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Abstract
We study three capacity problems in the mobile telephone model, a network abstraction that models
the peer-to-peer communication capabilities implemented in most commodity smartphone operating
systems. The capacity of a network expresses how much sustained throughput can be maintained
for a set of communication demands, and is therefore a fundamental bound on the usefulness of a
network. Because of this importance, wireless network capacity has been active area of research for
the last two decades.

The three capacity problems that we study differ in the structure of the communication demands.
The first problem is pairwise capacity, where the demands are (source, destination) pairs. Pairwise
capacity is one of the most classical definitions, as it was analyzed in the seminal paper of Gupta
and Kumar on wireless network capacity. The second problem we study is broadcast capacity, in
which a single source must deliver packets to all other nodes in the network. Finally, we turn our
attention to all-to-all capacity, in which all nodes must deliver packets to all other nodes. In all three
of these problems we characterize the optimal achievable throughput for any given network, and
design algorithms which asymptotically match this performance. We also study these problems in
networks generated randomly by a process introduced by Gupta and Kumar, and fully characterize
their achievable throughput.

Interestingly, the techniques that we develop for all-to-all capacity also allow us to design a
one-shot gossip algorithm that runs within a polylogarithmic factor of optimal in every graph. This
largely resolves an open question from previous work on the one-shot gossip problem in this model.
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14:2 The Capacity of Smartphone Peer-To-Peer Networks

1 Introduction

In this paper, we study the classical capacity problem in the mobile telephone model: an
abstraction that models the peer-to-peer communication capabilities implemented in most
commodity smartphone operating systems. The capacity of a network expresses how much
sustained throughput can be maintained for a set of communication demands. We focus on
three variations of the problem: pairwise capacity, in which nodes are divided into pairwise
packet flows, broadcast capacity, in which a single source delivers packets to the whole
network, and all-to-all capacity, in which all nodes deliver packets to the whole network.

For each variation we prove limits on the achievable throughput and analyze algorithms
that match (or nearly match) these bounds. We study these results in both arbitrary networks
and random networks generated with the process introduced by Gupta and Kumar in their
seminal paper on wireless network capacity [19]. Finally, we deploy our new techniques to
largely resolve an open question from [24] regarding optimal one-shot gossip in the mobile
telephone model. Below we summarize the problems we study and the results we prove,
interleaving the relevant related work.

The Mobile Telephone Model. Themobile telephone model (MTM), introduced by Ghaffari
and Newport [14], modifies the well-studied telephone model of wired peer-to-peer networks
(e.g., [10, 15, 4, 17, 9, 16]) to better capture the dynamics of standard smartphone peer-to-
peer libraries. It is inspired, in particular, by the specific interfaces provided by Apple’s
Multipeer Connectivity Framework [2].

In this model, the network is modeled as an undirected graph G = (V,E), where the nodes
in V correspond to smartphones, and an edge {u, v} ∈ E indicates the devices corresponding
to u and v are close enough to enable a direct peer-to-peer radio link. Time proceeds in
synchronous rounds. As in the original telephone model, in each round, each node can either
attempt to initiate a connection (e.g., place a telephone call) with at most one of its neighbors,
or wait to receive connection attempts. Unlike the original model, however, a waiting node
can accept at most one incoming connection attempt. This difference is consequential, as
many of the celebrated results of the original telephone model depend on the nodes’ ability
to accept an unbounded number of incoming connections (see [14, 6] for more discussion).1
This restriction is motivated by the reality that standard smartphone peer-to-peer libraries
limit the number of concurrent connections per device to a small constant (e.g., for Multipeer
this limit is 8). Once connected, a pair of nodes can participate in a bounded amount of
reliable communication (e.g., transfer a constant number of packets/rumors/tokens).

Finally, the mobile telephone model also allows each node to broadcast a small O(logn)-
bit advertisement to its neighbors at the start of each round before the connection decisions
are made. Most existing smartphone peer-to-peer libraries implement this scan-and-connect
architecture. Notice, the mobile telephone model is harder than the original telephone model
due to its connection restrictions, but also easier due to the presence of advertisements. The
results is that the two settings are formally incomparable: each requires its own strategies
for solving key problems.

1 This behavior is particularly evident in studying PUSH-PULL rumor spreading in the telephone model
in a star network topology. This simple strategy performs well in this network due to the ability of the
points of the star to simultaneously pull the rumor from the center. In the mobile telephone model,
by contrast, any rumor spreading strategy would be fundamentally slower due to the necessity of the
center to connect to the points one by one.
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In recent years, several standard one-shot peer-to-peer problems have been studied in the
MTM, including rumor spreading [14], load balancing [7], leader election [24], and gossip
[24, 25]. This paper is the first to study ongoing communication in this setting.

The Capacity Problem. Capacity problems are parameterized with a network topology
G = (V,E), and a flow set F made up of pairs of the form (s,R) (each of which is a flow),
where s ∈ V indicates a source (sometimes called a sender), and R ⊂ V indicates a set of
destinations (receivers). For each flow (s,R) ∈ F , source s is tasked with routing an infinite
sequence of packets to destinations in R. The throughput achieved by a given destination
for a particular flow is the average number of packets it receives from that flow per round in
the limit, and the overall throughput is the smallest throughput over all the destinations in
all flows (see Section 2.2 for formal definitions). We study three different capacity problems,
each defined by the different constraints they place on the flow set F .

Results: Pairwise Capacity. The pairwise capacity problem divides nodes into source and
destination pairs in F , i.e., the given flows are between pairs of nodes rather than from a
source to a general destination set. We begin with pairwise capacity as it was the primary
focus of Gupta and Kumar’s seminal paper on the capacity of the protocol and physical
wireless network models [19]. They argued that it provides a useful assessment of a network’s
ability to handle concurrent communication.

