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ABSTRACT 

 

A system capable of rapidly detecting toxic loads entering high-rate anaerobic 

reactors would greatly enhance their reliability, and could thereby increase their 

commercial acceptance. A high-rate anaerobic wastewater treatment process, called the 

failure-causing load detector (FCLD), consisting of a small (4-liter) upflow anaerobic 

sludge blanket (UASB) reactor having a short (10-min) hydraulic retention time (HRT), 

was used as a biosensor to rapidly detect potential problems with the influent wastewater. 

Sensors were used to monitor biogas production in the reactor, as well as pH, 

conductivity, and turbidity in the effluent from the reactor. The FCLD system was tested 

using the following failure-causing loads: organic overload, sodium toxic load (using 

NaCl), sodium hypochlorite (NaOCl, bleach), milk, sodium hydroxide (NaOH), and 

hydrochloric acid (HCl). Two different classifiers were implemented to identify the type 

of failure-causing load based upon the sensor outputs. Each classifier was tested using 

data collected during experiments with the FCLD system. The first classifier was a crisp 

classifier: it classified the failure-causing loads based on pH, conductivity, and turbidity, 

and was generated based on graph theory definitions. The second classifier was fuzzy 

logic based: it used a fuzzy inference system (FIS) to classify the failure-causing loads. 

Biogas flow rate data under normal operating conditions was analyzed over 

ranges based on mean ± 1, ± 2, and ± 3 standard deviations, and was shown to be 

normally distributed. When using interval 2 (mean ± 2 sd), only 4 % of false positives 

(biogas alteration detection before addition of toxicant) were obtained, and it had 64 % of 
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false negatives (no alteration detection after addition of toxicant). However, 5 of the 9 

failure-causing loads tests could still be detected using this interval. Due to variability in 

the biogas measurement and because classification could be performed using only pH, 

conductivity and turbidity as inputs, biogas was disregarded as an input for both 

classification processes. Even without biogas as an input for the classifiers, the FCLD 

reactor still was needed as part of the system because other monitored parameters (e.g. 

pH) in the effluent line are modified not only by changes in composition of the influent 

wastewater, but also from imbalances of by-products of the anaerobic digestion. The 

graph theory based classifier did not show false positives, and it reached 3.7 % correct 

classification 10 min after addition of the failure-causing load (test time), increasing to 48 

% 15 min after test time, and reaching 100 % 20 min after test time. There were no false 

positives for FIS based classifier, and correct classification occurred with 7.4 % at 10 min 

after test time, 59 % 15 min after test time, increasing to 96 % 20 min after test time, and 

it reached 100 % correct classification 25 min after test time. Results from both 

classifiers showed that the FIS based classifier has more misclassifications (125 % more) 

than the graph theory based classifier. Response time was checked for biogas detection 

and for both classifiers. Biogas detection was 5 min faster than the classifiers for the 

loads that could be detected. One improvement for both classifiers would be the inclusion 

of biogas as an input, which would accelerate the detection of the failure-causing loads 

that cause significant change in biogas production. 
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CHAPTER 1 

 

INTRODUCTION  

 

High rate anaerobic treatment processes offer many advantages over aerobic 

processes: they require less energy to operate, they produce biogas that can be used as an 

energy source, they produce far less sludge as a byproduct when compared to aerobic 

treatment processes, and they do not require a large area to be implemented (Lettinga, 

1995). However, high-rate anaerobic processes have a serious disadvantage: the 

possibility of reactor failure due to an organic overload or a toxic load, and the 

subsequent slow start-up typical of these systems. 

When exposed to a toxic load, the composition of the liquid phase, as well as the 

biogas production and composition are expected to change. Some of the possible 

parameters that will vary in the liquid phase are alkalinity, volatile fatty acids (VFAs) 

concentration, chemical oxygen demand (COD) concentration, temperature, pH, 

dissolved hydrogen concentration (Moletta, 1994), and turbidity. 

A system capable of detecting such toxic loads would greatly enhance the 

reliability of existing high-rate anaerobic reactors, and could thereby increase the 

commercial acceptance of high-rate anaerobic treatment systems. Several investigators 

have explored the possibility of monitoring anaerobic reactors to enhance system stability 

(Rozzi et al., 1997; Rozzi et al., 1999; Steyer et al., 1997a; Steyer et al., 1997b). Steyer et 

al. (1997a & 1997b) applied fuzzy logic to control influent flow rate, based on the output 
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gas flow rate in a high-rate anaerobic digester (120 L) (similar to a upflow anaerobic 

sludge blanket, or UASB), but did not use a surrogate short-retention time reactor in their 

work. Rozzi et al. (1997 & 1999) worked with a small (5 L) UASB-like reactor (called 

the Rantox), and demonstrated the ability to rapidly detect toxic loads. The Rantox was 

used to monitor the metabolism of acetoclastic methanogens in the presence of toxicants. 

Toxicity could be detected from the analysis of the Monod kinetic constants Km 

(maximum substrate degradation) and KS (half-saturation constant), under kinetically 

saturated conditions (high substrate conditions), which was achieved by the periodical 

addition of acetic acid to the reactor. 

The need for a rapid toxicity detector motivated the development of a small-scale 

upflow anaerobic sludge blanket (UASB) reactor to be operated as a biosensor (Ervin et 

al., 1999). The device – called a failure-causing load detector (FCLD) – was designed to 

be placed alongside full-scale UASB reactors treating carbohydrate-rich wastewater. The 

FCLD has a hydraulic retention time (HRT) of 10 min, which is much shorter than the 

typical HRT of a full-scale UASB (ca. 2 – 8 h). Because of its short HRT, the FCLD 

responds more rapidly to a toxic event than does a full-scale reactor (Ervin et al., 1999). 

The use of the FCLD together with sensors to monitor parameters in the effluent 

wastewater and gas phase originated what is called the FCLD system. Experiments with 

different failure modes were performed: organic overloads, and toxic loads with sodium 

chloride (NaCl), milk, household bleach, sodium hydroxide (NaOH) and hydrochloric 

acid (HCl) were performed. Biogas flow rate, pH, conductivity and turbidity were 

monitored continuously during experiments. 



 3 

Because of the biological complexity inherent in the FCLD reactor, relationships 

among monitored parameters and toxicity are not expected to be exact; in other words, 

they involve some “fuzziness.” By definition, fuzziness is the ambiguity that can be 

found in the definition of the meaning of a word (Terano, 1991). Fuzzy inference systems 

(FIS) are very useful in classification type problems, because FIS allows the making of 

input/output nonlinear mapping. 

Therefore, the goal of this study was twofold: 

(1) To run the FCLD system using both organic overloads and toxic loads to verify 

system performance and to generate sample data for the second goal. 

(2) To develop and analyze expert system classification tools using FIS and graph 

theory for classifying the nature of the toxin entering the FCLD, based on easily 

measured macroscopic variables such as pH, biogas flow rate, conductivity and 

turbidity. 
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CHAPTER 2 

 

LITERATURE REVIEW  

 

2.1 – Wastewater treatment 

Wastewater may be classified as municipal (domestic), industrial, and 

agricultural. Municipal waste consists of the wastewater that comes from residences, 

commercial buildings, schools and hospitals (Gray, 1989). Industrial wastewater comes 

from manufacturing plants, for instance, food processing plants, breweries, or paper mills 

(Gray, 1989). Agricultural wastewater is generated on animal feeding operations (AFO), 

such as livestock (beef and dairy cattle, swine) and poultry (broilers, layers, turkeys) 

operations. 

Before wastewater is returned to surface waters or land, it must typically go 

through some method of treatment in order to avoid environmental degradation. 

Wastewater can be treated physically, chemically, and biologically (Metcalf and Eddy, 

1991), or any combination of those methods. Physical treatment is achieved when 

physical forces are utilized; e.g., screening for the removal of solids, mixing to keep 

solids in suspension, flocculation to aggregate small particles into larger ones with the 

intention of sedimentation, and filtration to remove fine particles (Metcalf and Eddy, 

1991). When a chemical reaction changes the composition of the wastewater it is known 

as chemical treatment. Some examples of chemical treatment are the precipitation for the 

removal of phosphorus, disinfection for the destruction of pathogenic organisms, and 
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dechlorination (Metcalf and Eddy, 1991). Biological treatment processes occur when 

living organisms, typically microbes, are used during the process. They can be used for 

the degradation of organic compounds, and the removal and/or sequestration of 

macronutrients such as nitrogen and phosphorus (Metcalf and Eddy, 1991). Biological 

treatment can be further subdivided into two major categories, aerobic and anaerobic 

processes. 

 

2.1.1 – Aerobic wastewater treatment 

Aerobic microorganisms require free oxygen to degrade the organics in the 

wastewater and to grow. Aerobic microorganisms (MOs) degrade organic contaminants 

in the wastewater when free oxygen is present, resulting in the growth of more 

microorganisms and the release of carbon dioxide (CO2), water and energy (Gray, 1989), 

as equation 2.1 shows. Example aerobic wastewater treatment processes include activated 

sludge processes, aerated lagoons, trickling filters, rotating biological contactors and 

stabilization ponds (Metcalf and Eddy, 1991). 

 

Organics + O2    aerobic MOs + CO2 + H2O + energy      [2.1] 

 

2.1.2 – Anaerobic wastewater treatment 

Degradation of organics present in the wastewater by anaerobe microorganisms is 

called anaerobic digestion. This process takes place in the complete absence of free 

oxygen. Anaerobic degradation is a multistep process of different reactions that are 

Aerobic MOs 
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accomplished by a consortium of microorganisms (Pavlostathis and Giraldo-Gomez, 

1991). It consists of three stages (Gray, 1989): hydrolysis, acid formation, and methane 

(CH4) formation (methanogenic phase), as equation 2.2 shows. 

 

Insoluble organics   Soluble organics 

Volatile acids    Gases        [2.2] 

 

Even though described as a three-phase process, the reactions occur 

simultaneously; the microorganisms are therefore metabolically codependent on each 

other, as illustrated by figure 2.1. Anaerobic digestion starts as enzymes hydrolyze 

complex organic materials into smaller soluble products, amino acids, sugars, fatty acids 

and alcohol. Amino acids and sugars are products of the hydrolysis of proteins and 

carbohydrates, respectively. Amino acids and sugars are then fermented into intermediary 

products and acetate. Fatty acids and alcohol that are hydrolyzed from lipids are 

anaerobically oxidized into intermediary products, carbon dioxide and hydrogen. Acetate 

is produced from the homoacetogenesis of carbon dioxide and hydrogen. Finally, 

methanogenesis occurs via carbon dioxide reduction by hydrogen or from acetate. The 

anaerobic digestion produces biogas as an end product. Biogas is composed of methane 

(60-75%), carbon dioxide (25 – 30%) and trace amounts of nitrogen, hydrogen, and other 

gases (Gray, 1989). In order for the anaerobic digestion of complex organic materials to 

be efficient, several critical parameters must be in an  
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Figure 2.1 – Anaerobic digestion of complex organic material 
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optimal range, among them are pH, temperature, the concentration of macronutrients, 

carbon source, and electron donor. 

The pH within an anaerobic reactor must be kept between 6.5 and 8.2 (Speece, 

1996). If the methanogenic bacteria do not work properly, i.e., do not digest the 

intermediary products at a reasonable rate, these intermediary products will start to 

accumulate. The accumulation of these products, especially VFAs, will lower the pH 

inside the reactor. If the pH drops below 6.2, methane production will slow drastically 

and the process may fail (Winkler, 1981). 

Nitrogen (N) and phosphorus (P) are essential nutrients for bacterial growth. 

Depending on the characteristics of the wastewater, these nutrients may have to be added 

to the influent. A COD:N ratio of 400:7 when having high loading rates (0.8 – 1.2 g 

COD/g VSS⋅d), and 1000:7 at low loading rates (< 0.5 g COD/g VSS⋅d) may be 

necessary as reviewed by Singh et al. (1998). The phosphorus requirement, described as 

P:N ratio, is 7:1 (Gray, 1989; Speece, 1996). The theoretical minimum COD:N:P ratio is 

thus 350:7:1 for high loading rates and 1000:7:1 for low loading rates, as reviewed by 

Speece, (1996). Other macronutrients and micronutrients that must be present in the 

wastewater are sulfide, iron, cobalt, nickel, and zinc (Speece, 1996). 

The temperature range for anaerobic digestion is divided into three classes, 

psychrophilic, 5 – 25 degrees Celsius (oC), mesophilic, 25 – 38oC, and thermophilic, 50 – 

70oC (Gray, 1989). Usually, anaerobic reactors are operated under mesophilic conditions 

with an optimum temperature of 35oC (Speece, 1996). Rates of substrate degradation and 

gas production are temperature dependent, with more gas production at high 
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temperatures. Gas production rate does not increase monotonically with temperature; it 

decreases above 55oC (Gray, 1989). 

Most of the microorganisms present in the anaerobic biomass are heterotrophic, 

which means that they need organic compounds that are present in the wastewater as 

source of carbon. In contrast, the methanogens that convert the H2 to methane are 

autotrophic, their carbon source comes from the dissolved CO2 within the reactor 

(Speece, 1996). 

The electron donor comes from the biodegradable COD present in the wastewater. 

The electron donor provides energy for the metabolic activities of the biomass (Speece, 

1996). 

Anaerobic processes can be carried out in many ways, such as in anaerobic 

lagoons, digesters and filters. Some digesters and filters belong to a group that is called 

high rate digesters. These digesters can handle high organic loading rates such as 24 kg 

COD/m3⋅d (Rajeshwari et al., 1999). When using digesters or filters, anaerobic processes 

can be divided into two major categories: attached and suspended growth systems 

(Speece, 1996). In attached growth systems, microorganisms grow attached to some inert 

material such as plastic media, rocks, or sand. Anaerobic filters (AF) and fluidized bed 

reactors (AFBR) are examples of this category. 

The anaerobic filter dissolved oxygen is an attached growth treatment process 

consisting of a reactor filled with solid media to which biomass grows and remains fixed. 

