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resumo 
 
 

Esta dissertação estuda estratégias para a atribuição de custos IGP às 
interfaces dos routers de uma rede IP de forma a potenciar o uso de Loop-Free 
Alternates (LFA), um mecanismo de reencaminhamento rápido que tem sido 
recentemente implementado em routers comerciais. Este mecanismo permite 
que os routers reencaminhem tráfego por rotas alternativas assim que uma 
falha de rede é detetada, evitando uma maior perda de pacotes durante o 
período de recuperação da rede. O problema é que este mecanismo 
geralmente não oferece cobertura para todas as falhas possíveis. Além disso, 
as rotas de restauro podem causar congestão na rede e até mesmo ciclos de 
encaminhamento. 
Foi então desenvolvida uma aplicação que, dada uma topologia de rede e 
respetiva matriz de tráfego, permite determinar custos que melhorem o 
desempenho da rede quando emprega este mecanismo. As estratégias 
implementadas procuram minimizar situações em que o uso das rotas de 
restauro provoca ciclos de encaminhamento ou sobrecarga das ligações, 
preservando desta forma a qualidade da maior parte do serviço. 
Os resultados obtidos mostram que é possível minimizar os efeitos de uma 
falha através de uma escolha inteligente dos custos. Também é possível 
concluir que, na grande maioria dos casos, aumentar de forma cega a 
cobertura da rede através de Loop-Free Alternates não é a melhor estratégia. 
Dependendo dos recursos disponíveis, torna-se muitas vezes necessário 
sacrificar essa cobertura para obter melhores níveis globais de desempenho. 
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abstract 
 

This dissertation studies strategies for assigning costs to the interfaces of 
routers inside an IP network to potentiate the use of Loop-Free Alternates 
(LFA). LFA is a fast reroute mechanism that has been recently deployed in 
commercial routers. This mechanism allows routers to forward traffic through 
alternative paths right after the detection of a network failure, avoiding a higher 
loss of packets during the network’s recovery process. The problem is that this 
mechanism does not usually provide coverage to all possible failures. 
Moreover, repair paths may lead to congestion and even forwarding loops. 
An application was developed that, given a network topology and its supporting 
traffic matrix, allows to find IGP costs that improve the network performance 
when employing this mechanism. The implemented strategies try to minimize 
situations where the use of repair paths leads to micro-loops or link overloads, 
thus preserving the quality of the service. 
The computational results show that it is possible to minimize the effects of a 
failure through an intelligent choice of costs. It is also possible to conclude that, 
for the majority of cases, increasing the LFA coverage of a network is not the 
best strategy. Depending on the available resources, it becomes often 
necessary to sacrifice this coverage to obtain better performance levels. 
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Introduction 

 

1 Introduction 

1.1 Motivation 
The Internet has experienced an incredible growth, especially over the last decade, not only 

because the overall increase of broadband speed allowed new applications to emerge but also 
because new technologies and devices such as smartphones and tablets made it easier to access 
the Internet. The number of users and provided services continues to grow every year. Social web 
and mobile technologies are pointed as two major factors for this growth, being also responsible 
for changing the way people use the Internet (Internet World Stats). 

Today’s Internet usage is much harder to predict and control, and user expectations are higher, 
so it has been a challenge for Internet Service Providers (ISP) to deliver a quality service. They’ve 
been particularly concerned with the increasing demand for low-latency applications (Neagle, 
2012). Online gaming, live-streaming media, IP telephony and video communications are some 
examples of applications whose generated traffic has increased over the last years. This kind of 
traffic is very sensitive to delay and packet loss. On the other hand, streaming-video may consume 
a lot of bandwidth, depending on the requested video quality. Capacity is a limited resource, so 
operators already implement some traffic engineering techniques in their networks to reduce 
latency and avoid congestion. But when a failure occurs, common Internet Protocol (IP) networks 
take some time to recover from it, which may cause severe degradation to these services as 
illustrated in Figure 1.1. Thus, there has been an increasing need for fast failure recovery 
mechanisms. 

 

Figure 1.1 - Artifacts caused by packet loss1 

One popular solution is to use Loop-Free Alternates (LFA). This technology is an IP Fast ReRoute 
(IPFRR) mechanism that uses pre-calculated backup next-hops so that traffic may be rerouted and 
avoid a local failure right after its detection (Atlas, et al., 2008). In this way, there is no need to wait 
for the affected routers to rebuild their forwarding tables before resuming service. However, being 
one of the simplest mechanisms, it has some drawbacks. In general, LFA does not guarantee 
protection against all possible failure scenarios and there is a risk of creating traffic loops whenever 

1 http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-next-generation-network-ngn-
video-optimized-transport/white_paper_c11-637031.html 
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an inappropriate backup is used. Repair traffic may also cause some links to become congested, 
degrading traffic which was not directly affected by the failure. Despite these limitations, LFA is the 
only IPFRR specification currently supported by high-end IP routers. Although it ensures at least the 
same availability and performance of a network without IPFRR, providers may still be unsure about 
the actual benefits of deploying LFA. 

Many proposals have been presented to the scientific community focused on improving the LFA 
coverage of a network. The problem is that almost all of them make restrictive assumptions and 
ignore traffic engineering. Although it may be logical that a well-protected network is more likely 
to provide a better service, when considering the current traffic demands, the work on this 
dissertation will show that the overall performance of a network can be improved by actually 
limiting the LFA coverage. 

1.2 Context 

1.2.1 IP Network Failures 
When rating an ISP, the two main factors that are usually considered by clients are the access 

bandwidth and its price. Nevertheless, another important aspect should be the service availability. 
All promises made by ISPs are meaningless if their services don’t work. Generally, providers are 
supposed to guarantee an uptime around 99.9% which means that, in a year, they only expect their 
service to be down no more than a total of 8 hours. 

This downtime is usually associated with the failure of one or more elements in the network. It 
is estimated that 20% of the failures happen during scheduled maintenance, while the other 80% 
are unplanned (Markopoulou, et al., 2008). A router can reboot for some reason or even shutdown 
and a link can be accidently disconnected or even cut. Approximately 70% of these unexpected 
failures affect a single link at a time, while 30% are shared by multiple links. A simultaneous failure 
of links is usually the result of a router failure. A network is never fail-free, but a good redundancy 
plan together with fast reroute mechanisms can help ISPs proactively deal with these unexpected 
failures in a way that their customers will not even notice them. 

1.2.2 Convergence Time 
Large IP-based networks commonly use the Open Shortest Path First (OSPF) routing protocol. 

OSPF is an Interior Gateway Protocol (IGP) that distributes routing information between routers 
within a single routing domain. Being a link-state protocol, each router builds a topology map of 
the network based on the information received by all other routers: the link-state database. Then, 
it runs Dijkstra’s Shortest Path First algorithm (SPF) to determine the shortest path from itself to all 
existing IP networks inside the routing domain and builds its own routing table from which 
forwarding decisions are made. This is a dynamic protocol in the sense that it responds to topology 
changes. When a router detects a failure, it sends to all other routers update packets to announce 
the changed topology. These packets are flooded throughout the network and routers redo the SPF 

 

2 

 



Introduction 

 

calculation to update their routing tables (Moy, 1998). The time required for a network to 
completely recover from a failure is then determined by: 

1. The time taken to detect the failure – this may be of the order of a few milliseconds when 
detected at the physical layer or up to tens of seconds when detected using a Hello 
protocol. 

2. The reaction time of the local router to the failure – after some hold-down delay, the router 
generates and floods new routing updates. It also re-computes its forward information base 
(FIB). 

3. The time taken to transmit the information about the failure to other routers in the network 
– usually between 10ms and 100ms per hop. 

4. The time taken to re-calculate the forwarding tables – the total execution time of the SPF 
algorithm depends on the router’s CPU and the network size, but is typically a few 
milliseconds. 

5. The time taken to load the revised tables into the forwarding hardware – this can take 
several hundreds of milliseconds. 

The service disruption will last until the routers adjacent to the failure have completed steps 1 
and 2, and until all routers whose paths were affected have completed the remaining steps. The 
packet loss during steps 1 and 2 is unavoidable: a router will keep trying to send packets across the 
failure until it is detected. As for any packet loss that happens during the remaining steps, it may 
be caused by micro-loops that are formed due to inconsistencies between forwarding tables. 
Routers build their routing tables locally and the time taken to do so may vary a lot from one router 
to another. The loading time into the forwarding hardware (step 5) is actually the main responsible 
for this variation since it is very dependent on the implementation and number of affected prefixes 
(Shand, et al., 2010). 

We are talking about a convergence time in the order of 100’s of milliseconds or even seconds, 
during which packets are lost and loops may occur leading to artificial and much more undesirable 
congestion. Today’s most sensitive traffic does not tolerate losses that last more than 50ms. Many 
efforts have been made in the recent years aiming to improve the OSPF’s convergence speed 
(Goyal, et al., 2011), but the distributed nature of a network will always impose an intrinsic limit on 
the minimum convergence time that can be achieved. A better approach to solve this problem is to 
reroute traffic while the network converges in the background. 

1.2.3 Fast Reroute Solutions 
One common solution adopted by some operators is to use a Multi-Protocol Label Switching 

(MPLS) infrastructure and to enable MPLS Traffic Engineering (MPLS-TE), which has fast reroute 
(FRR) capabilities. FRR allows traffic affected by a failure to be rerouted through pre-calculated 
alternative paths, reducing the disruption time to tens of milliseconds. The downside of MPLS-TE is 
that it is complex and adds significant overhead to the network.  Many operators were using MPLS-
TE mainly for the FRR functionality (Doyle, 2007). In the recent past, the Internet Engineering Task 
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Force (IETF) proposed a FRR solution that does not require MPLS-TE, being able to work over a pure 
IP infrastructure employing conventional IP routing and forwarding. This solution is called IP Fast 
Reroute and allows operators to improve availability and keep their networks simple. 

Several IPFRR mechanisms have been developed by the IETF. They present different approaches 
and techniques to increase the network protection and to prevent micro-loops in the event of a 
single failure, whether link, node, or shared risk link group (SRLG). There are mechanisms for Fast 
Failure Detection, mechanisms for Repair Paths and mechanisms for Micro-Loop Prevention. 

Repair Paths, in particular, make it possible to recover from a failure immediately after its 
detection, eliminating the most-time consuming part of the IGP recovery process: flooding new 
routing information throughout the network. This is achieved by using pre-calculated backup routes 
that avoid the failed element. Network connectivity is then maintained while routers reinstall their 
forwarding tables in the background. Repair Paths are divided in three categories: 

1. Equal cost multi-paths (ECMP).  These paths exist when there are multiple primary next-
hops for a single destination. Any of these next-hops not traversing the failure can trivially 
be used as repair paths. 

2. Loop-free alternate paths.  These paths exist when a direct neighbor of the router adjacent 
to the failure has a path to the destination that does not traverse the failure. 

3. Multi-hop repair paths.  These paths can be used when there are no loop-free alternate 
paths available. In this case, the goal is to find a router, which is more than one hop away 
from the one adjacent to the failure, from which traffic can be forwarded without traversing 
that failure. 

ECMP and loop-free alternate paths offer the simplest repair paths and would normally be used 
when available.  It is anticipated that around 80% of failures can be repaired using these two 
methods alone. Multi-hop repair paths, on the other hand, are much more complex, both in the 
computations required to determine their existence, and in the mechanisms required to invoke 
them (Shand, et al., 2010). 

1.2.4 Loop-Free Alternates 
A loop-free alternate is a pre-computed backup next-hop intended to quickly replace a primary 

next-hop when it fails, thus providing an alternative path to the destination. LFAs offer a certain 
amount of protection: they can protect against a single link failure, a single node failure, a failure 
of one or more links within a shared risk link group, or a combination of these. They are named 
loop-free because they guarantee that, when an expected failure occurs, forwarding traffic through 
them will not result in a routing loop. 

Consider the following terminology, when describing the LFA mechanism: 

• 𝑆𝑆 – traffic source, the computing router; 

• 𝐷𝐷 – traffic destination router; 
• 𝐸𝐸 – a primary next-hop of 𝑆𝑆 to 𝐷𝐷; 
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• 𝑁𝑁 – a neighbor of 𝑆𝑆 that is not a primary next-hop to 𝐷𝐷; 
• 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋, 𝑌𝑌) – the shortest path distance from router 𝑋𝑋 to router 𝑌𝑌. 

For convenience, both 𝐸𝐸 and 𝑁𝑁 refer to routers that are neighbors of 𝑆𝑆, but keep in mind that a 
neighbor or next-hop of a router 𝑆𝑆 is composed by the adjacent router and the link used by 𝑆𝑆 to 
reach it. When we say that a primary next-hop has failed, it means that either the outgoing link has 
failed or the neighbor’s router itself has failed. 

To better explain the functionality of loop-free alternates, let us consider the basic topology 
example shown in Figure 1.2. 

 
Figure 1.2 - A basic topology example 

The numbers in the links correspond to the costs assigned to the interfaces they are connected 
with. Consider that there is a traffic flow from router 𝑆𝑆 to router 𝐷𝐷. With this configuration, when 
𝑆𝑆 calculates its shortest path to 𝐷𝐷, it will determine the link connected to 𝐸𝐸 as its primary next-hop. 
Without IPFRR, this is the only computed next-hop. With IPFRR, 𝑆𝑆 also determines a backup next-
hop to use in case the primary next-hop fails, which, in this case, is the link connected to 𝑁𝑁. 

Let us now assume that the link connecting 𝑆𝑆 to 𝐸𝐸 fails. The IGP recovery process begins by 𝑆𝑆 
(and 𝐸𝐸) detecting the failure and flooding routing updates. Without IPFRR, the service disruption 
will last until 𝑆𝑆 sets link to 𝑁𝑁 as the new primary next-hop to 𝐷𝐷. With IPFRR, 𝑆𝑆 removes the failed 
primary next-hop 𝐸𝐸 from its table and installs the corresponding pre-computed backup next-hop 𝑁𝑁 
right after acknowledging the failure. In this way, the service is resumed almost immediately using 
the alternative path (no need to wait for the new primary next-hop to be set). After the network 
finally recovers from the failure, 𝑆𝑆 can switch from the backup to the new primary next-hop (which, 
for this example, will be the same neighbor). 

Let us now consider that the cost of link between 𝑁𝑁 and 𝐷𝐷 is increased from 3 to 17 (or any other 
value above). Notice that the cost of the path from 𝑁𝑁 to 𝐷𝐷 via 𝑆𝑆 is also 17 (8+5+4). With this new 
configuration, 𝑁𝑁 is no longer a loop-free alternate for router 𝑆𝑆, because half the traffic that reaches 
𝑁𝑁 destined to 𝐷𝐷 will be forwarded back to 𝑆𝑆. The existence of a suitable loop-free alternate depends 
on the network topology, on the assigned link costs and on the nature of the failure. 

For a neighbor 𝑁𝑁 to be a loop-free alternate for a given destination 𝐷𝐷, it must meet the following 
condition: 
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 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑁𝑁, 𝐷𝐷) < 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑁𝑁, 𝑆𝑆) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑆𝑆, 𝐷𝐷) (1) 

This inequality is named Loop-Free Criterion. 
Next, some common failure scenarios that may limit the use of LFAs are presented. For each 

scenario, I will describe all types of alternates, and show how they are computed and selected. For 
the sake of simplicity, SRLGs will not be addressed, since they were not considered in this 
dissertation. 

A LFA can be link-protecting if it protects against a link failure, and/or node-protecting if it 
protects against a node failure. A router is able to detect when a certain neighbor becomes 
unreachable, but it does not directly know if it was due to a failed link or node. It always takes the 
pessimist assumption that the node has failed but may still use a link-protecting alternate to repair 
the traffic if a node-protecting alternate does not exist. If a LFA that only provides link protection is 
used to cover a node failure, there is a possibility for the repair traffic to experience micro-looping 
as illustrated in the example of Figure 1.3. 

 
Figure 1.3 - Topology with link-protecting alternates causing a micro-loop 

If link between 𝑆𝑆 and 𝐸𝐸 fails, 𝑆𝑆 will use its backup 𝑁𝑁, and traffic will reach the destination 𝐷𝐷 
without any problems. But if router 𝐸𝐸 fails, both 𝑆𝑆 and 𝑁𝑁 will detect a failure and switch to their 
alternates. 𝑆𝑆 will redirect traffic to 𝑁𝑁 while 𝑁𝑁 will redirect it back to S causing a micro-loop. 

Micro-loops can be an issue whenever repair traffic uses two or more consecutive backups that 
do not protect against the failure that has occurred. It is still a temporary problem, since they will 
disappear once routers finish installing the new primary next-hops. But during this period, 
connections containing micro-loops become congested, causing delay and packet loss to the other 
traffic flows that were not affected by the failure. Note that loop traffic will never reach its 
destination and, therefore, when router 𝐸𝐸 fails in the previous example, it would be better if both 
𝑆𝑆 and 𝑁𝑁 did not use their link-protecting alternates. 

Micro-loops can be avoided by using downstream paths. A neighbor 𝑁𝑁 is a downstream path if 
it meets the Downstream Path Criterion: 
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 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑁𝑁, 𝐷𝐷) < 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑆𝑆, 𝐷𝐷) (2) 

Note that a downstream path is more restrictive than a loop-free alternate (i.e., a downstream 
path is a loop-free alternate but a loop-free alternate might not be a downstream path). A 
downstream path requires the router’s neighbor to be closer to the destination than itself. In the 
previous example, 𝑁𝑁 is a downstream alternate of 𝑆𝑆, but 𝑆𝑆 is just a loop-free alternate of 𝑁𝑁. If only 
downstream paths were used to repair traffic, 𝑆𝑆 would be able to use 𝑁𝑁 after the failure of router 
𝐸𝐸, but 𝑁𝑁 could not use 𝑆𝑆 and traffic would be discarded. The micro-loop would not occur at the cost 
of limiting the use of alternates. 

A LFA only protects against a node failure if the repair path does not traverse the failed node. 
This happens when the following condition is verified, with 𝑁𝑁 being the neighbor providing a loop-
free alternate for primary next-hop 𝐸𝐸: 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑁𝑁, 𝐷𝐷) < 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑁𝑁, 𝐸𝐸) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐸𝐸, 𝐷𝐷) (3) 

This is the Criteria for a Node-Protecting Loop-Free Alternate. 
In order for a LFA to protect traffic from a link failure, it is necessary that the repair path does 

not traverse the failed link. This condition is always true when using point-to-point links: different 
neighbors have different links, so all LFA are link-protecting. The only case in which a LFA may not 
be link-protecting is when the router uses a broadcast link (given by a switching network) to reach 
the primary next-hop as illustrated in the case presented in Figure 1.4, because it is possible for an 
alternative path to traverse that broadcast link. 

