
 

Automated Learning of Loop-Free  

Alternate Paths for Fast Re-Routing 

Abstract— Upon failure detection, IP networks need to 

reconfigure their routing and forwarding tables.  Typically this 

task is executed by routing protocols such as Open Shortest 

Path First (OSPF).  However during these short re-

convergence periods, transient loops can occur, resulting in 

datagram loss of affected traffic flows. Several techniques have 

been developed to reduce the resulting datagram loss or to 

avoid this situation.  However these approaches are not always 

able to cover all potential routing loops and can involve 

additional configuration.  In this paper we suggest an 

alternative approach which relies on configuring loop-free 

alternate forwarding entries using learning techniques to 

reduce the configuration and setup effort, while still offering 

high speed switchovers upon failure events with minimal 

datagram loss resulting of transient loops.  We show in a 

simulation environment that improved results can be obtained 

with respect to the number of link failures that can be covered, 

the resulting probability on having cycles in the alternate 

routing, the resulting quality of the alternate routing, and the 

induced communication cost of the learning procedure. 

I. INTRODUCTION 

Connection-less IP networks independently decide how to 

forward received packets or datagrams. The information 

determining how they forward these packets (i.e. which 

outgoing interface and next hop they will take) is stored in 

their local Forwarding Information Base (FIB).  The FIBs 

comprise (forwarding) entries that are derived from the 

information exchanged by link-state routing protocols such 

as Open Shortest Path First (OSPF, [1]).  These protocols 

discover the local topology (link states) and distribute the 

discovered information over the network using Link State 

Update messages. As a consequence, every router can 

independently compute the shortest routing paths towards 

other nodes in the network.  Exchanges of link state routing 

information resulting from topology changes (dynamic 

reaction to topological changes due to, e.g., link/node 

failures) lead to the re-computation of the routing paths and 

reconfiguration of the corresponding FIB entries (re-

convergence), as well as the update of the corresponding 

routing and forwarding entries (note that these steps outline 

the IGP
1
 re-convergence process). However, as every router 
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 The term Interior Gateway Protocol (IGP) refers to any 

link state routing protocol running within a routing system. 

performs the routing path computation independently of 

other routers, transient (micro-)loops may be formed during 

the periods when a network is re-converging due to 

inconsistent FIB entries. This problem is inherent to any 

asynchronous distributed routing protocol and caused by 

inconsistent FIB entries resulting from the propagation time 

of the routing updates as well as the time needed to re-

compute and distribute FIB entries.  

Packets which are trapped into transient loops, never reach 

their destination and are simply lost after TTL expiration.  

Prior work [2] has demonstrated that these loops can take 

hundreds of milliseconds.  Therefore, our goal is to 

minimize the re-routing time: the time needed for each node, 

after the occurrence of a topological change, to use updated 

FIB entries -without relying on the full IGP re-convergence- 

along loop-free alternate paths for the maximum number of 

destinations. The three-fold objectives of the paper (and of 

fast-rerouting techniques in general) are: 

 Maximize the percentage of links (or nodes) that can be 

fully protected (i.e., for all destinations)  

 Maximize the percentage of destinations that can be 

protected for all link (or node)  

 Minimize the stretch increase on the routing paths 

between source and destination. 

The proposed fast-rerouting technique relies on the 

avoidance of transient loops by detecting them before failure 

occurrence. More precisely, it operates following three main 

steps. Initially, each node determines its loop domain with 

respect to other (destination) nodes. The loop domain is 

determined by the set of nodes for which the loop-free 

neighbor criteria is not verified along certain alternate 

routing paths before occurrence of topological change (when 

traffic forwarded by node u and directed to destination t 

arrives at node v that forwards this traffic along a path that 

reaches node u, i.e., v is a not loop-free neighbor of u). 

Then, the detecting node selects an alternate routing path 

that ensures loop-freeness up to loop domain boundaries by 

instantiating an alternate forwarding entry on each 

intermediate node (pointing to the loop-free neighbor). 

Upon failure occurrence, the node triggers that loop-free 

alternate path (when traffic from u directed to t arrives at v, 

v does not forward traffic along a path that reaches node u, 

i.e., v becomes a downstream neighbor of u).  
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This paper is structured as follows. In Section II, related 

work is described with respect to fast re-routing techniques.  