In most anaerobic filters, the wastewater enters from the bottom of the filter and flows 
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upward entering in contact with the biomass that is fixed to the media (Metcalf and Eddy, 

1991); these filters are called upflow anaerobic filters. 

In the AFBR, a film of biomass grows on a carrier medium that consists of very 

fine particles, such as sand, coal, porous glass beads, diatomaceous earth, and others 

(Speece, 1996). The particles must be small enough to be kept in suspension by the 

upward flow of wastewater to be treated (Winkler, 1981). Particles have very high 

surface area, resulting in a high density of biomass in contact with the wastewater 

(Winkler, 1981). 

Suspended growth systems have the advantage that they do not need a packing 

media for biomass growth; microorganisms are suspended into the liquid (Metcalf and 

Eddy, 1991). Examples of suspended growth systems are the anaerobic sequential batch 

reactor (ASBR) and the UASB reactor. 

The anaerobic treatment process using the ASBR involves the following steps: 

filling, reacting, settling and decanting (Speece, 1996). First, the reactor containing the 

biomass is filled with the wastewater to be treated. Next, the biomass and wastewater are 

mixed and the reaction takes place. Then, agitation ends and the biomass settles, leaving 

the clear and treated liquid on the top. Finally, the liquid on the top part is decanted. 

Biomass inside UASB reactors is aggregated into small granules that have good 

settling properties when not exposed to rigorous mechanical agitation (Lettinga, 1995). 

Contact of granules to wastewater is obtained by the upward movement of biogas bubbles 

generated via anaerobic digestion and by the even distribution of influent wastewater in 

the bottom of the reactor (Lettinga, 1995). A very important part of the UASB reactor is 



 11 

the gas solids separator (Lettinga, 1995). This device is located on the top of the reactor 

and separates the biogas from the biomass. The biogas exits the reactor from the top. 

Another device that can be used is a baffle in front of the effluent port to prevent the 

washout of granules. 

Due to the difference in the sizes of the granules, sludge in the UASB is divided 

into three phases. The lower part of the biomass within the reactor is formed by larger 

granules, and is called the sludge bed. Just above this zone is the sludge blanket, formed 

by smaller grains and gas bubbles. The settling zone forms the upper part. Biomass 

attached to rising bubbles separate in the gas solids separator. Once separated, biomass 

settles in the settling zone, passes through the sludge blanket, and falls to the sludge bed. 

Figure 2.2 shows the schematic of a UASB reactor. 

UASB technology is been used for treatment of different wastewaters, food 

processing units, breweries, tanneries, and municipal wastewater (Rajeshwari et al., 

1999). As reviewed by Speece (1996), some wastewaters, especially carbohydrates, have 

been treated by the UASB with great success. The fact that biomass in the UASB reactor 

does not need packing media to grow is one of the major advantages of this system 

(Speece, 1996). For these reasons, UASBs have fewer investments requirements 

compared to AFs and fluidized bed reactors (Rajeshwari et al., 1999). 

 

2.1.3 – Aerobic versus anaerobic process 

Both aerobic and anaerobic processes have advantages and disadvantages. Some 

of the advantages of anaerobic systems over the aerobic systems are: 



 12 

 

 

 

 

 

 

 

 

 

Figure 2.2 – Schematic of a UASB reactor showing the three phases 
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Conservation of energy –anaerobic processes can operate with very little energy 

consumption. Furthermore, the process generates useful energy in the form of methane 

(Speece, 1996; Lettinga et al., 1980; Gray, 1989). 

Long preservation of anaerobic microorganisms – the anaerobic 

microorganisms can be preserved unfed for more than one year without serious 

degradation of their activity (Lettinga et al., 1980). This is a very important factor when 

the treatment is applied to seasonally produced wastewaters, like winery and sugar 

operations (Speece, 1996). 

Off-gas air pollution eliminated – when using aerobic treatment some of the 

organic components are volatile and they can be air stripped before the biodegradation, 

which contributes to air pollution. However, this problem is completely eliminated when 

anaerobic processes are employed (Speece, 1996). 

 

However, the anaerobic process has some significant drawbacks, such as: 

Incomplete treatment – Lettinga et al. (1980) said that the anaerobic process is 

not a complete treatment; some mineralized components are left after the treatment. 

However, Moody and Raman, (2001), showed that when treating readily degradable food 

waste, a dual system consisting of a UASB followed by a DFAF could meet US 

Environmental Protection Agency (USEPA) effluent requirements. 

Slow start up – the start up of a new reactor is very slow. However, if active 

biomass from another reactor is used to seed the new reactor this drawback can be 

overcome (Speece, 1996). 
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Vulnerability to toxins – the methanogens are very susceptible to toxins in 

certain wastewaters. However, methanogens can be acclimated to certain toxins when 

some precautions are taken, such as gradually increasing the toxicant concentration, and 

preventing the loss of biomass from the reactor until the biomass has acclimated (Speece, 

1996). 

In industrial settings, wastewater composition cannot always be predicted. For 

example, a sudden spill of some toxin into the wastewater can occur. Such events could 

adversely affect the anaerobic treatment process. The need to keep anaerobic treatment 

processes stable suggested the idea to create a biological sensor, the failure-causing load 

detector (FCLD) system to monitor high rate anaerobic processes. The FCLD system is 

described in detail in section 2.4. 

 

2.2 - Artificial Intelligence 

Human communication involves spoken and written language, and mathematics 

(Hopgood, 1993). Mathematics allows the exchange, storage and the expression of 

concepts that would be difficult to express with the spoken and written language 

(Hopgood, 1993).  

The computer is one of the greatest achievements of technology. Initially, it was 

essentially one big calculator; with time it increased its storage capacity, its speed of 

processing, and many other functions. Computers are used everywhere and for a wide 

variety of tasks. One of the biggest questions facing computer science was how the 

computer could be used to think, in other words, to mimic human intelligence (Martin, 
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1988). This question created a new science called artificial intelligence (AI), which is the 

use of computational methods to create tools that simulate human intelligence, 

imagination, recognition, creativity and even emotions (Hopgood, 1993). AI covers many 

areas, such as engineering, medicine, linguistics, psychology, and computer science. 

Recently, the term soft computing is being used as an alternative for artificial 

intelligence (Tsoukalas, 1997). Soft computing includes expert systems, neural networks, 

fuzzy logic, and genetic algorithms. All these technologies have a certain tolerance for 

the imprecision and ambiguity characteristic of human language. 

 

2.3 - Fuzzy theory 

Traditionally, science is viewed as certain, precise, specific, and uncertainty is not 

desired or allowed. However, many concepts in science and life itself are uncertain, 

imprecise, and vague. Fuzzy logic deals with concepts that can be classified as partial 

truth, i.e. imprecise concepts, which are values between completely true and completely 

false (FOLDOC, 1993). The following sections introduce fuzzy sets theory and other 

concepts used in fuzzy logic. For more details using fuzzy logic two books are 

recommended, Fuzzy and Neural Approaches in Engineering by Tsoukalas and Uhrig 

(1997), and Fuzzy Sets and Fuzzy Logic Theory and Applications by Klir and Yuan 

(1995). 
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2.3.1 -Fuzzy sets 

The theory of fuzzy sets demonstrates that a set can have imprecise boundaries. 

The membership of an object to a fuzzy set is not a crisp value like yes or no, but a 

degree of pertinence to the set. 

When dealing with classical (or crisp) set theory, an object x is a member of a set 

A that belongs to the universe of discourse X, which is the domain to which A belongs, 

namely the input space. This relationship is written as 

 

Ax ∈              [2.3] 

 

or, if x does not belongs to the universe of discourse X, 

 

Ax ∉               [2.4] 

 

A set can be defined by a characteristic function that declares which elements of 

the universe of discourse X belong to the set A. 

 





∉
∈

=
Axfor
Axfor

xX A 0
1

)(           [2.5] 

 

The characteristic function maps values of the universe of discourse X to the 

elements of the set {0,1}, and is expressed as 
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{ }1,0: →XX A             [2.6] 

 

When using the theory of fuzzy sets, the function that denotes how an element x is 

a member of a fuzzy set is called membership function, and it is represented by 

 

[ ]1,0: →XAµ             [2.7] 

 

There are different ways to represent a membership function, such as triangular, 

trapezoidal, and Gaussian functions. Figure 2.3 represents a set of three triangular 

membership functions defined over a universe of discourse between 0 and 10. Figure 2.4 

and 2.5 illustrate sets of three trapezoidal and three Gaussian membership functions over 

the same universe of discourse, respectively.  

 

 

 

 

 

 

 

 

 

Figure 2.3 – Triangular membership functions 
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Figure 2.4 – Trapezoidal membership functions 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 – Gaussian membership functions 
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Many variables can be represented by linguistic values that in traditional scientific 

terms are classified as uncertain, for example, high temperature, and low pH. Fuzzy set 

theory allows the representation of these linguistic values through membership functions. 

For instance, when dealing with high rate anaerobic digestion, pH can be classified as a 

fuzzy variable. Low pH can be represented by the trapezoidal membership function on 

the left side, while optimum pH can be represented by the triangular membership 

function, and high pH represented by a trapezoidal membership function on the right side 

of the figure. The universe of discourse for pH is between 4 and 11. Figure 2.6 represents 

a potential set of three triangular membership functions for pH values in an anaerobic 

reactor. 

 

 

Figure 2.6 - Membership functions that represent a fuzzy set for pH 
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2.3.2-Basic concepts of fuzzy sets 

Following are basic fuzzy operations applied to fuzzy sets A and B. 

 

Empty fuzzy set (∅∅∅∅ ) 

Any fuzzy set is classified as an empty fuzzy set if its membership function is 

zero for any value of its universe of discourse X. 

 

XxxifA A ∈∀=∅≡ ,0)(µ           [2.8] 

 

Normal fuzzy set 

A fuzzy set is considered normal if there is at least one element x0, on its universe 

of discourse, where its membership function equals one. 

 

1)( 0 =xAµ              [2.9] 

 

Equality of fuzzy sets 

Two fuzzy sets are equal if their membership functions are equal in the universe 

of discourse X. 

 

)()( xxifBA BA µµ =≡         [2.10] 
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Complement of a fuzzy set 

The complement of a fuzzy set is denoted by a new fuzzy set with membership 

function as followed. 

 

)(1)( xx AA µµ −=           [2.11] 

 

Multiplication of a fuzzy set by a crisp number 

A new fuzzy set is obtained when a crisp value multiplies a fuzzy set. This new 

fuzzy set has the following membership function. 

 

)()( xx AA µαµα ⋅≡           [2.12] 

 

Union (∪∪∪∪ ) or max (∨∨∨∨ ) 

When this operation is applied to two fuzzy sets defined over the same universe of 

discourse X, a new fuzzy set is formed. The membership function for this new fuzzy set is 

formed by the maximum values of membership values for the two previous fuzzy sets. 

This property is illustrated in figure 2.7. 

 

)()()( xxx BABA µµµ ∨≡∪          [2.13] 

 

 

 



 22 

 

Figure 2.7 – Union of fuzzy sets A and B 

 

Intersection (∩∩∩∩) or min (∧∧∧∧ ) 

The intersection of two fuzzy sets is represented by a new fuzzy set with 

membership function that is derive from the minimum membership values of the original 

fuzzy sets. Figure 2.8 shows the intersection between two fuzzy sets, A and B. 

 

)()()( xxx BABA µµµ ∧≡∩          [2.1] 

 

Product (!!!!) 

The product of two fuzzy sets defined over the same universe of discourse X is a 

new fuzzy set. Membership function for the new fuzzy set is represented by the algebraic 

product of membership functions for the two fuzzy sets, i.e., 
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Figure 2.8 – Intersection of fuzzy sets A and B 

 

)()()( xxx BABA µµµ ⋅≡⋅          [2.15] 

 

Power of a fuzzy set 

When raising the membership function of a fuzzy set to a power α (positive real 

number), a new fuzzy set is formed, and it has the following membership function. 

 

αµµ α )]([)( xx AA ≡           [2.16] 

 

Concentration 

When a variable linguistic is modified by the term VERY, like when saying ‘very 

low pH’, concentration is applied to the fuzzy set. Concentration of a fuzzy set, defined 

over the universe of discourse X, is defined as follows. 
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( )2
)( )()( xx AACON µµ ≡           [2.17] 

 

Dilation 

If the term MORE OR LESS is applied to a linguistic variable, like ‘more or less 

hot’, dilation is applied to the fuzzy set. Dilation of a fuzzy set, over a universe of 

discourse X, is given by  

 

)()()( xx AADIL µµ ≡           [2.18] 

 

Alpha-cut 

Alpha-cut of a fuzzy set A is the crisp set Aα formed by all the elements of the 

universe of discourse whose memberships functions in the fuzzy set are greater than or 

equal to the value of α. 

 

{ } ]1,0[,)(/ ∈≥∈= ααµα wherexXxA A        [2.19] 

 

2.3.3 – Fuzzy propositions 

 

A fuzzy proposition can be expressed as:  

 

Aisx             [2.20] 



 25 

Where, x is a variable that takes values from a universe of discourse. A is a fuzzy 

set on the universe of discourse that represents a predicate. A is called the fuzzy variable, 

or linguistic variable. Some examples of fuzzy prepositions are, ‘pH is high’, 

‘temperature is low’, and ‘x is a small number.’ Fuzzy variables can be modified when a 

modifier is applied. Dilation (more or less), concentration (very) and negation 

(complement) are modifiers (Terano et al., 1991). Figure 2.9 represents membership 

functions for three fuzzy sets: A, ‘Not A, ‘Very A’, and ‘More or less A.’ 