 

Figure 1.4 - Topology with a broadcast link 

A broadcast link is modelled by the routing protocols as a pseudo-node (𝑃𝑃𝑁𝑁) whose interfaces 
have cost 0. In the topology above, 𝑁𝑁 fulfills condition (1) and (3), thus offering a node-protecting 
LFA. To be link-protecting, the first requirement is that 𝑁𝑁 does not use 𝑃𝑃𝑁𝑁 on its route towards 𝐷𝐷. 
This is because a failure of an interface attached to a broadcast link can mean loss of connectivity 
of the whole segment. 𝑁𝑁 must then be loop-free with respect to the pseudo-node: 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑁𝑁, 𝐷𝐷) < 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑁𝑁, 𝑃𝑃𝑃𝑃) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑃𝑃𝑃𝑃, 𝐷𝐷) (4) 
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This condition is called Loop-Free Link-Protecting Criterion for Broadcast Links. In the previous 
example, 𝑁𝑁 verifies this condition, since it uses the next-hop that is directly connected to 𝐷𝐷. The 
second requirement is that 𝑆𝑆 does not use 𝑃𝑃𝑁𝑁 to reach 𝑁𝑁. There are two neighbors of 𝑆𝑆 regarding 
𝑁𝑁 that we must consider: one using the broadcast link and another using the point-to-point link. 
The latter meets both requirements, thus becoming a link-and-node-protecting LFA. The first 
neighbor is only a node-protecting LFA, since it fails to meet the second requirement. 

Until now, we have been considering a single primary next-hop to the destination. With Equal-
Cost Multi-Path, it is possible for a router to have multiple primary next-hops to reach a certain 
destination. Traffic is then equally distributed and forwarded through all those next-hops. Each one 
of these primary next-hops has its own loop-free alternate computed separately, and this alternate 
may well be one of the other primary next-hops. When an alternate is also a primary next-hop, it is 
guaranteed that repairing traffic through it does not cause micro-loops, regardless the failure. 

In summary, the three types of LFAs are: 

1. Primary Next-hop – when the alternate is also a primary next-hop. The implementations 
prefer using this type of LFAs because the repair traffic will not be routed through 
unfamiliar paths. All primary next-hops are downstream paths. 

2. Downstream Path – a neighbor that verifies condition (2). Unlike a simple LFA, a 
downstream path is guaranteed not to cause micro-loops, but the coverage for this kind of 
alternates may be very poor. All downstream paths are LFAs. 

3. LFA – a neighbor that verifies condition (1). Always depending on the topology, the 
coverage of LFAs can be quite good, but it is possible to occur micro-looping because of 
unprotected failures. 

For each primary next-hop, a router attempts to select at least one loop-free alternate from the 
other neighbors based on the alternate type and provided protection. Note that this selection 
process does not affect the previous calculation of primary next-hops via a standard SPF algorithm. 
According to LFA specification (Atlas, et al., 2008), a computing router 𝑆𝑆 should use the following 
rules: 

1. 𝑆𝑆 should select a node-protecting LFA, if available. If not, it may select a link-protecting LFA. 
2. 𝑆𝑆 should select a link-and-node-protecting LFA over a node-protecting LFA. 
3. If 𝑆𝑆 has multiple primary next-hops, 𝑆𝑆 should select either one of the other primary next-

hops or a node-protecting LFA if available. If no node-protecting LFA is available and no 
other primary next-hop can provide link-protection, then 𝑆𝑆 should select a link-protecting 
LFA. 

4. Implementations should support a mode where other primary next-hops providing at least 
link or node protection are preferred over any non-primary alternates. This mode allows 
the administrator to preserve traffic patterns based on regular ECMP behavior. 

 

8 

 



Introduction 

 

The aim of these rules is to maximize the coverage of failure scenarios, i.e., to maximize the 
percentage of the total number of primary next-hops with assigned backup next-hops for link 
failures and node failures. 

In practice, the link failure coverage in common networks is usually in the order of 70-90%, while 
the node failure coverage is around 50-70%, which are considered very good results taking into 
account the simplicity of this particular IPFRR specification (Gjoka, et al., 2007). To find the 
alternates, routers only need to know their neighbors and calculate some distances. Remember 
that an OSPF router has a complete view of the network and, therefore, is able to run the SPF 
algorithm from the perspective of any other router. LFA can then be implemented with minor 
software upgrades and does not require any additional information from the other routers. This 
easy deployment, and the fairly reasonable failure coverage provided at the cost of almost 
insignificant CPU overhead, has convinced router manufacturers to support LFA in some of their 
latest models (Cisco Systems, 2012). Since then, LFA has gained special interest in the scientific 
community. 

1.3 Previous Research 
Most of the research works regarding loop-free alternates are concerned in maximizing the 

coverage of networks. Exploiting the fact that failure protection is dependent on the network 
topology and link costs, they make use of algorithms and heuristics to prove it is possible for ISPs 
to achieve higher availability with relatively low cost. 

One way of improving the LFA coverage is by adding links to a topology. The LFA Graph Extension 
Problem consists in finding the smallest number of new links to add, so that LFA may provide full 
protection without modifying the original shortest paths (Rétvári, et al., 2011). The problem of this 
approach is that it becomes expensive and even unpractical for most operators to achieve 100% 
coverage: several new links may be required, especially to improve node protection. Still, it is 
possible for most networks to get close to full coverage by adding no more than 2-4 new links. 

A less expensive and more practical approach is to adjust link costs (Rétvári, et al., 2011). This 
option may be adequate when ISPs have no constraints regarding primary paths, but their networks 
should have a considerable high link density (i.e., a high number of links per router). Sparse 
networks, having less neighbors and less changeable costs, will not benefit much from this 
approach. In fact, it was proved that it is impossible to achieve 100% coverage in most common 
real networks using the LFA mechanism alone. Changing link costs is already an old technique used 
by operators to perform traffic engineering (Fortz, et al., 2002). An ISP may have its IGP costs 
carefully chosen to make better use of resources and improve performance. Re-adjusting costs only 
to obtain fast resiliency might not be very appealing if it means less forwarding efficiency during 
more than 99.9% of the time. 

Changing the topology and optimizing costs both have their pros and cons. Even if combining 
these two strategies, it is safe to say that achieving 100% LFA protection is a very improbable 
scenario for real networks, due to the compromises required. Operators employing LFA in their 
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networks will need to deal with this imposed downtime in some other way. If not, it may be possible 
for these unrepairable failure scenarios to degrade service even more than if LFA was not enabled: 
repair traffic can cause traffic loops and/or link overloads. So far, the minimization of the side 
effects of using LFA when a network is not fully covered is an issue that has not been still addressed 
by the research community. 

1.4 Objectives 
This work aims to study the determination of the IGP costs of a given network in order to 

optimize the use of LFA while minimizing the undesirable effects of micro-loops and link overloads. 
This optimization considers not only the network’s resources (i.e., the link bandwidth capacity) but 
also the estimated traffic demands, so that solutions are filtered to meet some operational 
requirements. The goal is to find solutions that protect the traffic as much as possible without 
degrading the overall performance of the network.  

The main difference of this work to previous research works is that failure coverage is considered 
based on a given traffic demand matrix. The focus is to protect service, instead of protecting against 
all possible failures. Also, the failure scenarios are analyzed to make sure that repair traffic does 
not cause micro-loops or overloads. Another important difference is that the optimization does not 
make restrictive assumptions like the use of symmetrical costs and the nonuse of ECMP and 
broadcast LANs. 

The aim is to develop a heuristic, to obtain the optimized IGP costs for a given topology, and an 
application to simulate this problem and apply the heuristic for a given topology and a given traffic 
matrix. The computational results aim to show the effect of considering the traffic matrix in both 
coverage and performance and will highlight that the protection of a network may need to be 
sacrificed to really benefit from employing LFA. 

1.5 Thesis Structure 
The next chapter presents a high level view of our problem. It defines the topology model and 

the performance parameters used to compare solutions. Then, it presents the developed heuristic 
and several different possible strategies of changing costs to find better solutions. 

The third chapter describes the implementation details regarding the application, developed in 
Java, using an object oriented language and with the help of some UML diagrams and other 
illustrations. 

The fourth chapter shows the results of several optimization runs performed using the 
developed application. It presents an evaluation of the implemented heuristic algorithm using 
different configurations and discusses the optimization of Abilene network performance 
considering different test cases. 

Finally, the fifth chapter summarizes the conducted work and points out the most important 
conclusions drawn from this work. 
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2 Problem Definition 

This chapter describes the abstractions used to model the problem and the assumptions made. 
It also defines a solution to the problem and how to compare different solutions. Finally, it discusses 
the heuristic algorithm used to find good solutions and the considered strategies to try to eliminate 
both micro-loops and overloads, and to protect service as well. 

2.1 Model 
A network topology is modeled with a connected, weighted, directed graph. A graph 𝐺𝐺 = (𝑉𝑉, 𝐴𝐴) 

is defined by a set of vertices, 𝑉𝑉, and a set of arcs, 𝐴𝐴. An arc establishes a certain type of relationship 
between two vertices. Figure 2.1 presents an example of a network topology and the corresponding 
graph representation: 

 
Figure 2.1 - A network topology and its graph representation 

The routers and switches are the vertices of the graph, while each link is represented by two 
arcs, one for each link direction. An arc has a source node, a target node and a weight that matches 
the cost assigned to the source’s output interface connected to the corresponding link (the 
upstream). An outgoing arc of a switch has a fixed weight of 0 with respect to the IGP routing 
protocol. 

For traffic engineering, we also need to know the capacity of each link and the matrix of traffic 
demands. A demand is characterized by a source router, a destination router and the bandwidth 
demand value. 

It is assumed that costs are asymmetrical, demands are unidirectional and link capacities are 
bidirectional. For simplicity, any broadcast domain (i.e., any set of switches directly connected 
between them) is represented by a single switch, following the pseudo-node model considered by 
the IP routing protocols. 

A solution to our problem is modeled by a list of applicable IGP costs to the outgoing arcs of 
routers (and only routers, because a switch interface cost is static). Considering the example of 

 

11 

 



Problem Definition 

 

Figure 2.1 and assuming the outgoing arcs of routers R1, R2 and R3 ordered by the corresponding 
link letters, the solution shown in the figure is defined as {2, 1, 4, 3, 7, 5, 6}. 

2.2 Processing a Solution 
As defined before, a solution is described by a set of IGP costs, one cost per router interface. 

The processing of a solution consists on computing all routing tables along with the backup next-
hops, and sending each traffic demand through the right paths for all scenarios of interest. Three 
types of scenario are considered: 

• the default scenario without failures; 

• a single link failure scenario; 
• a single node failure scenario. 

Let us consider the example shown in Figure 2.2 with the service of a 100 Mb/s demand from 
router 𝑆𝑆 to router 𝐷𝐷. It considers a network topology with 4 routers and 5 links with the IGP costs 
assigned to each router interface. 

 

Figure 2.2 - An example of a solution’s default scenario 

Figure 2.2 describes the default scenario for the presented solution. Router 𝑆𝑆 has two primary 
next-hops to router 𝐷𝐷, so traffic is split into two flows of 50 Mb/s (the ECMP rule). The same 
happens in router 𝐴𝐴: 25 Mb/s of the 50 Mb/s arriving from 𝑆𝑆 are forwarded through primary next-
hop 𝐷𝐷 and the other 25Mb/s are forwarded through primary next-hop 𝐵𝐵. Router 𝐵𝐵 has only one 
primary next-hop to the destination, serving a total of 75 Mb/s: the 50 Mb/s received from router 
𝑆𝑆, plus the 25 Mb/s arriving from router 𝐴𝐴. 

Let us now analyze the link failure scenarios. The topology has 5 links, so there are 5 possible 
scenarios, but there is only one scenario in which service is not protected: if the link between 𝐵𝐵 and 
𝐷𝐷 fails, there is no backup next-hop for primary next-hop 𝐷𝐷, since the other two neighbors of 𝐵𝐵, 𝑆𝑆 
and 𝐴𝐴, are not loop-free. This means that 75 Mb/s will not be served. All other routers have two 
primary next-hops in the way to 𝐷𝐷, so when one next-hop fails, they will send traffic through the 
other. 
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As for the node failure scenarios, we only consider the scenario where router 𝐴𝐴 fails and the 
scenario where router 𝐵𝐵 fails. When router 𝐴𝐴 fails, the 100 Mb/s will reach the destination by going 
through router 𝐵𝐵 (note that the backup next-hop 𝐵𝐵 is node-protecting since it fulfils conditions (1) 
and (3)). If router 𝐵𝐵 fails, the demand is still served, despite the backup next-hop 𝐴𝐴 of 𝑆𝑆 not being 
node-protecting. If link between 𝐴𝐴 and 𝐷𝐷 did not exist, router 𝐴𝐴 would have no backup for next-
hop 𝐵𝐵 and traffic would be discarded. If we have considered that routers 𝑆𝑆 and 𝐷𝐷 could fail, service 
protection for those scenarios would no longer depend on the chosen costs, since it would be 
impossible to serve the demand. 

A node can be classified as transit or non-transit. By definition, switches are always transit and 
routers with a single link are always non-transit. Other non-transit nodes are routers which are the 
source and/or the destination of at least one traffic demand. All other routers are assumed to be 
transit. We assume that non-transit routers are secured and do not fail, otherwise, some bandwidth 
demands would stop to be served anyway. Therefore, we assume that node failure scenarios only 
involve a failure of a transit node. 

After completely processing a solution, its data includes all routing tables and the information 
from each possible scenario (e.g., the load on each directed link). 

2.3 Evaluating a Solution 
In order to find optimum link costs, we must be able to compare solutions given some objective 

function. Solutions are evaluated using the following parameters: 

1. LFA protection level 
2. Micro-loop ratio 
3. Overload ratio 
4. Maximum overload 
5. Average overload 
6. Maximum load 
7. Average load 
8. Served bandwidth 
9. Service ratio 

Next subsections describe each of these parameters. 
The LFA protection level is computed from analyzing the routing tables, while the other 

parameters are based on the considered failure scenarios: the micro-loop ratio of the solution is 
calculated based on the micro-loop ratio of each failure scenario, and so on. 

Each scenario has its parameters calculated separately. The performance parameters of the 
default scenario are used only to validate a solution (for instance, an operator may wish to impose 
maximum load limits on their links). Failure scenarios are divided into two groups, one for the link 
failures and another for node failures so that we may define the weight of each failure type in the 
calculation of the solution parameters. This is important because, otherwise, the parameters of a 
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solution could be wrongly influenced by link failures, since a network typically has more links than 
nodes. Also, operators might consider different probabilities for their links and nodes to fail. 

Let us assume 𝑝𝑝𝐿𝐿 as the adopted weight of a link failure and 𝑝𝑝𝑁𝑁 as the adopted weight of a node 
failure. Considering 𝑠̅𝑠𝐿𝐿 and 𝑠̅𝑠𝑁𝑁 the average value of parameter 𝑠𝑠 regarding link failure scenarios and 
node failure scenarios, respectively, the parameter 𝑠𝑠 for the solution is the weighted average 
between those two values: 

 𝑠̅𝑠 =
𝑠̅𝑠𝐿𝐿𝑝𝑝𝐿𝐿 + 𝑠̅𝑠𝑁𝑁𝑝𝑝𝑁𝑁

𝑝𝑝𝐿𝐿 + 𝑝𝑝𝑁𝑁
 (5) 

2.3.1 LFA Protection Level 
The LFA protection level of a solution is a weighted average between the link and node 

protection levels. Both these levels are calculated by checking each primary next-hop and its 
assigned alternate. 

The LFA link protection level 𝜂𝜂𝐿𝐿𝑃𝑃 of a network 𝐺𝐺 is generally calculated using with the following 
expression: 

 
𝜂𝜂𝐿𝐿𝐿𝐿(𝐺𝐺) =

#(𝑠𝑠, 𝑑𝑑) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙-𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝐿𝐿𝐿𝐿
# 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑠𝑠, 𝑑𝑑) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 (6) 

This expression uses the assumption that each source-destination pair has only one primary 
next-hop (thus only one possible backup). In order to consider ECMP, we must adjust the numerator 
and define each pair protection as the proportion of primary next-hops with a link-protecting LFA. 

The calculation of the node protection level, 𝜂𝜂𝑁𝑁𝑁𝑁(𝐺𝐺), is done in a similar way, with the exception 
that, when the destination router 𝑑𝑑 is the next-hop of source router 𝑠𝑠, a link-protecting LFA is 
counted as also being node-protecting. The reason for this assumption is that the node protection 
level would be miscalculated because when the primary next-hop’s router is the same as the 
destination, any existing alternate is never node-protecting. 

2.3.2 Micro-loop Ratio 
The micro-loop ratio of a failure scenario is simply given by a flag, so it is 0% when the scenario 

is free of micro-loops or 100% when at least one micro-loop has occurred. Micro-loops might 
happen during node failure scenarios when using link-protecting alternates. Their presence is 
detected while routing each traffic demand from its source to the destination. Detecting only one 
micro-loop is sufficient because others may be redundant and it is a situation we must always try 
to avoid, regardless the affected link(s) and flow(s). When considering a group of failure scenarios, 
the micro-loop ratio is then the percentage of scenarios which contain at least one micro-loop. 

2.3.3 Overload Ratio 
A link is overloaded in one direction when the total amount of required bandwidth value to be 

routed through it exceeds its capacity. Considering a directed link to be one of the two possible 
directions of a link, the overload ratio of a failure scenario is given by the proportion of directed 
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links which are overloaded. For instance, considering a topology with 6 links, an overload ratio of 
25% means that, for the failure scenario in question, 3 directed links are overloaded (0.25 × 6 ×
2 = 3). We consider that a scenario is overloaded when it is free of micro-loops and its overload 
ratio is not zero. It should be free of micro-loops because micro-loops are usually more harmful 
than overloads, and overloads can also be a consequence of micro-loops. When considering a group 
of failure scenarios, the overload ratio is the percentage of overloaded scenarios. 

2.3.4 Maximum Overload 
The maximum overload of a scenario is the maximum amount of bandwidth in excess from all 

directed links which are overloaded. The maximum overload for a group of scenarios is the average 
of the maximum overloads from the overloaded scenarios of that group. 

2.3.5 Average Overload 
The average overload of a scenario is the average amount of bandwidth in excess on the directed 

links which are overloaded. The average overload for a group of scenarios is the average of the 
average overloads from the overloaded scenarios of that group. 

