988 research outputs found

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    An investigation on automatic systems for fault diagnosis in chemical processes

    Get PDF
    Plant safety is the most important concern of chemical industries. Process faults can cause economic loses as well as human and environmental damages. Most of the operational faults are normally considered in the process design phase by applying methodologies such as Hazard and Operability Analysis (HAZOP). However, it should be expected that failures may occur in an operating plant. For this reason, it is of paramount importance that plant operators can promptly detect and diagnose such faults in order to take the appropriate corrective actions. In addition, preventive maintenance needs to be considered in order to increase plant safety. Fault diagnosis has been faced with both analytic and data-based models and using several techniques and algorithms. However, there is not yet a general fault diagnosis framework that joins detection and diagnosis of faults, either registered or non-registered in records. Even more, less efforts have been focused to automate and implement the reported approaches in real practice. According to this background, this thesis proposes a general framework for data-driven Fault Detection and Diagnosis (FDD), applicable and susceptible to be automated in any industrial scenario in order to hold the plant safety. Thus, the main requirement for constructing this system is the existence of historical process data. In this sense, promising methods imported from the Machine Learning field are introduced as fault diagnosis methods. The learning algorithms, used as diagnosis methods, have proved to be capable to diagnose not only the modeled faults, but also novel faults. Furthermore, Risk-Based Maintenance (RBM) techniques, widely used in petrochemical industry, are proposed to be applied as part of the preventive maintenance in all industry sectors. The proposed FDD system together with an appropriate preventive maintenance program would represent a potential plant safety program to be implemented. Thus, chapter one presents a general introduction to the thesis topic, as well as the motivation and scope. Then, chapter two reviews the state of the art of the related fields. Fault detection and diagnosis methods found in literature are reviewed. In this sense a taxonomy that joins both Artificial Intelligence (AI) and Process Systems Engineering (PSE) classifications is proposed. The fault diagnosis assessment with performance indices is also reviewed. Moreover, it is exposed the state of the art corresponding to Risk Analysis (RA) as a tool for taking corrective actions to faults and the Maintenance Management for the preventive actions. Finally, the benchmark case studies against which FDD research is commonly validated are examined in this chapter. The second part of the thesis, integrated by chapters three to six, addresses the methods applied during the research work. Chapter three deals with the data pre-processing, chapter four with the feature processing stage and chapter five with the diagnosis algorithms. On the other hand, chapter six introduces the Risk-Based Maintenance techniques for addressing the plant preventive maintenance. The third part includes chapter seven, which constitutes the core of the thesis. In this chapter the proposed general FD system is outlined, divided in three steps: diagnosis model construction, model validation and on-line application. This scheme includes a fault detection module and an Anomaly Detection (AD) methodology for the detection of novel faults. Furthermore, several approaches are derived from this general scheme for continuous and batch processes. The fourth part of the thesis presents the validation of the approaches. Specifically, chapter eight presents the validation of the proposed approaches in continuous processes and chapter nine the validation of batch process approaches. Chapter ten raises the AD methodology in real scaled batch processes. First, the methodology is applied to a lab heat exchanger and then it is applied to a Photo-Fenton pilot plant, which corroborates its potential and success in real practice. Finally, the fifth part, including chapter eleven, is dedicated to stress the final conclusions and the main contributions of the thesis. Also, the scientific production achieved during the research period is listed and prospects on further work are envisaged.La seguridad de planta es el problema más inquietante para las industrias químicas. Un fallo en planta puede causar pérdidas económicas y daños humanos y al medio ambiente. La mayoría de los fallos operacionales son previstos en la etapa de diseño de un