30 research outputs found

    Gossip in a Smartphone Peer-to-Peer Network

    Full text link
    In this paper, we study the fundamental problem of gossip in the mobile telephone model: a recently introduced variation of the classical telephone model modified to better describe the local peer-to-peer communication services implemented in many popular smartphone operating systems. In more detail, the mobile telephone model differs from the classical telephone model in three ways: (1) each device can participate in at most one connection per round; (2) the network topology can undergo a parameterized rate of change; and (3) devices can advertise a parameterized number of bits about their state to their neighbors in each round before connection attempts are initiated. We begin by describing and analyzing new randomized gossip algorithms in this model under the harsh assumption of a network topology that can change completely in every round. We prove a significant time complexity gap between the case where nodes can advertise 00 bits to their neighbors in each round, and the case where nodes can advertise 11 bit. For the latter assumption, we present two solutions: the first depends on a shared randomness source, while the second eliminates this assumption using a pseudorandomness generator we prove to exist with a novel generalization of a classical result from the study of two-party communication complexity. We then turn our attention to the easier case where the topology graph is stable, and describe and analyze a new gossip algorithm that provides a substantial performance improvement for many parameters. We conclude by studying a relaxed version of gossip in which it is only necessary for nodes to each learn a specified fraction of the messages in the system.Comment: Extended Abstract to Appear in the Proceedings of the ACM Conference on the Principles of Distributed Computing (PODC 2017

    Optimal Gossip with Direct Addressing

    Full text link
    Gossip algorithms spread information by having nodes repeatedly forward information to a few random contacts. By their very nature, gossip algorithms tend to be distributed and fault tolerant. If done right, they can also be fast and message-efficient. A common model for gossip communication is the random phone call model, in which in each synchronous round each node can PUSH or PULL information to or from a random other node. For example, Karp et al. [FOCS 2000] gave algorithms in this model that spread a message to all nodes in Θ(log⁥n)\Theta(\log n) rounds while sending only O(log⁥log⁥n)O(\log \log n) messages per node on average. Recently, Avin and Els\"asser [DISC 2013], studied the random phone call model with the natural and commonly used assumption of direct addressing. Direct addressing allows nodes to directly contact nodes whose ID (e.g., IP address) was learned before. They show that in this setting, one can "break the log⁥n\log n barrier" and achieve a gossip algorithm running in O(log⁥n)O(\sqrt{\log n}) rounds, albeit while using O(log⁥n)O(\sqrt{\log n}) messages per node. We study the same model and give a simple gossip algorithm which spreads a message in only O(log⁥log⁥n)O(\log \log n) rounds. We also prove a matching Ω(log⁥log⁥n)\Omega(\log \log n) lower bound which shows that this running time is best possible. In particular we show that any gossip algorithm takes with high probability at least 0.99log⁥log⁥n0.99 \log \log n rounds to terminate. Lastly, our algorithm can be tweaked to send only O(1)O(1) messages per node on average with only O(log⁥n)O(\log n) bits per message. Our algorithm therefore simultaneously achieves the optimal round-, message-, and bit-complexity for this setting. As all prior gossip algorithms, our algorithm is also robust against failures. In particular, if in the beginning an oblivious adversary fails any FF nodes our algorithm still, with high probability, informs all but o(F)o(F) surviving nodes

    The Capacity of Smartphone Peer-To-Peer Networks

    Get PDF
    We study three capacity problems in the mobile telephone model, a network abstraction that models the peer-to-peer communication capabilities implemented in most commodity smartphone operating systems. The capacity of a network expresses how much sustained throughput can be maintained for a set of communication demands, and is therefore a fundamental bound on the usefulness of a network. Because of this importance, wireless network capacity has been active area of research for the last two decades. The three capacity problems that we study differ in the structure of the communication demands. The first problem is pairwise capacity, where the demands are (source, destination) pairs. Pairwise capacity is one of the most classical definitions, as it was analyzed in the seminal paper of Gupta and Kumar on wireless network capacity. The second problem we study is broadcast capacity, in which a single source must deliver packets to all other nodes in the network. Finally, we turn our attention to all-to-all capacity, in which all nodes must deliver packets to all other nodes. In all three of these problems we characterize the optimal achievable throughput for any given network, and design algorithms which asymptotically match this performance. We also study these problems in networks generated randomly by a process introduced by Gupta and Kumar, and fully characterize their achievable throughput. Interestingly, the techniques that we develop for all-to-all capacity also allow us to design a one-shot gossip algorithm that runs within a polylogarithmic factor of optimal in every graph. This largely resolves an open question from previous work on the one-shot gossip problem in this model

