO

1.E − 09

1.E − 07

1.E − 05

1.E − 03

1.E − 01

1.E + 01

G1

Figure 2: 𝐹norm versus 𝑡/100 for 𝐺
1
by SSCO and SCO.

constraints of each category (LI, NE, andNI), and the number
𝑎 of active constraints at the optimum.

4.2. Result and Discussion. To evaluate the performance of
the SSCO, we compare SSCO with standard gray-coded GA
and traditional social cognitive optimization. The experi-
ments setting for SSCO is the same as that of SCO from
[1]. Let 𝑇

𝑅
= 5, 𝑁

𝑝
= 98, 𝑁

𝑎
= 14, 𝑇 = 2000, (for 𝐺

6
,

𝑇 = 200). Each problem is executed 50 times.We calculate the
best solution, worst solution, and mean solution by means of
having statistical computation for each running of the SSCO
and other algorithms. The experimental results obtained by
other algorithms are provided in [1].

Table 2 shows the comparison of the test results between
the SSCO and the known three algorithms. Opt. is the
optimum value of each NLP. The results indicate that SSCO
is superior to the known two algorithms from the viewpoints
of the best solution, worst solution, and mean solution.
Meanwhile, we can see that best solutions obtained by SSCO
are better than other three algorithms since those solutions
are much close to the true optimal solutions.

Figures 2, 3, 4, 5, 6, 7, 8, and 9 show the relative fitness
value 𝐹norm = |𝐹best − 𝐹opt|, which are performed by
SCO and SSCO, versus 𝑡/100 for different benchmark NLPs,
respectively, where 𝑡 is current generation number.TheSSCO,
which has periodic partial reinitialization, shows higher
convergence velocity and higher sustainable evolutionary
capability at the process of evolution than traditional SCO.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t/100

F
no

rm

SSCO
SCO

1.E − 03

1.E − 02

1.E − 01

1.E + 00

G2

Figure 3: 𝐹norm versus 𝑡/100 for 𝐺
2
by SSCO and SCO.

1 2 3 4 5 6 7 8 9 1011121314151617181920

t/100

F
no
rm

SSCO
SCO

1.E − 04
1.E − 03
1.E − 02
1.E − 01
1.E + 00
1.E + 01
1.E + 02
1.E + 03
1.E + 04

G3

Figure 4: 𝐹norm versus 𝑡/100 for 𝐺
3
by SSCO and SCO.

Furthermore, the iterative process of the SSCO has no more
computing than traditional SCO.

For SSCO and SCO, the only difference is that the SSCO
agents include the strategy of periodic restart, which is
guaranteed to converge to the global optimization solution.
It makes no effect on the total computing, however, because
the SSCO considers static individuals are substituted with
new randomly generated individuals to avoid the premature
convergence in the learning iteration; the SSCO shows higher
performance than SCO, PSO, and GA in all the eight test
cases.

From the above analysis, the SSCO has higher efficiency
in solving NLPs for reaching the near-optimal solutions.
Consequently, the experimental results indicate that the
SSCOhas better robustness, effectiveness, and stableness than
SCO and GA reported in the literature.
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1 2 3 4 5 6 7 8 9 1011121314151617181920

t/100

F
no

rm

SSCO
SCO

1.E − 03
1.E − 02
1.E − 01
1.E + 00
1.E + 01
1.E + 02
1.E + 03
1.E + 04

G4

Figure 5: 𝐹norm versus 𝑡/100 for 𝐺
4
by SSCO and SCO.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t/100

F
no

rm

SSCO
SCO

1.E − 02

1.E − 01

1.E + 00

1.E + 01

1.E + 02

G5

Figure 6: 𝐹norm versus 𝑡/100 for 𝐺
5
by SSCO and SCO.

5. Conclusions

A stochastic social cognitive optimization (SSCO) algorithm
with the strategy of periodic restart is proposed in this paper
for solving NLPs. The periodic restart of SCO for static
individuals can avoid the premature convergence, improve
the global searching performance, and ensure the algorithm
to obtain stable optimal solution. The convergence proof for
the stochastic SCO is given based on Solis andWets’ research
results. The final experiment results indicate that the new
algorithm has good capability to find optimal solution.

Appendix

The appendix provides the description of eight test functions.
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Figure 7: 𝐹norm versus 𝑡/100 for 𝐺
6
by SSCO and SCO.
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where

0 ≤ 𝑥
𝑖
≤ 10 for 1 ≤ 𝑖 ≤ 𝑛.
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(A.4)
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