2.3.6 Maximum Load 
The load (or relative occupancy) of a directed link is the percentage of transported bandwidth 

in relation to the link capacity. For instance, a link with a capacity of 1 Gb/s carrying 750 Mb/s has 
a load of 75%. The maximum load of a scenario is the maximum load of all directed links. 
Considering a group of scenarios, the maximum load is the average of the maximum loads from the 
scenarios which are free of both overloads and micro-loops. If scenarios contain micro-loops or 
overloads, they are excluded from the calculation since this value would be adulterated otherwise. 

2.3.7 Average load 
The average load of a scenario is the average of the loads of all directed links. Considering a 

group of scenarios, the average load becomes the average of the average loads from the scenarios 
which are free of both overloads and micro-loops. 

2.3.8 Served Bandwidth 
The served bandwidth of a scenario is the percentage of requested bandwidth which has 

reached its destination, considering all the demands. The served bandwidth for a group of scenarios 
is the average of the served bandwidths from the scenarios which are free of both overloads and 
micro-loops. 

2.3.9 Service Ratio 
The service ratio of a scenario is the percentage of demands that have been fully served. A 

demand is fully served when 100% of its requested bandwidth has reached the destination. The 
service ratio for a group of scenarios is the average of the service ratios from the scenarios which 
are free of both overloads and micro-loops. 
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2.4 Optimization Strategies 
This section discusses the strategies used to compute IGP costs that increase LFA general 

efficiency, rather than just failure coverage. Finding optimum link costs for load-balancing purposes 
is already known to be an NP-hard problem. The complexity of our optimization problem should be 
equivalent, so we must adopt some heuristic strategy in order to find good solutions. 

The objective function considered for this problem uses a priority system with the following 
parameters: 

• Micro-loop ratio 

• Overload ratio 
• Maximum overload 

• Served bandwidth 

The micro-loop ratio has higher priority than the overload ratio, the overload ratio has higher 
priority than the maximum overload, and the maximum overload has higher priority than the 
served bandwidth. 

Let us represent this objective function by 𝐹𝐹. A value of 𝐹𝐹 is a quadruple (𝐴𝐴, 𝐵𝐵, 𝐶𝐶, 𝐷𝐷), where 𝐴𝐴 is 
the micro-loop ratio, 𝐵𝐵 is the overload ratio, 𝐶𝐶 is the maximum overload and 𝐷𝐷 is the served 
bandwidth. A solution 𝑥𝑥 is ideal if 𝐹𝐹(𝑥𝑥) = (0, 0, 0, 1). Note that for most networks, due to topology 
limitations, ideal solutions are impossible to reach since it would imply a LFA coverage of 100%. A 
solution 𝑥𝑥 is better than a solution 𝑦𝑦 (i.e., 𝐹𝐹(𝑥𝑥) > 𝐹𝐹(𝑦𝑦)) when: 

 𝐹𝐹(𝑥𝑥) > 𝐹𝐹(𝑦𝑦) ⇔ �𝐴𝐴(𝑥𝑥) < 𝐴𝐴(𝑦𝑦)� ∨ ��𝐴𝐴(𝑥𝑥) = 𝐴𝐴(𝑦𝑦)� ∧ �𝐵𝐵(𝑥𝑥) < 𝐵𝐵(𝑦𝑦)��

∨ ��𝐴𝐴(𝑥𝑥) = 𝐴𝐴(𝑦𝑦)� ∧ �𝐵𝐵(𝑥𝑥) = 𝐵𝐵(𝑦𝑦)� ∧ �𝐶𝐶(𝑥𝑥) < 𝐶𝐶(𝑦𝑦)��
∨ ��𝐴𝐴(𝑥𝑥) = 𝐴𝐴(𝑦𝑦)� ∧ �𝐵𝐵(𝑥𝑥) = 𝐵𝐵(𝑦𝑦)� ∧ �𝐶𝐶(𝑥𝑥) = 𝐶𝐶(𝑦𝑦)�
∧ �𝐷𝐷(𝑥𝑥) > 𝐷𝐷(𝑦𝑦)�� 

(7) 

Let us consider a topology with 10 failure scenarios and four solutions 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3 and 𝑆𝑆4 with the 
corresponding objective values: (0.1, 0.2, 300, 0.5); (0.0, 0.3, 500, 0.4); (0.0, 0.3, 250, 0.3) and (0.0, 
0.0, 0, 0.25). Ignoring different failure types and assuming that all scenarios have the same weight 
in the solution performance parameters, 𝑆𝑆1 has exactly one failure scenario containing micro-
loop(s), 𝑆𝑆2 and 𝑆𝑆3 both have three overloaded scenarios, and solution 𝑆𝑆4 fails to protect all demands. 
𝑆𝑆4 is the best of all solutions, while 𝑆𝑆1 is the worst. Despite protecting less bandwidth, assigning the 
costs of 𝑆𝑆4 ensures that repair traffic does not cause any micro-loop or congestion. We use the 
maximum overload criteria for the possibility of not being able to eliminate all overloads. 𝑆𝑆3 is 
slightly better than 𝑆𝑆2 because it is able to reduce the average maximum overload of the overloaded 
scenarios, which represents less packet loss. 

Note that the objective function 𝐹𝐹 ignores maximum and average load statistics. Having 
concerns involving load-balance during convergence time does not make much sense. It is not 
critical if links become heavy loaded due to repair traffic (as long as they are not overloaded), 
because this situation is still temporary. However, it may be important to optimize the use of 
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resources during the rest of the time, when no failures affect the network. Some load-balance 
constraints should then be applied regarding the default scenario. These constraints might even 
favor a more efficient use of LFA (it could free capacity to be used later on by repair traffic), but 
they can also have a negative effect in the optimization process. Less flexible constraints may 
narrow the set of possible solutions, reducing the chance of finding good solutions. Therefore, the 
adopted strategy is to simply use an acceptable threshold for the default scenario maximum load. 
Solutions above this threshold are considered invalid. 

The most naive approach to solve this optimization problem is to explore all possible 
combinations of costs in a full search manner. This ensures that we find the optimal solutions, but 
it might take too long to do so. For instance, consider a simple topology with just 6 point-to-point 
links connecting 4 routers, 1 demand and 8 failure scenarios (besides the default scenario). Using 
cost values between 1 and 10 inclusive, there is a total of 106×2 = 1000000000000 possible cost 
combinations. Imagine that half of those combinations (5 × 1011) are rejected because of the load-
balance constraint. If we consider that a solution takes 1 microsecond to be processed (i.e., to build 
all routing tables) and 0.1 microseconds to process each one of the nine possible scenarios (the 
default scenario plus the eight failure scenarios), the total execution time of this algorithm would 
be approximately 5 × 1011 × (1𝜇𝜇𝜇𝜇 + 0.1𝜇𝜇𝜇𝜇) + 5 × 1011 × (1𝜇𝜇𝜇𝜇 + 9 × 0.1𝜇𝜇𝜇𝜇), which is about 17 
days an 9 hours. Real topologies are typically larger, and OSPF costs can be configured with any 
integer value between 1 and 65535. Therefore, a more elaborate method is required to find good 
solutions in a reasonable amount of time. 

A better approach would be to start with one solution and gradually fix the detected issues by 
changing some IGP cost values. First, we try to eliminate existing micro-loops; then, we try to 
eliminate overloads; and, finally, we focus on increasing service protection. Each cost change is 
expected to generate a better solution. The solutions generated by the change of cost values 
depend a lot from the starting solution and may still be far from ideal. So, the process should be 
repeated several times with different initial solutions. The heuristic algorithm is described as 
follows: 

 

Algorithm 1: HEURISTIC(Topology, min_cost, max_cost, max_load, time_to_leave) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

𝐹𝐹best ← -∞ 
𝑆𝑆best ← { } 
while StopOptimization() = FALSE do 
      𝑥𝑥 ← CreateRandomValidSolution(min_cost, max_cost, max_load) 
      (𝐹𝐹’, 𝑆𝑆’) ← CreateBetterSolutions(𝑥𝑥, min_cost, max_cost, max_load, time_to_leave) 
      if 𝐹𝐹’ > 𝐹𝐹best then 
 𝐹𝐹best ← 𝐹𝐹’ 
 𝑆𝑆best ← 𝑆𝑆’ 
      else if 𝐹𝐹’ = 𝐹𝐹best then 
 𝑆𝑆best ← 𝑆𝑆best ∪ 𝑆𝑆’ 
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11 
12 

      end if 
end while 

  

𝐹𝐹 is the objective function, 𝑆𝑆 represents a group of solutions and 𝑥𝑥 is a single solution. All 
solutions in 𝑆𝑆 are equivalent in terms of 𝐹𝐹. The algorithm logic is very simple: for each iteration, a 
newly random solution 𝑥𝑥 is created; 𝑥𝑥 is then used as the starting point to find better solutions; the 
returned solutions are finally compared with the current best. The optimization cycle can be 
stopped by simply establishing an iteration limit. 

The method CreateRandomValidSolution(min_cost, max_cost, max_load) creates a solution 
with random costs between min_cost and max_cost. The default scenario maximum load must not 
exceed max_load. This generation of random costs is a simple straightforward process which is 
repeated if the costs fail the maximum load requirement. The real optimization is done in the next 
step. 

The method CreateBetterSolutions(𝑥𝑥, min_cost, max_cost, max_load, time_to_leave) tries to 
create better solutions from the initial solution 𝑥𝑥. It involves identifying the issues and trying to fix 
them by applying minimum changes in the costs of a solution. One change equals one new child 
solution when the change is within the cost limits. Child solutions may or may not become parents 
themselves, forming a tree-like search structure. A leaf is not further optimized if one of three 
following situations occur: 

• The solution is invalid or worse than its parent; 
• The solution is better, but has no fixable issues; 

• The solution is equivalent to its parent but the time_to_leave was reached – each leaf has 
a counter to avoid entering in some sort of vicious cycle when descendants are constantly 
unable to improve their parents. 

The method terminates when no more leaves are created. The best solutions are returned, along 
with the objective value. For example, imagine this method has originated the tree of solutions 
shown in Figure 2.3. 
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Figure 2.3 - A simple optimization flow 

The comparison result between each child solution and its parent is given by symbols + (better), 
- (worse) and = (equivalent). The optimization used a time_to_leave of 2 solutions. The solutions 
represented by leaves h and m have expired because they have reached the time_to_leave value. 
Solution k has reset the time_to_leave counter. Solutions d, f and n were ignored because they 
were worse than their father solutions. Solutions b, e, j and l are optimized leaves with no issues 
left to fix, but they may be different between each other. The method should then return only the 
best of these four solutions b, e, j and l. 

The time_to_leave factor can be very important, not only to control the depth of the search 
tree, but also to adapt the optimization algorithm to the size of the topology. The effect of one 
minimum cost change has more impact in smaller topologies. A very large topology may need 
several cost changes to reach solutions with different objective parameters, which leads us with 
three alternatives: increase the magnitude of each change, use a larger time_to_leave value, or a 
combination of these two. The latter can be performed by changing costs exponentially at first, and 
linearly after, once the child does not exist, is invalid or worse than its parent. 

Figure 2.4 summarizes the entire optimization process. 
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Figure 2.4 - Optimization process 

The next subsections discuss the possible techniques to try fixing the three main issues: micro-
loops, overloads and unrepaired traffic. 

2.4.1 Eliminating Micro-loops 
A micro-loop caused by repair flows is the result of using at least two link-protecting LFAs to 

forward traffic affected by a node failure. To eliminate a micro-loop, we should disable at least one 
of the responsible LFAs. A backup next-hop 𝑁𝑁 can be disabled by using costs that force the failure 
of the Loop-Free Criterion (1), which means that the following condition must be verified: 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑁𝑁, 𝐷𝐷) ≥ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑁𝑁, 𝑆𝑆) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑆𝑆, 𝐷𝐷) (8) 

We can simply increase the distance between 𝑁𝑁 and 𝐷𝐷, decrease the distance between 𝑁𝑁 and 𝑆𝑆 
and/or decrease the distance between 𝑆𝑆 and 𝐷𝐷. There are several different ways of changing the 
shortest path distance between two routers. Decreasing a distance can be achieved by simply 
lowering some primary next-hop’s outgoing link cost in the path to the destination. To make sure 
we increase a shortest distance, we should add the same value to the cost of each interface of the 
source router. However, there are some problems with these two approaches. It is important that 
we try minimum cost changes at a time in order to explore the closest surrounding solutions. We 
will consider four rules when performing cost changes to generate a child solution: 

1. The change must involve only one router. 
2. The change should affect the minimum number of interfaces possible. 
3. The change should be the minimum possible. 
4. The change should try to preserve the primary paths. 

Decreasing the shortest path distance by lowering some primary next-hop’s outgoing link cost 
would not be in accordance with rule 4 (because of the ECMP), while changing a distance by 
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modifying the costs of all the interfaces of the source router may not be in accordance with rule 2. 
Note that using this last method to meet condition (8) would be counter-productive: changing 
distance between 𝑁𝑁 and 𝐷𝐷 would also change distance between 𝑁𝑁 and 𝑆𝑆 in the same exact way, 
and vice-versa, thus maintaining the loop-free status of neighbor 𝑁𝑁. In order to consider all the 
above rules, we have decided to increase/decrease the distance between two routers in a minimum 
of Δ units by incrementing/decrementing the costs of the source outgoing links, corresponding to 
the primary next-hops to the destination, in exactly Δ units. Note that this technique may still not 
do the trick, because primary paths can still change and there is also the possibility that some 
changes may not be allowed due to cost limits. For these reasons, it might be a good idea to 
individually explore all three possibilities for disabling a LFA: 

• Increase the distance between 𝑁𝑁 and 𝐷𝐷. 
• Decrease the distance between 𝑁𝑁 and 𝑆𝑆. 
• Decrease the distance between 𝑆𝑆 and 𝐷𝐷. 

Which of the LFAs causing a micro-loop should we try to disable? To answer this question, 
consider the case illustrated in Figure 2.5. 

 
Figure 2.5 - A micro-loop affecting three links 

Router 𝑆𝑆 has two neighbors offering a link-protecting LFA for primary next-hop 𝐸𝐸, 𝑁𝑁1 and 𝑁𝑁2. 
Using the distance as tiebreaker, 𝑆𝑆 will select 𝑁𝑁1 to be the backup of 𝐸𝐸 (𝑆𝑆→ 𝑁𝑁1→ 𝑁𝑁2→𝐸𝐸→𝐷𝐷 = 4 and 
𝑆𝑆→ 𝑁𝑁2→𝐸𝐸→𝐷𝐷 = 5). 𝑆𝑆 is the link-protecting LFA for primary next-hop 𝐸𝐸 of router 𝑁𝑁2 in the way to 𝐷𝐷. 
Consider we have a demand with source in 𝑆𝑆 and destination in 𝐷𝐷 and that router 𝐸𝐸 fails. A micro-
loop will then be formed between three links. To remove this micro-loop, we should eliminate 
backup 𝑁𝑁1 in 𝑆𝑆 and/or backup 𝑆𝑆 in 𝑁𝑁2. Disabling the first repair seems the best option. Assuming 
primary paths are kept, it would release all the unnecessary repair traffic from links 𝑆𝑆→ 𝑁𝑁1 and 𝑁𝑁1→ 
𝑁𝑁2. Consider that we change the cost of link 𝑁𝑁1→ 𝑁𝑁2 to 2. 𝑁𝑁1 is no longer a LFA of 𝑆𝑆, but a micro-
loop will still occur because now 𝑁𝑁2 becomes the LFA of 𝑆𝑆. If we remove the other backup instead, 
by changing cost of 𝑆𝑆→𝐸𝐸 to 4, the primary path will change but the micro-loop will be fixed with a 
single cost change. 
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It is always a valid option to test solutions that try to disable each of the backup next-hops 
causing the micro-loop, but disabling the first responsible LFA will generally produce better results, 
since it helps to avoid overloads as well. 

Next, we present the algorithm to try disabling a backup next-hop 𝑛𝑛 of a router 𝑠𝑠 to a destination 
router 𝑑𝑑. This algorithm uses function 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎, 𝑏𝑏, 𝑢𝑢), which schedules the execution of 
a child solution where the costs of the interfaces of all primary next-hops of router 𝑎𝑎 to router 𝑏𝑏 
are adjusted in 𝑢𝑢 units with respect to the current solution. 

 

Algorithm 2: DISABLE_BACKUP(𝑛𝑛, 𝑠𝑠, 𝑑𝑑) 

 𝑢𝑢 ← 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑠𝑠) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠, 𝑑𝑑) − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑑𝑑) // 𝑛𝑛 is a LFA, thus 𝑢𝑢 is positive 
if 𝑛𝑛 ≠ 𝑑𝑑 then 
 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛, 𝑑𝑑, +𝑢𝑢) 
end if 
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛, 𝑠𝑠, −𝑢𝑢)  
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠, 𝑑𝑑, −𝑢𝑢)  

  

2.4.2 Eliminating Overloads 
As discussed before, a load-balanced network is generally less prone to experience overloading 

caused by repair traffic. So, increasing the costs of heavy loaded links and decreasing those of lightly 
loaded links may seem a good strategy at first. The problem is that it lacks precision and can create 
some optimization pitfalls, like not being able to solve an overload or going back to having micro-
loops. Increasing the cost of an overloaded link can actually help deflect other traffic and preserve 
the repairs, but it may also cause other links to become overloaded and a vicious cycle can be easily 
started. 

Remember that a network loses resources after a failure. Depending on the failure extent and 
the average load, it may become impossible for the network to serve all the traffic. Considering a 
valid solution, overloads only happen because of repair traffic, so the only way to really ensure they 
disappear is to eliminate those repairs. By identifying the backup next-hop that is originally 
responsible for a certain repair flow inside an overloaded link, we can remove that LFA the same 
way we do for the micro-loop case. 