Next, in Section III we outline the main contribution 

brought by the proposed approach. Section IV provides a 

detailed description of the proposed technique including a 

learning approach finding nodes out of the loop domain of 

each node and the computation of the loop-free alternate 

path. Section V details the experimental results we have 

obtained by simulation when running these procedures on 

topologies representative of core networks to which the 

proposed technique would typically apply. Finally, Section 

VI formulates the conclusions of the paper and some 

suggestions for future work. 

II. RELATED WORK 

Fast re-routing (or fast repair) techniques can be classified 

into the following three basic categories (see [3]).  

A. Equal cost multi-paths (ECMP) 

ECMP [4] can be used when a set of two or more paths 

towards the same destination d is available. Assuming one 

of them doesn't traverse the failure, that alternate path can be 

used as repair path.  

B. Loop-free alternate (LFA) paths  

A Loop-Free Alternate path [5] exists when a direct 

neighbor of the router adjacent to the failure has a path to 

the destination that can be guaranteed not to traverse the 

failure (loop-free neighbor condition). The average coverage 

on common networks (that is strongly dependent on the 

topology) shows variations from 60 to 90%.  Indeed, when a 

link or a node fails, only the neighbors of the failure are 

initially aware that the failure has occurred and only 

neighboring node to the failure repair the failure.  These 

repairing routers have to steer datagrams to their 

destinations despite the fact that most other routers in the 

network are unaware of the nature and the location of the 

failure. A common limitation in most of the base LFA 

mechanism is an inability to indicate the identity of the 

failure and to explicitly steer the repaired datagram round 

the failure. Consequently, the extent to which this limitation 

affects the repair coverage is topology dependent.  An 

advanced LFA solution [6] consists in sequencing the FIB 

updates either spatially (topologically ordered FIB update 

from far-end to the near-end neighbor contiguous to the 

failure) or temporally (timely synchronized FIB updates).  

For instance, ordered FIB update provides 100% loop-free 

convergence at the expense of a FIB update time 

proportional to R x MAX_FIB, where, R is the max (hop) 

length among paths to edge r used to reach destination t 

(downstream SPF neighbor prior to the failure) and 

MAX_FIB is a network-wide constant that reflects the 

maximum time Tmax required to update a FIB irrespective of 

the change required. Hence, degrades proportionally to the 

path length i.e. FIB updates are actually committed at the 

near-end after reception of a completion message traveling 

back from the source of max (hop) length among path to 

edge r used to reach destination t. This solution is not 

considered outside network maintenance operation as it 

suffers from slow activation 

C. Multi-hop repair paths 

When there is no feasible loop-free alternate path it may still 

be possible to locate a router, which is more than one hop 

away from the router adjacent to the failure, from which 

traffic will be forwarded to the destination without 

traversing the failure. Multi-hop repair paths are more 

complex both in the computations required to determine 

their existence, and in the mechanisms required to invoke 

them.  Multi-hop repair paths techniques can be further 

classified as: 

 

i. Mechanisms where one or more alternate FIBs are 

pre-computed in all routers, and the repaired 

datagram is instructed to be forwarded using a "repair 

FIB" by some method of per-datagram signaling 

involving, e.g., the detection of a "U-turn" [7]. 

 

ii. Mechanisms functionally equivalent to a loose source 

route that is invoked using the normal FIB.  These 

include tunneling-based approaches [8] that consist in 

"by-passing" the topology change by pre-configuring 

tunnel whose path is not affected that change. There 

are multiple variants of "tunnel-based solutions": 

single-sided (near-end or far-end), double-sided 

(near-end and far-end), and distributed (tunnel 

segments). They all suffer from the same problems: i) 

computational complexity, ii) tunnel pre-

configuration and maintenance, and iii) impact on 

forwarding plane. Thus, they all involve a high 

degree of configuration for tunnels that in turn 

decrease the forwarder performance. Other 

mechanisms such as the Not-Via technique [5] 

employ special addresses that are installed in the FIBs 

together with pre-computed routes that avoid certain 

components of the network. This technique 

encapsulates the datagram to an address that 

explicitly identifies the network component that the 

repair path must avoid. This produces a mechanism 

that always achieves a repair, provided the network is 

not partitioned by the failure. 