 

 

 

 

 

Figure 2.9 – Application VERY, MORE OR LESS, and NOT modifiers to a fuzzy set A 
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( )22 )()(, 2 xxAAvery AA µµ ==       [2.21] 

 

)()(, 2 xxAAlessormore Aµµ ==       [2.22] 

 

)(1,1 1 xAAnot AA µµ −=−= −       [2.23] 

 

2.3.4 - Fuzzy inference systems 

Fuzzy logic is an AI technique that allows the making of input/output nonlinear 

mapping using the theory of fuzzy sets. This mapping is easily obtained from 

experimental data and from expert knowledge in the form of if/then rules, such as “if x is 

A then y is B”, which are also called preposition rules, where the “if” part is the called 

antecedent and the “then” part is the consequent. The mapping from a given input into an 

output using fuzzy logic is called fuzzy inference. It can be applied in many fields, such 

as automatic control, data classification, decision analysis, and expert systems (Jang and 

Gulley, 1995). In order to better explain the FIS, some definitions have to be made. The 

design of an FIS is divided into five steps: fuzzification, fuzzy operation, implication 

relation, aggregation and defuzzification (Tsoukalas, 1996). 

 

1 – Fuzzification is the first step in the inference system. A membership value 

between 0 and 1 is assigned for the input values (antecedents), which are the statements 

in the right hand side (RHS) of the if/then rule. 
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2- Fuzzy operation. When an element xi belongs to a fuzzy set A on the 

antecedent of the rule, it means that the rule was fired. If more than one antecedent on the 

rule is fired, connectives are used to define the degree of fulfillment (DOF) for the rule, 

which is a single number between 0 and 1. The connective AND is modeled by the 

intersection (minimum) fuzzy set operation, while the OR is modeled by the union 

(maximum) fuzzy set operation, and NOT is the complement of a fuzzy set.  

 

3 – Implication relations are obtained through fuzzy implication operators. The 

consequent that is the left hand side (LHS) of the if/then proposition is a fuzzy set and the 

implication method defines the shape of the consequent based on the DOF, which is the 

result from the last step. There are many implication operations (Tsoukalas, 1996). One 

of the most used is the Mamdani Min implication operator, it applies the min operation to 

define the shape of the consequent based on the DOF. 

 

4 – Aggregation is used to unify the outputs of each rule. Fuzzy operators, such 

as maximum and sum, are used to aggregate the many outputs that were inferred in the 

last step, resulting in a unique fuzzy set output.  

 

5 – Defuzzification is used to select the output crisp value that represents the 

output aggregate fuzzy set. There are many types of defuzzification methods, the most 

used are the centroid or center of area (COA), the center of sums (COS), and the mean of 

maxima (MOM). 
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The following example illustrates a FIS with two inputs, which are pH and biogas 

and one output, the operation mode. The FIS will map the inputs into one output that 

describe the type of operation mode based on if/then rules constructed based on 

knowledge of anaerobic wastewater treatment processes. 

 

Suppose this inference system has three rules: 

 

(1) If pH is acidic and biogas low then operation is overload 

(2) If pH is basic and biogas is low than operation is toxic 

(3) If pH is neutral and biogas is normal than operation is safe. 

 

Implementation for this FIS follows the 5 steps, fuzzification of inputs, 

application of fuzzy operator, use of implication relations, aggregation of output, and 

output defuzzification. The basic structure for this problem is illustrated in figure 2.10, 

which is based on the example given by Jang and Gulley (2001). Information flows from 

two inputs to one output, and all rules are evaluated in parallel. Finally, results of the 

rules are combined and defuzzified. For this example, if the defuzzified output of the FIS 

is between 0 and 0.375 the operation mode is overload, if it is between 0.375 and 0.625 

operation is normal, and more than 0.625 operation is toxic. Figure 2.11 represents the 

membership functions for the antecedents (pH (a) and biogas (b)) and consequent 

(operation mode) is illustrated in figure 2.12. 
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Figure 2.10 – FIS for classification of operation mode of an anaerobic treatment process based on pH and biogas production 
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Figure 2.11 – Membership functions for the antecedents, pH (a) and biogas (b), of the 

fuzzy inference system 
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Figure 2.12 – Membership functions for the consequent, operation mode, of the fuzzy 

inference system 

 

Fuzzification 

Crisp inputs, which are measured values for the antecedents are: 

 

pH = 4 and biogas = 3 mL/min. 

 

Results for the fuzzification shows that a pH of 4 can be acidic with a 

membership value of 0.8, and neutral with a membership value of 0.2. The biogas flow 

rate of 3 mL/min is low with a membership value of 0.6. Figure 2.13 illustrates the 

fuzzified inputs, pH (a) and biogas (b). 
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Figure 2.13 – Fuzzification of inputs pH (a) and biogas (b) 
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Fuzzy operation 

More than one parameter is used in the RHS of the preposition (rule). Here, the 

connective AND (min) is used to select the DOF of each rule. 

For rule 1, ‘If pH is acidic and biogas low then operation is overload’, the two 

prepositions on the RHS were fired, with a membership value of 0.8 for pH (acidic) and 

0.6 for biogas (low). Application of the AND operator results in the minimum between 

the membership values for acidic low, resulting a DOF of 0.6 for the rule. Figure 2.14 

illustrates membership functions for the antecedents of rule 1, and membership values for 

each input. 

Now, for rule 2 that is ‘If pH is basic and biogas low then operation is toxic’, two 

prepositions on the RHS were fired: basic for pH, with zero membership value, and low 

biogas with membership value of 0.6. Applying the AND operator, zero is resulted as the 

DOF of the rule. Figure 2.15 illustrates membership functions for the antecedents of rule 

2 with respective membership values for the inputs. 

Finally, rule 3, ‘If pH is neutral and biogas is normal then operation is safe’, is 

analyzed. Two prepositions on the RHS were fired: neutral for pH, with 0.143 for the 

membership value, and normal biogas with zero membership value. Applying the AND 

operator, the DOF for the rule is zero. Figure 2.16 illustrates membership functions for 

the antecedents of rule 3 with respective membership values for each input. 
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Figure 2.14 – Membership functions for acidic pH (a) and low biogas (b) for rule 1 and 

membership values for each input 
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Figure 2.15 – Membership functions for basic pH (a) and low biogas (b) for rule 2 and 

membership values for each input 
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Figure 2.16 – Membership functions for neutral pH (a) and normal biogas (b) for rule 3 

and membership values for inputs 
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Implication relation 

Here, implication relation is obtained by the use of the Mamdani mim method. 

For each rule, the result will be the area of the consequent membership function under the 

DOF from last step. 

For rule 1, ‘If pH is acidic and biogas low then operation is overload’, the 

consequent states that operation is overload. Using the implication relation Mamdani 

mim and a DOF of 0.6, the result for this step is the area under 0.6 for the output 

membership function for overload, as illustrated in figure 2.17. 

 

 

 

 

 

Figure 2.17 – Result of the implication relation Mamdani mim for rule 1 
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For rule 2, ‘If pH is basic and biogas low then operation is toxic’, the consequent 

affirms that operation is toxic. However, fuzzy operation for rule 2 resulted in a DOF of 

zero. So, using Mamdani mim implication relation and zero for DOF, there is no fuzzy 

set to represent rule number 2. 

The same occurs to rule 3, ‘If pH is neutral and biogas is normal then operation 

is safe’, which does not have a fuzzy set to represent the output because the DOF for this  

rule is zero. 

 

Aggregation 

As said before, the aggregation is obtained by the application of the aggregation 

method to the results of the implication relation. The result is one fuzzy set that 

represents the output. Here, max is the method used to aggregate results of implication 

relation for rules 1, 2 and 3, which is represented in figure 2.18. 

 

 

Figure 2.18 – Result of aggregation 
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Defuzzification 

The defuzzification method used here is the centroid or center of area (COA), and 

is represented by the star in figure 2.19, which represents the results for this last step of 

the FIS for this problem. The defuzzified value is 0.25, which means that operation mode 

is organic overload, because it is between 0 and 0.375. 

In this study, the FIS was implemented using FIS Editor from Fuzzy Logic 

Toolbox/MATLAB  (Jang and Gulley, 2001). The purpose was to use the parameters 

that were monitored during the tests with the FCLD system, biogas flow rate, pH, 

conductivity and turbidity, as the inputs of the FIS, and for the output of the FIS the state 

of operation of the anaerobic treatment, i.e.: safe operation, organic overload, or toxic 

loads with the classification of the toxicant. Base of rules and membership functions for 

the FIS were constructed using the data from experiments with the FCLD system. 

 

 

Figure 2.19 – Result from the defuzzification using centroid method 
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2.3.5 - Fuzzy logic applications 

Fuzzy control is the most significant system based on fuzzy theory, and it is 

widely applied, especially in the field of engineering (Klir and Yuan, 1995). The 

following examples are representative of the applications for fuzzy logic: 

- Fuzzy logic was used to select the best crane type to be used in a construction 

site (Hanna and Lotfallah, 1999). 

- Ribeiro (1998) developed and implemented an irrigation control system that 

used climatic conditions and soil moisture as inputs for a fuzzy inference 

system, whose output was the operation of a solenoid valve. 

- In medicine, fuzzy logic is used mainly for diagnosis of diseases (Klir and 

Yuan, 1995). 

- Fuzzy logic is used in domestic appliances. A rice cooker uses fuzzy logic to 

control the cooking process; it is self-adjusting for rice and water conditions. 

Washing machines use fuzzy logic to select the water volume based on clothes 

volume, also if too much foam is detected an additional rinse cycle is used. 

 

Fuzzy logic applications in the field of biological treatment processes will be 

described in section 2.5, along with other monitoring and control processes. 

 

2.4 – Graph theory 

Graph or network theory is very useful when constructing models for expert 

systems. Graphs are formed by nodes and links, which are represented by two sets, X and 
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L (Castillo et al., 1997). In expert systems, the nodes represent prepositional variables 

and the links correspond to the relationship among the nodes (Castillo, 1997). Figure 2.20 

illustrates one graph G = (X, L) that is defined by the following sets X and L. 

 

},,,,,{
},,,,,,{

DGDFCEBDACAB LLLLLLL
GFEDCBAX

=
=

        [2.24] 

 

The next basic definitions describe concepts used in the graph theory. For more 

detailed information Castillo (1997) is suggested. 

Directed graph: when all the links in the graph are directed links. When Lij ∈  L 

and Lji ∉  L, the link Lij is a directed link. The order of the nodes defining a link is 

important here, and it is indicated by the arrow between the nodes. Figure 2.21 represents 

an directed graph, where 

 

},,,,,,{
},,,,,,{

GDFDGEDEECCBBAL
GFEDCBAX

→→→→→→→=
=

    [2.25] 

 

When analyzing one link, for instance, E → D, E is the parent node D, and D is 

the children of node E. The set that consists of a node and its parents is called the family 

of a node, for example, node G and its parents D and E. 
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Figure 2.20 – Example of a graph 

 

 

 

 

 

 

 

 

 

Figure 2.21 – Directed graph 
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Undirected graph: a graph that has only undirected links. When Lij ∈  L and Lji ∈  

L, the link between nodes Xi and Xj is and undirected link. The order of the nodes 

defining the link is not relevant in an undirected graph. Figure 2.22 represents an 

undirected graph, where 

 

},,,,,,{
},,,,,,{

GDFDGEDEECCBBAL
GFEDCBAX

−−−−−−−=
=

     [2.26] 

 

An undirected graph is a complete graph if all the nodes are linked to each other. 

Neighbors are the nodes adjacent to a certain node; for instance, C, D and G are 

neighbors of node E. 

 

 

 

 

 

 

 

 

 

Figure 2.22 – Undirected graph  
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A loop is a closed path in an undirected graph. 

An undirected graph is connected if there exist at least one link between every 

two nodes, otherwise it is disconnected. 

A connected undirected graph is classified as a tree if for every pair of nodes 

there exist only one path. If this link is removed, there will be two disconnected trees. 

A multiply-connected graph is an connected undirected graph that contains at 

least one pair of nodes that are connected by more than one link, which is the same of 

containing at least one loop. 

Figure 2.23 shows an undirected disconnected graph (a), a tree graph (b) and a 

multiply-connected graph (c). 

 

 

 

 

 

 

 

 

    (a)      (b)    (c) 

 

Figure 2.23 – undirected disconnected graph (a), tree graph (b), and multiply-connected 

graph (c) 
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When using graph theory to classify some data, the nodes represent questions and 

the links are the possible answers to the questions. Here, it will be used to classify the 

different failure modes within the FCLD system. 

 

2.5 – Monitoring biological processes 

The next sections describe how biological processes, aerobic and anaerobic, can 

be monitored to accomplish process stability. 

 

2.5.1 – Respirometry 

Aerobic microorganisms use oxygen as they consume the organics in the 

wastewater as equation 2.1 shows. Oxygen uptake rate (OUR) is the rate at which the 

microorganisms consume oxygen. OUR can be used to indicate biological activity: for 

instance, high OUR indicates high biological activity. The value of the OUR is measured 

using a sample of the mixed liquor, saturated with dissolved oxygen (DO). As time 

increases, the level of DO is measured; results are reported in terms of concentration of 

O2 per volume per time (Metcalf and Eddy, 1991). The use of OUR to indicate biological 

activity can be called aerobic respirometry, and it is largely applied for the monitoring of 

activated sludge processes. Many systems, called respirometers, are available to measure 

OUR. 

There are many examples of the use of respirometry, for instance: 

- Ning et al. in 1999 used respirometry to identify and quantify nitrogen 

nutrient deficiency in activated sludge processes. 
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- Identification of activated sludge kinetics and wastewater characteristics using 

respirometric batch experiments (Brouwer et al., 1998). 

- Determination of the yield coefficient of aerobic activated sludge bacteria 

using a respirometric method (Strotmann et al., 1999). 

 

2.5.2 – Monitoring anaerobic wastewater treatment systems 

With the advance of wastewater treatment technologies, the need for monitoring 

and controlling is a desired improvement. There are many examples of research that 

applied different techniques for the monitoring and even controlling to wastewater plants, 

anaerobic reactors, and other processes, the following examples illustrate some of the 

improvements that were made in the last decade: 

- An automated control system was built to control a pilot scale fluidized bed 

reactor (2.8 m3). Parameters monitored were gas production rate, hydrogen 

content in the gas phase, and pH in the liquid phase. Studies were made to 

avoid problems of recurrent organic overloads. Controlled variables were 

influent flow rate, and injections of HCl or NaOH (Moletta et al., 1994). 

