879 research outputs found

    IP Fast Reroute with Remote Loop-Free Alternates: the Unit Link Cost Case

    Get PDF
    Up to not so long ago, Loop-Free Alternates (LFA) was the only viable option for providing fast protection in pure IP and MPLS/LDP networks. Unfortunately, LFA cannot provide protection for all possible failure cases in general. Recently, the IETF has initiated the Remote Loop-Free Alternates (rLFA) technique, as a simple extension to LFA, to boost the fraction of failure cases covered by fast protection. Before further stan- dardization and deployment, however, it is crucial to determine to what extent rLFA can improve the level of protection in a general IP network, as well as to find optimization methods to tweak a network for 100% rLFA coverage. In this paper, we take the first steps towards this goal by solving these problems in the special, but practically relevant, case when each network link is of unit cost. We also provide preliminary numerical evaluations conducted on real IP network topologies, which suggest that rLFA significantly improves the level of protection, and most networks need only 2 − 3 new links to be added to attain 100% failure case coverage

    Optimizing IGP Link Costs for Improving IP-level Resilience

    Get PDF
    Recently, major vendors have introduced new router platforms to the market that support fast IP-level failure pro- tection out of the box. The implementations are based on the IP Fast ReRoute–Loop Free Alternates (LFA) standard. LFA is simple, unobtrusive, and easily deployable. This simplicity, however, comes at a severe price, in that LFA usually cannot protect all possible failure scenarios. In this paper, we give new graph theoretical tools for analyzing LFA failure case coverage and we seek ways for improvement. In particular, we investigate how to optimize IGP link costs to maximize the number of protected failure scenarios, we show that this problem is NP- complete even in a very restricted formulation, and we give exact and approximate algorithms to solve it. Our simulation studies show that a deliberate selection of IGP costs can bring many networks close to complete LFA-based protection

    Automated learning of loop-free alternate paths for fast re-routing

    Get PDF

    Fast emergency paths schema to overcome transient link failures in ospf routing

    Full text link
    A reliable network infrastructure must be able to sustain traffic flows, even when a failure occurs and changes the network topology. During the occurrence of a failure, routing protocols, like OSPF, take from hundreds of milliseconds to various seconds in order to converge. During this convergence period, packets might traverse a longer path or even a loop. An even worse transient behaviour is that packets are dropped even though destinations are reachable. In this context, this paper describes a proactive fast rerouting approach, named Fast Emergency Paths Schema (FEP-S), to overcome problems originating from transient link failures in OSPF routing. Extensive experiments were done using several network topologies with different dimensionality degrees. Results show that the recovery paths, obtained by FEPS, are shorter than those from other rerouting approaches and can improve the network reliability by reducing the packet loss rate during the routing protocols convergence caused by a failure.Comment: 18 page

    High Availability in the Future Internet

    Get PDF
    With the evolution of the Internet, a huge number of real- time applications, like Voice over IP, has started to use IP as primary transmission medium. These services require high availability, which is not amongst the main features of today’s heterogeneous Internet where fail- ures occur frequently. Unfortunately, the primary fast resilience scheme implemented in IP routers, Loop-Free Alternates (LFA), usually does not provide full protection against failures. Consequently, there has been a growing interest in LFA-based network optimization methods, aimed at tuning some aspect of the underlying IP topology to maximize the ratio of failure cases covered by LFA. The main goal of this chapter is to give a comprehensive overview of LFA and survey the related LFA network op- timization methods, pointing out that these optimization tools can turn LFA into an easy-to-deploy yet highly effective IP fast resilience scheme

    Foutbestendige toekomstige internetarchitecturen

    Get PDF

    Otimização de redes IP com mecanismos de reencaminhamento rápido

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaThis dissertation studies strategies for assigning costs to the interfaces of routers inside an IP network to potentiate the use of Loop-Free Alternates (LFA). LFA is a fast reroute mechanism that has been recently deployed in commercial routers. This mechanism allows routers to forward traffic through alternative paths right after the detection of a network failure, avoiding a higher loss of packets during the network’s recovery process. The problem is that this mechanism does not usually provide coverage to all possible failures. Moreover, repair paths may lead to congestion and even forwarding loops. An application was developed that, given a network topology and its supporting traffic matrix, allows to find IGP costs that improve the network performance when employing this mechanism. The implemented strategies try to minimize situations where the use of repair paths leads to micro-loops or link overloads, thus preserving the quality of the service. The computational results show that it is possible to minimize the effects of a failure through an intelligent choice of costs. It is also possible to conclude that, for the majority of cases, increasing the LFA coverage of a network is not the best strategy. Depending on the available resources, it becomes often necessary to sacrifice this coverage to obtain better performance levels.Esta dissertação estuda estratégias para a atribuição de custos IGP às interfaces dos routers de uma rede IP de forma a potenciar o uso de Loop-Free Alternates (LFA), um mecanismo de reencaminhamento rápido que tem sido recentemente implementado em routers comerciais. Este mecanismo permite que os routers reencaminhem tráfego por rotas alternativas assim que uma falha de rede é detetada, evitando uma maior perda de pacotes durante o período de recuperação da rede. O problema é que este mecanismo geralmente não oferece cobertura para todas as falhas possíveis. Além disso, as rotas de restauro podem causar congestão na rede e até mesmo ciclos de encaminhamento. Foi então desenvolvida uma aplicação que, dada uma topologia de rede e respetiva matriz de tráfego, permite determinar custos que melhorem o desempenho da rede quando emprega este mecanismo. As estratégias implementadas procuram minimizar situações em que o uso das rotas de restauro provoca ciclos de encaminhamento ou sobrecarga das ligações, preservando desta forma a qualidade da maior parte do serviço. Os resultados obtidos mostram que é possível minimizar os efeitos de uma falha através de uma escolha inteligente dos custos. Também é possível concluir que, na grande maioria dos casos, aumentar de forma cega a cobertura da rede através de Loop-Free Alternates não é a melhor estratégia. Dependendo dos recursos disponíveis, torna-se muitas vezes necessário sacrificar essa cobertura para obter melhores níveis globais de desempenho

    Special Issue on Survivable and Resilient Communication Networks and Services

    Get PDF
    Communication networks and services play a vital role in our modern lives. This importance is expected to continue to grow in future decades. More and more business, healthcare or government organizations will become increasingly dependent on the communication between their offices and people. Not only does modern society depend on these services in terms of availability but also in terms of proper functioning in all circumstances. These services having stringent requirements with respect to protection of privacy and security. Anonymity (such as e-health) cannot accept, for example, temporary leakage of confidential information by accident whether a result of human error or technical problems. The information and communication network technology itself have also been evolving with tremendous breakthroughs. Users have more and more different types of mobile devices that interconnect them to the Internet. These mobile devices provide incentives to generate novel technology paradigms that enable more flexible provisioning, network virtualization, or improved power efficiency. The robustness and fault tolerance of these novel evolutions is as crucial as ever

    Design and modeling of reliable networks (foreword)

    Get PDF
    corecore