    Rumor Spreading with No Dependence on Conductance

    Get PDF
    National Science Foundation (U.S.) (CCF-0843915

    Randomized rumor spreading in dynamic graphs

    Get PDF
    International audienceWe consider the well-studied rumor spreading model in which nodes contact a random neighbor in each round in order to push or pull the rumor. Unlike most previous works which focus on static topologies, we look at a dynamic graph model where an adversary is allowed to rewire the connections between vertices before each round, giving rise to a sequence of graphs, G1, G2, . . . Our first result is a bound on the rumor spreading time in terms of the conductance of those graphs. We show that if the degree of each node does not change much during the protocol (that is, by at most a constant factor), then the spread completes within t rounds for some t such that the sum of conductances of the graphs G1 up to Gt is O(log n). This result holds even against an adaptive adversary whose decisions in a round may depend on the set of informed vertices before the round, and implies the known tight bound with conductance for static graphs. Next we show that for the alternative expansion measure of vertex expansion, the situation is different. An adaptive adversary can delay the spread of rumor significantly even if graphs are regular and have high expansion, unlike in the static graph case where high expansion is known to guarantee fast rumor spreading. However, if the adversary is oblivious, i.e., the graph sequence is decided before the protocol begins, then we show that a bound close to the one for the static case holds for any sequence of regular graphs

    Gossip vs. Markov Chains, and Randomness-Efficient Rumor Spreading

    Get PDF
    We study gossip algorithms for the rumor spreading problem which asks one node to deliver a rumor to all nodes in an unknown network, and every node is only allowed to call one neighbor in each round. In this work we introduce two fundamentally new techniques in studying the rumor spreading problem: First, we establish a new connection between the rumor spreading process in an arbitrary graph and certain Markov chains. While most previous work analyzed the rumor spreading time in general graphs by studying the rate of the number of (un-)informed nodes after every round, we show that the mixing time of a certain Markov chain suffices to bound the rumor spreading time in an arbitrary graph. Second, we construct a reduction from rumor spreading processes to branching programs. This reduction gives us a general framework to derandomize the rumor spreading and other gossip processes. In particular, we show that, for any n-vertex expander graph, there is a protocol which informs every node in O(log n) rounds with high probability, and uses O (log n · log log n) random bits in total. The runtime of our protocol is tight, and the randomness requirement of O (log n· log log n) random bits almost matches the lower bound of Ω(log n) random bits. We further show that, for many graph families (defined with respect to the expansion and the degree), O (poly log n) random bits in total suffice for fast rumor spreading. These results give us an almost complete understanding of the role of randomness in the rumor spreading process, which was extensively studied over the past years

    Tight bounds for rumor spreading in graphs of a given conductance

    Get PDF
    We study the connection between the rate at which a rumor spreads throughout a graph and the conductance of the graph -- a standard measure of a graph\u27s expansion properties. We show that for any n-node graph with conductance phi, the classical PUSH-PULL algorithm distributes a rumor to all nodes of the graph in O(phi^(-1) log(n)) rounds with high probability (w.h.p.). This bound improves a recent result of Chierichetti, Lattanzi, and Panconesi [STOC 2010], and it is tight in the sense that there exist graphs where Omega(phi^(-1)log(n)) rounds of the PUSH-PULL algorithm are required to distribute a rumor w.h.p. We also explore the PUSH and the PULL algorithms, and derive conditions that are both necessary and sufficient for the above upper bound to hold for those algorithms as well. An interesting finding is that every graph contains a node such that the PULL algorithm takes O(phi^(-1) log(n)) rounds w.h.p. to distribute a rumor started at that node. In contrast, there are graphs where the PUSH algorithm requires significantly more rounds for any start node
    corecore