Once again, which of the LFAs contributing for the overload should we eliminate? Note that an 
overloaded link may be transporting different repair flows with different bandwidths originated by 
LFAs that may not be the same. In this case, it might be better to try removing all the different 
backups, one at a time, since it is very hard to predict which LFA removal would generate a better 
solution. Therefore, Algorithm 2 should be executed to try disabling each one of the backup next-
hops that are originally responsible for the different repair flows inside an overloaded link. 
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2.4.3 Fixing Service 
In the previous subsections, we have been disabling backup next-hops to eliminate both micro-

loops and overloads. Having less repair paths, the served bandwidth is expected to drop. Fixing 
service will take the opposite road of previous fixes. To protect traffic affected by a failure we should 
provide an adequate LFA. For each failure scenario, we should identify the failed primary next-hops 
of interest and change costs to meet at least condition (1). It may be possible to find child solutions 
that are able to improve global service without causing micro-loops or overloads. A promising way 
of fixing service while avoiding micro-loops is to consider the occurred failure when enabling the 
LFAs: for a primary next-hop that failed to protect traffic from a link failure, we should perform cost 
changes that try enabling a simple LFA of each of the other neighbors; for a primary next-hop that 
failed to protect traffic from a node failure, we should be more conservative and perform cost 
changes that try enabling a downstream path LFA of each of the other neighbors. The following 
algorithms are then used to schedule child solutions that try enabling a backup to a primary next-
hop 𝑒𝑒 of a router 𝑠𝑠 to destination router 𝑑𝑑. Algorithm 3 performs cost changes to enable loop-free 
alternates, while Algorithm 4 tries to enable downstream paths. 

 

Algorithm 3: ENABLE_LFA(𝑒𝑒, 𝑠𝑠, 𝑑𝑑) 

 for 𝑐𝑐 ∈ 𝑠𝑠. 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 do 
 𝑛𝑛 ← 𝑐𝑐. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
 if 𝑛𝑛 = 𝑒𝑒. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑐𝑐. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑒𝑒. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 then 
  // neighbor is the primary next-hop, skip it 
  continue 
 end if 
 𝑢𝑢 ← 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑑𝑑) − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑠𝑠) − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠, 𝑑𝑑) + 1 // 𝑒𝑒 has no LFAs, thus 𝑢𝑢 is positive 
 if 𝑛𝑛 ≠ 𝑑𝑑 then 
  𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛, 𝑑𝑑, −𝑢𝑢) 
 end if 
 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛, 𝑠𝑠, +𝑢𝑢) 
 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠, 𝑑𝑑, +𝑢𝑢) 
end for 

  

 

 

Algorithm 4: ENABLE_DOWNSTREAM (𝑒𝑒, 𝑠𝑠, 𝑑𝑑) 

1 
2 
3 
4 

for 𝑐𝑐 ∈ 𝑠𝑠. 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 do 
 𝑛𝑛 ← 𝑐𝑐. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
 if 𝑛𝑛 = 𝑒𝑒. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑐𝑐. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑒𝑒. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 then 
  // neighbor is the primary next-hop, skip it 
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  continue 
 end if 
 𝑢𝑢 ← 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑑𝑑) − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠, 𝑑𝑑) + 1 // 𝑒𝑒 has no LFAs, thus 𝑢𝑢 is positive 
 if 𝑛𝑛 ≠ 𝑑𝑑 then 
  𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛, 𝑑𝑑, −𝑢𝑢) 
 end if 
 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠, 𝑑𝑑, +𝑢𝑢) 
end for 

  

When trying to enable a downstream path from a neighbor 𝑁𝑁 of a router 𝑆𝑆, decreasing distance 
between 𝑁𝑁 and the destination router 𝐷𝐷 will never be allowed using the previously described 
implementation for method changeDistance. This happens because 𝑁𝑁 uses 𝑆𝑆 to reach 𝐷𝐷 (𝑁𝑁 is not 
loop-free). Without changing primary paths, the distance between 𝑁𝑁 and 𝐷𝐷 will always be higher 
than the distance between 𝑆𝑆 and 𝐷𝐷. The change would then result in a negative cost for an outgoing 
link from 𝑁𝑁 to 𝑆𝑆, being rejected. Therefore, lines 8-10 of Algorithm 4 can be removed. 
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3 Implementation Details 

This chapter describes the most relevant decisions regarding the implementation of the 
application. The application was developed using Java Development Kit 1.7 in Netbeans IDE. Java 
language was used mainly because of its high portability and multithreading facilities. Appendix A 
shows the main windows of the developed application.  

During the first implementation, the goal was to minimize execution time. Depending on the 
complexity of the problem, even the best heuristics may need considerable time to find good 
solutions and, therefore, it is important to use efficient algorithmic implementations. Usually, the 
execution time of an algorithm can be improved by increasing the amount of space required to run 
it, either using temporary variables or more complex data structures. Some preliminary tests have 
shown that the first version of the application had some serious memory issues, causing the 
application to crash most of the times. Increasing Java’s maximum heap size did not solve the 
problem and a major review of the implementation was required in order to use memory more 
efficiently, regardless of any additional execution overhead. Some of the techniques used to avoid 
memory exhaustion are also described along this chapter. 

3.1 Overview 
The following diagram presents the interactions between some of the main entities of the 

application: 

 

Figure 3.1 - Simplified interaction diagram of the application 

The Main class is responsible for setting up the optimization environment. It loads the 
Configuration, creates a Topology and initializes an Optimizer. The Optimizer entity reads the 
configuration and initializes a group of fixers and three supporting entities: 
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• The CostsFactory entity, responsible for creating Costs; 
• The Results entity, which applies the objective function to submitted solutions, containing 

a record of the best costs and best objective function value found during optimization; 
• The Report entity, which is used to register the effect of each cost change performed by 

each Fixer, so that we may analyze the efficiency of fixers. 

Several iterations are then initialized and executed. Each Iteration begins by requesting a 
random set of costs from the CostsFactory to obtain a valid Solution. Then, the failure scenarios are 
processed to see if the solution contains any fixable issue (i.e., micro-loops, overloads or 
unprotected traffic). If so, the Fixer that is responsible for that issue will try to fix the solution by 
generating new costs. 

3.2 Configuration 
User can setup the configuration before running the optimization. Table 3.1 shows a description 

of all configurable parameters of the application. 

Table 3.1 - Configuration properties 
Property Description 
Minimum Cost The minimum IGP cost. 
Maximum Cost The maximum IGP cost. 
Default Cost The IGP cost to use for the default solution. 
Default Capacity The default link capacity. A value above zero overrides all predefined link 

capacities. 
Demand Percentage Applies a percentage to all demand values. It is used to increase (>100) 

or decrease (<100) the amount of traffic. 
Demand Delta Adds a randomly chosen percentage within range [-delta, +delta] to each 

demand value. It is used to change traffic patterns. The Demand Delta is 
applied after applying the Demand Percentage. 

Transit Incidence Forces a minimum percentage of transit nodes. This configuration is used 
to change the number of node failure scenarios. 

Weight Link The weight of link failure scenarios in the solution parameters. When the 
weight is 0, link failures are not considered. 

Weight Node The weight of node failure scenarios in the solution parameters. When 
the weight is 0, node failures are not considered. 

Load Tolerance Sets the maximum load exceeding tolerance for default scenarios (in 
percentage). 

Time To Leave The maximum number of child solutions unable to improve the parent 
solution. 

Maximum Solutions Maximum number of solutions to test. When set, it is used as stopping 
criteria for the optimization. 
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Maximum Iterations Maximum number of iterations to run. When set, it is used as stopping 
criteria for the optimization. 

Maximum Changes Maximum number of individual cost changes to perform. When set, it is 
used as stopping criteria for the optimization. 

Execution Time Maximum execution time. When set, it is used as stopping criteria for the 
optimization. 

Memorize Costs When set, the CostsFactory will memorize generated Costs, so it does not 
repeat sets of costs that have already been considered. 

Criteria Determines the objective function to use in the optimization. 
Micro-loop Fixer Determines the micro-loop fixer to use in the optimization. 
Overload Fixer Determines the overload fixer to use in the optimization. 
Service Fixer Determines the service fixer to use in the optimization. 

3.3 Topology Representation 
A network topology is modeled with a graph where each node is a vertex of the graph and each 

link is divided in two arcs with opposite directions. There are two standard ways of implementing 
graphs: using an adjacency matrix or a collection of adjacency lists. The choice between these two 
representations should consider the graph properties and the required functionalities. Let us 
consider a graph with 𝑛𝑛 vertices and 𝑚𝑚 arcs. An adjacency matrix is a two-dimensional 𝑛𝑛×𝑛𝑛 array 
where the entry in row 𝑖𝑖 and column 𝑗𝑗 is either 1, if the arc from vertex 𝑖𝑖 to vertex 𝑗𝑗 exists, or 0, 
otherwise. It requires 𝑛𝑛2 of space, being preferable to use when the graph is dense (𝑚𝑚 close to 𝑛𝑛2). 
Though providing fast lookups to check if two vertices are directly connected, it is slow when the 
algorithm requires iterating over arcs (it must check all vertices). Also, it is complex to use when 
multiple arcs are required between two vertices (when there are multiple links between the same 
routers), since it would need a list of arcs in the corresponding matrix entry. The adjacency list 
representation associates to each vertex a list containing all arcs originated on that vertex. The 
space usage is then proportional to the number of arcs, being adequate for sparse graphs. Real 
networks are usually sparse, so we might save some memory using adjacency lists. Adjacency lists 
may also speed up the execution of Dijkstra’s algorithm due to fast iteration between arcs. Adding 
to the fact that it is trivial to support link redundancy, the adjacency list representation is by far the 
best algorithmic choice for this problem. Figure 3.2 shows an adjacency list representation for the 
topology from Figure 2.1. Note that to make it possible to have multiple links, each adjacency must 
refer to a link. 
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Figure 3.2 - An example of an adjacency list representation 

Figure 3.3 shows a class diagram describing the topology implementation used in the 
application. 

 

Figure 3.3 - Simplified class diagram of a Topology 

The Topology class provides access to all elements within the network and to traffic demands as 
well. Since costs are asymmetrical, we create for each Link two directed links with opposite 
directions. Each DirectedLink has a source node, a target node and a defaultCost. It also contains a 
reference to the Link to know its capacity, enforcing the bidirectional assumption of links capacity. 
Note that an adjacency list is a member of a Node and contains the directed links that arrive to that 
node. Though it is common to use outgoing adjacencies, our Dijkstra’s implementation uses the 
incoming arcs for reasons that will be discussed later in this chapter. There are two subtypes of 
Node: a router and a common layer 2 switch. When a Topology is built, each Router searches for its 
neighbors and saves them in a list. This list is used for the backup next-hops calculation. A Switch 
needs to have some kind of switching table, which maps each router connected to it with the 
corresponding outgoing interface. This table is very simple to calculate because switches represent 
pseudo-nodes. It is used both for neighbor discovery and to forward demands. Unlike routing 
tables, the switch tables are the same for all solutions, so they only need to be calculated once 
during the Topology initialization. 
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Each Optimizer is client of a single Topology instance. This is a central class, so all accesses should 
be optimized. Simple arrays are used to store the topology elements. Nodes, links, directed links 
and demands are all stored in four separate arrays. Each index of the array matches the 
corresponding element id, so that accesses are done the fastest way possible. An element id for a 
certain element type must then be a unique integer value inside interval [0, 𝑁𝑁[, where 𝑁𝑁 is the total 
number of existing elements of that type. While the assignment of ids for links and demands can 
be arbitrary, for nodes and directed links it should follow specific rules. For example, for a topology 
with 8 routers, 2 switches and 2 demands, one from router A to router B and another from router 
C to router D, Figure 3.4 shows how the array of Nodes will look like for this topology (remember 
from section 2.2 that any router which is the source/destination of at least one demand is a non-
transit router). 

 

Figure 3.4 - A topology and the corresponding node array 

Non-transit routers are inserted at the beginning of the array, transit routers at the middle and 
switches at the end. This configuration determines the element id assigned for each node. This 
configuration was adopted in order to provide efficient access with minimal memory usage 
according to the following implementation requirements: 

• the Dijkstra’s algorithm needs to access all nodes and needs to be able to identify each one 
with a non-negative integer value (the element id); 

• to build the routing tables, all routers must be accessible; 
• the transit nodes must be identifiable to process the corresponding failure scenarios. 

Consequently, the Topology class provides three methods to access different ranges of the 
array: 

• getNode – accepts values between 0 and 𝑁𝑁-1, where 𝑁𝑁 is the total number of nodes; 

• getRouter – accepts values between 0 and 𝑅𝑅-1, where 𝑅𝑅 is the total number of routers; 
• getTransitNode – accepts values between 0 and 𝑇𝑇, where 𝑇𝑇 is the total number of transit 

nodes. The element id is then given by adding 𝑇𝑇 to the value. 
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As for the array of directed links, the outgoing links of switches are saved at the end of the array. 
This configuration allows using the element id to access directed links whose cost is changeable. 

3.4 Costs Factory 
A solution associates a topology to one set of costs. These costs ‘override’ the default costs 

assigned to directed links (except when the cost is zero) and can be easily implemented using a 
simple array. Consider that an array 𝑐𝑐 represents the costs of a solution, the cost assigned to the 
interface modeled by the directed link with id 𝑖𝑖 is given by 𝑐𝑐[𝑖𝑖]. 

All costs providing the best solutions are kept in the Results object and should remain in memory 
during the optimization process, so that they can be saved once the optimization ends. This 
suggests an efficient implementation of the Costs object in terms of required space in memory. 
Another option would be to keep only the first Costs found (or the last), but two solutions may have 
the same objective function value and be considerably different. Early implementations used the 
‘int’ data type for a cost value, simply because it is common practice. However, given the 
subsequent memory issues, this decision was revised. A Java primitive integer uses 4 bytes by 
default, while an OSPF interface cost is a positive value up to 65535, which only requires 2 bytes, 
the same space required for a ‘char’ type. Therefore, the data type representing each cost was 
changed from ‘int’ to ‘char’ allowing to save almost half the memory for each array of costs. Another 
memory optimization was to reduce the length of these arrays by not considering the costs of 
switches interfaces. This is why the outgoing links of switches are saved at the end of the 
DirectedLink array. These tweaks introduce some minor execution overhead: 

• when Dijkstra’s algorithm requests the cost of a directed link, it must check the default cost 
first, to see if that interface is attached to a router or a switch; 

• when a Fixer requests a single cost change, the operation will involve one explicit downcast 
from ‘int’ to ‘char’ before saving the new cost, which must be checked at runtime. 

There is another possible way to reduce the memory used by an instance of the Results object. 
It consists in ignoring equivalent costs (e.g., [1,1,1,1], [2,2,2,2], [3,3,3,3],…), but this would require 
even more overhead to check the equivalence, which would degrade the optimization speed, 
specially for topologies with many links. 

To create new Costs, we use a CostsFactory object which provides three methods: 

• getDefaultCosts – returns a new Costs instance whose array is filled with the configured 
default cost. 

• getRandomCosts – returns a new Costs instance whose array is filled with random values 
between the configured minimum cost and the configured maximum cost. 

• getChangedCosts – returns a new Costs instance whose array is a modified copy of the array 
of a given Costs object. 
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Costs are randomly generated at the start of each iteration and changes are performed based 
on the resulting solution to generate new costs. These changes consist on adding, multiplying, 
subtracting or dividing a single cost value (or a small subset when altering shortest distances) by a 
specific amount. Any generated set of cost values must always follow the lower and upper cost 
boundaries and, for that reason, some changes may not be allowed. When this happens, the 
getChangedCosts method returns NULL and the requested solution is not created. 

The Configuration provides an option to memorize the Costs that are generated, so that the 
CostsFactory does not return cost combinations that have already been considered. User can then 
choose between two different CostsFactory implementations. The base implementation has no 
memory of previously generated Costs, so it may repeat cost combinations. The second 
implementation, the BoundedCostsFactory, is a specialized CostsFactory containing a memory of 
the generated costs, so that it only returns sets of costs that have not been used before. This 
memory is implemented using a hash table mechanism to allow efficient lookups. To ensure that 
the application is safe, we should control the size of this hash table. A massive number of sets of 
costs may be requested during optimization and saving all of them could easily exhaust the 
machine’s available memory. Whenever a new Costs object is generated, the factory checks if 
current memory usage exceeds 60% of maximum memory and, if so, it clears its memory (i.e., it 
removes all Costs saved in the hash table).  By having optimized the space required by a Costs 
object, we are able to save more costs, thus improving the efficiency of the BoundedCostsFactory. 

3.5 Routing Table Construction 
An OSPF router uses the information from the link-state database to build its routing table. Using 

Dijkstra’s algorithm, it constructs a tree of shortest paths to all nodes in the network with itself as 
the root, being able to calculate the distance and primary next-hops for each destination router. 
This algorithm extends the classic Single-Source Shortest Path variation to allow Equal Cost Multi-
Paths. The following box describes an efficient version of this algorithm. It uses a graph 𝐺𝐺 and a 
source vertex 𝑠𝑠 as inputs. 

 

Algorithm 5: SOURCE_DIJKSTRA(𝐺𝐺, 𝑠𝑠) 

 for 𝑣𝑣 ∈ 𝐺𝐺.vertices() do 
 dist[𝑣𝑣] ← +∞ 
 pred[𝑣𝑣] ← { } 
 visited[𝑣𝑣] ← FALSE 
end for 
dist[𝑠𝑠] ← 0 
𝑄𝑄.insert(𝑠𝑠, dist[𝑠𝑠]) 
while not 𝑄𝑄.isEmpty() 
 𝑢𝑢 ← 𝑄𝑄.deleteMin() 
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 visited[𝑢𝑢] ← TRUE 
 for 𝑎𝑎 ∈ 𝐺𝐺.outgoingArcs(𝑢𝑢) do 
  𝑣𝑣 ← 𝐺𝐺.target(𝑎𝑎) 
  if visited[𝑣𝑣] = FALSE then 
   𝑑𝑑 ← dist[𝑢𝑢] + 𝐺𝐺.weight(𝑎𝑎) 
   if 𝑑𝑑 < dist[𝑣𝑣] then 
    dist[𝑣𝑣] ← 𝑑𝑑 
    pred[𝑣𝑣] ← {𝑎𝑎} 
    if 𝑄𝑄.contains(𝑣𝑣) then 
     𝑄𝑄.decreaseKey(𝑣𝑣, 𝑑𝑑) 
    else 
     𝑄𝑄.insert(𝑣𝑣, 𝑑𝑑) 
    end if 
   else if 𝑑𝑑 = dist[𝑣𝑣] then 
    pred[𝑣𝑣] ← pred[𝑣𝑣] ∪ {𝑎𝑎} 
   end if 
  end if 
 end for 
end while 

  

In Algorithm 5 (and the next Algorithm 6), 𝐺𝐺 is a graph with the following methods: 

• vertices() – returns all vertices in 𝐺𝐺; 

• outgoingArcs(𝑣𝑣) – returns all outgoing arcs of vertex 𝑣𝑣; 
• incomingArcs (𝑣𝑣) – returns all incoming arcs of vertex 𝑣𝑣; 

• source(𝑎𝑎) – returns the source of arc 𝑎𝑎; 
• target(𝑎𝑎) – returns the target of arc 𝑎𝑎. 