We begin in Section 3.1 by tackling the following fundamental problem: given an arbitrary
connected network topology graph G = (V,E) and a flow set F that divides the nodes in V
into sender and receiver pairs, is it possible to efficiently calculate a packet routing schedule
that approximates the optimal achievable throughput? We answer this question in the
affirmative by establishing a novel connection between pairwise capacity and the classical
concurrent multi-commodity flow (MCF) problem. To do so, we first transform a given G
and F into an instance of the MCF problem. We then apply an existing MCF approximation
algorithm to generate a fractional flow that achieves a good approximation of the optimal
flow in the network. Finally, we apply a novel rounding procedure to transform the fractional
flow into a schedule. We prove that this resulting schedule provides a constant approximation
of the optimal achievable throughput.

Inspired by Gupta and Kumar [19], in Section 3.2 we turn our attention to networks
and flow pairings that are randomly generated using the process introduced in [19]. This
process is parameterized with a network size n ≥ 2 and communication radius r > 0. It
randomly places the n nodes in a unit square and adds an edge between any pair of nodes
within distance r. The source and destination pairs are also randomly generated.

For every given size n, we identify a connectivity threshold value rc(n) = Θ(
√

logn/n),
such that for any radius r ≤ rc(n), with constant probability the network generated by the
above process for n and r includes a source with no path to its destination – trivializing the
optimal achievable throughput to 0. We then prove that for every radius r that is at least a
sufficiently large constant factor larger than the threshold, there is a tight bound of Θ(r)
on the optimal achievable throughput. These results fully characterize our algorithm from
Section 3.1 in randomly generated networks.

Results: Broadcast Capacity. Broadcast capacity is another natural communication prob-
lem in which a single source node is provided an infinite sequence of packets to deliver to all
other nodes in the network. Solutions to this problem would be useful, for example, in a
scenario where a large file is being distributed in a peer-to-peer network of smartphone users
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14:4 The Capacity of Smartphone Peer-To-Peer Networks

in a setting without infrastructure. In Section 4.1 we study the optimal achievable throughput
for this problem in arbitrary connected graphs. To do so, we connect the scheduling of
broadcast packets to existing results on graph toughness, a metric that captures a graph’s
resilience to disconnection that was introduced by Chvátal [5] in the context of studying
Hamiltonian paths.

In more detail, a graph G has a k-tree if there exists a spanning tree of G with maximum
degree k. Let d(G) be the smallest k such that G has a k-tree. This tree is also called a
minimum degree spanning tree (MDST) of G. Building on a result of Win [29] that relates
k-trees to toughness, we prove that for any given G with d(G) > 3, there exists a subset
S of nodes such that removing S from G partitions the graph into at least (d(G) − 2)|S|
connected components.

As we formalize in Section 4.1, because each node in S can connect to at most one
component per round (due to the connection restrictions of the mobile telephone model),
Ω(d(G)) rounds are required to spread each packet to all components, implying that no
schedule achieves throughput better than O(1/d(G)).

In Section 4.2, we prove this bound tight by exhibiting a matching algorithm. The
algorithm begins by constructing a k-tree T with k ∈ Θ(d(G)) using existing techniques;
e.g., [11, 8]. It then edge colors T and uses the colors as the foundation for a TDMA schedule
of length Θ(k) that allows nodes to simulate the more powerful CONGEST model in which
each node can connect with every neighbor in a round. In the CONGEST model, a basic
pipelined broadcast provides constant throughput. When combined with the simulation cost
the achieved throughput is an asymptotically optimal Ω(1/d(G)).

It is straightforward for a centralized algorithm to calculate this schedule in polynomial
time, but in some cases a pre-computation of this type might be impractical, or require
too high of a setup cost.2 With this in mind, we also provide a distributed version of this
algorithm that converges to Ω(1/(d(G) + logn)) throughput in Õ(D(T )d(G) +

√
n) rounds,

where D(T ) is the diameter of the spanning tree and Õ hides polylog(n) factors. The
algorithm further converges to an optimal Ω(1/d(G)) throughput after no more than O(n2)
total rounds – providing a trade-off between setup cost and eventual optimality.

Finally, in Section 4.3, we study the performance of our algorithm in networks generated
randomly using the Gupta and Kumar process summarized above. We prove that for any
communication radius sufficiently larger than the connectivity threshold, the network is likely
to include an O(1)-tree, enabling our algorithms to converge to constant throughput. This
result indicates that in evenly distributed network deployments the mobile telephone model
is well-suited for high performance broadcast.

Results: All-to-All Capacity. All-to-all capacity generalizes broadcast capacity such that
now every node is provided an infinite sequence of packets it must deliver to the entire
network. Solutions to this problem would be useful, for example, in a local multiplayer
gaming scenario in which each player needs to keep track of the evolving status of all other
players connected in a peer-to-peer network.

Clearly, n separate instances of our broadcast algorithm from Section 4.2, one for each
of the n nodes as the broadcast source, can be interleaved with a round robin schedule
to produce Ω(1/(n · d(G))) throughput. In Section 5, we draw on the same graph theory

2 In the mobile telephone model, all nodes can learn the entire network topology in O(n2) rounds and
then run a centralized algorithm locally to determine their routing behavior. Though this setup cost is
averaged out when calculating throughput in the limit, it might be desirable to minimize it in practice.
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connections as before to prove that this result is tight for all-to-all capacity. We then
provide a less heavy-handed distributed algorithm for achieving this throughput. Instead of
interleaving n different broadcast instances, it executes distinct instances of all-to-all gossip,
one for each packet number, using a flood-based strategy on a low degree spanning tree.
Finally, we apply the random graph analysis from Section 4.3 to establish that for sufficiently
large communication radius, with high probability, the randomly generated graph supports
Ω(1/n)-throughput, which is trivially optimal in the sense that a receiver can receive at most
one new packet per round in our model.