III. OUR CONTRIBUTION 

As outlined in the previous section, several fast path 

repair/fast re-routing techniques already exist. Some of them 

are used in operational networks such as base Loop-Free 

Alternates (LFA) and Equal Cost Multi-Path (ECMP). They 

all aim to address the objectives detailed in the introductory 

section of this document.  Our contribution is threefold: i) 

the proposed technique relies on distributed learning of the 

loop-domain at each node and "best-alternate path" to a 

given destination. Both can either be performed on-line or 

by mining the link-state routing topology and the routing 

table (RT) entries; ii) the proposed re-routing scheme does 

not assume modification of the link-state routing protocol 

operations outside of the transient re-routing periods (as 



 

alternate forwarding entries take local precedence over 

default IGP routing entries). Once, the IGP has re-converged 

unflagging datagrams leads to the use of the primary path 

entries; iii) the coverage of the proposed re-routing scheme 

is almost 100 %. 

IV. AUTOMATED LEARNING OF LOOP-FREE ALTERNATES  

A. Assumptions 

The proposed approach aims to accelerate the re-routing of 

traffic along loop-free alternate routing paths in link state 

routing networks. Upon failure occurrence, the failure 

detection technique is assumed to provide local information. 

Failure information propagation does not rely on associated 

fast failure notification protocol (operating next to the link-

state IGP) or IGP parameter tuning.  The only condition for 

our approach to be operational is that the loop domain's 

diameter is smaller than the flooding domain of the IGP. 

Otherwise, the technique resumes as a best exit node 

selection to avoid loops inside the IGP routing domain but 

then relies on neighboring domains for the alternate path to 

remerge with the primary path (outside the loop domain). 

B. Preliminaries 

The network topology is modeled by a weighted undirected 

graph G = (V, E, ω) with positive edge cost ω, where V is 

the set of vertices or nodes (|V| = m) and E is the set of 

edges or links (|E| = n). A non-negative cost function : E 

 Z
+
 associates a cost u,v to each link (u,v)  E. For s, t  

V, let d(s,t) denote the cost of the path p(s,t) from s to t in G, 

where the cost of a path is defined as the sum of the costs 

along its edges. We first introduce the following distinction: 

 For the pair s, t  V, s ≠ t, if there exists a vertex u 

adjacent to vertex s, (i.e., edge (s,u)  E(G)) such that 

d(u,t) < d(s,u) + d(s,t), i.e., u is a loop-free neighbor of s 

to destination t, then the path (v0(=s), v1, ..., vm(=t)) is a 

loop free alternate path where i : d(vi,vm) < d(vi-1,vi) + 

d(vi-1,vm).  

 For the pair s, t  V, s ≠ t, if there exists a vertex u 

adjacent to vertex s, (i.e., edge (s,u)  E(G)) such that 

d(u,t) < d(s,t), i.e., u is a downstream neighbor of s to t, 

then the path (v0(=s), v1, ..., vm(=t)) is a distance 

decreasing downstream path where i : d(vi,vm) < d(vi-

1,vm). As a particular case, neighbor u of node s is the 

downstream SPF neighbor of s for destination t, if node 

u provides the shortest path to t according to a shortest-

path first (SPF) routing scheme.  

 

Note that the set of distance decreasing downstream paths is 

a subset of the set of loop-free alternate paths meeting the 

condition i : d(vi,vm) < d(vi-1,vm).  

We define the loop domain of node u  V(G) as the set of 

node B(u) such that if a path p(s,…,u,…,w,…t) traverses 

node u and then node w it will loop back via node u before 

reaching destination t, i.e., w does not sit along a loop-free 

alternate path to destination t from node u.  

C. Steps and Mechanisms 

The proposed fast re-routing approach (ALFA) comprises 

three main steps: 

Step 1: each node u determines its loop domain B(u) with 

respect to each destination t that it can reach (as indicated by 

its routing table entries). For this purpose, node u sends a 

probe message towards destination t on the interface 

directed to one of its non-shortest path from u to destination 

d.  If the message returns to u (source of the probe message) 

the message didn't reach a node v located outside of the loop 

domain. We refer to such node v as a loop-free node (LFN).  

 

Step 2: determine a node v located outside the loop domain 

of node u for destination t and that sits along a non-shortest 

path towards destination t. Node v is referred to as the loop-

free node (LFN) and the path (u…,v,…,t) as the loop-free 

alternate path (or more synthetically p(u,v,t)). Inside the 

loop-domain B(u) of node u, along the non-shortest path that 

is selected as the loop-free alternate path and on which the 

probe message sourced at node u is forwarded, alternate 

forwarding entries are configured for that destination t. 