In Algorithm 5 (and the next Algorithm 6), 𝑄𝑄 is a priority queue used to store the vertices whose 
distances from source are yet to be defined. It supports the following operations: 

• isEmpty() – returns true if the queue is empty, false otherwise; 

• insert(𝑣𝑣, 𝑘𝑘) – inserts value 𝑣𝑣 in the queue with priority 𝑘𝑘; 
• deleteMin() – removes and returns the value with minimum priority from the queue; 

• decreaseKey(𝑣𝑣, 𝑘𝑘) - decreases the current priority of value 𝑣𝑣 in the queue to 𝑘𝑘; 
• contains(𝑣𝑣) – returns true if the queue contains value 𝑣𝑣, false otherwise. 

When the algorithm terminates, dist[𝑖𝑖] contains the total cost of the shortest path(s) from 𝑠𝑠 to 
vertex 𝑖𝑖 and pred[𝑖𝑖] is a list of incoming arcs of vertex 𝑖𝑖 in the shortest path(s) from 𝑠𝑠 to 𝑖𝑖. Note that 
each predecessor is a list of arcs, while for most of Dijkstra’s algorithms found on literature it 
represents one single vertex. The reason for using lists is to enable ECMP, while the use of arcs 
instead of vertices is to consider possible link redundancy. 
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After running this algorithm, extracting the primary next-hops will need further processing of 
predecessors. Using the Single-Target variation of Dijkstra’s will make this task much easier because 
this algorithm uses successors instead of predecessors. The following box contains the pseudo-code 
to calculate the shortest paths from all vertices to a single target vertex 𝑡𝑡 within a graph 𝐺𝐺. 

 

Algorithm 6: TARGET_DIJKSTRA(𝐺𝐺, 𝑡𝑡) 

 for 𝑣𝑣 ∈ 𝐺𝐺.vertices() do 
 dist[𝑣𝑣] ← +∞ 
 succ[𝑣𝑣] ← { } 
 visited[𝑣𝑣] ← FALSE 
end for 
dist[𝑡𝑡] ← 0 
𝑄𝑄.insert(𝑡𝑡, dist[𝑡𝑡]) 
while not 𝑄𝑄.isEmpty() 
 𝑣𝑣 ← 𝑄𝑄.deleteMin() 
 visited[𝑣𝑣] ← TRUE 
 for 𝑎𝑎 ∈ 𝐺𝐺.incomingArcs(𝑣𝑣) do 
  𝑢𝑢 ← 𝐺𝐺.source(𝑎𝑎) 
  if visited[𝑢𝑢] = FALSE then 
   𝑑𝑑 ← dist[𝑣𝑣] + 𝐺𝐺.weight(𝑎𝑎) 
   if 𝑑𝑑 < dist[𝑢𝑢] then 
    dist[𝑢𝑢] ← 𝑑𝑑 
    succ[𝑢𝑢] ← {𝑎𝑎} 
    if 𝑄𝑄.contains(𝑢𝑢) then 
     𝑄𝑄.decreaseKey(𝑢𝑢, 𝑑𝑑) 
    else 
     𝑄𝑄.insert(𝑢𝑢, 𝑑𝑑) 
    end if 
   else if 𝑑𝑑 = dist[𝑢𝑢] then 
    succ[𝑢𝑢] ← succ[𝑢𝑢] ∪ {𝑎𝑎} 
   end if 
  end if 
 end for 
end while 

  

The difference from previous algorithm is that the processing is done backwards from the 
destination to all possible sources, so it must use incoming arcs. When the algorithm terminates, 
dist[𝑖𝑖] now contains the total cost of the shortest path(s) from vertex 𝑖𝑖 to target 𝑡𝑡, while succ[𝑖𝑖] is 
the list of outgoing arcs of vertex 𝑖𝑖 in the shortest path(s) to 𝑡𝑡.  
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Computing the primary next-hops is now almost trivial: if the vertex of a successor represents a 
router, then we found a primary next-hop; if the vertex represents a switch, each successor of that 
switch represents a new primary next-hop. 

The only downside of using this variation instead of Single-Source’s is that it encourages to build 
destination based routing tables instead of common source-based ones. Each routing table is then 
associated to a destination router and each line will refer to a source router. But this is just a minor 
representation issue and has no impact whatsoever in the optimization problem. In fact, it may 
even speed up the execution of a solution: to route each demand we only need the destination’s 
routing table, so less accesses are required. 

Dijkstra’s algorithm is executed a lot of times during a single optimization and, so, the efficiency 
of this algorithm is crucial in order to find good solutions faster. The running time of Dijkstra’s 
algorithm depends on its priority queue implementation. There is a vast area of research around 
priority queues and several different implementations. An efficient priority queue is typically 
backed up by a heap data structure. The most popular heap realization is the Binary Heap. Although 
a Fibonacci Heap offers better theoretical performance, it is a very complex data structure and 
proven to be more efficient only for denser graphs. A Binary Heap can be easily implemented using 
an array. Java already provides a simple binary heap with class java.util.PriorityQueue. 
Nevertheless, this heap does not support the decreaseKey() operation; to perform this operation, 
a client must remove the value and insert it again with the new priority. For this reason, a more 
efficient priority queue was implemented. The most important aspects of this implementation are: 

• The heap structure is a primitive array of integers using 1-based indexing. Using 1-based 
instead of 0-based indexing makes the formulas for parent node, left-child and right-child 
simpler, so their calculation should be faster. This heap will contain the values ordered by 
their corresponding key. If the heap is not empty, the value at index 1 of the array always 
has the minimum key. 

• A supporting array is used to store the indexes of values in the heap. In this way, a value 
can be found in constant time which will improve the performance of the decreaseKey() 
operation. 

This priority queue has the limitations of being bounded, not allowing duplicates and accepting 
only integer values within interval [0, 𝑁𝑁[, where 𝑁𝑁 is the heap capacity. The queue will then be used 
to store the element id of routers and switches. 

Figure 3.5 shows the class diagram for the module responsible for the construction of all routing 
tables. 
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Figure 3.5 - Class diagram for the OSPF module 

Each Solution initializes one OSPF class providing all the information needed for calculating the 
LFA coverage and to properly route traffic demands for each scenario. This initialization 
comprehends the following steps: 

1. Execute Target Dijkstra’s algorithm for all nodes 
2. For all destination routers: 

a. For all source routers different from the destination: 
i. Find all primary next-hops from current source router to the destination 

ii. Compute the backup next-hop for each primary next-hop found in previous 
step 

3.6 Loop-Free Alternates 
Consider a solution 𝑥𝑥, a source router 𝑠𝑠, a destination router 𝑑𝑑 and the list of primary next-hops 

𝑝𝑝. The algorithm used to compute the backup next-hop for a primary next-hop 𝑒𝑒 ∈ 𝑝𝑝 is as follows: 

 

Algorithm 7: ComputeLFA(𝑥𝑥, 𝑠𝑠, 𝑑𝑑, 𝑒𝑒, 𝑝𝑝) 

1 
2 
3 
4 
5 
6 
7 

for each NextHop 𝑛𝑛 ∈ 𝑠𝑠.neighbors() do 
 if  𝑛𝑛 = 𝑒𝑒 then continue 
 if 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑑𝑑) ≥ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑠𝑠) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠, 𝑑𝑑) then continue  // not loop-free 
 temp ← BackupNextHop.init(𝑛𝑛) 
 if 𝑛𝑛 ∈ 𝑝𝑝 then 
  temp.type ← PRIMARY 
 else if 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑑𝑑) < 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠, 𝑑𝑑) then 
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8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

  temp.type ← DOWNSTREAM 
 else 
  temp.type ← LOOP_FREE 
 end if 
 if 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑑𝑑) < 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑒𝑒) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑒𝑒, 𝑑𝑑) then 
  temp.nodeProtect ← TRUE 
 else 
  temp.nodeProtect ← FALSE 
 end if 
 𝑙𝑙 ← 𝑒𝑒.outgoingLink() 
 if 𝑛𝑛.outgoingLink() = 𝑙𝑙 then 
  temp.linkProtect ← FALSE 
 else if 𝑙𝑙.isBroadcast() and 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑑𝑑) < 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑙𝑙. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑙𝑙. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑑𝑑) 
  temp.linkProtect ← FALSE 
 end if 
 temp.distance ← 𝑥𝑥.getCost(𝑛𝑛.outgoingLink()) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛, 𝑑𝑑) 
 if Compare(temp, e.backup) > 0 then 
  e.backup ← temp 
 end if 
end for 

  

This algorithm follows the selection procedure described in the LFAs specification. The main 
difference is that it does not maintain a list of equivalent backup next-hops. Since only one backup 
next-hop is used at a time, I consider that a backup next-hop is always better or worse than another. 
The function Compare(𝑏𝑏1, 𝑏𝑏2), defined in Algorithm 8, returns a positive value if backup next-hop 
𝑏𝑏1 is better than backup next-hop 𝑏𝑏2: 

 

Algorithm 8: Compare(𝑏𝑏1, 𝑏𝑏2) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

if 𝑏𝑏2 = NULL return 1 
if 𝑏𝑏1.type = PRIMARY and (𝑏𝑏1.linkProtect or 𝑏𝑏1.nodeProtect) and 𝑏𝑏2.type ≠ PRIMARY 
 return 1 
if 𝑏𝑏2.type = PRIMARY and (𝑏𝑏2.linkProtect or 𝑏𝑏2.nodeProtect) and 𝑏𝑏1.type ≠ PRIMARY 
 return -1 
if 𝑏𝑏1.nodeProtect and not 𝑏𝑏2.nodeProtect return 1 
if 𝑏𝑏2.nodeProtect and not 𝑏𝑏1.nodeProtect return -1 
if not 𝑏𝑏1.linkProtect and 𝑏𝑏2.linkProtect return -1 
if not 𝑏𝑏2.linkProtect and 𝑏𝑏1.linkProtect return 1 
if 𝑏𝑏1.type > 𝑏𝑏2.type return 1 
if 𝑏𝑏1.type < 𝑏𝑏2.type return -1 
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12 
13 
14 

if 𝑏𝑏1.distance < 𝑏𝑏2.distance return 1 
if 𝑏𝑏1.distance > 𝑏𝑏2.distance return -1 
return 𝑏𝑏2.neighbor.id – 𝑏𝑏1.neighbor.id 

  

The LFA specification suggests the use of tiebreakers like IP addresses. So, I used the neighbor 
id as the final tiebreaker. This id is determined when routers find their neighbors during the 
initialization of a Topology. There is some micro-optimization in Algorithm 8: the order of terms, in 
the ‘if’ conditions, is chosen so that the second term is not evaluated most of the times. 

3.7 Scenarios 
After computing all routing tables, and for each scenario, the algorithm processes the amount 

of demand routed through each directed link from the demand’s source router to the demand’s 
destination router. The processing of each scenario must keep some sort of record of the flows that 
traverse each directed link. This record is not only used to calculate the scenario parameters, but 
also to identify any possible issues and provide all the needed information so that the assigned Fixer 
is able to apply accurate cost changes. Figure 3.6 shows the class diagram for the scenarios module. 

 

Figure 3.6 - Class diagram for the scenarios module 

In order to save the load at each directed link, an array of doubles is used whose indexes 
correspond to the directed link id. To save the total served bandwidth of each demand, an array of 
doubles is used whose indexes correspond to the demand id. A FailureScenario needs three extra 
structures: 

 

37 

 



Implementation Details 

 

• a list of the first repair (one for each failure scenario) responsible for causing a micro-loop 
– this list is used to try to eliminate any existing micro-loop; 

• an array of lists to save the repairs that traverse each directed link – this list is used to try 
to eliminate any existing overload; 

• A list of repairs that were not performed due to the absence of a backup next-hop – this 
list is used to try to improve service. 

A Repair object is created whenever a primary next-hop is down while routing a traffic demand. 
It contains information about the failed primary next-hop and the demand target so that we have 
all the needed tools to try disabling the respective backup next-hop (if it caused a micro-loop or 
overload) or enabling a LFA through other neighbors if the primary next-hop has no backup. 

The processing of a default scenario is trivial: for each demand, we get the corresponding 
destination-based routing table and start traversing the directed links towards the destination, 
adding bandwidth to the load array in the process. The served bandwidth array is merely a 
formality, since the demands are always served. 

The processing of a failure scenario is much more complex, because we must deal with failed 
primary next-hops, save the repair data and be aware of possible micro-loops. To help routing 
demands, an auxiliary structure named Request was created. A demand request is attended by each 
router in the way towards the destination. A Request has access to all the requests that were 
previously processed, so that micro-loops can be detected. It must also have a queue to save all 
Repair objects created along the way. 

3.8 Iteration 
Figure 3.7 presents the flowchart of one iteration of the optimization process. 

 
Figure 3.7 - Iteration flow 

The Iteration comprehends lines 4-11 of the heuristic algorithm presented in Algorithm 1 with 
an important modification regarding the time at which the resulting solutions are evaluated. The 
process ‘Submit Solution’ is responsible for applying the objective function to the submitted 
solution. This process will then save the solution Costs whenever the objective function value is 

 

38 

 



Implementation Details 

 

better or equal than current best value saved in the Results. Instead of submitting the best solutions 
found at the end of the iteration, this process is called whenever the Fixer is able to find a solution 
that is at least as good as its parent regarding the current issue that is being fixed. A solution that 
is worse than its parent is not submitted, since it is guaranteed to have a worse objective function 
value than current best in the Results. Note that this variation of the algorithm executes a lot more 
comparisons which introduces some execution overhead, but it allows saving memory, since 
Algorithm 1 requires a record to save all the best solutions found by fixers.  

Figure 3.8 shows the sub-process Optimize Solution in more detail. 

 
Figure 3.8 - Optimize Solution sub-process 
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The first step of this process is to determine if current solution has some fixable issue (i.e., any 
micro-loops, overloads or unprotected traffic). If not, the solution is optimized and the process 
terminates, otherwise, it chooses an adequate Fixer to deal with that specific issue. The Fixer 
performs several cost changes to generate child solutions that may or may not be better than their 
parent. When the Fixer produces a solution that solves current issue, this solution is checked for 
any remaining issues and another Fixer can be assigned. 

Each time a new cost change is performed by a Fixer, it must report the outcome of that specific 
change to the Report object. The Report object maps each change to several counters, one for each 
outcome. There are eight possible outcomes considered: 

• NONEXISTENT – if the CostsFactory was unable to produce the requested change, due to 
cost limits violation; 

• INVALID – if the change created a solution whose maximum load for the default scenario is 
invalid; 

• FAIL – if the change created a solution which aggravates current issue; 
• SUCCESS – if the change created a solution that solves current issue; 

• CONTINUE – if the change created a solution that is closer to solve current issue; 
• EXPIRED – if the change created a solution presenting the same issue and the time to leave 

is zero; 
• RETRY – if the change created a solution presenting the same issue and the time to leave is 

above zero. 

3.9 Multi-threading 
One of the reasons to use Java is because of its multi-threading facilities. The application was 

designed to take advantage of multi-core machines by using multiple threads to perform the 
optimization. Each thread will be responsible for executing one iteration. To save resources and 
reduce thread creation overhead, the Optimizer uses a thread pool implemented with the help of 
Java’s Executor Service. The number of threads in this pool is fixed and configurable at the start of 
each optimization process. Figure 3.9 illustrates the multi-threading feature using a simple 
interaction diagram. 
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Figure 3.9 - Multi-threaded iterations 

The Optimizer, Executor and Iteration are passive entities, while each Thread inside the thread 
pool (in dark gray) is the active entity that executes an Iteration. The Executor is responsible for 
managing the assignment of iterations to threads. Each time the Optimizer submits an Iteration to 
the Executor, it will wait until there is an idle thread in the pool, ready to run the submitted 
iteration. Several iterations are then executed concurrently and, therefore, it must be assured 
thread-safety for all objects shared by iterations to avoid any race-conditions and data corruption. 
The shared objects are: the Topology, the CostsFactory, the Results and the Report. The Topology 
and the base implementation of CostsFactory are immutable objects (i.e., their state cannot be 
modified once they are created), which means they are inherently thread-safe. The 
BoundedCostsFactory must synchronize the access to the hash table containing the memorized 
Costs. As for the Results and the Report objects, thread-safety is achieved using simple mutual 
exclusion over shared resources. 
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4 Results and Discussion 

This chapter presents several optimization results obtained with the use of the developed 
application. These results focus on a single topology and use different traffic matrices to generate 
different test scenarios and prove the efficiency of the developed heuristic algorithm. The 
optimization progress is also analyzed to confirm that high levels of LFA protection may lead to 
undesirable situations, especially when networks are more congested. The well-known Abilene 
network was used, so that results may be compared with previous research studies. Figure 4.1 
shows the topology of Abilene network and Table 4.1 presents its topology characteristics. 

 
Figure 4.1 - Abilene network topology 

Table 4.1 summarizes the topology characteristics of Abilene network. 

Table 4.1 - Topology characteristics of Abilene network 
Number of nodes 12 
Number of links 15 
Minimum node degree 1 
Maximum node degree 4 
Average node degree 2.50 
Link density 22.73% 

 
This is a relatively sparse network which suggests that it may be impossible to obtain 100% LFA 

coverage, regardless the chosen IGP costs. In fact, node ATLAM5 has only one neighbor and, thus, 
there will always be at least one primary next-hop without a backup. 

We have considered that all links of the topology have a capacity of 100 Gbps. The base demand 
values used in test scenarios can be found in Appendix B and were taken from SNDlib library 
(http://sndlib.zib.de), which provides several examples of traffic demands for real networks, 
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intended to be used by researchers in their optimization problems. There are demand values for all 
source-destination pairs in a total of 132 demands. In order to enable some node failure scenarios, 
the four routers involving less traffic bandwidth were set to be transit routers and the traffic 
demands from/to these routers were discarded. As a result, throughout this chapter, we only 
consider 56 demands and the possible failure of routers KSCYng, SNVAng, IPLSng and DNVRng 
(highlighted in Figure 4.1 with the gray color). 

We have defined two types of demand values, type 1 and type 2. Type 1 uses the original values 
from SNDlib, while type 2 adds a randomly chosen percentage within range [-50%, +50%] to each 
demand value of type 1. We may then conclude about the effects of using two different sets of 
demand values in both the optimization process and final results. 

Before executing any long run to obtain optimized costs for this topology, several short runs 
were executed in order to determine the configuration values that best improve the overall quality 
of the optimization process. The following section presents the results of these preliminary tests. 
The application was executed in Java Virtual Machine (JVM) with 1.4GB of memory, running in 
Windows 7 Operating System of 64 bits and using an Intel Core i7 CPU at 2.3 GHz. The optimization 
of all test scenarios was conducted using 8 threads. 