New Results on One-Shot Gossip. As we detail in Section 5.1, our results on all-to-all
capacity imply new lower and upper bounds on one-shot gossip in the mobile telephone
model. From the lower bound perspective, they imply that gossiping in graph G in the
mobile telephone model requires Ω(n · d(G)) rounds. From the upper bound perspective,
when we carefully account for the costs of our routing algorithm applied to spreading only a
single packet from each source, we solve the one-shot problem with high probability in the
following number of rounds:

O((D +
√
n)polylog(n) + n(d(G) + logn)) = Õ(d(G) · n),

where D is the diameter of G. This algorithm is asymptotically optimal in any graph with
d(G) ∈ Ω(logn) and D ∈ O(n/ logx n) (where x is the constant from the polylog in the
MDST construction time), which describes a large family of graphs. For all other graphs
the solution is at most a polylog factor slower than optimal. This is the first known gossip
solution to be optimal, or within log factors of optimal, in all graphs, largely answering a
challenge presented by [24].

Motivation. Smartphone operating systems include increasingly robust support for op-
portunistic device-to-device communication through standards such as Apple’s Multipeer
Connectivity Framework [2], Bluetooth LE [18], and WiFi Direct [3]. Though the original
motivation for these links was to support information transfer among a small number of
nearby phones, researchers are beginning to explore their potential to enable large-scale
peer-to-peer networks. Recent work, for example, uses smartphone peer-to-peer network-
ing to provide disaster response [28, 26, 21], circumvent censorship [12], extend internet
access [1, 13], support local multiplayer gaming [23] and improve classroom interaction [20].

It remains largely an open question whether or not it will be possible to build large-scale
network systems on top of smartphone peer-to-peer links. As originally argued by Gupta
and Kumar [19], bounds for capacity problems can help resolve such questions for a given
network model by establishing the limit to their ability to handle ongoing and concurrent
communication. The results in this paper, as well as the novel technical tools developed
to prove them, can therefore help resolve this critical question concerning this important
emerging network setting.

2 Preliminaries

Here we define our model, the problem we study, and some useful mathematical tools and
definitions. Due to space constraints, this version of the paper omits most proofs. All
technical details can be found in the full version.
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2.1 Model

The mobile telephone model describes a smartphone peer-to-peer network topology as an
undirected graph G = (V,E). The nodes in V correspond to the smartphone devices, and
an edge {u, v} ∈ E implies that the devices corresponding to u and v are within range to
establish a direct peer-to-peer radio link. We use n = |V | to indicate the network size.

Executions proceed in synchronous rounds labeled 1, 2, ..., and we assume all nodes start
during round 1. At the beginning of each round, each node u ∈ V selects an advertisement of
size at most O(logn) bits to broadcast to its neighbors N(u) in G. After the advertisement
broadcasts, each node u can either send a connection invitation to at most one neighbor, or
wait to receive invitations. A node receiving invitations can accept at most one, forming a
reliable pairwise connection. It follows from these constraints that the set of connections in
a given round forms a matching.

Once connected, a pair of nodes can perform a bounded amount of reliable communication.
For the capacity problems studied in this paper, we assume that a pair of connected nodes
can transfer at most one packet over the connection in a given round. We treat these packets
as black boxes that can only be delivered in this manner (e.g., you cannot break a packet
into pieces, or attempt to deliver it using advertisement bits).

We assume when running a distributed algorithm in this model that each computational
process (also called a node) is provided a unique ID that can fit into its advertisement and an
estimate of the network size. It is provided no other a priori information about the network
topology, though any such node can easily learn its local neighborhood in a single round if
all nodes advertise their ID.

2.2 Problem

In this paper we measure capacity as the achievable throughput for various combinations of
packet flow and network types. We begin by providing a general definition of throughput
that applies to all settings we study. This definition makes use of an object we call a flow set,
which is a set F = {(si, Ri) : 1 ≤ i ≤ k} (for some k ≥ 1) where each si ∈ V and Ri ⊆ V

(for node set V ). For a given flow set F , each (si, Ri) ∈ F describes a packet flow of type i;
i.e., source si is tasked with sending packets to all the destinations in set Ri. We refer to the
packets from si as i-packets.

A schedule for a given G and F describes a movement of packets through the flows defined
by F . Formally, a schedule is an infinite sequence of directed matchings, M1,M2, ... on G,
such that the edges in each Mt are labelled by packets, where we define a packet as a pair
(i, j) with i ∈ [|F |] and j ∈ N (i.e., (i, j) is the j’th packet of type i). We require that the
packet labels for a schedule satisfy the property that if edge (u, v) in Mt is labelled with
packet p = (i, j), then there is a path in

⋃
l<tMl from si to u where all edges on the path are

labelled with p. (It is easy to see by induction that this corresponds precisely to the intuitive
notion of packets moving through a mobile telephone network). We say that a packet p is
received by a node u in round r if there is an edge (v, u) ∈Mr which is labelled p. A packet
(i, j) is delivered by round r if every x ∈ Ri receives it in some round t with t ≤ r.

Given a schedule S for a graph G and flow set F , we can define the throughput achieved
by the slowest rate, indicated in packets per round, at which any of the flows in F are
satisfied in the limit. Formally:
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I Definition 2.1. Fix a schedule S defined with respect to network topology graph G = (V,E)
and flow set F . We say S achieves throughput t with respect to G and F , if there exists a
convergence round r0 ≥ 1, such that for every r ≥ r0 and every packet type i:(

deli(r)
r

)
≥ t,

where deli(r) is the largest j such that for every l ≤ j, packet (i, l) has been delivered by
round r.

The above definition of throughput concerns performance in the limit, since r0 can be
arbitrarily large. In some cases, though, we might also be concerned with how quickly we
achieve this limit. Our notion of convergence round allows us to quantify this, so we will
provide bounds on the convergence round where relevant.

