

Automated Learning of Loop-Free

Alternate Paths for Fast Re-Routing

Abstract— Upon failure detection, IP networks need to

reconfigure their routing and forwarding tables. Typically this

task is executed by routing protocols such as Open Shortest

Path First (OSPF). However during these short re-

convergence periods, transient loops can occur, resulting in

datagram loss of affected traffic flows. Several techniques have

been developed to reduce the resulting datagram loss or to

avoid this situation. However these approaches are not always

able to cover all potential routing loops and can involve

additional configuration. In this paper we suggest an

alternative approach which relies on configuring loop-free

alternate forwarding entries using learning techniques to

reduce the configuration and setup effort, while still offering

high speed switchovers upon failure events with minimal

datagram loss resulting of transient loops. We show in a

simulation environment that improved results can be obtained

with respect to the number of link failures that can be covered,

the resulting probability on having cycles in the alternate

routing, the resulting quality of the alternate routing, and the

induced communication cost of the learning procedure.

I. INTRODUCTION

Connection-less IP networks independently decide how to

forward received packets or datagrams. The information

determining how they forward these packets (i.e. which

outgoing interface and next hop they will take) is stored in

their local Forwarding Information Base (FIB). The FIBs

comprise (forwarding) entries that are derived from the

information exchanged by link-state routing protocols such

as Open Shortest Path First (OSPF, [1]). These protocols

discover the local topology (link states) and distribute the

discovered information over the network using Link State

Update messages. As a consequence, every router can

independently compute the shortest routing paths towards

other nodes in the network. Exchanges of link state routing

information resulting from topology changes (dynamic

reaction to topological changes due to, e.g., link/node

failures) lead to the re-computation of the routing paths and

reconfiguration of the corresponding FIB entries (re-

convergence), as well as the update of the corresponding

routing and forwarding entries (note that these steps outline

the IGP
1
 re-convergence process). However, as every router

1
 The term Interior Gateway Protocol (IGP) refers to any

link state routing protocol running within a routing system.

performs the routing path computation independently of

other routers, transient (micro-)loops may be formed during

the periods when a network is re-converging due to

inconsistent FIB entries. This problem is inherent to any

asynchronous distributed routing protocol and caused by

inconsistent FIB entries resulting from the propagation time

of the routing updates as well as the time needed to re-

compute and distribute FIB entries.

Packets which are trapped into transient loops, never reach

their destination and are simply lost after TTL expiration.

Prior work [2] has demonstrated that these loops can take

hundreds of milliseconds. Therefore, our goal is to

minimize the re-routing time: the time needed for each node,

after the occurrence of a topological change, to use updated

FIB entries -without relying on the full IGP re-convergence-

along loop-free alternate paths for the maximum number of

destinations. The three-fold objectives of the paper (and of

fast-rerouting techniques in general) are:

 Maximize the percentage of links (or nodes) that can be

fully protected (i.e., for all destinations)

 Maximize the percentage of destinations that can be

protected for all link (or node)

 Minimize the stretch increase on the routing paths

between source and destination.

The proposed fast-rerouting technique relies on the

avoidance of transient loops by detecting them before failure

occurrence. More precisely, it operates following three main

steps. Initially, each node determines its loop domain with

respect to other (destination) nodes. The loop domain is

determined by the set of nodes for which the loop-free

neighbor criteria is not verified along certain alternate

routing paths before occurrence of topological change (when

traffic forwarded by node u and directed to destination t

arrives at node v that forwards this traffic along a path that

reaches node u, i.e., v is a not loop-free neighbor of u).

Then, the detecting node selects an alternate routing path

that ensures loop-freeness up to loop domain boundaries by

instantiating an alternate forwarding entry on each

intermediate node (pointing to the loop-free neighbor).

Upon failure occurrence, the node triggers that loop-free

alternate path (when traffic from u directed to t arrives at v,

v does not forward traffic along a path that reaches node u,

i.e., v becomes a downstream neighbor of u).