- A biosensor called RANTOX, which is a small scale (5 L) anaerobic reactor, 

was used to detect organic overloads and/or toxic loads in the influent 

wastewater stream. Monitoring of the metabolism of the methanogenic 

microorganisms was indirectly made based on Monod kinetic parameters Km 

(maximum substrate degradation rate) and Ks (half-saturation constant) under 

kinetically saturated conditions (high substrate conditions), which was 
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achieved by the periodical addition of acetic acid to the reactor. The biosensor 

was monitored by a computer that controlled the inputs (pumps and valves) 

and the outputs (pH and gas flow rate). Sodium acetate and acetic acid were 

used to induce the organic overloads, and sodium chloride and chloroform 

were used as toxins (Rozzi et al., 1997, 1999; Pollice et al., 2001). 

- An anaerobic hybrid UASB- upflow anaerobic filter (UAF) bioreactor (1100-

L) was monitored. Measurements were taken from the following devices to be 

analyzed on line, biogas flow meter, feed and recycling feed meters, 

thermometer, biogas analyzer, hydrogen analyzer and pH-meter. The behavior 

under steady state conditions and organic overload were studied (Puñal et al., 

1999). 

- A sewage treatment plant localized in Morrinsville, New Zealand, received 

wastes mainly from a beef processing plant, a dairy factory, and municipal 

waste. During peak dairy production the admissible load increased 

considerably, the plant had to be upgraded and an ASBR was chosen. BOD, 

nitrification, and denitrification rates were estimated by a fuzzy system. In 

addition, ASBR control (normal operation, flow diversion, or reprocessing) 

was done by a fuzzy inference system. (Cohen et al., 1997). 

- A fuzzy control system for a pilot fluidized bed reactor system was developed 

by Estaben et al. (1997). Biogas flow rate and pH were used as input 

parameters, and the output parameter was influent flow rate. The control was 

based on a value of biogas production that ensured good COD reduction. If an 
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overload or other perturbation occurred, biogas production would change. 

Based on biogas change, the fuzzy control system would vary the feeding 

pump. 

- Fuzzy logic was used to classify two types of problems in a fluidized bed 

reactor, change in influent concentration and/or feed rate, and foam inside the 

reactor (Steyer et al., 1997 a). 

- Fuzzy logic was used to control a fluidized bed reactor. Input variables were 

pH, temperature, and biogas flow rate. The output of control was influent flow 

rate. The objective was to avoid accumulation of VFA’s within the reactor, 

keeping the process as stable as possible (Steyer et al., 1997 b). 

- A wastewater treatment consisting of anaerobic digestion, aerobic treatment, 

nitrification and denitrification, was controlled to detect dangerous loading 

situations. Fuzzy logic was used to classify input data (biogas flow rate and 

hydrogen in the off gas) into four classes: normal operation, toxic, overload or 

inhibition/underload (Marsili-Libelli and Muller, 1996; Muller et al., 1997). 

- An anaerobic/aerobic activated sludge system was controlled using fuzzy 

logic. The inputs were anaerobic food/microorganism (F/M) ratio and influent 

flow rate and the output was the recycle flow rate (Chang, et. al, 1996). 

 

There are many other publications that show fuzzy logic related to anaerobic 

treatment processes, e.g., (Genovesi et al., 1999; Tay and Zhang, 2000; Garcia et al., 

2000), however they will not be detailed here. 
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2.5.3 – First studies with the FCLD 

The FCLD is a system that consists of a small-scale UASB reactor and some 

sensors to monitor the effluent wastewater. The FCLD was conceived by D. R. Raman 

and developed and tested by Ervin et al (1999) as a senior project at the Department of 

Biosystems Engineering and Environmental Science at The University of Tennessee. The 

FCLD is intended to work as a rapid toxicity detector, running in parallel with a full-scale 

UASB reactor. The short HRT (10 min) of the FCLD was intended to provide a rapid 

response to a toxic load in the waste stream. Since full-scale reactors typically operate at 

2-8 h HRT’s, a sub 1-h response time was expected to provide UASB operators with 

ample warning time to avoid failures in the main reactor. 

The first prototype was built with PVC and plastic parts. The reactor volume was 

calculated based on expected biogas production, desired HRT, and maximum permissible 

up-flow velocity in the reactor to avoid biomass washout. Design calculations resulted in 

an actual volume of 6.5 L, with a working volume of 3.5 L. A PVC pipe 36 cm long with 

15 cm nominal diameter was used as the reactor body. A 15 cm PVC cap was used for 

the bottom part of the reactor. To seal the reactor, a 15 cm flange was used at the top of 

the reactor. The reactor had one inlet port and three outlets ports. The inlet port was 

located in the bottom of the reactor. The effluent port was located in the middle side of 

the reactor, 17 cm above the bottom of the reactor. A port to accommodate the standpipe 

was located 9 cm below the effluent port. The biogas outlet port was 10 cm above the 

effluent port. Soft plastic tubes were used as influent, effluent wastewater and biogas 

lines. Figure 2.24 illustrates the UASB reactor used on the FCLD system. 
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Figure 2.24 – Diagram of the UASB reactor (a), with the influent manifold (b), and the 

biomass biogas separator (c) 
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A manifold was built to enhance the uniformity of wastewater distribution within 

the reactor. It consisted of a PVC disc with central inlet and 5 smaller radial outlets. As 

with all UASB reactors, a biogas-biomass separator was included, consisting of a disk 

(15 cm) with 61 holes (6 mm diameter each). It was positioned just below the effluent 

port. The objective of the separator was to reduce the effective cross-sectional area of the 

reactor, consequently increasing up-flow velocity, facilitating biogas separation from the 

biomass, and reducing biomass washout. 

A 1 kW electrical heat exchanger was designed and built to heat influent 

wastewater. It consisted of a piece of copper tubing, wrapped with two 0.5 kW heating 

ropes. It was controlled by a microprocessor (PIC 16C57) in order to keep influent 

wastewater at a constant temperature. 

A solenoid diaphragm-metering pump was selected (PULSAtron electronic 

metering pump, series E PLUS, PULSAFEEDER , Punta Gorda, FL) for wastewater 

delivery to the FCLD. At each pulse, a constant wastewater volume was delivered to the 

reactor, thereby, maintaining a constant HRT. This pump had the ability to handle 

particulate-filled fluids, which was an important factor in the selection process because of 

the nature of the wastewater. The pulsed flow improved mixing within the reactor, and 

helped avoid clogging of the influent system. 

Biogas flow rate was the variable used to monitor the failures of the FCLD 

system. A tipping bucket biogas flow meter (Beal, 1998) was used to monitor biogas flow 

rate. Its operation is similar to a tipping bucket rain gauge. It was made of clear acrylic, 

and consisted of a pivoting container divided into two equal size chambers with a port 
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that delivered biogas under the pivoting point. The tipping bucket was placed inside an 

acrylic box filled with water. When biogas released into one chamber reached 30 mL, the 

buoyancy of the gas would make the tipping bucket tip, thus releasing the biogas. The 

other side would then fill with biogas, and so on. Each tip was monitored with the use of 

a magnetic reed switch and by the microprocessor (PIC 16C57). Figure 2.25 shows the 

layout for the first prototype for the FCLD system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.25 – Process flow diagram for the first prototype of the FCLD system 
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Ervin et al. (1999) used a standard testing protocol to do a series of laboratory 

tests. A 12-L carboy was used as wastewater reservoir. The wastewater used for the 

experiments was procured from a confectionary plant and the biomass from a brewery. 

Testing started by first acclimating the biomass to the confectionary wastewater that was 

diluted to approximately 10 g/L of COD. Sodium bicarbonate was added to the 

wastewater to achieve the desired alkalinity. The influent wastewater was pumped from 

the reservoir into the reactor. The effluent wastewater was then returned to the carboy; 

therefore the reactor was run undergoing recirculation. 

Once the FCLD system was ready, with wastewater prepared and the reactor 

filled with fresh biomass, the process was initialized. When the system reached steady 

state, the failure-causing load was added to the influent wastewater. Ervin et al. (1999) 

used two types of failure mode separately to analyze the system: organic overload and 

sodium exposure with testing replicated three times. For the organic overload test COD 

concentration was increased from 10 g/L to 60 g/L. A high concentration of Na+ is toxic 

to an unacclimated biomass (Speece, 1996). Significant cation toxicity is seen when Na+ 

concentration exceeds 5 g/L (Speece, 1996). In the case of Na+ load, a concentration of 

20 g/L was tested. Results from the organic overload test showed that average biogas 

production approximately doubled in 25 min. Also, when Na+ failure mode was 

performed, the average biogas production decreased by approximately 79% after 

approximately 34 min. 

From their testing Ervin et al (1999) demonstrated that the FCLD system can 

easily and rapidly detect certain faults in the influent wastewater. Therefore, the FCLD 
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system was chosen to be used for another set of experiments with the addition of a pH 

sensor and further use of fuzzy logic for classification of failure modes within the 

anaerobic wastewater treatment process. The next chapter explains experiments and 

classification processes for the next phase of studies with the FCLD system. 
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CHAPTER 3 

 

MATERIAL AND METHODS 

 

3.1 – First stage of the FCLD project 

Preliminary studies by Ervin et al. (1999) indicated that the FCLD system could 

be very useful in the monitoring of influent wastewater when using high rate anaerobic 

treatment. Therefore, improvements to the FCLD system were proposed, as explained in 

the following sections. 

 

3.1.1 – System configuration 

Initially, the FCLD was operated similar to Ervin et al. ( 1999). However, it was 

decided to monitor pH in the effluent line in addition to biogas. It is universally accepted 

that pH is a very powerful tool in the monitoring of anaerobic processes because of its 

relationship to the accumulation of volatile fatty acids in the reactor. To monitor pH, an 

electrode (ORION low maintenance triode model 9107, Boston, MA), and a meter 

(ORION model 290A, Boston, MA) were used. This meter has the ability to 

communicate with a personal computer via a RS232 port. A program written in Quick 

Basic was developed to monitor pH online every minute. 

The tipping bucket used in the first study was improved to better measure the 

small flows of biogas produced by the reactor. A new, smaller, tipping bucket was 

fabricated of clear acrylic. The new tipping bucket was calibrated; each chamber could 
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hold 2.8 mL of biogas. The number of tips per minute was monitored using a micrologger 

(21X datalogger, Campbell Scientific-Inc, Logan, UT). 

The recirculation mode was eliminated because in a real situation the wastewater 

will not be recycled. Recirculation was causing accumulation of byproducts of the 

degradation of the confectionary wastewater into the carboy, as well a decrease in COD 

concentration. Therefore, a larger, 100-L container for storage of influent wastewater was 

employed. Effluent wastewater was discharged to a drain. 

Ervin et al. (1999) controlled temperature using a microprocessor (PIC 16C57). In 

this study temperature was initially controlled by the same micrologger that monitored 

the tipping bucket. However, temperature measured at the inlet port fluctuated 

excessively (35 ± 10oC) when using only the 21X to control the heat exchanger. The 

micrologger was therefore replaced by a proportional-integral-derivative (PID) controller 

(ETR-9090, OGDEN, Arlington Heights, IL), capable of much tighter control (± 1oC at 

steady state). Figure 3.1 shows a photo of the FCLD system used during this stage of the 

research, while figure 3.2 shows its material flow diagram. 

 

3.1.2 – Failure tests 

Concentrated sugary wastewater for the experiments was collected from the same 

regional confectionary plant. It was stored in 25-L containers and kept in a refrigerator at 

4oC to prevent natural degradation. The wastewater had a COD concentration of 

approximately 200 g/L. Biomass was procured from a regional brewery that uses a full- 
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Figure 3.1 – Photo of the FCLD system used during the first stage of the FCLD system 

project 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 – Process flow diagram of the first stage of the FCLD system project 
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scale UASB reactor to treat its wastewater. Biomass consisted of black granules of 

approximately 1 mm in diameter. Biomass consisted of black granules of approximately 

1 mm in diameter. 

Tests runs of the FCLD were initialized in the same manner. First, confectionary 

wastewater was diluted to a COD concentration of approximately 10 g/L and enhanced 

with phosphorus (50 mg/L), nitrogen (200 mg/L) and sodium bicarbonate (1000 mg/L) in 

a 100-L container. For each test run, approximately 1.3 L of biomass was utilized. Once 

the reactor was loaded with fresh biomass, wastewater was mixed, and sensors were 

calibrated, the FCLD system could be initialized. Each test lasted approximately 4 h, the 

first 3 h was used to monitor the pH and biogas under steady state conditions. After 3 h, 

the failure-causing load was added to the wastewater container and the run finished 1 h 

later. There were two types of failure mode tests for this stage of the research, COD 

organic overload at 50 g/L and sodium toxic load at 20 g Na+/L. After each test, data 

were processed using Microsoft® Excel. Biogas and pH data were averaged over 5 min 

intervals to reduce data fluctuation over time. Results from experiments are presented in 

chapter 4. 

 

3.2 – Second stage of the FCLD project 

The experience obtained during the first stage generated the desire to improve the 

FCLD system by testing more failure-causing modes and adding more sensors to monitor 

other physicochemical quantities. The next sections shows how these improvements were 

made and how experiments for this stage were performed. 
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3.2.1 – System configuration 

Some of the failure modes used for the second stage testing could foam during 

experiments, resulting in the clogging of the biogas port that was very close to the 

wastewater level. Therefore, a taller version of the first reactor was constructed (54 cm 

vs. 36 cm). This modification allowed the gas output to be placed 6.5 cm higher than in 

the first reactor. 

Studies from first stage of the FCLD project suggested that biogas and pH were 

effective monitoring parameters (Pinto et al., 2000). However, a search for more 

parameters was made, and two more parameters were chosen: turbidity and conductivity. 