Many of the results in this paper concern algorithms that produce schedules. Our
centralized algorithms take G and F as input and efficiently produce a compact description of
an infinite schedule (i.e., an infinitely repeatable finite schedule). Our distributed algorithms
assume a computational process running at each node in G, and for each (si, Ri) ∈ F , the
source si is provided an infinite sequence of packets to deliver to Ri. An execution of such a
distributed algorithm might contain communication other than the flow packets provided as
input; e.g., the algorithm might distributedly (in the mobile telephone model) compute a
routing structure to coordinate efficient packet communication. However, a unique schedule
can be extracted from each such execution by considering only communication corresponding
to the flow packets.

While our definition of throughput is for schedules and not algorithms, we will say that
an algorithm achieves throughput α if it results in a schedule that achieves throughput α.

In the sections that follow, we consider three different types of capacity: pairwise,
broadcast, and all-to-all. Each capacity type can be formalized as a set of constraints on the
allowable flow sets. For each capacity type we study achievable throughput with respect
to both arbitrary and random network topology graphs. In the arbitrary case, the only
constraints on the graph is that it is connected. For the random case, we must describe a
process for randomly generating the graph. To do so, we use the approach introduced for
this purpose by Gupta and Kumar [19]: randomly place nodes in a unit square, and then
add an edge between all pairs within some fixed radius. Formally:

I Definition 2.2. For a given real value radius r, 0 < r ≤ 1, and network size n ≥ 1, the
GK(n, r) network generation process randomly generates a network topology G = (V,E) as
follows:
1. Let V = {u1, u2, ..., un}. Place each of the n nodes in V uniformly at random in a unit

square in the Euclidean plane.
2. Let E = {(ui, uj) : d(ui, uj) ≤ r}, where d is the Euclidean distance metric.

We will use the notation G ∼ GK(n, r) to denote that G is a random graph generated
by the GK(n, r) process. When studying a specific definition of capacity with respect to a
network randomly generated with the GK process, it is necessary to specify how the flow set
is generated. Because these details differ for each of the three capacity definitions, we defer
their discussion to their relevant sections.

2.3 Mathematical Preliminaries
We begin with some basic definitions. Fix some connected undirected graph G = (V,E). We
define c(G) to be the number of components in G. In a slight abuse of notation, we define
G \ S, for S ⊆ V , to be the graph defined when we remove from G the nodes in S and their

DISC 2019



14:8 The Capacity of Smartphone Peer-To-Peer Networks

adjacent edges. For a fixed integer k > 1, we say G has a k-tree if there exists a spanning
tree in G with maximum degree k. Finally, let d(G) be the smallest k such that G has a
k-tree. That is, d(G) describes the maximum degree of the minimum degree spanning tree
(MDST) in G.

Some of our results will use the following simple corollary of a theorem of Win [29]. The
proof, which utilizes the notion of graph toughness [29], can be found in the full version.

I Theorem 2.3. Fix an undirected graph G = (V,E) and degree k ≥ 3. If d(G) > k, then
there exists a non-empty subset of nodes S ⊂ V such that there are more than c(G \ S) >
(k − 2) · |S|.

3 Pairwise Capacity

In their seminal paper [19], Gupta and Kumar approached the question of network capacity
by considering the maximum throughput achievable for a collection of disjoint pairwise flows,
each consisting of a single source and destination. They studied achievable capacity in both
arbitrary networks as well as random networks. In this section, we apply this approach to
the mobile telephone model.

To do so, we formalize the pairwise capacity problem as the following constraint on the
allowable flow sets (see Section 2.2): for every pair (si, Ri) ∈ F , it must be the case that
Ri = {x} (i.e., |R| = 1), and neither s nor x shows up in any other pair in F .

3.1 Arbitrary Networks
We begin by designing algorithms that (approximate) the maximum achievable throughput in
an arbitrary network. For now we will not focus on the convergence time, since our definition
of capacity applies in the limit, so we describe the following as a centralized algorithm (the
time required for each node to gather the full graph topology and run this algorithm locally
to generate an optimal routing schedule is smoothed out over time). But as usual when
considering centralized algorithms, we will care about the running time.

Formally, we define the Pairwise Capacity problem to be the optimization problem where
we are given a graph G = (V,E) and a pairwise flow set F , and are asked to output a
description of an (infinite) schedule which maximizes the throughput. Our algorithm will in
particular output a finite schedule which is infinitely repeated. Our approach is to establish
a strong connection between multi-commodity flow and optimal schedules, and then apply
existing flow solutions as a step toward generating a near optimal solution for the current
network. In other words, we give an approximation algorithm for Pairwise Capacity via a
reduction to a multi-commodity flow problem.

I Theorem 3.1. There is a (centralized) algorithm for Pairwise Capacity that achieves
throughput which is a (3/2 + ε)-approximation of the optimal throughput, for any ε > 0. The
convergence time is nO(1)ε−2 and the running time is nO(1)ε−1.

Multi-Commodity Flow. In the maximum concurrent multi-commodity flow (MCMF) prob-
lem, we are given a triple (D,M, cap), where D = (VD, ED) is a digraph, M is collection
M ⊆ VD × VD of node-pairs (each representing a commodity), and cap : ED → R+

0 are
flow capacities on the edges. Let K = |M | be the number of commodities. The output is
a collection f = (f1, f2, . . . , fK) of flows satisfying conservation and capacity constraints.
Namely, for each flow fi and for each vertex v ∈ G where v 6∈ {si, ti}, the flow into a
node equals the flow going out:

∑
e=(u,v)∈ED

fi(e) =
∑
e′=(v,w)∈ED

fi(e′). Also, the flow
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through each edge is upper bounded by its capacity: f(e) =
∑K
i=1 fi(e) ≤ cap(e). Let

v(fi) =
∑
w,e=(si,w)∈ED

fi(e) be the value of flow i, or the total flow of commodity i leaving
its source. The value of the total flow f is v(f) = minKi=1 v(fi), and our goal is to maximize
v(f). We refer to f as an MCMF flow and the constituent commodity flows as subflows.