Wouter Tavernier*, Dimitri Papadimitriou†, Didier Colle*, Mario Pickavet*, Piet Demeester*
*Department of Information Technology (INTEC), Ghent University – IBBT

Gaston Crommenlaan 8, 9050 Gent, Belgium

E-mail: {wouter.tavernier, didier.colle, mario.pickavet, piet.demeester}@intec.ugent.be

†Alcatel-Lucent Bell, Antwerp, Belgium

E-mail: dimitri.papadimitriou@alcatel-lucent.be

This paper is structured as follows. In Section II, related

work is described with respect to fast re-routing techniques.

Next, in Section III we outline the main contribution

brought by the proposed approach. Section IV provides a

detailed description of the proposed technique including a

learning approach finding nodes out of the loop domain of

each node and the computation of the loop-free alternate

path. Section V details the experimental results we have

obtained by simulation when running these procedures on

topologies representative of core networks to which the

proposed technique would typically apply. Finally, Section

VI formulates the conclusions of the paper and some

suggestions for future work.

II. RELATED WORK

Fast re-routing (or fast repair) techniques can be classified

into the following three basic categories (see [3]).

A. Equal cost multi-paths (ECMP)

ECMP [4] can be used when a set of two or more paths

towards the same destination d is available. Assuming one

of them doesn't traverse the failure, that alternate path can be

used as repair path.

B. Loop-free alternate (LFA) paths

A Loop-Free Alternate path [5] exists when a direct

neighbor of the router adjacent to the failure has a path to

the destination that can be guaranteed not to traverse the

failure (loop-free neighbor condition). The average coverage

on common networks (that is strongly dependent on the

topology) shows variations from 60 to 90%. Indeed, when a

link or a node fails, only the neighbors of the failure are

initially aware that the failure has occurred and only

neighboring node to the failure repair the failure. These

repairing routers have to steer datagrams to their

destinations despite the fact that most other routers in the

network are unaware of the nature and the location of the

failure. A common limitation in most of the base LFA

mechanism is an inability to indicate the identity of the

failure and to explicitly steer the repaired datagram round

the failure. Consequently, the extent to which this limitation

affects the repair coverage is topology dependent. An

advanced LFA solution [6] consists in sequencing the FIB

updates either spatially (topologically ordered FIB update

from far-end to the near-end neighbor contiguous to the

failure) or temporally (timely synchronized FIB updates).

For instance, ordered FIB update provides 100% loop-free

convergence at the expense of a FIB update time

proportional to R x MAX_FIB, where, R is the max (hop)

length among paths to edge r used to reach destination t

(downstream SPF neighbor prior to the failure) and

MAX_FIB is a network-wide constant that reflects the

maximum time Tmax required to update a FIB irrespective of

the change required. Hence, degrades proportionally to the

path length i.e. FIB updates are actually committed at the

near-end after reception of a completion message traveling

back from the source of max (hop) length among path to

edge r used to reach destination t. This solution is not

considered outside network maintenance operation as it

suffers from slow activation

C. Multi-hop repair paths

When there is no feasible loop-free alternate path it may still

be possible to locate a router, which is more than one hop

away from the router adjacent to the failure, from which

traffic will be forwarded to the destination without

traversing the failure. Multi-hop repair paths are more

complex both in the computations required to determine

their existence, and in the mechanisms required to invoke

them. Multi-hop repair paths techniques can be further

classified as:

i. Mechanisms where one or more alternate FIBs are

pre-computed in all routers, and the repaired

datagram is instructed to be forwarded using a "repair

FIB" by some method of per-datagram signaling

involving, e.g., the detection of a "U-turn" [7].