Indeed, the default forwarding entries at these nodes for 

destination t refer to a path that traverses node u. More 

precisely, for w  B(u) | node w does not verify the loop-

free condition, the path p(w,t) includes node u, i.e., p(w,u,t). 

When the probe message reaches node v, that message is 

returned to node u with the indication that no FIB entry 

configuration is required to reach destination t (node v 

verifies the loop-free condition: d(v,t) < d(u,v) + d(u,t). Note 

that with the BFS+ technique (as documented in Section 

IV.C), the loop-free alternate path p(u,v,t) is the non-

shortest path that differs the most from the shortest path 

(considered as the primary path) before failure of a link 

incident to u along the primary path from u to t, p(u,t) | v 

p(u,t). 

 

Step 3: activation upon failure detection: upon failure 

detection by node u (assume, e.g., the failure of one of the 

links incident to node u along its primary path towards 

destination t), the loop-free alternate path is activated. The 

action of activation by node u of its loop-free alternate path 

p(u,v,t) refers to the triggering operation of the alternate 

forwarding entry along the loop-free alternate path inside 

the loop domain of node u, B(u). The alternate forwarding 

entries are triggered from the reception of datagrams 

including as indication in their header that these datagrams 

were re-routed by node u along the loop-free alternate path. 

Activation of the alternate forwarding entries is performed 

until reaching node v. Outside of the loop-domain of node u, 

datagrams remain flagged but without triggering any action 

at the nodes traversed by these datagrams (the alternate and 

the primary forwarding entries are indeed identical). This 

condition is sufficient to guarantee that the path p(v,t) 

followed by the datagrams leaving the loop-domain is loop-

free as long as the path p(v,t) is the distance decreasing SPF 

downstream path to destination t (the path p(v,t) does not re-

enter the loop domain of node u). When exiting the local 



 

routing domain (i.e., the link state routing protocol flooding 

domain), the datagrams flagged by the re-routing node u are 

unflagged by the boundary node of the domain. 

The next paragraphs of this section explain each of these 

steps together with a description of the corresponding 

procedures.   

D. Forwarding model of routers 

A router consists of a Routing Information Base (RIB) and a 

Forwarding Information Base (FIB). In the context of this 

paper the terms RIB and routing table are used equivalently 

since we assume that a single routing protocol is running in 

each routing domain. The FIB stores forwarding entries each 

comprising the outgoing interface to be taken by individual 

datagrams for a given destination prefix. The router model 

we use in this paper, allows to store as part of the FIB, an 

alternate forwarding entry for any given destination prefix. 

The use of the alternate entry is triggered by the indication 

of a flag (bit) in the header of an incoming datagram (to be 

decided in which field), further referred to as the alternate 

flag.  Datagrams are marked with this flag, from the moment 

a failure is noticed on the link towards the next hop 

according to the primary forwarding entry. 

In our router model, the forwarding decision is also 

conditioned on the incoming interface, which implies that 

the alternate entry for a given destination prefix can be 

different for datagrams arriving at interface x, compared to 

those arriving at interface y in a given router. This interface-

dependence allows us to keep using shortest path routing on 

the primary forwarding entries. To ensure that the alternate 

forwarding entries have node-wide significance, the 

identifier of the triggering node (that is the node that flags 

the datagram) should be known and stored at configuration 

time as part of the alternate entries and be included as part 

of the flagged datagram. This is illustrated in the figure 

below. The shortest path towards node D from node a and c 

is via their direct link. However, using node-wide significant 

alternate routing entries to node D enforces them to choose 

whether node a or node c is on the primary path. 

 
If, the primary next hop of node u along its primary path to a 

given destination becomes unreachable due to a link or node 

failure, then i) the datagrams for that destination are flagged 

(as indicated before) and ii) the alternate forwarding entry 

for the interface corresponding to the failing link or node is 

chosen to forward the flagged datagrams along the alternate 

path. At node u, the use of the alternate forwarding entry 

must not result into flagged datagrams being sent back to 

node u (rule.1). Along the alternate path, flagged datagrams 

arriving from primary interface (i.e., the interface 

corresponding to the next hop as indicated in the primary 

forwarding entry) or more generally any interface if the 

identifier of the triggering node can be retrieved from the 

incoming datagram, the alternate flag will automatically 

trigger the use of the alternate forwarding entry to avoid 

looping behavior (rule.2). To avoid that the flagged 

datagrams loop back to node u, the proposed technique 

comprises a cycle-free alternate path computation technique. 