The MCMF problem can be solved in polynomial-time by linear programming. There
are also combinatorial approximation schemes known, and our version of the problem can be
approximated within a (1 + ε)-factor in time Õ((m+K)n/ε2) [22].

We first show how to round an MCMF flow to use less precision while limiting the loss of
value. We say that a MCMF flow is φ-rounded if the flow of each commodity on each edge is
an integer multiple of 1/φ: bfi(e) · φc = fi(e) · φ, for all i, and all edges e. We show how to
produce a rounded flow of nearly the same value.

I Lemma 3.2. Let f be a MCMF flow and φ be a number. There is a rounding of f to a
φ-rounded flow f ′ with value at least v(f ′) ≥ v(f)(1−Km/φ), and it can be generated in
polynomial time.

Proof. We focus on each subflow fi. By standard techniques, each subflow fi can be
decomposed into a collection of paths P1, . . . , Ps and values α1, . . . , αs, with s ≤ m = |E|,
such that fi(e) =

∑
j,Pj3e αj for each edge e. Let α′j = bαj · φc/φ, for each j, and observe

that α′j ≥ αj − 1/φ. We form the φ-rounded flow f ′ by f ′i(e) =
∑
j,Pj3e α

′
j , for each

edge e. It is easily verified that conservation and capacity constraints are satisfied. By
the bound on α′, it follows that the value of the rounded flow is bounded from below by
v(f ′i) ≥ v(fi)− s/φ ≥ v(fi)−m/φ. The value of each flow is trivially bounded from below
by v(fi) ≥ 1/K (which is achieved by sending 1/K of each commodity flow along a single
path). Thus, v(f ′i) ≥ (1−Km/φ)v(fi). J

We now turn to the reduction of Pairwise Capacity to MCMF. Given G = (V,E) and
F , along with a parameter τ , we form the flow network Dτ = (D,M, capτ ) as follows. The
undirected graph G = (V,E) is turned into a digraph D = (VD, ED) with two copies vin, vout
of each vertex: VD = {vin, vout : v ∈ V } and edges ED = {(uout, vin) : uv ∈ E}∪{(vin, vout) :
v ∈ V }. The source/destination pairs carry over: M = {(sin, tout) : (s, {t}) ∈ F}. Finally,
capacities of edges in ED are capτ (uout, vin) =∞ and capτ (vin, vout) = 1 + tv · τ/2, where
tv is the number of source/destination pairs in F in which v occurs. Observe that there is a
one-to-one correspondence between simple paths in G and in D (modulo the in/out version
of the start/end node).

I Lemma 3.3. The throughput of any schedule on (G,F ) is at most τ∗/2, where τ∗ is the
largest value such that Dτ∗ has MCMF flow of value τ∗.

Proof. Let A be a mobile telephone schedule and let T be its throughput. We want to show
that D2T has MCMF flow of value 2T ; this is sufficient to imply the lemma. We assume
that packets flow along simple paths, and we achieve that by eliminating loops from paths,
if necessary. By the throughput definition, there is a round r0 = rA,T such that for every
round r ≥ r0 and every source/destination pair i, the number of i-packets delivered by round
r is at least T · r. Let Xi be the first Tr0 i-packets delivered (necessarily by round r0), for
each type i, and let X = ∪iXi. For each edge e = uv and pair i, let qi(u, v) be the number
of packets in Xi that passed through e, from u to v. Also, for a vertex v, let ai(v) denote
the number of i-packets originating at v, i.e., ai(v) = Tr0 if v = si and ai(v) = 0 otherwise.
Similarly, let bi(v) be the number of i-packets with v as its destination. Finally, let qi(v) be
the number of packets in Xi that flow through v, but did not originate or terminate at v,
and observe that qi(v) =

∑
w,vw∈E qi(v, w)− ai(v) =

∑
u,uv∈E qi(u, v)− bi(v).
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Define the collection f = (f1, f2, . . . , fK) of functions where for each i, fi(uout, vin) =
2qi(u, v)/r0, for each edge e = uv ∈ E, and fi(vin, vout) = 2(qi(v) + ai(v) + bi(v))/r0, for
each vertex in V . Observe that the flow fi(uout, vin) corresponds to twice the number of
i-packets going from u to v (scaled by factor 1/r0). The flow fi(vin, vout) from vin to vout
corresponds to the number of packets in Xi coming into v plus the number of those going out
of v (scaled by factor 1/r0), counting those that go through v twice, but those originating
or terminating at v only once. We claim that f is a valid MCMF flow in D2T of value 2T ,
which implies the lemma. Let fai (v) = 2ai(v)/r0 (f bi (v) = 2bi(v)/r0) be the amount of type-i
flow originating (terminating) at v, respectively.

First, to verify flow conservation at nodes, consider a type i, and observe first that all
packets in X start at the source si and end at the destination ti.

fi(vin, vout) = 2(qi(v) + ai(v) + bi(v))
r0

= 2ai(v)
r0

+
∑

u,uv∈E

2qi(u, v)
r0

= fai (v) +
∑

u,(uout,vin)∈ED

fi(uout, vin) .

That is, the flow from each node vin equals the flow coming in plus the flow generated at the
node (noting also that no flow terminates at the node). Similarly, the flow into vout equals
the flow terminating at the node plus the node going out:

fi(vin, vout) = 2(qi(v) + ai(v) + bi(v))
r0

= 2bi(v)
r0

+
∑

w,vw∈E

2qi(v, w)
r0

= f bi (v) +
∑

w,(vout,win)∈ED

fi(vout, win) .