When light passes through a liquid sample, it is scattered and absorbed by the 

particles present in the sample. Turbidity measures the relative amount of suspended 

particles in liquids, or how clear the sample is (OMEGA, 2001). When studying the 

influence of microbial activity under aerobic and anaerobic conditions to check the 

strength of activated sludge flocs, defloculation was noticed under anaerobic conditions 

and turbidity increased with the defloculation (Wilen, 2000). Increase in turbidity of 

reactor effluent can be due to loss of microorganisms, which decreases the efficiency of 

the treatment. Another motive to choose turbidity as a measurement parameter is the fact 

that some wastewaters, like the confectionary wastewater used for this research, have 

darker coloration when the COD concentration is higher. Finally, turbidity appears to be 

a good candidate for continuous, on-line monitoring, because of the simplicity of the 

turbidity sensors. 
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Conductivity is the ability of an aqueous solution to conduct an electric current. It 

depends on the concentration and type of ions in the solution. Habets and Knelissen 

(1998) measured conductivity along with other parameters to check the performance of 

an aerobic/anaerobic treatment system. Since some potential toxicants are ions, the use of 

a sensor to monitor conductivity appears to be very promising. 

A search for a sensor to monitor turbidity located an online infrared sensor used in 

dishwashers and washing machines to monitor the performance of the rinsing cycle 

(APMS-10GRCF-KIT, Honeywell Inc, Freeport, IL). This sensor could also measure 

conductivity, so it was chosen to monitor turbidity and conductivity in the effluent 

wastewater. An RS232 port provided communication between sensor and PC. 

Consequently, the Quick Basic program that monitored the pH meter during first stage 

was enhanced by the addition of code to monitor the online infrared sensor. 

The same biogas flow-meter was chosen to be used during this stage because of 

its good performance during the first stage of the FCLD system study. However, the 21X 

micrologger was replaced by a CR23X micrologger (Campbell Scientific Inc, Logan, 

UT) due to malfunctions with the older device. Figure 3.3 shows a photo of the new 

system, and figure 3.4 shows the process flow diagram for this setup. 

 

3.2.2 – Failure tests  

The first step on each experiment with the FCLD system was the preparation of 

the influent wastewater. Concentrated confectionary wastewater was diluted to a COD 

concentration of approximately 5 g/L. Also, it was enhanced with phosphorus (25 mg/L), 
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Figure 3.3 – Photo of the second stage of the FCLD system project 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4– Process flow diagram of the second stage of the FCLD system project 
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nitrogen (100 mg/L) and sodium bicarbonate (1500 mg/L). Each failure test consumed 

100 L of wastewater and lasted for approximately 4 h. Like in the first stage of the FCLD 

project, the first 3 h was used to monitor the parameters under steady state conditions. 

After these 3 h, approximately 30 L of wastewater remained in the container; at this time 

the failure-causing load was added to the wastewater container, and the experiment 

would finish 1 h later. Data processing was undertaken using Microsoft® Excel, and the 

monitored parameters were averaged into a 5 min interval to compromise between loss of 

temporal resolution and reduction in variability of signal. 

Additional failure-causing modes were selected and added to the second stage of 

the FCLD project. These are listed as follows: 

 

-  Organic overload at two COD concentrations, 20 and 40 g/L. Increasing 

COD concentration from 5 g/L to 20 and 40 g/L would increase the influent 

COD concentration 400% and 800%, respectively. An organic overload may 

cause the pH to drop below 6.2 – 6.6 (Speece, 1996) and cause the failure of 

the process. 

- Na+ at three different concentrations, 5, 10, and 20 g/L. High Na+ 

concentrations are toxic to the anaerobic biomass when they are not 

acclimated to it (Speece, 1996); 

- NaOH to bring the pH from normal to a higher value. More than 8.2 can be 

harmful to the microorganisms (Speece, 1996). NaOH was added at 1 g/L to 

bring the pH to a much higher value (around 10); 
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- HCl to bring the pH from normal to a lower value. If pH goes below 6.5 

(Speece, 1996), the microorganisms will be affected. So, 1.7 mL of HCl was 

added to 30 L of wastewater to lower the pH to a extreme value (around 5); 

-  Milk fat was simulated by adding 16 mL of heavy whipping cream per liter 

of wastewater. Milk fat can inhibit methanogenesis (Speece, 1996); 

- Sodium hypochlorite (NaOCl) that is the common household bleach was 

used to simulate a chemical spill. Bleach concentrations used were 1% (10 

mL/L) and 5% (5 mL/L) in volume. 

 

Tests runs conducted for the second stage of the FCLD system project are 

summarized in table 3.1. Each type of test was replicated 3 times. 

 

3.3 – Classification of failure modes 

Data gathered during experiments with the FCLD system during first and second 

stages were used for classifying failure-causing modes. The following sections describe 

the fuzzy inference system (FIS) for first stage, biogas analysis for the second stage, and 

two classification methods, one using graph theory and other using an FIS, for the second 

stage. 

 

 

 

 



 64 

Table 3.1 – Toxicants and concentrations used in the second stage of the FCLD system 

project 

TOXICANT CONCENTRATION 

20 g/l Organic overload (OO) 

40 g/l 

5 g/l 

10 g/l 

Sodium (Na+) 

20 g/l 

Sodium hydroxide (NaOH) 1 g/l - to bring the pH to 10 

Hydrochloric acid (HCl) 1.7 ml/l - to bring the pH to 5 

Heavy whipping cream - Milk 16 ml/l 

10 ml/1 - 1% in volume Sodium hypochlorite (NaOCl) 

Bleach 50 ml/l - 5% in volume 

 

 

3.3.1 – Fuzzy inference system (first stage) 

After each experiment with the FCLD system was completed, data were 

processed using Microsoft® Excel. Biogas flow rate and pH data were averaged into a 5 

min interval to reduce noise. These data sets were used to classify the type of failure 

mode (organic overload or sodium failure mode) into the FCLD system using an FIS 

using MATLAB®/Fuzzy Logic Toolbox/Simulink from MathWorks, Inc, Natick, MA. 
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Figure 3.5 illustrates the Simulink model that was used to run data from 

experiments with the FCLD system. The FIS block is a fuzzy logic controller block that 

is built in Simulink and implements an FIS. This block calls the FIS that was made using 

MATLAB®/Fuzzy Logic Toolbox using graphical user interface (GUI) tools, such as FIS 

Editor, Membership Functions Editor, and Rule Editor. This particular FIS has three 

inputs: biogas, pH, and change in pH. Each input has seven triangular membership 

functions: negative big (NB), negative medium (NM), negative small (NS), zero (ZE), 

positive small (PS), positive medium (PM), and positive big (PB). The universe of 

discourse for each input was scaled to be between -1 and 1. Figure 3.6 characterizes 

membership functions for inputs. Rules for the FIS were constructed using the Rule 

Editor. There are 3 inputs for the FIS, consequently a fuzzy operator is used to connect 

the inputs. Here, the fuzzy operator AND is used to connect the three inputs. 

Mamdani min implication operator was used on the FIS. Aggregation was 

obtained using max operation. Finally, defuzzification was made using the centroid 

method. The output of the FIS was the classification of the failure mode. The output has 

three membership functions, sodium failure, normal operation, and organic overload. 

Figure 3.7 shows the output membership functions. 

 

3.3.2 – Biogas analysis 

Biogas production is a very important parameter when monitoring high 

rate anaerobic processes because of its intrinsic correlation to the performance of the  
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Figure 3.5 – Simulink model for fuzzy classification of failure mode for the first stage of the FCLD system 
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Figure 3.6 – Input membership functions for first stage of FCLD project 

 

 

Figure 3.7 – Output membership functions for first stage of FCLD project. 
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anaerobic digester. If the metabolism of the methanogenic bacteria is affected somehow, 

they will not participate appropriately in the process of anaerobic digestion (Figure 2.1) 

thus biogas production can decrease. So, a separate analysis was used to understand how 

biogas flow rate changed during failure experiments for the second stage of the FCLD 

system. First, biogas flow rate data were processed using Microsoft® Excel. Data were 

averaged into a 5 min interval and plotted to visualize how each parameter responded for 

the different experiments that were performed with the FCLD system. The averaged data 

were analyzed using MATLAB® to check how biogas production behaved after addition 

of a failure mode (Table 3.1). This analysis was made comparing biogas production 

under faulty conditions to a range of values that defined the biogas under normal 

operation conditions. This interval was selected based on the mean value of biogas flow 

rate under normal operation for all the tests. Three biogas flow rate ranges were analyzed: 

mean ± 1 standard deviation, mean ± 2 standard deviations, and mean ± 3 standard 

deviations. 

 

3.3.3 – Graph theory based classifier 

Conductivity, turbidity, and pH data were first analyzed using Microsoft® Excel. 

Data were averaged into a 5 min interval to reduce variability and plotted to visualize 

how each parameter responded for the different experiments that were performed with the 

FCLD system. 

A multiply-connected graph was built using pH, conductivity and turbidity data 

that were collected during failure mode experiments within the FCLD system. Based on 
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the multiply-connected graph, a MATLAB®/Simulink model was built, and a MATLAB® 

script was written to run this model. The script prompts the user for a filename, runs the 

Simulink model, and shows the result on the screen. These efforts are presented in the 

next chapter. 

 

3.3.4 – Fuzzy inference system classifier 

An FIS was implemented using MATLAB®/Fuzzy Logic Toolbox/Simulink from 

MathWorks, Inc. The three monitored parameters used as inputs for the FIS were, 

turbidity, pH and conductivity. The FIS was built to classify the 9 failure modes, and is 

shown in figure 3.8. 

The FIS block calls the FIS that was generated using MATLAB®/Fuzzy Logic 

Toolbox using the graphical user interface (GUI) tools: FIS Editor, Membership 

Functions Editor, and Rule Editor. Membership functions for each input were selected 

based on the same intervals that were used for the classification using graph theory. 

Universe of discourse for inputs was scaled between 0 and 1. Figure 3.9 characterizes 

membership functions for turbidity, figure 3.10 illustrates membership functions for pH, 

while figure 3.11 shows membership functions for conductivity. 

Rules for the FIS were constructed using the Rule Editor and they were based on 

the behavior of the monitoring parameters under each failure mode. Since there are 3 

inputs for the FIS, a fuzzy operator was used to connect the inputs. Here, the fuzzy 

operator AND is used to connect the three inputs.  
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Figure 3.8 – Simulink model for fuzzy classification of failure mode for the second 
stage of the FCLD system. 
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Figure 3.9 – Membership functions for turbidity 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 – Membership functions for conductivity 
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Figure 3.11 – Membership functions for pH 

 

Mamdani min implication operator was used on the FIS. Aggregation was 

obtained using max operation. Finally, defuzzification was made using the centroid 

method. 

The FIS has 4 outputs. Layout for the outputs was selected based on similarity 

among monitoring parameters for failure mode tests. Output 1 has membership functions 

for non-classification, organic overloads at 20 g/L and 40 g/L, and milk spill. Output 2 

represents output membership functions for non-classification, HCl, and NaOH spills. 

Non-classification and Na+ at 20 g/L are represented by output 3. Finally, output 4 

represents membership functions for non-classification; bleach at 1 % and 5 %, and Na+ 

at 10 g/L. Figures 3.12, 3.13, 3.14, and 3.15 illustrates outputs 1, 2, 3, and 4, respectively. 

Results for this FIS were obtained running the Simulink model for the second stage of the 

FCLD project. 



 73 

 

 

 

 

 

 

 

 

3.12 – Membership functions for output 1 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 – Membership functions for output 2 
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Figure 3.14 – Membership functions for output 3 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 – Membership functions for output 4 
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CHAPTER 4 

 

RESULTS AND DISCUSSIONS 

 

4.1 – First stage 

Results from experiments with the FCLD system during the first stage of the 

research are shown in the next section and they represent biogas flow rate and pH 

measurements for two types of failure modes: COD organic overload at 50 g/L and 

sodium toxicity using 20 g/L of Na+. These results are also presented in Pinto et al. 

(2000). 

 

4.1.1 – Toxic load experiments 

As explained in section 3.1.2, each test lasted 4 h, however, for clarity, only the 

last two hours of data are shown on the following figures. Thus, the first 60 min on each 

graph represents steady state conditions from 2 h to 3 h for each variable. At t = 60 min, 

the failure-causing load was added. The response of each variable to the failure-causing 

load is shown from t = 60 to 120 min. 

For the organic overload test, influent COD concentration was increased from 10 

g/L to 50 g/L (OO 50). After 15 min, average biogas production increased by a factor 3×. 

Organic overload caused a noticeable pH drop after 10 min. For a 20 g/L Na+ 

concentration (20 Na), biogas production ceased after 35 min, and pH had a mild 
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response (Pinto et al., 2000). Figure 4.1 shows biogas flow rate for one OO 50 test and 

for one 20 Na test. Figure 4.2 shows pH response for the same tests. 

 

4.1.2 – Fuzzy inference system responses 

When simulating Na+ failure mode tests, the FIS Simulink model detected the 

failure 20 min after the addition of NaCl to the influent wastewater stream, which is 

represented by the red vertical line in figure 4.3. In figure 4.3, zero values represent 

normal operation while 1 represents a failure mode due to Na+ toxicity. When running 

data from organic overload tests, similar results were observed: failure mode was 

detected 15 min after the introduction of high COD solution. Figure 4.4 illustrates the FIS 

output that goes from normal operation (0) to a value of –1 (organic overload) at 75 min, 

15 min after the application of the overload. 

 

4.2 – Second stage 

The next 2 sections show results from the experiments that were done with the 

FCLD system for the second stage, which used the failure modes summarized in table 

3.1. 
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Figure 4.1 – Biogas response to organic overload in two separate experiments (vertical dashed line: test start time) 
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Figure 4.2 – pH response to organic overload in two separate experiments (vertical dashed line: test start time). 
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Figure 4.3 – Results from simulation of Na+ toxic load (red doted line: test start time) 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 – Results from simulation of organic overload (red doted line: test start time) 
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4.2.1 – Toxic load experiments 

Figure 4.5 represents example data (one of the three replicates) for biogas flow 

rate behavior for each type of failure-causing load tested. Figures 4.6, 4.7, and 4.8 

illustrate similar example data (one of the replicates) for pH, conductivity, and turbidity 

responses, respectively. 