ii. Mechanisms functionally equivalent to a loose source

route that is invoked using the normal FIB. These

include tunneling-based approaches [8] that consist in

"by-passing" the topology change by pre-configuring

tunnel whose path is not affected that change. There

are multiple variants of "tunnel-based solutions":

single-sided (near-end or far-end), double-sided

(near-end and far-end), and distributed (tunnel

segments). They all suffer from the same problems: i)

computational complexity, ii) tunnel pre-

configuration and maintenance, and iii) impact on

forwarding plane. Thus, they all involve a high

degree of configuration for tunnels that in turn

decrease the forwarder performance. Other

mechanisms such as the Not-Via technique [5]

employ special addresses that are installed in the FIBs

together with pre-computed routes that avoid certain

components of the network. This technique

encapsulates the datagram to an address that

explicitly identifies the network component that the

repair path must avoid. This produces a mechanism

that always achieves a repair, provided the network is

not partitioned by the failure.

III. OUR CONTRIBUTION

As outlined in the previous section, several fast path

repair/fast re-routing techniques already exist. Some of them

are used in operational networks such as base Loop-Free

Alternates (LFA) and Equal Cost Multi-Path (ECMP). They

all aim to address the objectives detailed in the introductory

section of this document. Our contribution is threefold: i)

the proposed technique relies on distributed learning of the

loop-domain at each node and "best-alternate path" to a

given destination. Both can either be performed on-line or

by mining the link-state routing topology and the routing

table (RT) entries; ii) the proposed re-routing scheme does

not assume modification of the link-state routing protocol

operations outside of the transient re-routing periods (as

alternate forwarding entries take local precedence over

default IGP routing entries). Once, the IGP has re-converged

unflagging datagrams leads to the use of the primary path

entries; iii) the coverage of the proposed re-routing scheme

is almost 100 %.

IV. AUTOMATED LEARNING OF LOOP-FREE ALTERNATES

A. Assumptions

The proposed approach aims to accelerate the re-routing of

traffic along loop-free alternate routing paths in link state

routing networks. Upon failure occurrence, the failure

detection technique is assumed to provide local information.

Failure information propagation does not rely on associated

fast failure notification protocol (operating next to the link-

state IGP) or IGP parameter tuning. The only condition for

our approach to be operational is that the loop domain's

diameter is smaller than the flooding domain of the IGP.

Otherwise, the technique resumes as a best exit node

selection to avoid loops inside the IGP routing domain but

then relies on neighboring domains for the alternate path to

remerge with the primary path (outside the loop domain).

B. Preliminaries

The network topology is modeled by a weighted undirected

graph G = (V, E, ω) with positive edge cost ω, where V is

the set of vertices or nodes (|V| = m) and E is the set of

edges or links (|E| = n). A non-negative cost function : E

 Z
+
 associates a cost u,v to each link (u,v) E. For s, t

V, let d(s,t) denote the cost of the path p(s,t) from s to t in G,

where the cost of a path is defined as the sum of the costs

along its edges. We first introduce the following distinction:

 For the pair s, t V, s ≠ t, if there exists a vertex u

adjacent to vertex s, (i.e., edge (s,u) E(G)) such that

d(u,t) < d(s,u) + d(s,t), i.e., u is a loop-free neighbor of s

to destination t, then the path (v0(=s), v1, ..., vm(=t)) is a

loop free alternate path where i : d(vi,vm) < d(vi-1,vi) +

d(vi-1,vm).

 For the pair s, t V, s ≠ t, if there exists a vertex u

adjacent to vertex s, (i.e., edge (s,u) E(G)) such that

d(u,t) < d(s,t), i.e., u is a downstream neighbor of s to t,

then the path (v0(=s), v1, ..., vm(=t)) is a distance

decreasing downstream path where i : d(vi,vm) < d(vi-

1,vm). As a particular case, neighbor u of node s is the

downstream SPF neighbor of s for destination t, if node

u provides the shortest path to t according to a shortest-

path first (SPF) routing scheme.

Note that the set of distance decreasing downstream paths is

a subset of the set of loop-free alternate paths meeting the

condition i : d(vi,vm) < d(vi-1,vm).