4.1 Preliminary tests 
It may be hard to predict the behavior and outcome of a fixing strategy. Depending on the 

topology and the configuration used, some fixers may be more efficient than others. As discussed 
before, the more number of iterations we run, the better, because the final solutions of an iteration 
depend on the starting random solution. Therefore, we do not wish to spend too much time in a 
single iteration, especially if it is not finding better solutions. Fast iterations, on the other hand, 
might have the problem of returning worse solutions, since they explore a smaller number of cost 
changes. There should be some kind of tradeoff between the success rate of a fixer and the runtime 
it imposes to the iteration. Several tests were run to measure the efficiency of each fixer using 
different configuration values. All these preliminary tests consider the demand values type 1 
(Appendix B). 

4.1.1 Micro-loop Fixers 
Only one micro-loop fixer named M1 was implemented, so we just need to find the 

configurations that provide better results. This fixer tries to disable the first backup next-hop 
responsible for a micro-loop using Algorithm 2 of chapter 2. To disable the backup next-hop, it 
creates a maximum of three child solutions with the following cost changes: 

• M1_SD_DEC – change corresponding to a decrease of the distance between the source 
router and the destination router; 

• M1_NS_DEC – change corresponding to a decrease of the distance between the neighbor 
providing the backup next-hop and the source router; 

 

44 

 



Results and Discussion 

 

• M1_ND_INC – change corresponding to an increase of the distance between the neighbor 
providing the backup next-hop and the destination router. 

To speed up the tests for this fixer and increase the probability for micro-loops to happen, the 
following configurations were used: 

• Demand Percentage: 1% 

• Load tolerance: 100% 
• Link failures weight: 0 

• Node failures weight: 1 

By using very low bandwidth demands and a load tolerance of 100%, a solution will always be 
valid, since the maximum load for the default scenario will be lower than 100%. In this way, the 
fixer does not waste time with invalid solutions. Moreover, micro-loops can only occur during node 
failures, so we only consider node failure scenarios by setting the link failures weight to 0. 

Any overload and service fixers are disabled during the optimization process of these runs. A 
solution is then considered to be optimized when the micro-loop ratio is zero. 

Using the above setup, we are able to get more cost changes in shorter runtimes. 
We have considered 4 different test cases to evaluate fixer M1: M1 Test 1, M1 Test 2, M1 Test 

3 and M1 Test 4. M1 Test 1 uses all possible costs and a time to leave of 0 child solutions and it 
serves mainly as the basis for comparison to other tests. M1 Test 2 uses costs between 1 and 10, 
while M1 Test 3 uses costs between 1 and 100. The objective of these tests is to determine the 
effect of using different cost intervals in the optimization. M1 Test 4 uses the same interval of costs 
as M1 Test 3, but it considers a time to leave of 1 child solution. This test will tell us if there is any 
advantage on optimizing child solutions that were unable to improve the micro-loop ratio. All four 
test cases use a stopping criteria of 1000000 cost changes, which means each optimization run will 
end once the outcome of change number 1000000 is reported. 

4.1.1.1 M1 Test 1: Costs between 1 and 65535; time to leave 0 

Table 4.2 presents some statistics regarding the optimization process for this test case. These 
statistics tell us if the algorithm spends too much time in a single iteration. Figure 4.2 shows a bar 
chart presenting the amount of different reported outcomes for each individual change, while 
Figure 4.3 shows a pie chart with the global percentages of those results. This will be the approach 
used to present the results for all preliminary tests. 

 Remember that a fixer reports the outcome of each processed change. For this particular fixer, 
the SUCCESS report means that the change was able to eliminate all micro-loops, while CONTINUE 
means that the change resulted in a solution with a lower micro-loop ratio than the parent solution. 
The RETRY and EXPIRE reports mean that the change resulted in a solution with equal micro-loop 
ratio while the FAIL report means a solution with higher micro-loop ratio than its parent. INVALID 
means that the change originated an invalid solution and the NONEXISTENT report means that the 
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change requested nonexistent costs. We do not expect to get any INVALID results while testing this 
fixer with current configuration. Using a time to leave of 0, the RETRY report does not occur as well.    

Table 4.2 - M1 Test 1: optimization statistics 
Total execution time 0:01:47 
Total number of iterations 685004 
Total number of tested solutions 1139259 
Iterations per second 6401,9 
Solutions per iteration 1,7 

 

 
Figure 4.2 - M1 Test 1: change report 

 

 
Figure 4.3 - M1 Test 1: change results 

 
The chart from Figure 4.3 shows that only 0.3% of the applied changes resulted on a worse 

solution against the 39.7% (36.2% SUCCESS + 3.5% CONTINUE) of changes that were able to reduce 
the number of scenarios with micro-loop. This confirms that the adopted strategy is efficient to 
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eliminate micro-loops. Analyzing the effectiveness of each individual change in Figure 4.2, we can 
conclude that increasing the distance between the backup next-hop and the destination 
(M1_ND_INC) is more likely to disable it. The other changes were not so effective mostly because 
of nonexistent costs. 54.6% of the changes requested costs that were outside limits. It can be 
difficult to change shortest distances between two nodes by simply changing one interface cost, 
especially when considering large topologies and smaller cost intervals. Allowing all possible costs, 
despite generally augmenting shortest distances, should make it less probable for a cost change not 
to be allowed. Let us now see the effect of using smaller cost intervals in the number of nonexistent 
cost changes. 

4.1.1.2 M1 Test 2: Costs between 1 and 10; time to leave 0 
Table 4.3 - M1 Test 2: optimization statistics 

Total execution time 0:01:50 
Total number of iterations 693814 
Total number of tested solutions 1083395 
Iterations per second 6307,4 
Solutions per iteration 1,6 

 

 
Figure 4.4 - M1 Test 2: change report 
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Figure 4.5 - M1 Test 2: change results 

This cost interval is not adequate for this topology. By limiting the number of usable costs, we 
give less space for the required cost changes. Figure 4.5 shows that using a costs between 1 and 10 
has significantly increased the number of nonexistent changes to 61% and decreased the overall 
success rate to 32%+3.1%=35.1%.  

The conclusions from the analysis of Figure 4.4 are similar to the previous test.  

4.1.1.3 M1 Test 3: Costs between 1 and 100; time to leave 0 
Table 4.4 - M1 Test 3: optimization statistics 

Total execution time 0:01:44 
Total number of iterations 687597 
Total number of tested solutions 1134233 
Iterations per second 6611,5 
Solutions per iteration 1,6 

 

 
Figure 4.6 - M1 Test 3: change report 
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Figure 4.7 - M1 Test 3: change results 

Figure 4.7 shows that using a range of costs between 1 and 100 produces far better results than 
Test 2 and only slightly worse results than Test 1. For this reason, this will be the configuration used 
in the final optimizations, since it uses more friendly values for IGP costs. 

The conclusions from the analysis of Figure 4.6 are similar to previous conclusions for Test 1. 
Note that 5.2% of the requested changes have expired, i.e., they resulted on solutions that 

neither improved nor worsened the micro-loop ratio. If we use a time to leave of at least 1 child 
solution, the fixer might be able to eliminate the backups causing micro-loops on these solutions. 

4.1.1.4 M1 Test 4: Costs between 1 and 100; time to leave 1 
Table 4.5 - M1 Test 4: optimization statistics 

Total execution time 0:01:37 
Total number of iterations 511856 
Total number of tested solutions 955355 
Iterations per second 5276,9 
Solutions per iteration 1,9 
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Figure 4.8 - M1 Test 4:change report 

 

 
Figure 4.9 - M1 Test 4: change results 

Using a time to leave of 1 degrades the overall performance of the fixer. Figure 4.9 shows that 
we have only slightly decreased the number of EXPIRED reports in comparison with previous test. 
This does not compensate reducing the number of iterations per second (by having more solutions 
per iteration). The time to leave factor has less importance when the fixer applies pre-calculated 
changes. 

4.1.2 Overload Fixers 
Four overload fixers were implemented (O1, O2, O3 and O4), each one using its own strategy to 

decrease the overload ratio. Fixer O1 applies the same methodology as fixer M1 in order to disable 
each backup next-hop that was responsible for a repair flow traversing each overloaded link. The 
other fixers use a naive approach to try to eliminate overloads. Fixer O2 performs minimum changes 
to solutions by incrementing the cost of an overloaded uplink by one unit. Fixer O3 performs deeper 
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changes by doubling the current cost of an overloaded uplink. Fixer O4 combines deeper changes 
with smaller ones: it keeps doubling the current cost of an overloaded uplink at first, but once the 
change is nonexistent or resulted in an invalid or worse child solution, it begins to increment the 
uplink cost by an amount corresponding to one tenth of the maximum allowed cost value. We have 
tested fixers O2, O3 and O4 mainly to prove that Fixer O1 uses a better strategy for eliminating 
overloads.  

In order to test the overload fixers, we need test instances where there are overloaded cases 
and, therefore, we must use a more congested network by considering more demands and/or 
higher demand values. There is the possibility of generating invalid solutions (i.e., solutions whose 
maximum load of the default scenario exceeds the defined value). In order to minimize the number 
of invalid solutions, we allow default scenarios with 100% maximum load by setting the load 
tolerance to 100%. Also, we will only consider link failure scenarios (to avoid any micro-loops) and 
the service fixer is disabled during the optimization process. The base configuration used in the 
following tests is: 

• Demand percentage: 110% 
• Load tolerance: 100% 

• Link failures weight: 1 
• Node failures weight: 0 

We have considered seven different test cases: O1 Test 1; O2 Test 1; O2 Test 2; O3 Test 1; O3 
Test 2; O4 Test 1 and O4 Test 2. O1 Test 1 tests the overload fixer O1 using costs between 1 and 
100 and a time to leave of 0 child solutions. The stopping criteria for this test is 10000000 cost 
changes. This test is intended to prove the efficiency of fixer O1 on eliminating overloads. The two 
tests for both fixers O2 and O3 will show how they perform when using different intervals of costs. 
In the first test of fixer O4 (O4 Test 1), we are expecting to obtain better results than when using 
fixers O2 and O3. O4 Test 2 tests the effects of using a bigger time to leave. All tests for fixers O2, 
O3 and O4 use a stopping criteria of 500000 cost changes. 

4.1.2.1 O1 Test 1: Costs between 1 and 100; Time to leave 0 
Table 4.6 - O1 Test 1: optimization statistics 

Total execution time 0:01:38 
Total number of iterations 1557 
Total number of tested solutions 408559 
Iterations per second 15,9 
Solutions per iteration 262,4 
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Figure 4.10 - O1 Test 1: change report 

 

 
Figure 4.11 - O1 Test 1: change results 

To improve the overload ratio of a solution, fixer O1 tries a lot more cost changes than fixer M1. 
While fixer M1 only tries to eliminate the first repair responsible for each micro-loop, fixer O1 tries 
to eliminate each repair that traverses an overloaded link. Eliminating a repair involves requesting 
a maximum of three cost changes, which may severely increase the number of solutions per 
iteration. If we ran this test more times, we might notice a lot more variation on the results 
comparing with the micro-loop tests, since we will be running much less iterations. Figure 4.10 
suggests that disabling a backup next-hop by decreasing the distance between the corresponding 
neighbor and the source router (O1_NS_DEC) is more likely to eliminate the overloads. Figure 4.11 
shows that this fixer was able to produce better solutions for 10.8%+0.7%=11.5% of the requested 
cost changes, but only 0.7% eliminated all overloads. Although it can be difficult to eliminate 
overloads, especially when considering highly congested networks, choosing more carefully which 
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repairs to remove could have increased the success rate. For instance, imagine we always start by 
disabling the backup next-hop that is responsible for most of the repair bandwidth in the 
overloaded link. This might eliminate the overloads more quickly, performing less cost changes, but 
this fixer was not implemented because it would require more memory and a lot more processing 
before each cost change (to determine which backup to disable). Also, a higher success rate of the 
fixer does not necessarily mean that we find better solutions: disabling a backup repairing less 
traffic can be sufficient to eliminate an overload, which would unprotect less service. 

Fixers O2, O3 and O4 perform less precise cost changes, so they should consider some ‘time to 
leave’ to be more efficient. The number of nonexistent changes is expected to be lower than 
previous tests, which might increase the total execution time (more solutions are processed). In 
order to reduce execution time, the following tests consider 500000 cost changes. 

4.1.2.2 O2 Test 1: Costs between 1 and 100; Time to leave 1 
Table 4.7 - O2 Test 1: optimization statistics 

Total execution time 0:02:28 
Total number of iterations 53142 
Total number of tested solutions 620613 
Iterations per second 359,1 
Solutions per iteration 11,7 

 

 
Figure 4.12 - O2 Test 1: change report 
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Figure 4.13 - O2 Test 1: change results 

Fixer O2 increases the cost of an overloaded link by one unit. It is not expected to perform well 
on larger topologies and/or when considering a wider costs range. Figure 4.12 shows that using 
costs between 1 and 100 and a time to leave of 1, this fixer was able to eliminate the overload from 
only 41 of the 500000 total changes it has performed. Figure 4.13 shows that 94.2% (RETRY+EXPIRE) 
of all changes resulted in solutions that did not change the overload ratio, which reflects the poor 
performance of fixer O2 when considering large cost intervals. Increasing the time to leave for this 
fixer using large cost intervals should be insufficient to improve the fixer efficiency, since the 
number of RETRY reports would gain percentage in relation to other results. A better strategy would 
be to increment costs using a larger unit, like 10% of the maximum allowed cost. To test this 
strategy, we run fixer O2 using costs between 1 and 10. 

4.1.2.3 O2 Test 2: Costs between 1 and 10; Time to leave 1 
Table 4.8 - O2 Test 2: optimization statistics 

Total execution time 0:02:09 
Total number of iterations 38191 
Total number of tested solutions 544084 
Iterations per second 296,1 
Solutions per iteration 14,2 
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Figure 4.14 - O2 Test 2: change report 

 

 
Figure 4.15 - O2 Test 2: change results 

By using a smaller interval of costs, we were able to improve the effectiveness of this fixer. Figure 
4.14 shows that the fixer succeeded to eliminate all overloads with 303 changes against the 41 in 
previous test. In Figure 4.15, we see a much smaller percentage of RETRY and EXPIRE reports, which 
means that the fixer was more capable of influence traffic in the network. The general increase of 
the percentages of the other outcomes is the consequence of this increased influence. 

4.1.2.4 O3 Test 1: Costs between 1 and 10; Time to leave 1 
Table 4.9 - O3 Test 1: optimization statistics 

Total execution time 0:01:21 
Total number of iterations 54930 
Total number of tested solutions 395770 
Iterations per second 678,1 
Solutions per iteration 7,2 
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Figure 4.16 - O3 Test 1: change report 

 

 
Figure 4.17 - O3 Test 1: change results 

Fixer O3 doubles the cost of an overloaded uplink. If the interface attached to that link has a 
cost above 5, and since the maximum cost is 10, then the requested change will return nonexistent 
costs. This is why we have a NONEXISTENT percentage close to 50% (Figure 4.17). The global success 
rate of fixer O3 is very similar to the one registered for fixer O2 when using a cost interval between 
1 and 10. The main difference between these fixers is the time taken to find better solutions. Fixer 
O2 took 2 minutes and 9 seconds to test 500000 cost changes (Table 4.8), while fixer O3 took only 
1 minute and 21 seconds, performing much more iterations (Table 4.9). 

4.1.2.5 O3 Test 2: Costs between 1 and 100; Time to leave 1 
Table 4.10 - O3 Test 2: optimization statistics 

Total execution time 0:01:19 
Total number of iterations 55255 
Total number of tested solutions 423774 
Iterations per second 699,7 
Solutions per iteration 7,7 
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Figure 4.18 - O3 Test 2: change report 

 

 
Figure 4.19 - O3 Test 2: change results 

By comparing Figure 4.19 with Figure 4.17, we can conclude that the performance of fixer O3 is 
not influenced by the chosen costs range. Fixer O3 does not need to increase the magnitude of the 
change to perform well with larger cost intervals like fixer O2. The only problem with fixer O3 is 
that it may not be able to explore some solutions offering even better performance parameters 
because it does not make finer cost adjustments. There is a large percentage of nonexistent costs 
that would exist if we have incremented the interface cost instead of doubling its value. Fixer O4 
mixes the speed of O3 with the accuracy of fixer O2. 

4.1.2.6 O4 Test 1: Costs between 1 and 100; Time to leave 1 
Table 4.11 - O4 Test 1: optimization statistics 

Total execution time 0:01:36 
Total number of iterations 26135 
Total number of tested solutions 434350 
Iterations per second 272,2 
Solutions per iteration 16,6 
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Figure 4.20 - O4 Test 1: change report 

 

 
Figure 4.21 - O4 Test 1: change results 

Fixer O4 keeps doubling the cost interface of an overloaded uplink at first, but once the change 
is nonexistent or results in an invalid or worse child solution, it starts incrementing an amount 
corresponding to one tenth of the maximum allowed cost value. Figure 4.21 shows a smaller 
percentage of nonexistent costs in relation to the percentage registered using fixer O3. Comparing 
with fixer O3, and despite spending more time in a single iteration, the success rate of fixer O4 is 
practically the same. 

Analyzing Figure 4.20, we see that this fixer was able to eliminate more overloads while 
performing linear changes (276) than with exponential changes (184). Still, linear changes could 
benefit from using a higher time to leave value, since a total of 76678 of those have expired. The 
following test will run fixer O4 with a time to leave of 5. 

4.1.2.7 O4 Test 2: Costs between 1 and 100; Time to leave 5 
Table 4.12 - O4 Test 2: optimization statistics 

Total execution time 0:01:33 
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Total number of iterations 13255 
Total number of tested solutions 419109 
Iterations per second 142,5 
Solutions per iteration 31,6 

 

 
Figure 4.22 - O4 Test 2: change report 

 

 
Figure 4.23 - O4 Test 2: change report 

Figure 4.22 shows that fixer O4 has performed more linear increments. Using a higher time to 
leave value, doubling costs is much more likely to return nonexistent costs (65678) than to expire 
(297), which will make the fixer switch to linear increments more often. Linear increments, on the 
other hand, can retry more times before returning nonexistent costs. Observing Figure 4.23, it is 
difficult to say if we have improved the efficiency of fixer O4 by increasing the time to leave value: 
the CONTINUE percentage has decreased from 5.4% to 4.9%, but the FAIL percentage has also 
decreased from 8.1% to 7.0%. The high RETRY percentage (especially due to repeated increments) 
has contributed for a slightly overall decrease of other percentages, but the EXPIRE percentage has 
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dropped from 20.4% to 3% in relation to the previous test. Using a higher time to leave value for 
this fixer will increase the depth of the optimization tree of each iteration. Table 4.12 confirms that 
we have much more solutions per iteration when using a time to leave of 5 than when using a time 
to leave of 1 (31.6 against 16.6). By retrying the linear increments more times, the fixer has explored 
more solutions, being able to find 443 solutions without any overloads against the 276 solutions 
found previously (Figure 4.22). Fixer O4 achieved better results using a time to leave of 5, despite 
running about half the iterations. 