From figures 4.5 to 4.8, it is clear that in certain tests, some monitored parameters 

respond very rapidly to the failure-causing load. Some responses can be seen as early as 5 

min after the application of the load; others take much longer to respond. Based on this 

information, classification intervals were selected for pH, conductivity, and turbidity. The 

procedure for selection is explained in section 4.2.3. 

 

4.2.2 – Biogas analysis 

As can be seen by comparing figure 4.5 to figures 4.6-4.8, biogas flow rate 

measurements were not as stable as the other three variables. Furthermore, four of the 

toxicants did not cause clearly noticeable response in the biogas signal. For this reason, a 

separate analysis was done to classify faulty biogas flow rate from normal operation 

conditions. Normal biogas flow rate conditions were selected using mean (11.34 mL/min) 

and standard deviation (3.05 mL/min) values of steady-state biogas flow rate 

measurements for all 27 tests before the addition of the failure-causing load. Three 

intervals were analyzed: mean ± 1 standard deviation (8.29 - 14.39 mL/min), mean ± 2 

standard deviations (5.24 - 17.44 mL/min), and mean ± 3 standard deviations (2.19 - 

20.49 mL/min). 
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Figure 4.5 – Representative biogas response for failure tests with the FCLD system (vertical dashed line: test start time).  
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Figure 4.6 – Representative pH response for failure tests with the FCLD system (vertical dashed line: test start time).  
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Figure 4.7 – Representative conductivity response for failure tests with the FCLD system (vertical dashed line: test start time). 
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Figure 4.8 – Representative turbidity response for failure tests with the FCLD system (vertical dashed line: test start time). 
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Biogas flow rate data for all the 27 tests were evaluated in the three intervals, to 

determine when a fault-condition existed. Detailed results from the three analyses are 

provided in appendix A1 – Biogas analysis. Table 4.1 summarizes the results obtained 

from the analyses. False positives represent data points before test time (addition of 

toxicant) that are outside the comparison interval, and false negatives represent data 

points after test time that have values inside the comparison interval. 

If biogas flow rate data under normal operation conditions is normally distributed, 

interval 1 must contain approximately 68 % of the measurements: results showed 68 %. 

Interval 2 must contain approximately 95 % of the measurements: results showed 96 %; 

interval 3 must contain approximately all the measurements, and it did. Interval 1 showed 

32 % false positives, which is unacceptably high. Interval 2 showed only 4 % false 

positives, and had 64 % of false negatives (corresponding to a 36 % detection rate). 

 

 

Table 4.1 – Results from biogas analysis for the second stage of the FCLD system 

project. Test time refers to time at which failure-causing load was introduced to the 

reactor. 

  
Interval 1 

mean ±±±± 1 sd 

Interval 2 

mean ±±±± 2 sd 

Interval 3 

mean ±±±± 3 sd 

Before test time False positives 32 % 4 % 0 % 

After test time False negatives 39 % 64 % 82 % 
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However, at mean ± 2 standard deviations interval, four of the nine failure-

causing loads tests could still be detected within 5 to 15 min after addition of the loads. 

Interval 3 did not have false positives, however it had only 18 % detection; which is 

unacceptably low. 

Even not using biogas as one input for the classifiers, the FCLD still need to be 

used as part of the system because other monitored parameters (e.g. pH) in the effluent 

line of the FCLD are modified not only by changes in composition of the influent 

wastewater, but also by imbalances of by-products (e.g. VFA’s) of the anaerobic 

digestion process. 

 

4.2.3 – Correlation of monitored parameters 

Another step in the data analysis was to examine the correlation between 

monitored parameters. Correlations for pH-conductivity, pH-turbidity, pH-biogas, 

turbidity-conductivity, turbidity-biogas, and conductivity-biogas were calculated using 

post-failure causing load data. Complete results for this analysis are shown in appendix 

A2 – Correlation of monitored parameters. Table 4.2 represents the average values for the 

coefficient of determination (r2) for each failure mode test that were used for both 

classifications. 

Tests with Na+ at 10 g/L and 20 g/L significantly decreased biogas, which was 

expected because of the toxicity of Na+ at those concentrations; also, conductivity 

increased considerably due to the presence of more ions in solution. So, the observed 

high correlation between biogas and conductivity was unsurprising for Na+ tests. 
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Table 4.2 – Results for the coefficient of determination (r2) analysis. Yellow cells have   

r2 > 0.5. 

 pH-turb pH-cond pH-gas turb-cond turb-gas cond-gas 

Na10 0.5896 0.1271 0.1617 0.6021 0.4716 0.6993 

Na20 0.2837 0.2190 0.4755 0.3326 0.3767 0.8379 

blc1 0.3408 0.9072 0.1300 0.2644 0.0917 0.1201 

Blc5 0.3861 0.8827 0.3776 0.1990 0.2182 0.2716 

oo20 0.8771 0.3122 0.0672 0.2743 0.1227 0.0814 

oo40 0.8662 0.5487 0.0129 0.3257 0.0629 0.0439 

NaOH 0.0748 0.6949 0.7527 0.1717 0.0066 0.4630 

HCl 0.7217 0.6230 0.2276 0.7790 0.1368 0.0814 

Milk 0.3881 0.2128 0.0381 0.5247 0.0480 0.1352 

 

 

Conductivity and pH were highly correlated for both bleach tests. When bleach 

(NaOCl) is added to water, it forms NaOH and hypochlorous acid (HOCl). The presence 

of NaOH (which dissociates into Na+ and OH-) probably increased the conductivity of the 

effluent, while HOCl decreased the pH, resulting in the observed high correlation 

between pH and conductivity for bleach experiments. 

For both organic overload tests, pH and turbidity were highly correlated. One 

effect of an organic overload failure is the accumulation of volatile fatty acids (VFAs) in 

the reactor, due to the low activity of the methanogens (see figure 2.1); the accumulation 
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of VFAs drops the pH in the reactor. Turbidity increased because the confectionary 

wastewater used is darker (more particles) when the COD concentration is higher. This 

can explain the high correlation observed between pH and turbidity for both organic 

overloads. 

Addition of NaOH to the wastewater raised pH significantly, slightly increased 

conductivity (due probably to the higher concentration of Na+ and OH-), and rapidly 

decreased biogas production. Therefore, high values for r2 between pH-conductivity and 

pH-biogas were not surprising. 

On the other hand, addition of HCl increased the concentration of H+ and Cl- and 

dropped the pH considerably. HCl slightly increased conductivity in the effluent, due 

presumably to the higher concentration of H+ and Cl- ions. Turbidity slightly increased, 

probably due to biomass lost after addition of the acid. These phenomena can explain the 

high correlation observed between pH-turbidity, pH-conductivity, and turbidity-

conductivity. 

Turbidity was the only parameter that was considerably affected by milk addition; 

all the other parameter showed insignificant changes. 

 

4.2.4 – Implementing the graph theory based classifier 

Each node of the classification using graph theory was defined based on values 

that could determine each failure mode. These values were selected based upon 

observation of the measured parameters at 20 min after addition of failure-causing load. 

Biogas was disregarded as an input because of the oscillation observed during the 
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monitoring, and because the classification of all failure mode tests could be performed 

using only pH, conductivity, and turbidity measurements. 

As seen in figures 4.6, 4.7 and 4.8, some parameters have a very abrupt change 

after the addition of a failure mode. For instance, milk spill causes a rapid turbidity 

response, with values bigger than 15 Nephelometric Turbidity Units (NTU) 20 min after 

test time. Turbidity is also the relevant factor on the classification of organic overload at 

40 g/L and 20 g/L. On the other hand, and unsurprisingly, pH is the parameter that was 

used as the main parameter on the classification of NaOH and HCl. For the classification 

of Na+ at 20 g/L failure mode, conductivity was chosen because of its abrupt change from 

normal operation conditions. Na+ at 10 g/L, bleach at 1 % and 5 % had slightly 

modifications from normal operation, needing closer observation from all the parameters. 

Table 4.3 shows pH, conductivity and turbidity intervals for the failure modes within the 

FCLD system. Based on these observations, a graph was made, and it is illustrated in 

figure 4.9. 

 

4.2.5 – Performance of the graph theory based classifier 

As explained in section 4.2.3, the failure modes can be classified using the limits 

shown in table 4.1, which are represented by the graph in figure 4.9. This graph was 

implemented using Simulink, and the block diagram for the classification using graph 

theory is illustrated in figure 4.10. The bigger block on the figure masks the graph used 

for the classification. 
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Table 4.3 – pH, conductivity and turbidity operational intervals 20 min after injection of 

failure mode into the influent wastewater of the FCLD system. 
           Parameter 

 

Failure mode 

 

pH 

Conductivity (C) 

(mS) 

Turbidity – T 

(NTU) 

Milk   T >= 15 

OO 40   5 <= T < 15 

OO 20   1.3 <= T <= 2.2 

Bleach 5% 6.5 <= pH < 6.75 7.5 <= C < 9.4 T < 1.3 

NaOH 6.5 <= pH < 6.75   

Bleach 1% 6.75 <= pH <= 6.85 5.8 <= C <= 6.9 T < 1.3 

10 Na 6.75 <= pH < 8 7.5 <= C < 10 T < 1.3 

HCl pH <= 6.3  T < 1.3 

20 Na  C >= 10  

 

 

 

A MATLAB® program was used to run the Simulink model. Results are in matrix 

form: column 1 represents the time, and columns 2 to 10 represent the results for each 

type of failure mode. Number 1 in the matrix represents that the output for the failure 

mode is true, and 0 represent a false value. For example, when running the data set for 

test 15, fifteen min after the toxin was added (75 min) the failure mode organic overload 

at 20 g/L was detected (see the matrix immediately following figure 4.10). 

All 27 tests were run, average results were calculated for the three replicates for 

each failure mode using another MATLAB® program. Average results for each one of the 

failure modes are shown in appendix A3 – Results for the classifiers. 
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Figure 4.9 – Graph for the classification of failure modes 
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Figure 4.10 – Simulink model of graph theory based classifier 
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Classification of failure-causing loads using the graph theory based classifier did 

not show false positives. Furthermore, there were only 4 % misclassification, and they 

occurred in the transient period between the addition of the failure-causing load and the 

correct classification, which occurred 3.7 % of the time 10 min after addition of failure-

causing load (time 70 min), increasing to 48 %, 15 min after test time (at 75 min), and 

100 %, 20 min after test time (80 min). 

 

 

What test do you want to run? (ex: test1, test2,...,test27): test15 

***************************************************** 
The failure is due to organic overload at 20 g/L. 
***************************************************** 
The results are: 

  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0     0     0     0     0     0     0 
    75     0     0     1     0     0     0     0     0     0 
    80     0     0     1     0     0     0     0     0     0 
    85     0     0     1     0     0     0     0     0     0 
    90     0     0     1     0     0     0     0     0     0 
    95     0     0     1     0     0     0     0     0     0 
   100     0     0     1     0     0     0     0     0     0 
   105     0     0     1     0     0     0     0     0     0 
   110     0     0     1     0     0     0     0     0     0 
   115     0     0     1     0     0     0     0     0     0 
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4.2.6 – Performance of the fuzzy inference system classifier 

This step, which is the use of an FIS to classify all the tests that were obtained 

during the second stage of the FCLD project, was made using MATLAB®/Fuzzy Logic 

Toolbox and the Simulink model illustrated in figure 4.10. To run the model, a script is 

run on the MATLAB® workspace. The program asks for the test that the user wants to 

classify, and then give the classification for that particular test. As explained in section 

3.3.4, the FIS has 4 outputs and their membership functions can be seen in figures 3.12 to 

3.14. The result from the simulation of the FIS model is shown in matrix form, where the 

column 1 represents the time interval for each test, 0 to 115 min, and columns 2 to 10 

represent all the types of failure modes that were simulated using the FCLD system for 

the second stage of the research. The classification is shown as the possibility of the 

output been one of the failure modes. Here, the results are presented as the average for 

each type of failure-causing load. 

The program runs the Simulink model using the data set for the selected test, and 

shows the classification results into the MATLAB® screen. The matrix in the next page 

shows the result for the average for sodium at 10 g/L. There were some misclassification 

during the transient period, but correct classification was reached 20 min after the toxin 

was added (at 80 min).  
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The average results for sodium at 10 g/L are: 
============================================================ 
  time  oo20  oo40  Milk   HCl  NaOH  20Na  Blc1  10Na  Blc5 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0     0     0     0     0    33     0 
    75     0     0     0     0     0     0    33    67     0 
    80     0     0     0     0     0     0     0   100     0 
    85     0     0     0     0     0     0     0    89     0 
    90     0     0     0     0     0     0     0    83     0 
    95     0     0     0     0     0     0     0    84     0 
   100     0     0     0     0     0     0     0    86     0 
   105     0     0     0     0     0     0     0    86     0 
   110     0     0     0     0     0     0     0    86     0 
   115     0     0     0     0     0     0     0    86     0 

 
 

All 27 tests were run, and another matrix was built for each data set based on the 

results. If the possibility value of a test at a certain time was higher than 50, a value of 1 

was assigned to that element, otherwise 0 was assigned. The objective of this new 

representation was to have results from the FIS in the same format as the results from the 

graph theory based classifier. For instance, the next matrix represents average values for 

sodium at 10 g/L. Test time was at 60 min, 10 min after test time one test was correctly 

classified as Na+ at 10 g/L, 15 min after test time one test was classified as bleach at 1 %, 

and 2 were correctly. Finally, 20 min after test time all 3 tests were correctly classified. 