Second, to verify capacity constraints, observe that if q(v) =
∑
i qi(v) is the number of

packets that flow through node v, then

2q(v) +
∑
i

(ai(v) + bi(v)) ≤ r0 ,

since v needs to handle flowing-through packets in two separate rounds and it can only
process a single packet in a round. Thus, the flow through (vin, vout) is bounded by

f(vin, vout) = 2
r0

(q(v)+
∑
i

(ai(v)+bi(v))) = 1
r0

(2q(v)+
∑
i

(ai(v)+bi(v)))+tvT ≤ 1+tvT ,

satisfying the capacity constraints.
Finally, it follows directly from the definition of fai (or f bi ) that the flow value is 2T . J

To prove Theorem 3.1 we need to introduce edge multicoloring.

I Definition 3.4. Given a graph G = (V,E) and a color requirement r(e) ∈ N for each edge
e ∈ E. An edge multicoloring of (G, r) is a function π : E → 2N that satisfies the following:
a) if e1, e2 ∈ E are adjacent then π(e1)∩π(e2) = ∅, and b) |π(e)| ≥ r(e), for each edge e ∈ E.
The number of colors used is | ∪e π(e)|, the size of the support for π.

We shall use the follow result on edge multicolorings.

I Theorem 3.5 (Shannon [27]). Given a graph G = (V,E) and a color requirement r(e) ∈ N
for each edge e ∈ E, there is a polynomial-time algorithm that edge multicolors (G, r) using
at most 3∆r(v)/2 colors, where ∆r(v) =

∑
e3v r(e).
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We can now prove Theorem 3.1.

Proof of Theorem 3.1. Let (G,F ) be a given Pairwise Capacity instance and let ε > 0.
We perform binary search to find a value τ such that: a) An 1 + ε/4-approximate MCMF
algorithm produces flow f of value at least τ(1 − ε/4) on Dτ , and b) The same does
not hold for τ(1 + ε/4). The resulting flow f = (f1, . . . , fK) is then of value at least
τ∗(1 − ε/4)/(1 + ε/4) ≥ τ∗(1 − ε/4)2 ≥ τ∗(1 − 2ε/4). Recall that K is the number of
commodities, and so K = |F |.

Let N = 4ε−1Km. We apply Lemma 3.2 to create from f an N -rounded flow f ′ =
(f ′1, . . . , f ′K). By Lemma 3.2, this decreases the flow value by a factor of at most 1−Km/N =
1− ε/4, i.e., v(f ′) ≥ (1− ε/4)v(f) ≥ (1− 3ε/4)τ∗.

We then form an edge multicoloring instance on G as follows. Each edge e requires
r(e) colors, where r(e) =

∑
i ri(e) and ri(e) = f ′i(e) · N . The weighted degree of each

node v is then dr(v) =
∑
e3v r(e) = N

∑
e3v f

′(e) ≤ N
∑
e3v f(e) =

∑
e=(v,u)∈ED

f(e) +∑
e′=(w,v)∈ED

f(e) ≤ 2N , by node capacity constraints. We apply the algorithmic version of
Shannon’s Theorem 3.5 to edge multicolor (G, r) with at most 3N colors. This induces an
initial schedule of length 3N , which is then repeated as needed. Within each 3N rounds,∑
v,e=(si,v) ri(e) = N · v(f ′i) i-packets depart from its source si.
Let r0 = 4n

ε (3N). Consider the situation after round r ≥ r0. Observe that each packet
is forwarded at least once during each 3N rounds, and thus it is delivered within n(3N)
rounds after it is transmitted from its source, since each path used is simple. Thus, the total
number of type-i packets that remain in the system in the end is at most a ε/4-fraction of
the delivered packets. Averaged over the r rounds gives throughput of

N · v(f ′i)
3N · (1− ε/4) = 1

3v(f ′i) · (1− ε/4) .

Hence, the throughput achieved is at least

T ≥ 1
3v(f ′)(1− ε/4) ≥ 1

3v(f)(1− ε/4) ≥ 1
3τ
∗(1− ε) . (1)

By Lemma 3.3, the throughput is then 3/2 + ε-approximation of optimal.
The computation performed is dominated by the application of Shannon’s algorithm,

which runs in time O((∆r + n)m̂), where m̂ is the number of multiedges and ∆r ≤ 2N is
the maximum weighted degree. Here, m̂ =

∑
e q(e) = N

∑
e

∑
i fi(e) ≤ N ·m. Hence, the

number of computational steps is at most O(mN2) = O(m3K2ε−2). The convergence time
is r0 = 4n

ε (3N) = O(nmKε−2). J

We note that the factor 3/2 cannot be avoided in a reduction to flow. Consider the
graph G on six vertices V = {si, ti : i = 0, 1, 2} and edges {siti′ , titi′ : i = 0, 1, 2, i′ =
i − 1 mod 3}. The optimal throughput is 1/3, with respect to F = {(si, ti) : i = 0, 1, 2}.
This corresponds to the directed graph D on nine nodes: {si, tini , touti : i = 0, 1, 2} and
edges {(si, tini′ ), (touti′ , t

in
i ), (tini , touti ) : i = 0, 1, 2, i′ = i − 1 mod 3}, and three subflows:

M = {si, touti : i = 0, 1, 2}. Then, D1 = (D,M, cap1), where cap1(tini , touti ) = 2, has flow of
value 1.

3.2 Random Networks
We now consider achievable throughput for the pairwise capacity problem in networks
randomly generated with the GK process defined in Section 2.2. Following the lead of the
original Gupta and Kumar capacity paper [19], we assume the flow sets are also randomly
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generated with uniform randomness and contain all the nodes (i.e., every node shows up as a
source or destination). A minor technical consequence of this definition is that it requires us
to constrain our attention to even network sizes.

We begin in Section 3.2.1 by identifying a threshold value for the radius r below which
the randomly generated network is likely to be disconnected, trivializing the achievable
throughput to 0. In Sections 3.2.2 and 3.2.3, we then prove that for any radius value r that is
at least a sufficiently large constant factor greater than the threshold, with high probability
in n, the optimal achievable throughput is in Θ(r).