We define the loop domain of node u V(G) as the set of

node B(u) such that if a path p(s,…,u,…,w,…t) traverses

node u and then node w it will loop back via node u before

reaching destination t, i.e., w does not sit along a loop-free

alternate path to destination t from node u.

C. Steps and Mechanisms

The proposed fast re-routing approach (ALFA) comprises

three main steps:

Step 1: each node u determines its loop domain B(u) with

respect to each destination t that it can reach (as indicated by

its routing table entries). For this purpose, node u sends a

probe message towards destination t on the interface

directed to one of its non-shortest path from u to destination

d. If the message returns to u (source of the probe message)

the message didn't reach a node v located outside of the loop

domain. We refer to such node v as a loop-free node (LFN).

Step 2: determine a node v located outside the loop domain

of node u for destination t and that sits along a non-shortest

path towards destination t. Node v is referred to as the loop-

free node (LFN) and the path (u…,v,…,t) as the loop-free

alternate path (or more synthetically p(u,v,t)). Inside the

loop-domain B(u) of node u, along the non-shortest path that

is selected as the loop-free alternate path and on which the

probe message sourced at node u is forwarded, alternate

forwarding entries are configured for that destination t.

Indeed, the default forwarding entries at these nodes for

destination t refer to a path that traverses node u. More

precisely, for w B(u) | node w does not verify the loop-

free condition, the path p(w,t) includes node u, i.e., p(w,u,t).

When the probe message reaches node v, that message is

returned to node u with the indication that no FIB entry

configuration is required to reach destination t (node v

verifies the loop-free condition: d(v,t) < d(u,v) + d(u,t). Note

that with the BFS+ technique (as documented in Section

IV.C), the loop-free alternate path p(u,v,t) is the non-

shortest path that differs the most from the shortest path

(considered as the primary path) before failure of a link

incident to u along the primary path from u to t, p(u,t) | v

p(u,t).

Step 3: activation upon failure detection: upon failure

detection by node u (assume, e.g., the failure of one of the

links incident to node u along its primary path towards

destination t), the loop-free alternate path is activated. The

action of activation by node u of its loop-free alternate path

p(u,v,t) refers to the triggering operation of the alternate

forwarding entry along the loop-free alternate path inside

the loop domain of node u, B(u). The alternate forwarding

entries are triggered from the reception of datagrams

including as indication in their header that these datagrams

were re-routed by node u along the loop-free alternate path.

Activation of the alternate forwarding entries is performed

until reaching node v. Outside of the loop-domain of node u,

datagrams remain flagged but without triggering any action

at the nodes traversed by these datagrams (the alternate and

the primary forwarding entries are indeed identical). This

condition is sufficient to guarantee that the path p(v,t)

followed by the datagrams leaving the loop-domain is loop-

free as long as the path p(v,t) is the distance decreasing SPF

downstream path to destination t (the path p(v,t) does not re-

enter the loop domain of node u). When exiting the local

routing domain (i.e., the link state routing protocol flooding

domain), the datagrams flagged by the re-routing node u are

unflagged by the boundary node of the domain.

The next paragraphs of this section explain each of these

steps together with a description of the corresponding

procedures.

D. Forwarding model of routers

A router consists of a Routing Information Base (RIB) and a

Forwarding Information Base (FIB). In the context of this

paper the terms RIB and routing table are used equivalently

since we assume that a single routing protocol is running in

each routing domain. The FIB stores forwarding entries each

comprising the outgoing interface to be taken by individual

datagrams for a given destination prefix. The router model

we use in this paper, allows to store as part of the FIB, an

alternate forwarding entry for any given destination prefix.

The use of the alternate entry is triggered by the indication

of a flag (bit) in the header of an incoming datagram (to be

decided in which field), further referred to as the alternate

flag. Datagrams are marked with this flag, from the moment

a failure is noticed on the link towards the next hop

according to the primary forwarding entry.