Also, there were no false positives when running the 3 data sets for Na+ at 10 g/L. 
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The average for sodium at 10 g/L is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0     0     0     0    33     0     0 
    75     0     0     0     0     0    33    67     0     0 
    80     0     0     0     0     0     0   100     0     0 
    85     0     0     0     0     0     0   100     0     0 
    90     0     0     0     0     0     0   100     0     0 
    95     0     0     0     0     0     0   100     0     0 
   100     0     0     0     0     0     0   100     0     0 
   105     0     0     0     0     0     0   100     0     0 
   110     0     0     0     0     0     0   100     0     0 
   115     0     0     0     0     0     0   100     0     0 

 

 

Similar average results for all the failure-causing modes are shown in appendix 

A3 – Results for the classifiers together with average results from the graph theory based 

classifier. 

Classification of failure-causing loads using the FIS classifier did not show false 

positives. This classifier showed 8 % misclassification during transient period. Correct 

classification occurred with 7.4 % 10 min after addition of failure-causing load (time 70 

min), increasing to 59 % 15 min after test time (at 75 min), 96 % 20 min after test time, 

and reaching 100 % 25 min after test time (85 min). 
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4.2.7 – Response times 

Figure 4.11 illustrates the response time for the detection of toxicants. Under 

normal operation conditions, biogas response (interval 1 – mean ± 1 sd) showed false 

positives, which was not observed when using the graph theory or the FIS based 

classifiers. However, it can be seen that biogas response is faster than the responses from 

the graph theory based and FIS classifiers. Biogas response does not reach 100 % 

classification because not all the failure-causing toxicants used to test the FCLD system 

generated substantial deviation from normal operation conditions.  

Conductivity, turbidity, and pH were used as inputs for both classifiers; biogas 

was disregarded because of the high fluctuation found during monitoring. However, if 

biogas was used as an input for the classifiers, it could make the classification of the 

failure-causing modes that had significant change in biogas (NaOH, HCl, and Na+ tests) 

approximately 10 min faster. 
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Figure 4.11 – Time response for detection of failure-causing modes using the FCLD system (vertical dashed line: test start time) 
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CHAPTER 5 

 

SUMMARY AND CONCLUSIONS 

 

5.1 – Conclusions 

In this work a small UASB reactor (4-L volume; 10-min HRT) was used as a 

biosensor to detect failure-causing loads resulting from toxicants in the influent 

wastewater, in what is termed a failure-causing load detector (FCLD) system. Biogas 

flow rate, pH, conductivity, and turbidity were monitored during experiments with a 

variety of different types of failure-causing loads: organic overloads, sodium toxic loads, 

bleach, milk, HCl, and NaOH. Furthermore, data collected during these experiments were 

used as inputs for two classifiers capable of determining the different types of failure-

causing loads entering the FCLD system. One classifier was developed using concepts of 

graph theory; the other used fuzzy inference system (FIS) techniques. 

Biogas is the primary end product of anaerobic digestion (Figure 2.1), and it is 

mainly composed of CH4 and CO2. If the influent wastewater inhibits the metabolism of 

the methanogenic bacteria, biogas flow rate will decrease. Deviation from normal biogas 

production could be rapidly detected for some of the failure-causing loads. For the HCl 

tests, the change in biogas flow rate was detected within 5 min; for NaOH and sodium 

failure tests, detection was within 10 min. However, due to variability observed in biogas 

measurements and because classification could be performed using just pH, conductivity 

and turbidity as inputs, biogas was disregarded as an input for the classification of the 

failure-causing loads for the second stage of the FCLD. 
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The graph theory-based classifier is simpler than the FIS-based classifier. Also, it 

showed less misclassification than the FIS classifier: the FIS has 125 % more 

misclassification than the graph theory classifier. When comparing number of correct 

classifications in a specific time, both classifiers had similar performance: 10 min after 

test time, the FIS classifier correctly classified 2 of the 27 failure-causing loads and the 

graph theory based classified 1; 15 min after test time the FIS detected 16 tests correctly, 

and the graph theory based correctly classified 14; 20 min after test time, the graph theory 

based classifier correctly classified all the tests, and the FIS had correctly classified 26 

tests; for the FIS based classifier, completely correct classification was reached at 25 min 

for all the tests. 

For certain toxicants biogas measurement showed faster than the two 

physicochemical sensors based classifiers. The introduction of biogas as one input for 

both classifiers could speed the classification of the failure-causing loads that showed 

substantial biogas response. 

 

5.2 – Recommendation for future work 

This work proved that a small anaerobic digester (4-L) that has a short HRT (10 

min) can detect faulty conditions in the influent wastewater within 5-20 min of any 

changes for the range of experiments that were performed. Also, when using expert 

system techniques such as graph theory and fuzzy logic, monitoring programs can be 

used to correctly classify the nature of the failure-causing load. However, there are some 

gaps to be filled in order to improve the overall understanding of this kind of system. The 

following suggestions can then be used as research topics in future works: 
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1. Integrate the biogas, pH, turbidity, and conductivity measurements to classify 

failure-causing loads to see if improvement in classification success rate and 

speed can be achieved. 

2. Use historical toxicity information from a full-scale plant that uses a UASB, and 

test the FCLD system and the classifiers based on this information. Modify the 

classifiers if necessary. 

3. Use other classification techniques together with the techniques used in this work, 

and compare the trade-offs of each one of them in order to rank them 

4. Real time implementation of the two classifiers used in this work. 
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A1 – Biogas analysis 

 

The next three pages show the results obtained for the biogas anlysis. Normal 

biogas flow rate conditions were selected using mean (11.34 mL/min) and standard 

deviation (3.05 mL/min) values at steady-state operation before the addition of the 

failure-causing load (test time). Three intervals were analyzed: mean ± 1 standard 

deviation (8.29 - 14.39 mL/min), mean ± 2 standard deviations (5.24 – 17.44 mL/min), 

and mean ± 3 standard deviations (2.19 – 20.49 mL/min) 

For instance, when observing results for the interval composed by mean biogas 

flow rate ± 1 standard deviation, and looking at the column that represents Na+ at 10 g/L 

(Na10), it can be seen that at times 0, 5, 10, and 35 min, 1 out of 3 tests had biogas flow 

rate outside the interval, at 25 min 2 tests for Na10 shown biogas flow rate outside 

normal operation conditions, and times 15, 20, 30, and 40 to 60 had all the 3 tests with 

biogas flow rate within the normal operation interval. Time 60 min represents the time 

when the failure modes were added to the influent wastewater. At time 65 min for Na10 

there is one observation of biogas flow rate outside the limits for normal conditions, and 

from 70 to 115 min all three replicates were detected as being outside the normal 

operation range. Similar observation can be done for all the other tests, and for the other 2 

intervals that defined normal operation conditions. 
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======================================================================= 
Analysis using normal biogas production as the interval between mean +- 
1 standard deviation. 
======================================================================= 
Biogas production interval: 8.29 <= BIOGAS <= 14.39 (mL/min) 
Biogas detection = (1) 
No biogas detection = (0) 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     1     3     0     1     2     2     1     2     2 
     5     2     1     0     1     1     2     1     2     1 
    10     0     3     0     1     1     1     1     1     0 
    15     3     3     1     1     0     0     0     2     0 
    20     0     1     0     2     2     2     0     1     1 
    25     2     2     0     0     1     0     2     1     2 
    30     0     2     1     2     0     1     0     3     0 
    35     1     1     0     0     0     1     1     2     1 
    40     1     0     0     1     2     0     0     2     0 
    45     1     0     1     2     1     1     0     2     0 
    50     1     1     1     0     0     0     0     1     1 
    55     0     0     1     3     0     0     0     2     0 
    60     1     0     0     2     1     1     0     2     1 
    65     1     0     1     3     0     3     1     3     0 
    70     2     1     0     3     2     1     3     3     3 
    75     2     2     2     0     3     0     3     3     3 
    80     0     2     2     2     2     3     3     3     3 
    85     2     1     2     0     3     2     3     1     3 
    90     0     3     1     0     3     1     3     3     3 
    95     1     0     3     2     3     2     3     3     3 
   100     2     1     1     1     3     1     3     2     3 
   105     1     2     2     3     3     0     3     2     3 
   110     0     1     1     1     3     2     3     2     3 
   115     0     2     2     0     3     1     3     2     3 
 
*********************************************************************** 
Before test time there were, in percentage: 
False positive biogas production before test time is 31.79 percent. 
No biogas detection before test time is 68.21 percent. 
And after test time the results are: 
Biogas detection after test time is 61.111 percent. 
No biogas detection after test time is 38.889 percent. 
*********************************************************************** 
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======================================================================= 
Analysis using normal biogas production as the interval between mean +- 
2 standard deviation. 
======================================================================= 
Biogas production interval: 5.24 <= BIOGAS <= 17.44 (mL/min) 
Biogas detection = (1) 
No biogas detection = (0) 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     1     0     1     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     1     0     1     0 
    15     0     1     0     0     0     0     0     0     0 
    20     0     0     0     1     0     0     0     0     0 
    25     2     0     0     0     0     0     0     0     0 
    30     0     0     0     1     0     1     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     1     0     0     0     0     0 
    45     0     0     1     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     1     0     0     0     0     0 
    65     0     0     0     2     0     2     0     3     0 
    70     1     0     0     3     2     1     3     3     0 
    75     0     0     1     0     2     0     0     3     1 
    80     0     1     1     0     2     0     3     2     3 
    85     0     0     1     0     3     0     3     1     3 
    90     0     0     0     0     3     0     3     1     3 
    95     0     0     0     1     3     0     3     1     3 
   100     0     0     0     1     3     0     3     1     3 
   105     0     1     0     0     3     0     3     2     3 
   110     0     0     0     1     3     0     3     1     3 
   115     0     0     0     0     3     0     3     2     3 
 
*********************************************************************** 
Before test time there were, in percentage: 
False positive biogas production before test time is 3.7037 percent. 
No biogas detection before test time is 96.296 percent. 
And after test time the results are: 
Biogas detection after test time is 36.111 pecent. 
No biogas detection after test time is 63.889 percent. 
*********************************************************************** 
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======================================================================= 
Analysis using normal biogas production as the interval between mean +- 
3 standard deviation. 
======================================================================= 
Biogas production interval: 2.19 <= BIOGAS <= 20.49 (mL/min) 
Biogas detection = (1) 
No biogas detection = (0) 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0     0     0     0     1     0     0 
    75     0     0     0     0     2     0     0     0     0 
    80     0     0     0     0     1     0     1     0     0 
    85     0     0     0     0     3     0     2     0     2 
    90     0     0     0     0     3     0     2     0     2 
    95     0     0     0     0     3     0     3     0     3 
   100     0     0     0     0     3     0     2     0     3 
   105     0     0     0     0     3     0     2     0     2 
   110     0     0     0     0     3     0     2     0     2 
   115     0     0     0     0     3     0     2     0     3 
 
*********************************************************************** 
Before test time there were, in percentage: 
False positive biogas production before test time is 0 percent. 
No biogas detection before test time is 100 percent. 
And after test time the results are: 
Biogas detection after test time is 17.901 percent. 
No biogas detection after test time is 82.099 percent. 
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A2 – Correlation of monitored parameters 

 

The next two matrices show the results from the correlation analysis among the 

monitored parameters biogas, pH, conductivity, and turbidity. 

 
 
Next matrix represents correlation coefficients for the following:  
test   ph-turb   ph-cond    ph-gas turb-cond  turb-gas  cond-gas 
Na10    0.6352    0.3960    0.4037    0.8899    0.7771    0.8338 
Na10    0.7881    0.2735    0.3478    0.7006    0.5111    0.8155 
Na10    0.8627    0.3870    0.4487    0.7237    0.7413    0.8590 
Na20    0.3331    0.4394    0.7102    0.0078    0.3062    0.8799 
Na20    0.1206    0.4687    0.6765    0.5577    0.4767    0.9442 
Na20    0.8518    0.4942    0.6814    0.8288    0.8995    0.9208 
Blc1    0.2745    0.9820    0.4179    0.2516    0.0149    0.4090 
Blc1    0.9082    0.9418    0.3334    0.7910    0.3439    0.3888 
Blc1    0.3494    0.9328    0.3229    0.3230    0.3955    0.2049 
Blc5    0.4700    0.9657    0.5929    0.3561    0.3496    0.4931 
Blc5    0.5091    0.9345    0.7759    0.3456    0.4823    0.6854 
Blc5    0.8236    0.9178    0.4233    0.5922    0.5475    0.3191 
oo20    0.9653    0.0934    0.1862    0.1177    0.2887    0.1441 
oo20    0.9350    0.9416    0.1382    0.8993    0.2656    0.2863 
oo20    0.9085    0.2030    0.3845    0.0168    0.4630    0.3763 
oo40    0.9595    0.5304    0.1906    0.3650    0.3429    0.2269 
oo40    0.8686    0.8966    0.0386    0.6313    0.2534    0.2806 
oo40    0.9610    0.7489    0.0314    0.6672    0.0828    0.0378 
NaOH    0.1554    0.7223    0.9622    0.1880    0.0684    0.6642 
NaOH    0.3322    0.8522    0.7577    0.4683    0.0057    0.7153 
NaOH    0.3000    0.9147    0.8707    0.5103    0.1231    0.6606 
HCl     0.9601    0.7651    0.7401    0.8809    0.6228    0.4747 
HCl     0.8655    0.7686    0.1232    0.8080    0.1026    0.0833 
HCl     0.7029    0.8324    0.3465    0.9529    0.1095    0.1095 
Milk    0.3851    0.1056    0.1823    0.4681    0.0802    0.0479 
Milk    0.5359    0.4481    0.0530    0.8315    0.2725    0.5901 
Milk    0.8537    0.6532    0.2795    0.8147    0.2516    0.2345 
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Next matrix represents r^2 for the following:  
test   ph-turb   ph-cond    ph-gas turb-cond  turb-gas  cond-gas 
Na10    0.4035    0.1568    0.1630    0.7920    0.6039    0.6952 
Na10    0.6210    0.0748    0.1210    0.4908    0.2612    0.6650 
Na10    0.7442    0.1498    0.2013    0.5237    0.5496    0.7379 
Na20    0.1110    0.1931    0.5044    0.0001    0.0938    0.7743 
Na20    0.0145    0.2197    0.4576    0.3110    0.2273    0.8914 
Na20    0.7256    0.2442    0.4644    0.6869    0.8091    0.8479 
Blc1    0.0754    0.9644    0.1746    0.0633    0.0002    0.1673 
Blc1    0.8249    0.8871    0.1112    0.6257    0.1183    0.1512 
Blc1    0.1221    0.8700    0.1042    0.1043    0.1564    0.0420 
Blc5    0.2209    0.9326    0.3516    0.1268    0.1222    0.2432 
Blc5    0.2591    0.8734    0.6020    0.1194    0.2326    0.4698 
Blc5    0.6783    0.8423    0.1791    0.3507    0.2997    0.1018 
oo20    0.9317    0.0087    0.0347    0.0139    0.0834    0.0208 
oo20    0.8742    0.8867    0.0191    0.8087    0.0705    0.0820 
oo20    0.8253    0.0412    0.1478    0.0003    0.2143    0.1416 
oo40    0.9205    0.2814    0.0363    0.1332    0.1176    0.0515 
oo40    0.7545    0.8040    0.0015    0.3986    0.0642    0.0787 
oo40    0.9236    0.5608    0.0010    0.4452    0.0069    0.0014 
NaOH    0.0241    0.5217    0.9257    0.0353    0.0047    0.4411 
NaOH    0.1103    0.7263    0.5741    0.2193    0.0000    0.5117 
NaOH    0.0900    0.8368    0.7582    0.2604    0.0152    0.4363 
HCl     0.9218    0.5854    0.5477    0.7760    0.3879    0.2254 
HCl     0.7492    0.5907    0.0152    0.6529    0.0105    0.0069 
HCl     0.4941    0.6929    0.1201    0.9081    0.0120    0.0120 
Milk    0.1483    0.0111    0.0332    0.2191    0.0064    0.0023 
Milk    0.2872    0.2008    0.0028    0.6913    0.0742    0.3483 
Milk    0.7288    0.4266    0.0781    0.6637    0.0633    0.0550 
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A3 – Results for the classifiers 