Nevertheless, comparing the results of this fixer with the results of fixer O1, there is no doubt 
that fixer O1 is far more capable of eliminating overloads. 

4.1.3 Service Fixers 
Two fixers were implemented to try to increase the served bandwidth by enabling backup next-

hops. The first fixer, S1, simply tries to force neighbors to meet the loop-free criterion while the 
second fixer, S2, has a more conservative approach by using the downstream path criterion 
whenever there is a risk of creating a micro-loop if a simple link-protecting loop-free alternate was 
enabled. Fixer S1 uses Algorithm 3, while fixer S2 may sometimes use Algorithm 4. For testing these 
fixers, we will avoid any invalid solutions and overloads (similar to what was done for the micro-
loop fixer tests). The base configuration is as follows: 

• Costs range: 1-100 
• Demand percentage: 1% 

• Load tolerance: 100% 
• Time to leave: 0 

Fixer S1 was tested considering link failure scenarios and node failure scenarios separately to 
confirm that it may be less efficient when dealing with node failures (where micro-loops can occur). 
Fixer S2 was only tested considering node failure scenarios, since it uses the same strategy as fixer 
S1 when dealing with link failures. All tests used a stopping criteria of 1000000 cost changes. 

4.1.3.1 S1 Test 1: Link weight 1; Node weight 0 
Table 4.13 - S1 Test 1: optimization statistics 

Total execution time 0:04:09 
Total number of iterations 60 
Total number of solutions tested 994024 
Iterations per second 0,2 
Solutions per iteration 16567,1 
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Figure 4.24 - S1 Test 1: change report 

 

 
Figure 4.25 - S1 Test 1: change results 

Since it is impossible to achieve 100% LFA coverage in Abilene network, it is no surprising that 
the fixer did not succeed in protecting service in full. However, the large number of expired 
solutions suggests we may be close to some kind of upper bound of served bandwidth. Next, we 
test this fixer when considering node failures. By analyzing the bar chart in Figure 4.24, we can 
conclude that the increase of the distance between the neighbor and the source (S1_NS_INC) is 
more likely to protect service. This has some logic to it, since the easiest and most obvious way of 
making a neighbor loop-free is to increase the cost of the directed link(s) connecting that neighbor 
to the source, so that it chooses other routers to reach the destination. 

4.1.3.2 S1 Test 2: Link weight 0; Node weight 1 
Table 4.14 - S1 Test 2: optimization statistics 

Total execution time 0:01:28 
Total number of iterations 1437 
Total number of solutions tested 990850 
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Iterations per second 16,3 
Solutions per iteration 689,5 

 

 
Figure 4.26 - S1 Test 2: change report 

 

 
Figure 4.27 - S1 Test 2:change results 

By considering node failures, some solutions might contain micro-loops. Figure 4.27 shows that 
15.2% of all child solutions had worse performance parameters than their parents. This percentage 
is slightly higher than the 12.7% registered when running link failure scenarios (where micro-loops 
do not occur), which suggests that some of the changes performed by this fixer could have enabled 
link-protecting loop-free alternates that originated some micro-loop due to a node failure. Fixer S2 
avoids changes that offer any risk of creating micro-loops.  

4.1.3.3 S2 Test 1: Link weight 0; Node weight 1 
Table 4.15 - S2 Test 1: optimization statistics 

Total execution time 0:00:43 
Total number of iterations 767 
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Total number of solutions tested 478459 
Iterations per second 17,8 
Solutions per iteration 623,8 

 

 
Figure 4.28 - S2 Test 1: change report 

 

 
Figure 4.29 - S2 Test 1: change results 

When considering node failures, S2 tries to enable downstream paths to avoid any micro-loops. 
As expected, the percentage of changes originating worse solutions is reduced to 5.1% using this 
fixer (Figure 4.29). While for previous test using fixer S1 only 6.8% of the changes were able to 
improve service, fixer S2 improved service with 21.1% of the changes. The relatively high number 
of nonexistent changes (52.3%) may very well be related with the restrictive nature of downstream 
paths. 
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4.1.4 Conclusion of preliminary tests 
The preliminary tests allowed us to quickly define which fixers and which configurations might 

improve the efficiency of future optimization runs, which will increase the probability of finding 
better solutions in shorter runtimes. 

Fixer M1 proved to be very efficient in eliminating micro-loops presenting success rates above 
30%. Fixer O1 showed much better results than fixers O2, O3 and O4, having a success rate of 0.7% 
for the considered traffic. Fixer S2 is more efficient than fixer S1 when protecting service from node 
failures. The service fixers did not succeed on fully protecting service due to the inherent topology 
constraints. 

We have decided to use costs between 1 and 100 since it gives enough room for cost changes. 
The time to leave is set to zero, because the strategies used by fixers M1, O1 and S2 pre-compute 
the magnitude of each change. 

An optimization run is expected to eliminate micro-loops quickly. The time taken to eliminate 
the overloads should depend on the congestion levels of the network. The optimization is then 
expected to spend most of its time trying to improve service. 

4.2 Optimization results 
In this section, longer optimization runs will be performed using all fixers combined to try to find 

solutions that potentiate the use of LFAs, by protecting service without causing any micro-loops or 
overloads. 

Twelve different test cases are considered. They combine different demand values with different 
failure scenarios and configurations in order to achieve different results and conclusions. All these 
cases are presented in Table 4.16. 

Table 4.16 - Optimization test cases 

Case 
Demand 

Values Type 
Demand 

Percentage (%) 
Node Failures 

Weight 
Memorize 

Costs? 
Maximum 
Load (%) 

A 1 1 0  100.0 
B 1 1 1  100.0 
C 2 1 0  100.0 
D 2 1 1  100.0 
E 1 110 0  100.0 
F 1 110 1  100.0 
G 2 110 0  100.0 
H 2 110 1  100.0 
I 1 110 1 X 100.0 
J 2 110 1 X 100.0 
K 1 110 1  89.6 
L 2 110 1  90.5 
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Both demand values type 1 and 2 are listed in Appendix B. Table 4.17 shows the parameters for 
the default solution using both traffic matrices with a demand percentage of 110% and the same 
weight for link and node failures. The type 2 of demand values produces a slightly more congested 
network than type 1. 

Table 4.17 - Default solution parameters 
Demand 

Values Type 
Def. Scenario 
Max. Load (%) 

Def. Scenario 
Avg. Load (%) 

Micro-loop 
Ratio (%) 

Overload 
Ratio (%) 

Served 
Bandwidth (%) 

1 84.6 24.7 0.0 31.7 95.3 
2 85.5 25.0 0.0 31.7 95.1 

 
Cases A to D decrease the demand values so that it is impossible to create any invalid solutions 

or overloaded scenarios. Cases A and C only try to protect traffic, without worrying about the 
formation of micro-loops and overloads, so we hope to achieve good levels of LFA protection for 
both these cases. Cases B, D, F and cases H to L consider node failures so they must deal with 
possible micro-loops. Cases E to L use congested networks to increase the chance for repair traffic 
to overload links. Cases I and J use the BoundedCostsFactory (i.e., they memorize generated costs, 
so that they are not re-evaluated). Case K and case L reduce the number of valid solutions by limiting 
the acceptable maximum load for default scenarios. 

These different cases aim to test the overall quality of the optimization algorithm used against 
different traffic patterns and to evaluate the influence that LFA might have in the network 
performance. The expectation is that higher LFA protection levels may harm the overall 
performance of the network during convergence time. The same base configuration is used for all 
cases (as determined in the preliminary tests): 

• Costs range: 1-100; 
• Time to leave: 0; 

• Fixers: M1, O1 and S2.  
• Link failures weight: 1;  

• Stopping criteria: 15 minutes (900 seconds). 

Table 4.18 resumes the optimization results obtained for each case. The last four columns show 
some of the best parameters found. The columns for the micro-loop and overload ratios are 
omitted because the optimization was able to eliminate all micro-loops and overloads. Note that 
only the served bandwidth parameter is common to all best costs. The other three parameters, 
since they were not considered in the objective function, belong to the first best solution found and 
are purely indicative. 
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Table 4.18 - Optimization results 

Case 
No. of 

Iterations 
No. of 

Solutions 

No. of 
Costs 
found 

Default 
Scenario 

Max. Load 
(%) 

Link 
Failure 

Coverage 
(%) 

Node 
Failure 

Coverage 
(%) 

Served 
Bandwidth 

(%) 

A 89 3538539 1406 - 62.1 50.8 93.0 
B 29 2796716 420 - 63.6 54.5 96.7 
C 175 3928349 48 - 62.1 49.2 93.6 
D 22 2824889 459 - 64.4 57.6 96.0 
E 136 3466546 4761 88 63.6 56.8 90.7 
F 72 2526625 1379 86 53.8 50.0 87.0 
G 141 3698518 9424 89 62.9 53.8 89.9 
H 66 2715448 454 89 59.1 55.3 83.9 
I 61 1782194 9304 88 57.6 50.8 87.0 
J 54 1761071 1160 91 56.1 53.0 83.6 
K 256 2545979 1650 86 56.8 53.4 87.1 
L 237 2643530 2100 87 57.6 47.7 83.6 
 
The analysis of each case is presented separately in the following subsections and contains, for 

each case, one or two line charts showing the evolution of each parameter throughout the 
optimization time. The x-axis is in milliseconds, but parameters are registered with nanosecond 
precision. 

4.2.1 Case A 
Case A uses very low demand values with respect to link capacities, so it becomes impossible to 

create invalid solutions and overloads. This case only considers link failure scenarios, which assures 
that micro-loops do not occur as well. Then, the optimization algorithm will only use the service 
fixer to try to increase the served bandwidth. 
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Figure 4.30 - Case A: early stages of the optimization 

 

 
Figure 4.31 - Case A: optimization progress 

The optimization algorithm was able to improve the served bandwidth. At the very beginning of 
the optimization, approximately 85% of total demand bandwidth was being served (Figure 4.30). 
After just 28 milliseconds the served bandwidth reached about 92% as consequence of increasing 
the Link Protection Level (which matches the Global Protection Level in this case) from about 
approximately 57% to 60%. After this period, the served bandwidth increased at a very slow rate. 
Since the nature of the network imposes a LFA coverage limit, it should become harder to improve 
service protection at some point. 
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At approximately 1 minute and 5 seconds of the optimization time, there is a slight decrease of 
the Link Protection Level (Figure 4.31). This can be easily explained by, for instance, disabling two 
backups that were repairing two low bandwidth flows and enabling other backup to repair a higher 
bandwidth flow. The decrease of the service ratio from about 27% to 20% supports this observation. 
The objective function only considers the served bandwidth parameter, which gives priority to 
protecting flows with higher bandwidth values rather than the demands themselves. Note that the 
ECMP also plays an important part on this, since we may be protecting only parts of a demand. It is 
then completely possible for the served bandwidth to increase while the service ratio decreases. 

The maximum link coverage of approximately 65% (registered at second 10 of the optimization) 
may not be the maximum achievable level for the Abilene topology. Although we can still expect 
some correlation between the served bandwidth and the protection levels, we are not using 
demands for all source destination pairs (and with the same exact demand values). Some primary 
next-hops may not be used to forward traffic, so it becomes irrelevant if they have a backup or not. 
This makes it possible to register a served bandwidth increase while the LFA protection decreases. 

4.2.2 Case B 
Case B uses the same demand values as case A, but also considers node failure scenarios. It is 

still impossible for invalid solutions or overloads to happen, but the optimization algorithm may 
need to use the micro-loop fixer to eliminate some micro-loops before protecting service and 
protecting service must avoid creating micro-loops.  

 
Figure 4.32 - Case B: early stages of the optimization 
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Figure 4.33 - Case B: optimization progress 

‘Luckily’, the first best solution had a micro-loop ratio of 12.5% (Figure 4.32), which corresponds 
to exactly one node failure scenario with at least one micro-loop (using formula (5), (0/15 + 1/4)/(1 
+ 1)). This micro-loop was rapidly eliminated by decreasing the Link Protection Level from 62% to 
60%. The optimization continues finding solutions that increase the served bandwidth while 
avoiding micro-loops. 

Though we could have been expecting less served bandwidth comparing with previous case, we 
must remember we are considering 4 extra node failure scenarios with the same weight as 15 link 
failure scenarios, so these cases aren’t really comparable. The Node Protection Level, however, is 
expected to increase, since we need to protect service from node failures as well. The chart lines 
for the Link Protection Level and Node Protection Level present a very similar behavior which can 
be a consequence of using the same weight for both failure types. 

The final best solution was found approximately eleven minutes after the optimization started 
(Figure 4.33). Processing all scenarios and calculating performance parameters should take a bit 
longer than previous case, since we consider 4 more failure scenarios. Also, we should be 
generating much more cost changes which delays the average execution time of a single iteration. 
Table 4.18 shows that case B ran less iterations than case A, which decreases the probability of 
finding better solutions in shorter periods of time. 

4.2.3 Case C 
Case C is equivalent to case A, but it uses different demand values. 
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Figure 4.34 - Case C: early stages of the optimization 

 

 
Figure 4.35 - Case C: optimization progress 

Case C and case A present similar results. Though using different demand values, those value 
differences are too small to make much difference. 

4.2.4 Case D 
Case D is equivalent to case B, but it uses different demand values. 
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Figure 4.36 - Case D: early stages of the optimization 

 

 
Figure 4.37 - Case D: optimization progress 

Like in the previous subsection, case D and case B also present similar results since the demand 
value differences are too small to make much difference. 

4.2.5 Case E 
Case E uses 110% of the demand values of type 1 to simulate a congested network and increase 

the probability for overloaded scenarios to occur. This case only considers link failure scenarios. The 
optimization will use the overload fixer to eliminate any existing overloads before using the service 
fixer to increase the served bandwidth. Improving service protection must not create any overloads. 
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Figure 4.38 - Case E: early stages of the optimization 

 

 
Figure 4.39 - Case E: optimization progress 

Figure 4.38 shows that case E had to eliminate the overloads from three link failure scenarios at 
the very beginning of the optimization (20% × 15 = 3) by decreasing the Link Protection Level 
(and Served Bandwidth). Note that the algorithm took a bit longer to fix the last overloaded scenario 
at the cost of decreasing the Link Protection Level from about 57% to 51%. This clearly illustrates 
the strategy used by the overload fixer and the difficulty to eliminate overloads in a congested 
network. 

After eliminating all the overloads, the service fixer was able to find other less congested repair 
paths and increase the served bandwidth to 90.7% (Figure 4.39). A curious observation is that it 
was able to recover the Link Protection Level to even higher values than for case A, but the served 
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bandwidth is a bit lower, so it still had to sacrifice some service protection to avoid the overloads. 
As explained before for case A, the LFA protection levels and the served bandwidth are not strongly 
related. 

4.2.6 Case F 
Case F uses the same demand values as case E, but it also considers node failure scenarios. The 

micro-loop fixer may occasionally be used to eliminate micro-loops. Once again, service protection 
must avoid causing micro-loops and overloads. 

 
Figure 4.40 - Case F: early stages of the optimization 
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Figure 4.41 - Case F: optimization progress 

Case F clearly shows worse results than the previous case. Node failures usually mean the failure 
of several links. This can lead to the invocation of more repair paths in a network with less available 
resources. Then, links can become overloaded much easier than when dealing only with link 
failures. The micro-loop prevention, as we have seen in case B, is much less restrictive, since micro-
loops can only occur on node failure scenarios when meeting very special conditions (when traffic 
is repaired through more than one link-protecting LFA). 

When comparing with the best parameters found in test case B, the served bandwidth has 
decreased from 96.7% to 87% (Table 4.18). Figure 4.41 also shows a decrease of the Global 
Protection Level from almost 60% to about 52% followed by a small decrease of the service ratio. 

4.2.7 Case G 
Case G is equivalent to case E, but it uses the type 2 of demand values. When comparing to case 

E, it is expected a more conservative approach on enabling loop-free alternates, since this case uses 
a slightly more congested network, which increases the probability for overloads to occur. 
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Figure 4.42 - Case G: early stage of the optimization 

 

 
Figure 4.43 - Case G: optimization progress 

The served bandwidth for this case is a bit lower than for case E. Table 4.18 shows that, for case 
E, the served bandwidth is 90.7%, while for case G it is 89.9%. This difference becomes more 
accentuated if we consider node failure scenarios as will be shown in the next subsection. 

4.2.8 Case H 
Case H is equivalent to case F, but it uses the type 2 of demand values. 
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Figure 4.44 - Case H: early stages of the optimization 

 

 
Figure 4.45 - Case H: optimization progress 

As we have already seen from comparing case F with case E, considering node failures will make 
overloads more probable, which limits even more the amount of service that is possible to protect. 
When comparing case H to case F, we confirm that a slightly more congested network will decrease 
the served bandwidth, especially when considering node failure scenarios. Table 4.18 shows that, 
for case F, the served bandwidth is 87.0%, while for case H, the served bandwidth is only 83.9%. 
Different traffic demands may produce different solutions with different paths to guarantee the 
maximum load constraint.  Different links can become overloaded, with different overload 
amounts, leading to optimization runs where different LFAs are disabled to remove overloads and 
others may be enabled to improve service. 
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4.2.9 Case I 
The difference between case I and case F is that case I uses the BoundedCostsFactory to 

guarantee the return of different combinations of costs. 

 
Figure 4.46 - Case I: early stages of the optimization 

 

  
Figure 4.47 - Case I: optimization progress 

Though showing greater LFA coverage, the served bandwidth is exactly the same as for case F. 
Both cases present optimized solutions with a served bandwidth of 87% (Table 4.18). This suggests 
that, for the considered topology and costs interval, always generating different sets of costs does 
not have much influence on the obtained results. 
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4.2.10 Case J 
The difference between case J and case H is that case J uses the BoundedCostsFactory to return 

different combinations of costs. 