In our router model, the forwarding decision is also

conditioned on the incoming interface, which implies that

the alternate entry for a given destination prefix can be

different for datagrams arriving at interface x, compared to

those arriving at interface y in a given router. This interface-

dependence allows us to keep using shortest path routing on

the primary forwarding entries. To ensure that the alternate

forwarding entries have node-wide significance, the

identifier of the triggering node (that is the node that flags

the datagram) should be known and stored at configuration

time as part of the alternate entries and be included as part

of the flagged datagram. This is illustrated in the figure

below. The shortest path towards node D from node a and c

is via their direct link. However, using node-wide significant

alternate routing entries to node D enforces them to choose

whether node a or node c is on the primary path.

If, the primary next hop of node u along its primary path to a

given destination becomes unreachable due to a link or node

failure, then i) the datagrams for that destination are flagged

(as indicated before) and ii) the alternate forwarding entry

for the interface corresponding to the failing link or node is

chosen to forward the flagged datagrams along the alternate

path. At node u, the use of the alternate forwarding entry

must not result into flagged datagrams being sent back to

node u (rule.1). Along the alternate path, flagged datagrams

arriving from primary interface (i.e., the interface

corresponding to the next hop as indicated in the primary

forwarding entry) or more generally any interface if the

identifier of the triggering node can be retrieved from the

incoming datagram, the alternate flag will automatically

trigger the use of the alternate forwarding entry to avoid

looping behavior (rule.2). To avoid that the flagged

datagrams loop back to node u, the proposed technique

comprises a cycle-free alternate path computation technique.

This technique is described in the next section.

E. Cycle-free alternate path computation

a) Initial FIB configuration

We initiate the Primary FIB (PFIB) of all nodes using the

usual shortest-path computation techniques for (connection-

less) link-state routing protocols such as OSPF or IS-IS. The

alternate FIB (AFIB) stored at each node is initially a copy

of the PFIB, using the same next hop for on all interfaces as

the one determined by the shortest path calculation for the

PFIB. This has one noticeable exception: the AFIB-entry

corresponding to the primary forwarding entry is populated

with the next hop according to the shortest path excluding

the link indicated by the primary forwarding entry. We will

refer to this entry as the Alternate Shortest Path entry (ASP

entry). Note also that after configuration, the forwarding

entries for which the primary and the alternate next-hop for

the same destination are identical can be removed from the

AFIB. Furthermore, FIB compression techniques (one entry

for multiple prefixes) can be used to reduce the memory

space used by the AFIB.

b) Alternate FIB configuration

As previously explained, once the moment a single failure is

locally detected by a given router, its incoming datagrams

toward the affected destinations are flagged, and the

datagrams are forwarded according to the alternate

forwarding entry (the ASP entry as defined here above).

However, because downstream routers still forward flagged

datagrams according to their locally computed shortest path,

it is likely that the flagged datagrams will be looped back to

the flag-originating-node (FON), causing a forwarding loop.

To avoid forwarding loop situations, we combine two

techniques: i) the discovery of a node referred to as the loop-

free node (LFN) which sits outside of the loop-domain of a

given node with respect to a given destination, and the LFN

is out of the loop-domain of the given node with respect to

the LFN itself, and ii) the configuration of the AFIB-entries

along the path towards the given LFN, this path is the one

referred to as the alternate path. The loop-domain of a given

node u for a given destination d is defined as the set of

downstream nodes (with respect to the directionality of the

traffic flow towards destination d) that forward incoming

datagrams received from node u along a path that traverses

node u. Once flagged, the datagrams reach the LFN, the path

followed according to the rest of the AFIBs lead to the

destination without looping back to the original node again.