This technique is described in the next section. 

E. Cycle-free alternate path computation 

a) Initial FIB configuration 

We initiate the Primary FIB (PFIB) of all nodes using the 

usual shortest-path computation techniques for (connection-

less) link-state routing protocols such as OSPF or IS-IS. The 

alternate FIB (AFIB) stored at each node is initially a copy 

of the PFIB, using the same next hop for on all interfaces as 

the one determined by the shortest path calculation for the 

PFIB. This has one noticeable exception: the AFIB-entry 

corresponding to the primary forwarding entry is populated 

with the next hop according to the shortest path excluding 

the link indicated by the primary forwarding entry. We will 

refer to this entry as the Alternate Shortest Path entry (ASP 

entry). Note also that after configuration, the forwarding 

entries for which the primary and the alternate next-hop for 

the same destination are identical can be removed from the 

AFIB. Furthermore, FIB compression techniques (one entry 

for multiple prefixes) can be used to reduce the memory 

space used by the AFIB. 

b) Alternate FIB configuration 

As previously explained, once the moment a single failure is  

locally detected by a given router, its incoming datagrams 

toward the affected destinations are flagged, and the 

datagrams are forwarded according to the alternate 

forwarding entry (the ASP entry as defined here above). 

However, because downstream routers still forward flagged 

datagrams according to their locally computed shortest path, 

it is likely that the flagged datagrams will be looped back to 

the flag-originating-node (FON), causing a forwarding loop.   

To avoid forwarding loop situations, we combine two 

techniques: i) the discovery of a node referred to as the loop-

free node (LFN) which sits outside of the loop-domain of a 

given node with respect to a given destination, and the LFN 

is out of the loop-domain of the given node with respect to 

the LFN itself, and ii) the configuration of the AFIB-entries 

along the path towards the given LFN, this path is the one 

referred to as the alternate path. The loop-domain of a given 

node u for a given destination d is defined as the set of 

downstream nodes (with respect to the directionality of the 

traffic flow towards destination d) that forward incoming 

datagrams received from node u along a path that traverses 

node u. Once flagged, the datagrams reach the LFN, the path 

followed according to the rest of the AFIBs lead to the 

destination without looping back to the original node again.  

F. Loop-domain detection using BFS+ 

As indicated earlier, in order to ensure a loop-free alternate 

path from a node s towards a destination d, the former needs 

to find a node (LFN) out of its loop-domain with respect to 
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d.  For this purpose we devise an extended Breadth First 

Search method (referred to as BFS+).  The recursive 

mechanism works as follows: 

 Send a probe message towards d via all the 

neighbors of the node s (hop count diameter 1 from 

s).   

 If all probe messages pass via the node s, mark the 

visited nodes, and repeat the procedure with the 

neighbors of the marked nodes (excluding the 

already visited nodes) until at least one probe 

message reaches destination d without passing via 

source node s.  Upon the arrival of the probe 

message in d, the receiving node sends an 

acknowledgement message towards node s. 

 When multiple LFNs are found within a given 

diameter from node s, the LFN is chosen such that 

the alternate routing path towards d has the lowest 

similarity with the primary path from s to d
2
. 

The BFS+ algorithm is illustrated on Figure 1. The loop-

domain of node s is indicated with the circle with dotted 

lines, containing the nodes probe1 and probe2. Probe1 and 

probe2 are upstream nodes to s with respect to destination d.  

This implies that the shortest path of these nodes will always 

pass via node s.  Because these nodes are within hop count 

diameter 1, BFS+ will first send probe via these nodes 

towards destination d.  When the node s intercepts these 

probe messages, BFS+ triggers probe messages to be send 

from hub nodes on hop count diameter 2. Afterwards, the 

nodes probe3 and probe4 are tested.  Both nodes forward the 

probe message to d without passing node s, and thus are 

LFNs.  However, because the path taken from node probe3 

differs more from the primary path compared to the path 

taken from node probe4 (which uses the same last link 

towards d), probe3 is elected as the LFN by the procedure. 