 
Figure 4.48 - Case J: optimization early stages 

 

 
Figure 4.49 - Case J: optimization progress 

This case produced slightly worse results than case H. Table 4.18 shows that case J protects 
83.6% of the service, while case H protected 83.9%. Note that, conceptually, this optimization 
setting should produce better results, if the same number of iterations is run. Nevertheless, since 
we have given the same runtime limit for all optimizations, observe that this case has executed only 
54 iterations, while case H has executed 66, and this is the reason for the slightly worse results. The 
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BoundedCostsFactory is slower in generating new costs than the normal CostsFactory (besides the 
additional execution overhead associated with the synchronization between different threads) and 
it will decrease the overall speed of the optimization. 

4.2.11 Case K 
The difference between cases K and F is that case K imposes a more constraining maximum load 

value to the default scenario. 

 
Figure 4.50 - Case K: optimization progress 

Though it took more time to eliminate overloads, probably struggling on finding valid solutions, 
the heuristic algorithm was able to produce even better results than case F (Figure 4.50). This 
happened mostly because case K ran 256 iterations against the 72 of case F (Table 4.18). The 
iterations of case K have finished sooner because of the greater number of invalid solutions, in 
which only the default scenario is processed. By running much more iterations, it ended up 
increasing its chances on finding better solutions. 

4.2.12 Case L 
Like in the previous case, the difference between cases L and H is that case L imposes a more 

constraining maximum load value to the default scenario. 
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Figure 4.51 - Case L: optimization progress 

Despite running much more iterations than case H, case L did not find a better solution. It could 
have been bad luck, but the fact is that this case uses a slightly more congested network. It may 
already be difficult to find solutions without any overloads and limiting the number of valid 
solutions will make it even more difficult. The maximum load constraint for this case should then 
be relaxed. 
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5 Conclusions 

This chapter summarizes this work and highlights the most important conclusions about 
employing LFAs to improve service uptime of ISP networks. It discusses the results obtained from 
trying to optimize the overall performance of Abilene network considering different traffic patterns. 
Finally, it presents some theoretical ideas about more elaborate methods that might improve the 
heuristic algorithm efficiency, and consequently, the quality of the solutions. 

5.1 Summary 
The time taken for a network to recover from a failure can degrade service that is sensible to 

delay and packet loss. LFA is a simple IPFRR mechanism that provides alternative paths for traffic 
affected by a single failure as soon as that failure is detected. In this way, when detecting failures 
at the physical layer, this mechanism is able to reduce service disruption to no more than a hundred 
milliseconds, which is acceptable for most sensible traffic. 

By changing link costs, it is possible to increase the LFA coverage of a network. However, real 
networks topologies impose a maximum level of protection that can be achieved. The node failure 
coverage, in particular, is usually below 60%. If a link-protecting LFA is used to reroute traffic 
affected by a node failure, there is a possibility of creating micro-loops. Also, repair traffic can cause 
links to become overloaded. Both these situations can severely deteriorate the network 
performance during convergence time. 

Using the developed application in test scenarios based on the Abilene network, it was possible 
to find costs that have increased service protection without creating micro-loops and overloads. 
The implemented heuristic proved to be successful in finding better solutions. This heuristic consists 
on continuously applying strategic cost changes, through the so-called fixers, in current solutions, 
to try to produce better solutions. The optimization process comprehends three steps in sequence: 

1. Eliminate micro-loops; 
2. Eliminate overloads; 
3. Increase the amount of served bandwidth. 

The cost changes implemented by the fixers that try to eliminate micro-loops and overloads 
aimed to disable the responsible repair paths by removing the corresponding backup next-hops, 
while the cost changes implemented by the fixer that tries to increase the served bandwidth aimed 
to enable other possible repair paths. 

5.2 Results 
Before conducting any long optimization run for the Abilene topology, several short runs were 

executed to determine which strategies and configurations were suited for the optimization. The 
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chosen cost interval, for instance, has considerable influence in the algorithm efficiency. Smaller 
cost intervals, besides decreasing the number of different possible solutions, also increase the 
probability for a cost change to be rejected, especially if considering large topologies. This is related 
with two factors: 

• The smaller the cost interval, the higher the probability for a randomly generated cost to 
be close to cost limits. 

• The applied cost change techniques try to change shortest distances by increasing or 
decreasing the IGP cost of a single router interface by a minimum calculated value. The 
result of this operation can easily exceed cost limits using smaller cost intervals. 

Other configurations that seemed a good idea at first, turned out to be less useful. Memorizing 
costs can be useful when considering a small cost interval and topologies with a small number of 
links but, usually, the number of possible solutions is so large that the probability of repeating costs 
becomes infinitively small. This does not compensate the extra execution overhead for 
synchronizing access to costs factory memory and running the hash function to check if the 
generated costs were already used or not. 

Having decided the optimization setup, we have executed long runs for several test cases. These 
test cases considered different traffic demand values and different failure scenarios to produce 
different results. By analyzing and comparing those results, the following conclusions were drawn: 

• When 100% LFA protection is impossible to achieve, different traffic demand values may 
benefit from different sets of backup next-hops. Consequently, depending on the number 
and value of demands, maximizing the served bandwidth does not necessarily maximize 
the LFA coverage. This is because flows with higher bandwidth can gain priority over flows 
with lower bandwidth. However, most of the times, increasing/decreasing the LFA 
coverage does increase/decrease the served bandwidth. 

• Micro-loops do not happen often and are easy to avoid and to eliminate. Eliminating a 
micro-loop usually requires disabling a single backup next-hop. 

• The more congested the network is, the more difficult it becomes to eliminate and avoid 
possible overloads. It usually requires disabling several backup next-hops. 

• Node failure scenarios are much more problematic than link failures, since they involve 
more repair paths which increases the chance for overloads to occur. 

• Increasing the chance for overloads to occur due to repair traffic (when networks are more 
congested) will decrease the maximum amount of service that is possible to protect, since 
it limits the LFA coverage of the network. 

• Improving service while avoiding micro-loops is much less restrictive than when avoiding 
overloads, in terms of LFA protection. In fact, improving service may actually help to avoid 
micro-loops when it is possible to find a node-protecting LFA. 

 

82 

 



Conclusions 

 

5.3 Final considerations and future improvements 
Note that the developed application also considers connections between routers given by 

switching nodes (instead of only directed links). Nevertheless, due to time constraints, this type of 
network setups was not properly tested and, therefore, results for such cases are not included in 
this dissertation. 

Some other important performance parameters could have been considered like the 
propagation delay. A valid solution, besides maximum load constraints, may also impose a 
maximum number of hops, since LFA is intended to protect delay sensitive traffic. Of course, this 
would limit the number of valid solutions, which makes it more difficult to find better solutions. 

Although overloads can be difficult to eliminate, especially when considering networks close to 
congestion, choosing which backup next-hop(s) to eliminate, using the repair flow bandwidth as 
the criteria, could have provided higher success rates. But the effects of more elaborate strategies 
are not really predictable, since they usually require more memory and would most certainly 
impose more execution overhead. A more viable alternative would be to use an overload fixer that 
also considers the maximum overload parameter. This fixer would fix overloads with more 
precision, but it might spend more time trying to eliminate them. 

The application should give the possibility to use test vectors. Instead of generating random 
initial solutions, the optimization would start each iteration with a predefined solution, making 
results more comparable. 

For simplicity, a solution is fully processed before calculating the performance parameters. It 
may be possible to improve the optimization speed if we use a different approach when processing 
the failure scenarios of a solution. For instance, consider the optimization of a solution without any 
micro-loops. If a micro-loop is detected when executing a failure scenario of a child solution, this 
child solution is discarded right away (no need to execute other failure scenarios). 

Developing applications for network optimization purposes can be very difficult. It usually 
requires implementing protocols and heuristics that may consume a lot of the machine resources. 
It is important to adopt a more defensive programming approach when developing this kind of 
applications. 
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Figure A.1 - Application console window 

 
Figure A.2 - Configuration window 

 

87 

 



Appendix A: The Application 

 

 

 
Figure A.3 - Topology information window 

 

 
Figure A.4 - Default solution window 
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Figure A.5 - Optimization report window 

  

 

 
Figure A.6 - Solution parameters window 
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Original Source (considering only 10% of the demand values): 
http://sndlib.zib.de/coredata.download.action?objectName=abilene&format=xml&objectType=n
etwork 

Table B.1 Demand values statistics 
Demand 

Values Type 
Minimum 

Demand Value 
Maximum 

Demand Value 
Average 

Demand Value 
Demand Values 

Sum 
1 24.9 42496.9 4273.6 239322 
2 17.878 57033.011 4396.5 246204.936 

B.1 Demand Values 1 Input File 
15 
DNVRng_STTLng STTLng DNVRng 100000,000000 1 1 
ATLAng_HSTNng HSTNng ATLAng 100000,000000 1 1 
HSTNng_KSCYng KSCYng HSTNng 100000,000000 1 1 
HSTNng_LOSAng LOSAng HSTNng 100000,000000 1 1 
DNVRng_KSCYng KSCYng DNVRng 100000,000000 1 1 
NYCMng_WASHng WASHng NYCMng 100000,000000 1 1 
ATLAng_WASHng WASHng ATLAng 100000,000000 1 1 
CHINng_NYCMng NYCMng CHINng 100000,000000 1 1 
CHINng_IPLSng IPLSng CHINng 100000,000000 1 1 
LOSAng_SNVAng SNVAng LOSAng 100000,000000 1 1 
DNVRng_SNVAng SNVAng DNVRng 100000,000000 1 1 
ATLAM5_ATLAng ATLAng ATLAM5 100000,000000 1 1 
SNVAng_STTLng STTLng SNVAng 100000,000000 1 1 
IPLSng_KSCYng KSCYng IPLSng 100000,000000 1 1 
ATLAng_IPLSng IPLSng ATLAng 100000,000000 1 1 
56 
CHINng_LOSAng CHINng LOSAng 38599,100000 
STTLng_ATLAM5 STTLng ATLAM5 93,200000 
NYCMng_ATLAM5 NYCMng ATLAM5 107,600000 
STTLng_ATLAng STTLng ATLAng 4133,900000 
WASHng_CHINng WASHng CHINng 3459,700000 
HSTNng_CHINng HSTNng CHINng 1291,300000 
NYCMng_ATLAng NYCMng ATLAng 1799,100000 
WASHng_LOSAng WASHng LOSAng 4411,900000 
WASHng_HSTNng WASHng HSTNng 2677,900000 
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ATLAng_LOSAng ATLAng LOSAng 6901,600000 
STTLng_WASHng STTLng WASHng 1617,800000 
CHINng_ATLAM5 CHINng ATLAM5 277,000000 
LOSAng_ATLAM5 LOSAng ATLAM5 133,700000 
NYCMng_LOSAng NYCMng LOSAng 3416,700000 
CHINng_HSTNng CHINng HSTNng 32967,300000 
ATLAM5_NYCMng ATLAM5 NYCMng 114,900000 
ATLAM5_LOSAng ATLAM5 LOSAng 101,600000 
LOSAng_STTLng LOSAng STTLng 968,400000 
LOSAng_WASHng LOSAng WASHng 7119,700000 
LOSAng_ATLAng LOSAng ATLAng 4448,400000 
ATLAng_ATLAM5 ATLAng ATLAM5 214,600000 
HSTNng_ATLAM5 HSTNng ATLAM5 83,200000 
CHINng_WASHng CHINng WASHng 2189,600000 
ATLAng_HSTNng ATLAng HSTNng 5606,700000 
ATLAng_NYCMng ATLAng NYCMng 878,300000 
LOSAng_CHINng LOSAng CHINng 42496,900000 
NYCMng_CHINng NYCMng CHINng 12232,700000 
ATLAng_WASHng ATLAng WASHng 3715,000000 
CHINng_NYCMng CHINng NYCMng 2388,200000 
HSTNng_NYCMng HSTNng NYCMng 684,000000 
STTLng_CHINng STTLng CHINng 2437,100000 
WASHng_NYCMng WASHng NYCMng 4006,900000 
CHINng_ATLAng CHINng ATLAng 3673,700000 
NYCMng_STTLng NYCMng STTLng 868,600000 
NYCMng_HSTNng NYCMng HSTNng 3299,800000 
ATLAM5_ATLAng ATLAM5 ATLAng 114,000000 
STTLng_LOSAng STTLng LOSAng 3646,800000 
ATLAM5_WASHng ATLAM5 WASHng 553,800000 
WASHng_STTLng WASHng STTLng 793,000000 
ATLAM5_CHINng ATLAM5 CHINng 312,800000 
CHINng_STTLng CHINng STTLng 508,200000 
STTLng_HSTNng STTLng HSTNng 775,400000 
ATLAng_CHINng ATLAng CHINng 614,200000 
LOSAng_HSTNng LOSAng HSTNng 16158,100000 
ATLAng_STTLng ATLAng STTLng 260,400000 
HSTNng_STTLng HSTNng STTLng 174,500000 
LOSAng_NYCMng LOSAng NYCMng 1196,900000 
HSTNng_LOSAng HSTNng LOSAng 1643,700000 
WASHng_ATLAng WASHng ATLAng 2550,300000 
STTLng_NYCMng STTLng NYCMng 1288,900000 
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ATLAM5_STTLng ATLAM5 STTLng 24,900000 
ATLAM5_HSTNng ATLAM5 HSTNng 175,400000 
WASHng_ATLAM5 WASHng ATLAM5 198,200000 
HSTNng_WASHng HSTNng WASHng 1509,500000 
HSTNng_ATLAng HSTNng ATLAng 2608,900000 
NYCMng_WASHng NYCMng WASHng 4798,000000 

B.2 Demand Values 2 Input File 
15 
DNVRng_STTLng STTLng DNVRng 100000,000000 1 1 
ATLAng_HSTNng HSTNng ATLAng 100000,000000 1 1 
HSTNng_KSCYng KSCYng HSTNng 100000,000000 1 1 
HSTNng_LOSAng LOSAng HSTNng 100000,000000 1 1 
DNVRng_KSCYng KSCYng DNVRng 100000,000000 1 1 
NYCMng_WASHng WASHng NYCMng 100000,000000 1 1 
ATLAng_WASHng WASHng ATLAng 100000,000000 1 1 
CHINng_NYCMng NYCMng CHINng 100000,000000 1 1 
CHINng_IPLSng IPLSng CHINng 100000,000000 1 1 
LOSAng_SNVAng SNVAng LOSAng 100000,000000 1 1 
DNVRng_SNVAng SNVAng DNVRng 100000,000000 1 1 
ATLAM5_ATLAng ATLAng ATLAM5 100000,000000 1 1 
SNVAng_STTLng STTLng SNVAng 100000,000000 1 1 
IPLSng_KSCYng KSCYng IPLSng 100000,000000 1 1 
ATLAng_IPLSng IPLSng ATLAng 100000,000000 1 1 
56 
CHINng_LOSAng CHINng LOSAng 57033,011128 
STTLng_ATLAM5 STTLng ATLAM5 79,981794 
NYCMng_ATLAM5 NYCMng ATLAM5 91,439048 
STTLng_ATLAng STTLng ATLAng 3613,684356 
WASHng_CHINng WASHng CHINng 3914,581448 
HSTNng_CHINng HSTNng CHINng 1074,705077 
NYCMng_ATLAng NYCMng ATLAng 1226,309010 
WASHng_LOSAng WASHng LOSAng 6036,770606 
WASHng_HSTNng WASHng HSTNng 2052,759145 
ATLAng_LOSAng ATLAng LOSAng 6701,775108 
STTLng_WASHng STTLng WASHng 1535,541853 
CHINng_ATLAM5 CHINng ATLAM5 287,000942 
LOSAng_ATLAM5 LOSAng ATLAM5 168,084214 
NYCMng_LOSAng NYCMng LOSAng 2847,423447 
CHINng_HSTNng CHINng HSTNng 17405,495674 
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ATLAM5_NYCMng ATLAM5 NYCMng 144,674949 
ATLAM5_LOSAng ATLAM5 LOSAng 110,904458 
LOSAng_STTLng LOSAng STTLng 791,308320 
LOSAng_WASHng LOSAng WASHng 7572,877405 
LOSAng_ATLAng LOSAng ATLAng 4231,871591 
ATLAng_ATLAM5 ATLAng ATLAM5 252,620878 
HSTNng_ATLAM5 HSTNng ATLAM5 61,511726 
CHINng_WASHng CHINng WASHng 3045,922357 
ATLAng_HSTNng ATLAng HSTNng 5701,265168 
ATLAng_NYCMng ATLAng NYCMng 522,628984 
LOSAng_CHINng LOSAng CHINng 34609,863377 
NYCMng_CHINng NYCMng CHINng 15577,789584 
ATLAng_WASHng ATLAng WASHng 3267,634930 
CHINng_NYCMng CHINng NYCMng 3445,010779 
HSTNng_NYCMng HSTNng NYCMng 470,684434 
STTLng_CHINng STTLng CHINng 3287,630630 
WASHng_NYCMng WASHng NYCMng 5526,488366 
CHINng_ATLAng CHINng ATLAng 2055,757395 
NYCMng_STTLng NYCMng STTLng 538,333659 
NYCMng_HSTNng NYCMng HSTNng 4304,946022 
ATLAM5_ATLAng ATLAM5 ATLAng 74,333912 
STTLng_LOSAng STTLng LOSAng 3938,604515 
ATLAM5_WASHng ATLAM5 WASHng 585,706890 
WASHng_STTLng WASHng STTLng 504,097052 
ATLAM5_CHINng ATLAM5 CHINng 166,662097 
CHINng_STTLng CHINng STTLng 363,183433 
STTLng_HSTNng STTLng HSTNng 629,536643 
ATLAng_CHINng ATLAng CHINng 552,823753 
LOSAng_HSTNng LOSAng HSTNng 24177,204838 
ATLAng_STTLng ATLAng STTLng 184,355163 
HSTNng_STTLng HSTNng STTLng 119,684025 
LOSAng_NYCMng LOSAng NYCMng 1469,390378 
HSTNng_LOSAng HSTNng LOSAng 2002,713463 
WASHng_ATLAng WASHng ATLAng 1589,933611 
STTLng_NYCMng STTLng NYCMng 1598,789333 
ATLAM5_STTLng ATLAM5 STTLng 17,878379 
ATLAM5_HSTNng ATLAM5 HSTNng 197,495214 
WASHng_ATLAM5 WASHng ATLAM5 297,060072 
HSTNng_WASHng HSTNng WASHng 1235,672733 
HSTNng_ATLAng HSTNng ATLAng 1381,719415 
NYCMng_WASHng NYCMng WASHng 5529,802931 
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