F. Loop-domain detection using BFS+

As indicated earlier, in order to ensure a loop-free alternate

path from a node s towards a destination d, the former needs

to find a node (LFN) out of its loop-domain with respect to

D

a

c

b

backup

pr
im

ar
y

backup

ba
ck

up

d. For this purpose we devise an extended Breadth First

Search method (referred to as BFS+). The recursive

mechanism works as follows:

 Send a probe message towards d via all the

neighbors of the node s (hop count diameter 1 from

s).

 If all probe messages pass via the node s, mark the

visited nodes, and repeat the procedure with the

neighbors of the marked nodes (excluding the

already visited nodes) until at least one probe

message reaches destination d without passing via

source node s. Upon the arrival of the probe

message in d, the receiving node sends an

acknowledgement message towards node s.

 When multiple LFNs are found within a given

diameter from node s, the LFN is chosen such that

the alternate routing path towards d has the lowest

similarity with the primary path from s to d
2
.

The BFS+ algorithm is illustrated on Figure 1. The loop-

domain of node s is indicated with the circle with dotted

lines, containing the nodes probe1 and probe2. Probe1 and

probe2 are upstream nodes to s with respect to destination d.

This implies that the shortest path of these nodes will always

pass via node s. Because these nodes are within hop count

diameter 1, BFS+ will first send probe via these nodes

towards destination d. When the node s intercepts these

probe messages, BFS+ triggers probe messages to be send

from hub nodes on hop count diameter 2. Afterwards, the

nodes probe3 and probe4 are tested. Both nodes forward the

probe message to d without passing node s, and thus are

LFNs. However, because the path taken from node probe3

differs more from the primary path compared to the path

taken from node probe4 (which uses the same last link

towards d), probe3 is elected as the LFN by the procedure.

G. Configuration of path to LFN

Once an LFN node is elected using the previously described

BFS+ technique, the loop-free alternate path towards the

LFN must be configured. This operation is realized by

installing the alternate forwarding entries along the alternate

routing path from node s to the LFN. For this purpose, the

node s sets its forwarding entry towards the LFN as its

alternate entry towards destination d. The same procedure is

used as the indicated next hop(s) until the LFN is reached.

H. Alternate path usage upon failure detection

The ALFA-learning procedure executes the above LFN-

detection and LFN-path-configuration process from all

nodes towards all other nodes (destination).

When a node detects that the outgoing interface

corresponding to the primary routing entry for a given

destination is not available, based on a loss-of-signal event

or a Hello-timer timeout (as in OSPF), the alternate

2
 The similarity of paths from two nodes towards a third, can

be measured by actively storing temporary forwarding states

during the probing process, or using traceroute

measurements as is performed in [10]

forwarding entry towards the destination is used. This

procedure will bring the packet to the LFN (as it was

previously configured to do so), and from then on, shortest

path routing entries will bring the packet from the LFN to

the destination.

Figure 1 - Loop-domain detection example using BFS+

V. EXPERIMENTATION

A. Environment

A custom simulation environment was developed by means

of Python/C++ libraries to benchmark the discussed cycle

avoidance techniques on a number of different networks.

The default routing behavior (primary routing entries) of the

benchmarked networks follows shortest path routes as

configured by a distributed link-state routing protocol such

as OSPF. To obtain representative results, the computed

routes were randomized and made independent between the

nodes in the network. This implies that, if multiple shortest

paths are available between two network nodes, every run

will randomly choose a route, and configure the routing

tables accordingly. This performed independently on every

network node. Every experiment has been re-run 100 times

with these randomized settings, and the reported quantitative

results are averages over these runs.

Table 1 - Network topologies

Network Nodes Links
Degree

Min Avg Max

Abilene 11 14 2 2.55 3

Nobel-us 14 21 2 3.00 4

Nobel-ge 17 26 2 3.06 6

Garr 22 36 2 3.27 9

Nobel-eu 28 41 2 2.93 5

Geant2 30 47 2 3.13 8

Renater 36 49 2 2.72 7

Cost266 37 57 2 3.08 5

Germany50 50 88 2 3.52 5

Xwin 57 77 2 2.70 6

B. Network topologies and network traffic

A set of 10 representative reference networks was used for

evaluating the described techniques. Most of these networks

are known for research purposes (e.g. [11]), or are research

networks themselves. The number of nodes of these

networks ranges between 11 and 57 nodes, and their node

degree is in the range [3,9]. For some of these topologies,

single connected nodes have been removed, because

alternate routing paths are not possible for these anyhow.