3.2.1 Connectivity Threshold
When analyzing networks and flows generated by the GK(n, r) network generation process,
we must consider the radius parameter r. If r is too small, then we expect a network
in which some sources are disconnected from their corresponding destinations, making
the best achievable throughput trivially 0. Here we study a connectivity threshold value
rc(n) =

√
α logn
n , defined with respect to a network size n and a constant fraction α. We

prove that for any r ≤ rc(n), with probability at least 1/2, given a network generated
by G(n, k) and a random pairwise flow set F , there exists at least one pair in F that is
disconnected.

I Theorem 3.6. There is some constant α > 0 so that for every sufficiently large even
network size n and radius r ≤ rc(n) =

√
α logn
n , if G ∼ GK(n, r) and F is a random pairwise

flow set, then with probability at least 1/2 there exists (s, {x}) ∈ F such that s is disconnected
from x in G.

At a high level, to prove this theorem we divide the unit square into a grid consisting of
boxes of side length r, and then group these boxes into regions made up of 3× 3 collections
of boxes. If a given region has a node u in the center box, and all its other boxes are empty,
then u is disconnected from any node not in its own box. Our proof calculates that for a
sufficiently small constant fraction α used in the definition of the connectivity threshold, with
probability at least 1/2, there will be a node u such that u is isolated as described above,
and u is part of a source/destination pair with another node v located in a different box.

Given this setup, the main technical complexity in the proof is carefully navigating the
various probabilistic dependencies. One place where this occurs is in proving the likelihood
of empty regions. For sufficiently small α values, the expected number of non-empty regions
is non-zero, but we cannot directly concentrate on this expectation due to the dependencies
between emptiness events. These dependencies, however, are dispatched by leveraging the
negative association between the indicator variables describing a region’s emptiness (e.g., if
region i is not empty, this increases the chance that region j 6= i is empty).

3.2.2 Bound on Achievable Throughput
In the previous section, we identified a radius threshold rc(n) below which a randomly
generated network is likely to disconnect a source and destination, reducing the achievable
throughput to a trivial 0. Here we study the properties of the networks generated with
radius values on the other side of this threshold. In particular, we show that for any radius
r ≥ rc(n), with high probability, the randomly generated network and flow set will allow
an optimal throughput bounded by O(r). The intuition for this argument is that if nodes
are evenly distributed in the unit square, a constant fraction of senders will have to deliver
packets from one half of the square to the other, necessarily requiring many packets to flow
through a small column in the center of the square, bounding the achievable throughput.
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I Theorem 3.7. For every sufficiently large even network size n and radius r ≥ rc(n), given
a network G ∼ GK(n, r) and a random pairwise flow set F , the throughput of every schedule
(w.r.t. G and F ) is O(r) with high probability.

3.2.3 Tightness of the Throughput Bound
In Section 3.2.2, we proved an upper bound of O(r) on the achievable throughput in a
network generated by GK(n, r), for r ≥ rc(n), and random pairwise flows. Here we show
this result is tight by showing how to produce a schedule that achieves throughput in Ω(r)
with respect to a random G and F . Formally:

I Theorem 3.8. There exists a constant β > 1 such that, for any sufficiently large network
size n ≥ 2 and radius r ≥ βrc(n), if G ∼ GK(n, r) and F is a random pairwise flow set,
then with high probability in n there exists a schedule that achieves throughput in Ω(r) with
respect to G and F .

At a high level, our argument divides the unit square into box of side length ≈ r. We
prove that with high probability, both nodes and pairwise demands are evenly distributed
among the boxes. This allows a schedule that efficiently moves many packets in parallel up
and down columns to the row of their destination, and then moves these packets left and
right along the rows to reach their destination. The time required for a given packet to make
it to its destination is bounded by the column and row length of ≈ 1/r, yielding an average
throughput in Θ(r). The core technical complexity of this argument is the careful manner
in which packets are moved onto and off a set of parallel paths while avoiding more than a
small amount of congestion at any point in their routing.

4 Broadcast Capacity

The broadcast capacity problem assumes a designated source node has an infinite sequence of
packets to spread to the entire network, implementing a one-to-all packet stream. Formally,
this version of the capacity problem constrains the flow set to only contain a single pair of
the form {s, V \ {s}}, for some source s ∈ V . As we will show, the achievable throughput for
this problem in a given network graph G is strongly related to d(G), the maximum degree of
the minimum degree spanning tree (MDST) for G (see Section 2.3).

4.1 A Bound on Achievable Throughput for Arbitrary Networks
We establish that the maximum degree of an MDST in G – that is, d(G) – bounds the
achievable throughput, with larger values of d(G) leading to lower throughput. The bound
is primarily graph theoretic: arguing a fundamental limit on the rate at which packets can
spread through a given topology.

I Theorem 4.1. Fix a connected network graph G = (V,E) and broadcast flow set F with
source s. Then every schedule achieves throughput at most O(1/d(G)).

Proof. Fix some G = (V,E), s ∈ V , and A, as specified by the theorem statement. If
d(G) ≤ 4 then the theorem is trivially true as all throughput values are in O(1). Assume
therefore that d(G) > 4. This allows us to apply Theorem 2.3 for k = d(G) − 1, which
establishes that there exists a non-empty subset S ⊂ V such that c(G \ S) > q · |S|, for
q = k − 2 = d(G) − 3 > 1 (where, as defined in Section 2.3, c(G \ S) is the number of
connected components after removing nodes in S from graph G).
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Let C be the set of components in G \ S that do not include the source s. Fix a packet t
spread by s. We say t arrives at Ci ∈ C in round r ≥ 1, if this is the first round in which a
node in Ci receives packet t. In this case, t must have been previously received by some bridge
node in S that is adjacent to Ci. This holds because if t can make it from s’s component to
Ci without passing through a node in S, then removing S would not disconnect Ci.