G. Configuration of path to LFN 

Once an LFN node is elected using the previously described 

BFS+ technique, the loop-free alternate path towards the 

LFN must be configured. This operation is realized by 

installing the alternate forwarding entries along the alternate 

routing path from node s to the LFN.  For this purpose, the 

node s sets its forwarding entry towards the LFN as its 

alternate entry towards destination d.  The same procedure is 

used as the indicated next hop(s) until the LFN is reached. 

H. Alternate path usage upon failure detection 

The ALFA-learning procedure executes the above LFN-

detection and LFN-path-configuration process from all 

nodes towards all other nodes (destination).   

When a node detects that the outgoing interface 

corresponding to the primary routing entry for a given 

destination is not available, based on a loss-of-signal event 

or a Hello-timer timeout (as in OSPF), the alternate 
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 The similarity of paths from two nodes towards a third, can 

be measured by actively storing temporary forwarding states 

during the probing process, or using traceroute 

measurements as is performed in [10] 

forwarding entry towards the destination is used.  This 

procedure will bring the packet to the LFN (as it was 

previously configured to do so), and from then on, shortest 

path routing entries will bring the packet from the LFN to 

the destination. 

 
Figure 1 - Loop-domain detection example using BFS+ 

V. EXPERIMENTATION 

A. Environment 

A custom simulation environment was developed by means 

of Python/C++ libraries to benchmark the discussed cycle 

avoidance techniques on a number of different networks.  

The default routing behavior (primary routing entries) of the 

benchmarked networks follows shortest path routes as 

configured by a distributed link-state routing protocol such 

as OSPF. To obtain representative results, the computed 

routes were randomized and made independent between the 

nodes in the network.  This implies that, if multiple shortest 

paths are available between two network nodes, every run 

will randomly choose a route, and configure the routing 

tables accordingly.  This performed independently on every 

network node. Every experiment has been re-run 100 times 

with these randomized settings, and the reported quantitative 

results are averages over these runs. 

 
Table 1 - Network topologies 

Network Nodes Links 
Degree 

Min  Avg  Max 

Abilene 11 14 2      2.55  3 

Nobel-us 14 21 2      3.00  4 

Nobel-ge 17 26 2      3.06  6 

Garr 22 36 2      3.27  9 

Nobel-eu 28 41 2      2.93  5 

Geant2 30 47 2      3.13  8 

Renater 36 49 2      2.72  7 

Cost266 37 57 2      3.08  5 

Germany50 50 88 2      3.52  5 

Xwin 57 77 2      2.70  6 

 



 

B. Network topologies and network traffic 

A set of 10 representative reference networks was used for 

evaluating the described techniques.  Most of these networks 

are known for research purposes (e.g. [11]), or are research 

networks themselves. The number of nodes of these 

networks ranges between 11 and 57 nodes, and their node 

degree is in the range [3,9].  For some of these topologies, 

single connected nodes have been removed, because 

alternate routing paths are not possible for these anyhow.  

The properties of the reference networks are summarized in 

Table I.  

C. Benchmarked techniques 

The techniques with the following labels were 

benchmarked: 

1) random 

This technique refers to the configuration of usual shortest 

path routing entries as performed by a link-state protocol 

such as OSPF, augmented with random alternate entry 

routing entries (the only requirement is that the alternate 

next outgoing interface is different from the primary 

outgoing interface). 

 

2) learn_backup_ipfrrlf 

The scheme technique refers to the configuration of Loop-

Free Alternates (also referred to as FRR-LFA) as backup 

entries as discussed in Section II.B [5], if they are available. 

Finding a loop-free alternate entry is performed by probing 

the paths from nodes’ neighbors to check if they loop-back 

towards the originating nodes. 

3) learn_backups_alfa 

Here, alternate forwarding entries are configured using the 

proposed ALFA technique from Section IV, which finds 

Loop-Free alternates using the BFS+ method.  In this case, 

the LFN is chosen within the diameter of the closest node 

out of the loop-domain, having a path towards the targeted 

destination which differs maximally within the probed 

neighborhood. 

D. Performance measurements  

This section discusses the performance of the mentioned 

techniques with respect to their ability to cover link failures 

(coverage), their consequences on the resulting length of the 

backup paths (stretch), their communication cost for 

learning adequate entries, and their sensitivity with respect 

to network characteristics. 