proceso mediante la aplicación de técnicas de Análisis de Riesgos y de Operabilidad (HAZOP). Sin embargo, existe la probabilidad de que pueda originarse un fallo en una planta en operación. Por esta razón, es de suma importancia que una planta pueda detectar y diagnosticar fallos en el proceso y tomar las medidas correctoras adecuadas para mitigar los efectos del fallo y evitar lamentables consecuencias. Es entonces también importante el mantenimiento preventivo para aumentar la seguridad y prevenir la ocurrencia de fallos. La diagnosis de fallos ha sido abordada tanto con modelos analíticos como con modelos basados en datos y usando varios tipos de técnicas y algoritmos. Sin embargo, hasta ahora no existe la propuesta de un sistema general de seguridad en planta que combine detección y diagnosis de fallos ya sea registrados o no registrados anteriormente. Menos aún se han reportado metodologías que puedan ser automatizadas e implementadas en la práctica real. Con la finalidad de abordar el problema de la seguridad en plantas químicas, esta tesis propone un sistema general para la detección y diagnosis de fallos capaz de implementarse de forma automatizada en cualquier industria. El principal requerimiento para la construcción de este sistema es la existencia de datos históricos de planta sin previo filtrado. En este sentido, diferentes métodos basados en datos son aplicados como métodos de diagnosis de fallos, principalmente aquellos importados del campo de “Aprendizaje Automático”. Estas técnicas de aprendizaje han resultado ser capaces de detectar y diagnosticar no sólo los fallos modelados o “aprendidos”, sino también nuevos fallos no incluidos en los modelos de diagnosis. Aunado a esto, algunas técnicas de mantenimiento basadas en riesgo (RBM) que son ampliamente usadas en la industria petroquímica, son también propuestas para su aplicación en el resto de sectores industriales como parte del mantenimiento preventivo. En conclusión, se propone implementar en un futuro no lejano un programa general de seguridad de planta que incluya el sistema de detección y diagnosis de fallos propuesto junto con un adecuado programa de mantenimiento preventivo. Desglosando el contenido de la tesis, el capítulo uno presenta una introducción general al tema de esta tesis, así como también la motivación generada para su desarrollo y el alcance delimitado. El capítulo dos expone el estado del arte de las áreas relacionadas al tema de tesis. De esta forma, los métodos de detección y diagnosis de fallos encontrados en la literatura son examinados en este capítulo. Asimismo, se propone una taxonomía de los métodos de diagnosis que unifica las clasificaciones propuestas en el área de Inteligencia Artificial y de Ingeniería de procesos. En consecuencia, se examina también la evaluación del performance de los métodos de diagnosis en la literatura. Además, en este capítulo se revisa y reporta el estado del arte correspondiente al “Análisis de Riesgos” y a la “Gestión del Mantenimiento” como técnicas complementarias para la toma de medidas correctoras y preventivas. Por último se abordan los casos de estudio considerados como puntos de referencia en el campo de investigación para la aplicación del sistema propuesto. La tercera parte incluye el capítulo siete, el cual constituye el corazón de la tesis. En este capítulo se presenta el esquema o sistema general de diagnosis de fallos propuesto. El sistema es dividido en tres partes: construcción de los modelos de diagnosis, validación de los modelos y aplicación on-line. Además incluye un modulo de detección de fallos previo a la diagnosis y una metodología de detección de anomalías para la detección de nuevos fallos. Por último, de este sistema se desglosan varias metodologías para procesos continuos y por lote. La cuarta parte de esta tesis presenta la validación de las metodologías propuestas. Específicamente, el capítulo ocho presenta la validación de las metodologías propuestas para su aplicación en procesos continuos y el capítulo nueve presenta la validación de las metodologías correspondientes a los procesos por lote. El capítulo diez valida la metodología de detección de anomalías en procesos por lote reales. Primero es aplicada a un intercambiador de calor escala laboratorio y después su aplicación es escalada a un proceso Foto-Fenton de planta piloto, lo cual corrobora el potencial y éxito de la metodología en la práctica real. Finalmente, la quinta parte de esta tesis, compuesta por el capítulo once, es dedicada a presentar y reafirmar las conclusiones finales y las principales contribuciones de la tesis. Además, se plantean las líneas de investigación futuras y se lista el trabajo desarrollado y presentado durante el periodo de investigación