 

Average results for the graph theory and FIS classifiers using the 27 data sets are 

showed in the following pages. The results on the top are from the graph theory based 

classifier and the results on the bottom are from the FIS classifier. Values in each of the 

columns (2-10) are percentage of detections. 
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Graph theory classifier: 
The average for sodium at 10 g/L is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0     0     0     0    33     0     0 
    75     0     0     0     0     0     0    67     0     0 
    80     0     0     0     0     0     0   100     0     0 
    85     0     0     0     0     0     0   100     0     0 
    90     0     0     0     0     0     0   100     0     0 
    95     0     0     0     0     0     0   100     0     0 
   100     0     0     0     0     0     0   100     0     0 
   105     0     0     0     0     0     0   100     0     0 
   110     0     0     0     0     0     0   100     0     0 
   115     0     0     0     0     0     0   100     0     0 
 
FIS classifier: 
The average for sodium at 10 g/L is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0     0     0     0    33     0     0 
    75     0     0     0     0     0    33    67     0     0 
    80     0     0     0     0     0     0   100     0     0 
    85     0     0     0     0     0     0   100     0     0 
    90     0     0     0     0     0     0   100     0     0 
    95     0     0     0     0     0     0   100     0     0 
   100     0     0     0     0     0     0   100     0     0 
   105     0     0     0     0     0     0   100     0     0 
   110     0     0     0     0     0     0   100     0     0 
   115     0     0     0     0     0     0   100     0     0 
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Graph theory classifier: 
The average for sodium at 20 g/L is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0    67     0     0     0     0     0 
    75     0     0     0     0     0     0     0     0   100 
    80     0     0     0     0     0     0     0     0   100 
    85     0     0     0     0     0     0     0     0   100 
    90     0     0     0     0     0     0     0     0   100 
    95     0     0     0     0     0     0     0     0   100 
   100     0     0     0     0     0     0     0     0   100 
   105     0     0     0     0     0     0     0     0   100 
   110     0     0     0     0     0     0     0     0   100 
   115     0     0     0     0     0     0     0     0   100 
 
FIS classifier: 
The average for sodium at 20 g/L is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0    33     0     0     0 
    65     0     0     0     0     0    67     0     0     0 
    70     0     0     0     0     0     0   100     0     0 
    75     0     0     0     0     0     0     0     0   100 
    80     0     0     0     0     0     0     0     0   100 
    85     0     0     0     0     0     0     0     0   100 
    90     0     0     0     0     0     0     0     0   100 
    95     0     0     0     0     0     0     0     0   100 
   100     0     0     0     0     0     0     0     0   100 
   105     0     0     0     0     0     0     0     0   100 
   110     0     0     0     0     0     0     0     0   100 
   115     0     0     0     0     0     0     0     0   100 



 118

Graph theory classifier: 
The average for bleach at 1 percent is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0     0     0     0     0     0     0 
    75     0     0     0     0     0    67     0     0     0 
    80     0     0     0     0     0   100     0     0     0 
    85     0     0     0     0     0   100     0     0     0 
    90     0     0     0     0     0   100     0     0     0 
    95     0     0     0     0     0   100     0     0     0 
   100     0     0     0     0     0   100     0     0     0 
   105     0     0     0     0     0   100     0     0     0 
   110     0     0     0     0     0   100     0     0     0 
   115     0     0     0     0     0   100     0     0     0 
 
FIS classifier: 
The average for bleach at 1 % is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0     0     0     0     0     0     0 
    75     0     0     0     0     0    67     0     0     0 
    80     0     0     0     0     0   100     0     0     0 
    85     0     0     0     0     0   100     0     0     0 
    90     0     0     0     0     0   100     0     0     0 
    95     0     0     0     0     0   100     0     0     0 
   100     0     0     0     0     0   100     0     0     0 
   105     0     0     0     0     0   100     0     0     0 
   110     0     0     0     0     0   100     0     0     0 
   115     0     0     0     0     0   100     0     0     0 
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Graph theory classifier: 
The average for bleach at 5 percent is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0     0     0   100     0     0     0 
    75     0     0     0     0     0     0    33     0     0 
    80     0     0     0   100     0     0     0     0     0 
    85     0     0     0   100     0     0     0     0     0 
    90     0     0     0   100     0     0     0     0     0 
    95     0     0     0   100     0     0     0     0     0 
   100     0     0     0   100     0     0     0     0     0 
   105     0     0     0   100     0     0     0     0     0 
   110     0     0     0   100     0     0     0     0     0 
   115     0     0     0   100     0     0     0     0     0 
 
FIS classifier: 
The average for bleach at 5 % is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0    67     0     0     0 
    70     0     0     0     0     0   100     0     0     0 
    75     0     0     0     0     0    67    33     0     0 
    80     0     0     0    67     0     0    33     0     0 
    85     0     0     0   100     0     0     0     0     0 
    90     0     0     0   100     0     0     0     0     0 
    95     0     0     0   100     0     0     0     0     0 
   100     0     0     0   100     0     0     0     0     0 
   105     0     0     0   100     0     0     0     0     0 
   110     0     0     0   100     0     0     0     0     0 
   115     0     0     0   100     0     0     0     0     0 
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Graph theory classifier: 
The average for organic overload at 20 g/L is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0     0     0     0     0     0     0 
    75     0     0    33     0     0     0     0     0     0 
    80     0     0   100     0     0     0     0     0     0 
    85     0     0   100     0     0     0     0     0     0 
    90     0     0   100     0     0     0     0     0     0 
    95     0     0   100     0     0     0     0     0     0 
   100     0     0   100     0     0     0     0     0     0 
   105     0     0   100     0     0     0     0     0     0 
   110     0     0   100     0     0     0     0     0     0 
   115     0     0   100     0     0     0     0     0     0 
 
FIS classifier: 
The average for organic overload at 20 g/L is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0    33     0     0     0     0     0     0 
    75     0     0   100     0     0     0     0     0     0 
    80     0     0   100     0     0     0     0     0     0 
    85     0     0   100     0     0     0     0     0     0 
    90     0     0   100     0     0     0     0     0     0 
    95     0     0   100     0     0     0     0     0     0 
   100     0     0   100     0     0     0     0     0     0 
   105     0     0   100     0     0     0     0     0     0 
   110     0     0   100     0     0     0     0     0     0 
   115     0     0   100     0     0     0     0     0     0 
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Graph theory classifier: 
The average for organic overload at 40 g/L is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0    67     0     0     0     0     0     0 
    75     0   100     0     0     0     0     0     0     0 
    80     0   100     0     0     0     0     0     0     0 
    85     0   100     0     0     0     0     0     0     0 
    90     0   100     0     0     0     0     0     0     0 
    95     0   100     0     0     0     0     0     0     0 
   100     0   100     0     0     0     0     0     0     0 
   105     0   100     0     0     0     0     0     0     0 
   110     0   100     0     0     0     0     0     0     0 
   115     0   100     0     0     0     0     0     0     0 
 
FIS classifier: 
The average for organic overload at 40 g/L is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0    67     0     0     0     0    33     0 
    75     0   100     0     0     0     0     0     0     0 
    80     0   100     0     0     0     0     0     0     0 
    85     0   100     0     0     0     0     0     0     0 
    90     0   100     0     0     0     0     0     0     0 
    95     0   100     0     0     0     0     0     0     0 
   100     0   100     0     0     0     0     0     0     0 
   105     0   100     0     0     0     0     0     0     0 
   110     0   100     0     0     0     0     0     0     0 
   115     0   100     0     0     0     0     0     0     0 
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Graph theory classifier: 
The average for NaOH is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0     0     0     0     0     0     0 
    75     0     0     0     0    67     0     0     0     0 
    80     0     0     0     0   100     0     0     0     0 
    85     0     0     0     0   100     0     0     0     0 
    90     0     0     0     0   100     0     0     0     0 
    95     0     0     0     0   100     0     0     0     0 
   100     0     0     0     0   100     0     0     0     0 
   105     0     0     0     0   100     0     0     0     0 
   110     0     0     0     0   100     0     0     0     0 
   115     0     0     0     0   100     0     0     0     0 
 
FIS classifier: 
The average for NaOH is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0     0     0     0     0     0     0 
    75     0     0     0     0    67     0     0     0     0 
    80     0     0     0     0   100     0     0     0     0 
    85     0     0     0     0   100     0     0     0     0 
    90     0     0     0     0   100     0     0     0     0 
    95     0     0     0     0   100     0     0     0     0 
   100     0     0     0     0   100     0     0     0     0 
   105     0     0     0     0   100     0     0     0     0 
   110     0     0     0     0   100     0     0     0     0 
   115     0     0     0     0   100     0     0     0     0 
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Graph theory classifier: 
The average for HCl is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0     0     0     0     0     0     0 
    75     0     0     0     0     0     0     0    33     0 
    80     0     0     0     0     0     0     0   100     0 
    85     0     0     0     0     0     0     0   100     0 
    90     0     0     0     0     0     0     0   100     0 
    95     0     0     0     0     0     0     0   100     0 
   100     0     0     0     0     0     0     0   100     0 
   105     0     0     0     0     0     0     0   100     0 
   110     0     0     0     0     0     0     0   100     0 
   115     0     0     0     0     0     0     0   100     0 
 
FIS classifier: 
The average for HCl is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0     0     0     0     0     0     0     0     0 
    75     0     0     0     0     0     0     0    33     0 
    80     0     0     0     0     0     0     0   100     0 
    85     0     0     0     0     0     0     0   100     0 
    90     0     0     0     0     0     0     0   100     0 
    95     0     0     0     0     0     0     0   100     0 
   100     0     0     0     0     0     0     0   100     0 
   105     0     0     0     0     0     0     0   100     0 
   110     0     0     0     0     0     0     0   100     0 
   115     0     0     0     0     0     0     0   100     0 
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Graph theory classifier: 
The average for milk is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0     0     0     0     0     0     0     0 
    70     0    33     0     0     0     0     0     0     0 
    75     0   100     0     0     0     0     0     0     0 
    80   100     0     0     0     0     0     0     0     0 
    85   100     0     0     0     0     0     0     0     0 
    90   100     0     0     0     0     0     0     0     0 
    95   100     0     0     0     0     0     0     0     0 
   100   100     0     0     0     0     0     0     0     0 
   105   100     0     0     0     0     0     0     0     0 
   110   100     0     0     0     0     0     0     0     0 
   115   100     0     0     0     0     0     0     0     0 
 
FIS classifier: 
The average for milk is: 
  time    milk  oo40  oo20  blc5  NaOH  blc1  Na10  HCl   Na20 
     0     0     0     0     0     0     0     0     0     0 
     5     0     0     0     0     0     0     0     0     0 
    10     0     0     0     0     0     0     0     0     0 
    15     0     0     0     0     0     0     0     0     0 
    20     0     0     0     0     0     0     0     0     0 
    25     0     0     0     0     0     0     0     0     0 
    30     0     0     0     0     0     0     0     0     0 
    35     0     0     0     0     0     0     0     0     0 
    40     0     0     0     0     0     0     0     0     0 
    45     0     0     0     0     0     0     0     0     0 
    50     0     0     0     0     0     0     0     0     0 
    55     0     0     0     0     0     0     0     0     0 
    60     0     0     0     0     0     0     0     0     0 
    65     0     0    67     0     0     0     0     0     0 
    70     0    33     0     0     0     0     0    67     0 
    75     0   100     0     0     0     0     0     0     0 
    80   100     0     0     0     0     0     0     0     0 
    85   100     0     0     0     0     0     0     0     0 
    90   100     0     0     0     0     0     0     0     0 
    95   100     0     0     0     0     0     0     0     0 
   100   100     0     0     0     0     0     0     0     0 
   105   100     0     0     0     0     0     0     0     0 
   110   100     0     0     0     0     0     0     0     0 
   115   100     0     0     0     0     0     0     0     0 
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