The properties of the reference networks are summarized in

Table I.

C. Benchmarked techniques

The techniques with the following labels were

benchmarked:

1) random

This technique refers to the configuration of usual shortest

path routing entries as performed by a link-state protocol

such as OSPF, augmented with random alternate entry

routing entries (the only requirement is that the alternate

next outgoing interface is different from the primary

outgoing interface).

2) learn_backup_ipfrrlf

The scheme technique refers to the configuration of Loop-

Free Alternates (also referred to as FRR-LFA) as backup

entries as discussed in Section II.B [5], if they are available.

Finding a loop-free alternate entry is performed by probing

the paths from nodes’ neighbors to check if they loop-back

towards the originating nodes.

3) learn_backups_alfa

Here, alternate forwarding entries are configured using the

proposed ALFA technique from Section IV, which finds

Loop-Free alternates using the BFS+ method. In this case,

the LFN is chosen within the diameter of the closest node

out of the loop-domain, having a path towards the targeted

destination which differs maximally within the probed

neighborhood.

D. Performance measurements

This section discusses the performance of the mentioned

techniques with respect to their ability to cover link failures

(coverage), their consequences on the resulting length of the

backup paths (stretch), their communication cost for

learning adequate entries, and their sensitivity with respect

to network characteristics.

Figure 1 – Percentage of link failures covered

Figure 2 – Routing cycle probability upon link failure

Figure 3 - Stretch comparison

Figure 4 - Number of probing messages needed to converge

0%

20%

40%

60%

80%

100%

random learn_backup_ipfrrlf learn_backups_alfa

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

random learn_backup_ipfrrlf learn_backups_alfa

 1.00

 1.02

 1.04

 1.06

 1.08

 1.10

random learn_backup_ipfrrlf learn_backups_alfa

 -
 10,000
 20,000
 30,000
 40,000
 50,000
 60,000
 70,000
 80,000
 90,000

learn_backup_ipfrrlf learn_backups_alfa

1) Coverage

For each topology (see Table I), every possible single link

failure was simulated. When a configured alternate

forwarding entry (using one of the three presented

techniques) is not able to recover the connectivity between

all network nodes for a given link failure, the link is

considered to be uncovered. The percentage of links which

cannot be fully recovered upon link failure is denoted as the

link failure coverage of the technique (the complement of

this percentage denotes the percentage of links which can

induce cycles among at least one source destination pair).

Figure 2 depicts the link failure coverage of all considered

re-routing schemes on all evaluated networks. From this

figure, we may observe that provisioning randomly alternate

entries is (as expected) is only able to cover 20 to 50 percent

of the link failures. FRR-LFA is able to cover larger

percentages of link failures, typically between 50 and 80

percent. The ALFA-technique which we propose is able to

cover almost all link failures, or at least 95 percent.

The probability that a link failure will cause a cycle when

selecting the alternate routing path between a random pair of

nodes can be calculated, by evaluating the connectivity

between all pair of nodes, for all possible single link

failures. Figure 3 shows the resulting end-to-end cycle

probability induced by a single link failure for the

experimented networks for all the considered schemes. One

can observe from this figure that the probability that a cycle

occurs between a given pair of nodes is highest when only

providing random alternate entries, and lowest – close to

zero – when using the ALFA scheme. For small networks,

the difference between provisioning random alternate

forwarding entries and FRR-LFA is negligible.