    System diagnosis using a bayesian method

    Get PDF
    Today’s engineering systems have become increasingly more complex. This makes fault diagnosis a more challenging task in industry and therefore a significant amount of research has been undertaken on developing fault diagnostic methodologies. So far there already exist a variety of diagnostic methods, from qualitative to quantitative. However, no methods have considered multi-component degradation when diagnosing faults at the system level. For example, from the point a new aircraft takes off for the first time all of its components start to degrade, and yet in previous studies it is presumed that apart from the faulty component, other components in the system are operating in a healthy state. This thesis makes a contribution through the development of an experimental fuel rig to produce high quality data of multi-component degradation and a probabilistic framework based on the Bayesian method to diagnose faults in a system with considering multi-component degradation. The proposed method is implemented on the fuel rig data which illustrates the applicability of the proposed method and the diagnostic results are compared with the neural network method in order to show the capabilities and imperfections of the proposed method

    Data-Based Modeling: Application in Process Identification, Monitoring and Fault Detection

    Get PDF
    Present thesis explores the application of different data based modeling techniques in identification, product quality monitoring and fault detection of a process. Biodegradation of an organic pollutant phenol has been considered for the identification and fault detection purpose. A wine data set has been used for demonstrating the application of data based models in product quality monitoring. A comprehensive discussion was done on theoretical and mathematical background of different data based models, multivariate statistical models and statistical models used in the present thesis.The identification of phenol biodegradation was done by using Artificial Neural Networks (namely Multi Layer Percetprons) and Auto Regression models with eXogenious inputs (ARX) considering the draw backs and complications associated with the first principle model. Both the models have shown a good efficiency in identifying the dynamics of the phenol biodegradation process. ANN has proved its worth over ARX models when trained with sufficient data with an efficiency of almost 99.99%. A Partial Least Squares (PLS) based model has been developed which can predict the process outcome at any level of the process variables (within the range considered for the development of the model) at steady state. Three continuous process variables namely temperature, pH and RPM were monitored using statistical process monitoring. Both univariate and multivariate statistical process monitoring techniques were used for the fault detection purpose. X-bar charts along with Range charts were used for univariate SPM and Principal Component Analysis (PCA) has been used for multivariate SPM. The advantage of multivariate statistical process monitoring over univariate statistical process monitoring has been demonstrated

    On-line anomaly detection with advanced independent component analysis of multi-variate residual signals from causal relation networks.

    Get PDF
    Anomaly detection in todays industrial environments is an ambitious challenge to detect possible faults/problems which may turn into severe waste during production, defects, or systems components damage, at an early stage. Data-driven anomaly detection in multi-sensor networks rely on models which are extracted from multi-sensor measurements and which characterize the anomaly-free reference situation. Therefore, significant deviations to these models indicate potential anomalies. In this paper, we propose a new approach which is based on causal relation networks (CRNs) that represent the inner causes and effects between sensor channels (or sensor nodes) in form of partial sub-relations, and evaluate its functionality and performance on two distinct production phases within a micro-fluidic chip manufacturing scenario. The partial relations are modeled by non-linear (fuzzy) regression models for characterizing the (local) degree of influences of the single causes on the effects. An advanced analysis of the multi-variate residual signals, obtained from the partial relations in the CRNs, is conducted. It employs independent component analysis (ICA) to characterize hidden structures in the fused residuals through independent components (latent variables) as obtained through the demixing matrix. A significant change in the energy content of latent variables, detected through automated control limits, indicates an anomaly. Suppression of possible noise content in residuals—to decrease the likelihood of false alarms—is achieved by performing the residual analysis solely on the dominant parts of the demixing matrix. Our approach could detect anomalies in the process which caused bad quality chips (with the occurrence of malfunctions) with negligible delay based on the process data recorded by multiple sensors in two production phases: injection molding and bonding, which are independently carried out with completely different process parameter settings and on different machines (hence, can be seen as two distinct use cases). Our approach furthermore i.) produced lower false alarm rates than several related and well-known state-of-the-art methods for (unsupervised) anomaly detection, and ii.) also caused much lower parametrization efforts (in fact, none at all). Both aspects are essential for the useability of an anomaly detection approach

    Combining symbolic conflict recognition with Markov Chains for fault identification

    Get PDF

    Automated Fault Detection in an Upflow Anaerobic Sludge Blanket Reactor: Comparisons of Biogas Production and Physicochemical Quantities