Fix any packet count i ≥ 1. Each packet requires |C| = c(G \ S)− 1 ≥ q|S| arrival events
before it completes spreading. As we established above, each arrival event requires a given
node in S to receive the given packet. Because each node in S can receive at most one packet
per round, there are at most |S| arrival events per round in the network.

Putting together these pieces, let Ti be the number of rounds required to spread i packets.
We can lower bound this value as:

Ti ≥
i · |C|
|S|

= i(q|S|)
|S|

= iq .

It follows that for every schedule, and every i, at least Ti rounds are required to spread i
packets – yielding a throughput upper bounded by i

Ti
≤ i

i·q = 1/q = 1/(d(G)− 3), which
yields the theorem. J

4.2 An Optimal Routing Algorithm for Arbitrary Networks

Here we describe a routing algorithm that achieves broadcast capacity throughput in
Ω(1/d(G)), when executed in a connected graph G. The high-level idea is to first con-
struct an MDST T in the graph G. We then edge color T using O(d(G)) colors, and use
this coloring to simulate the standard CONGEST model, parameterized so that a constant
number of packets can fit within its bandwidth limit. We analyze a straightforward pipelining
flooding algorithm for the CONGEST model that converges to constant throughput. When
combined with our simulator, which requires O(d(G)) real rounds to simulate each CONGEST
round, the result is a solution that achieves an average latency of O(d(G)) rounds per packet,
providing the claimed Ω(1/d(G)) throughput.

As in the pairwise setting, we can do this in a centralized fashion at the cost of a large
convergence time (in particular, it takes up to O(n2) rounds to gather the graph topology
locally before we can run a centralized algorithm). In order to decrease the convergence time,
we describe in the full version a distributed version of this strategy that still converges to
an optimal Ω(1/d(G)) throughput in O(n2) rounds, but guarantees to converge to at least
Ω
(

1
d(G)+logn

)
throughput in Õ(D(T ) · d(G) +

√
n) rounds, where D(T ) ≤ n is the diameter

of a spanning tree T built by the algorithm and Õ(·) suppresses polylog(n) factors.
Formally, we prove the following theorem:

I Theorem 4.2. There exists a (distributed) algorithm which, when executed in a connected
network topology G = (V,E) of size n = |V |, with a broadcast capacity flow set with source
s ∈ V , achieves throughput in Ω(1/(d(G) + logn)) with convergence round Õ(n · d(G)) and
achieves throughput in Ω(1/d(G)) with convergence round O(n2).

4.3 Random Networks

The preceding broadcast capacity results hold for any connected network graph. Here we
study the problem in networks randomly generated by the GK process with a communication
radius sufficiently larger than the threshold rc(n).
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Leveraging techniques from Section 3.2.3, we prove that such random networks are likely
to contain a constant degree MDST, which, as established in Theorem 4.2, support constant
throughput.

I Theorem 4.3. There exists a (distributed) algorithm, such that for any sufficiently large
network size n > 1 and constant β ≥ 1, and radius r ≥ βrc(n), if G ∼ GK(n, r) then with
high probability the algorithm achieves constant throughput (for any s).

5 All-to-All Capacity

We now consider the all-to-all capacity problem, which assumes all nodes begin with an
infinite sequence of packets to spread to all other nodes. Formally, this variation of the
capacity problem considers only the following canonical flow set: Fall = {(s, V \{s}) : s ∈ V }.

In Section 4, we described and analyzed an algorithm that achieved a throughput in
Ω(1/d(G)) for delivering packets from a single source to the whole network. To solve all-to-all
capacity, we could run n instances of this algorithm: one for each source, rotating through the
different instances in a round robin fashion. This approach provides a baseline throughput
result of Ω(1/(n · d(G))). The key questions are whether or not this bound is tight, and
whether there are simpler or more natural strategies than deploying round robin interleaving
of single-source broadcast.

In the full version, we answer both questions in the affirmative by generalizing our
argument from Theorem 4.1 to prove that no schedule achieves better than O

(
1

d(G)·n

)
throughput, and then exhibiting a matching distributed algorithm SG that uses a more
natural strategy than round robin broadcast. Formally:

I Theorem 5.1. When executed in a connected network topology G = (V,E) of size n = |V |,
with high probability in n: the SG algorithm achieves throughput in Ω

(
1

d(G)·n

)
with respect

to G and Fall. Furthermore, every schedule achieves throughput at most O
(

1
n·d(G)

)
with

respect to G and Fall.

Finally, notice that a direct corollary of our argument from Section 4.3, which establishes
that a random graph contains a constant degree MDST (for sufficiently large radius) with
high probability, is that with this same probability SG achieves Ω(1/n) throughput (which
is best possible for all-to-all capacity).

5.1 Implications for One-Shot Gossip

Existing results for one-shot gossip in the mobile telephone model are expressed with respect
to the vertex expansion (denoted α) of the graph topology [25, 24]. The best known results
requires O((n/α)polylog(n)) rounds, which is not tight in all graphs as vertex expansion
does not necessarily characterize optimal gossip.3 A key open question from [24] is whether
it is possible to produce a gossip algorithm that is optimal (or within log factors of optimal)
in all network topology graphs. The techniques used in the above capacity bounds help us
prove the following, which largely resolves this open question:

3 Consider, for example, a path of length n, which has α = 2/n. It is possible to pipeline n messages
through this network in Θ(n) rounds, which is much faster than Õ(n/α) = Õ(n2).
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I Theorem 5.2. Fix a connected network topology G = (V,E) with diameter D, size n = |V |,
and MDST degree d(G). Every solution to the one-shot gossip in G requires Ω(d(G)·n) rounds.
There exists an algorithm solves the problem in O((D +

√
n)polylog(n) + n(d(G) + logn)) =

Õ(d(G) · n) rounds, with high probability in n.
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