 

 
 

Figure 1 – Percentage of link failures covered 

 
 

Figure 2 – Routing cycle probability upon link failure 

 

 
 

Figure 3 - Stretch comparison 

 

 
 

Figure 4 - Number of probing messages needed to converge 
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1) Coverage 

For each topology (see Table I), every possible single link 

failure was simulated. When a configured alternate 

forwarding entry (using one of the three presented 

techniques) is not able to recover the connectivity between 

all network nodes for a given link failure, the link is 

considered to be uncovered. The percentage of links which 

cannot be fully recovered upon link failure is denoted as the 

link failure coverage of the technique (the complement of 

this percentage denotes the percentage of links which can 

induce cycles among at least one source destination pair).  

Figure 2 depicts the link failure coverage of all considered 

re-routing schemes on all evaluated networks. From this 

figure, we may observe that provisioning randomly alternate 

entries is (as expected) is only able to cover 20 to 50 percent 

of the link failures. FRR-LFA is able to cover larger 

percentages of link failures, typically between 50 and 80 

percent.  The ALFA-technique which we propose is able to 

cover almost all link failures, or at least 95 percent.  

The probability that a link failure will cause a cycle when 

selecting the alternate routing path between a random pair of 

nodes can be calculated, by evaluating the connectivity 

between all pair of nodes, for all possible single link 

failures. Figure 3 shows the resulting end-to-end cycle 

probability induced by a single link failure for the 

experimented networks for all the considered schemes.  One 

can observe from this figure that the probability that a cycle 

occurs between a given pair of nodes is highest when only 

providing random alternate entries, and lowest – close to 

zero – when using the ALFA scheme. For small networks, 

the difference between provisioning random alternate 

forwarding entries and FRR-LFA is negligible. 

2) Stretch 

The previous metric measured the quality of the protection 

techniques in terms of the proportion of link failures they 

can potentially (fully) recover from. However, this metric 

doesn’t give us information on the quality of the resulting 

alternate routing paths with respect to the path length. It may 

be expected, that higher recoverability could have a 

detrimental influence on the resulting path length. To assess 

this assumption, we calculate and depict the average stretch 

of the alternate routing paths of all techniques in all 

networks in Figure 4. The stretch metric indicates the ratio 

of the length of the alternate routing path (in hop count) vs. 

the length of the shortest routing path when no failure 

occurs.  When the alternate routing path has the shortest 

length, the stretch is equal to 1. The average stretch 

calculates the average ratio over all resulting path lengths.  

Figure 4 illustrates that the length of the selected alternate 

paths taken out of all experimented techniques is at worst 10 

percent longer than the (primary) shortest path between two 

nodes. FRR-LFA in general uses the shortest backup paths. 

This may be a consequence of the fact that only the first hop 

upon the failure is different from the primary shortest path 

in the network, while the ALFA technique may use longer 

detour paths to ensure that the packet is out of the loop-

domain of the failure detecting node.  This explains the 

higher stretch values for the ALFA technique. 

3) Communication cost 

Finding adequate alternate routing paths ensuring that no 

cycles occur requires some probing and learning activity in 

the network. Clearly techniques relying on probing lead to a 

cost with respect the number of probing messages. Both 

IPFRR–LFA and the ALFA technique involve probing: the 

first probes for a loop-free alternate neighbor, the second 

probes for a node out of the loop-domain of the failure 

detecting node. Figure 5 depicts the number of probing 

messages that were needed before the required techniques 

converged. The results illustrate that ALFA has probing 

communication cost between 20 percent (for the smallest 

networks) and 270 percent (for the largest) higher networks.  

VI. CONCLUSION 

In this paper, we proposed an alternative (learning) 
method for populating alternate routing entries. The resulting 
technique is able to avoid almost 100 percent of potential 
routing cycles upon the occurrence of single link failures in a 
given set of representative reference networks. We showed 
that this had low impact on the quality of the resulting 
backup paths, which were at most 10 percent longer than the 
shortest paths in the fully operating network. Future work 
could focus on reducing the induced communication cost of 
learning adequate alternate entries. Using the spatial 
correlation between several nodes, clustering techniques 
could correlate groups of destinations allowing common 
LFNs along their alternate path. 
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