    Get PDF
    A system capable of rapidly detecting toxic loads entering high-rate anaerobic reactors would greatly enhance their reliability, and could thereby increase their commercial acceptance. A high-rate anaerobic wastewater treatment process, called the failure-causing load detector (FCLD), consisting of a small (4-liter) upflow anaerobic sludge blanket (UASB) reactor having a short (10-min) hydraulic retention time (HRT), was used as a biosensor to rapidly detect potential problems with the influent wastewater. Sensors were used to monitor biogas production in the reactor, as well as pH, conductivity, and turbidity in the effluent from the reactor. The FCLD system was tested using the following failure-causing loads: organic overload, sodium toxic load (using NaCl), sodium hypochlorite (NaOCl, bleach), milk, sodium hydroxide (NaOH), and hydrochloric acid (HCl). Two different classifiers were implemented to identify the type of failure-causing load based upon the sensor outputs. Each classifier was tested using data collected during experiments with the FCLD system. The first classifier was a crisp classifier: it classified the failure-causing loads based on pH, conductivity, and turbidity, and was generated based on graph theory definitions. The second classifier was fuzzy logic based: it used a fuzzy inference system (FIS) to classify the failure-causing loads. Biogas flow rate data under normal operating conditions was analyzed over ranges based on mean ± 1, ± 2, and ± 3 standard deviations, and was shown to be normally distributed. When using interval 2 (mean ± 2 sd), only 4 % of false positives (biogas alteration detection before addition of toxicant) were obtained, and it had 64 % of false negatives (no alteration detection after addition of toxicant). However, 5 of the 9 failure-causing loads tests could still be detected using this interval. Due to variability in the biogas measurement and because classification could be performed using only pH, conductivity and turbidity as inputs, biogas was disregarded as an input for both classification processes. Even without biogas as an input for the classifiers, the FCLD reactor still was needed as part of the system because other monitored parameters (e.g. pH) in the effluent line are modified not only by changes in composition of the influent wastewater, but also from imbalances of by-products of the anaerobic digestion. The graph theory based classifier did not show false positives, and it reached 3.7 % correct classification 10 min after addition of the failure-causing load (test time), increasing to 48 % 15 min after test time, and reaching 100 % 20 min after test time. There were no false positives for FIS based classifier, and correct classification occurred with 7.4 % at 10 min after test time, 59 % 15 min after test time, increasing to 96 % 20 min after test time, and it reached 100 % correct classification 25 min after test time. Results from both classifiers showed that the FIS based classifier has more misclassifications (125 % more) than the graph theory based classifier. Response time was checked for biogas detection and for both classifiers. Biogas detection was 5 min faster than the classifiers for the loads that could be detected. One improvement for both classifiers would be the inclusion of biogas as an input, which would accelerate the detection of the failure-causing loads that cause significant change in biogas production

    Intelligent maintenance management in a reconfigurable manufacturing environment using multi-agent systems

    Get PDF
    Thesis (M. Tech.) -- Central University of Technology, Free State, 2010Traditional corrective maintenance is both costly and ineffective. In some situations it is more cost effective to replace a device than to maintain it; however it is far more likely that the cost of the device far outweighs the cost of performing routine maintenance. These device related costs coupled with the profit loss due to reduced production levels, makes this reactive maintenance approach unacceptably inefficient in many situations. Blind predictive maintenance without considering the actual physical state of the hardware is an improvement, but is still far from ideal. Simply maintaining devices on a schedule without taking into account the operational hours and workload can be a costly mistake. The inefficiencies associated with these approaches have contributed to the development of proactive maintenance strategies. These approaches take the device health state into account. For this reason, proactive maintenance strategies are inherently more efficient compared to the aforementioned traditional approaches. Predicting the health degradation of devices allows for easier anticipation of the required maintenance resources and costs. Maintenance can also be scheduled to accommodate production needs. This work represents the design and simulation of an intelligent maintenance management system that incorporates device health prognosis with maintenance schedule generation. The simulation scenario provided prognostic data to be used to schedule devices for maintenance. A production rule engine was provided with a feasible starting schedule. This schedule was then improved and the process was determined by adhering to a set of criteria. Benchmarks were conducted to show the benefit of optimising the starting schedule and the results were presented as proof. Improving on existing maintenance approaches will result in several benefits for an organisation. Eliminating the need to address unexpected failures or perform maintenance prematurely will ensure that the relevant resources are available when they are required. This will in turn reduce the expenditure related to wasted maintenance resources without compromising the health of devices or systems in the organisation
    corecore