2) Stretch

The previous metric measured the quality of the protection

techniques in terms of the proportion of link failures they

can potentially (fully) recover from. However, this metric

doesn’t give us information on the quality of the resulting

alternate routing paths with respect to the path length. It may

be expected, that higher recoverability could have a

detrimental influence on the resulting path length. To assess

this assumption, we calculate and depict the average stretch

of the alternate routing paths of all techniques in all

networks in Figure 4. The stretch metric indicates the ratio

of the length of the alternate routing path (in hop count) vs.

the length of the shortest routing path when no failure

occurs. When the alternate routing path has the shortest

length, the stretch is equal to 1. The average stretch

calculates the average ratio over all resulting path lengths.

Figure 4 illustrates that the length of the selected alternate

paths taken out of all experimented techniques is at worst 10

percent longer than the (primary) shortest path between two

nodes. FRR-LFA in general uses the shortest backup paths.

This may be a consequence of the fact that only the first hop

upon the failure is different from the primary shortest path

in the network, while the ALFA technique may use longer

detour paths to ensure that the packet is out of the loop-

domain of the failure detecting node. This explains the

higher stretch values for the ALFA technique.

3) Communication cost

Finding adequate alternate routing paths ensuring that no

cycles occur requires some probing and learning activity in

the network. Clearly techniques relying on probing lead to a

cost with respect the number of probing messages. Both

IPFRR–LFA and the ALFA technique involve probing: the

first probes for a loop-free alternate neighbor, the second

probes for a node out of the loop-domain of the failure

detecting node. Figure 5 depicts the number of probing

messages that were needed before the required techniques

converged. The results illustrate that ALFA has probing

communication cost between 20 percent (for the smallest

networks) and 270 percent (for the largest) higher networks.

VI. CONCLUSION

In this paper, we proposed an alternative (learning)
method for populating alternate routing entries. The resulting
technique is able to avoid almost 100 percent of potential
routing cycles upon the occurrence of single link failures in a
given set of representative reference networks. We showed
that this had low impact on the quality of the resulting
backup paths, which were at most 10 percent longer than the
shortest paths in the fully operating network. Future work
could focus on reducing the induced communication cost of
learning adequate alternate entries. Using the spatial
correlation between several nodes, clustering techniques
could correlate groups of destinations allowing common
LFNs along their alternate path.

ACKNOWLEDGMENT

This work is supported by the European Commission
(EC) Seventh Framework Programme (FP7) ECODE project
(Grant n°223936).

REFERENCES

[1] Moy, J., OSPF Version 2, RFC 2328, Internet Engineering Task

Force, 1998

[2] Francois, P., Achieving Sub-Second IGP Convergence in Large IP
Networks, ACM SIGCOMM Computer Communication Review, July
2005.

[3] Shand, M., IP Fast Reroute Framework. RFC 5714, Internet
Engineering Task Force, 2010.

[4] Hopps, C., Analysis of an Equal-Cost Multi-Path Algorithm, RFC
2992, Internet Engineering Task Force, 2000

[5] Atlas, A., Basic Specification for IP Fast Reroute: Loop-Free
Alternates. RFC 5286, Internet Engineering Task Force, 2008.

[6] Francois, P., Loop-free convergence using oFIB, Internet Draft,
Internet Engineering Task Force, 2011

[7] Atlas, A., U-turn Alternates for IP/LDP Fast-Reroute, Internet-Draft,
Internet Engineering Task Force, 2006.

[8] Bryant, S., IP Fast Reroute using tunnels, Internet Draft, Internet
Engineering Task Force, 2007.

[9] Shand, M., IP Fast Reroute Using Not-via Addresses, Internet Draft,
Internet Engineering Task Force, 2011.

[10] Hu, N., Quantifying Internet end-to-end route similarity, Passive and
Active Measurement Conference, 2006

[11] Orlowski, S., SNDlib 1.0—Survivable Network Design Library,
Networks, Special Issue: Network Optimization (INOC 2007),
Volume 55, Issue 3, pages 276–286, Wiley, May 2010

