24 research outputs found

    COSSAP simulation model of DS-CDMA indoor microwave ATM LAN

    Get PDF
    This thesis presents an original work in the area of designing and implementing a simulation testbed for modelling a high speed spread spectrum Asynchronous Transfer Mode (ATM) Local Area Network (LAN). The spread spectrum technique used in this LAN model is Direct Sequence Code Division Multiple Access (DS-CDMA). The simulation model includes at least a physical layer of such a LAN, embedded into the COSSAP1 simulation environment, and has been fully tested. All the newly developed building blocks are comprised of standard blocks from the COSSAP libraries or compatible user-built primitive blocks (only where it is absolutely necessary), and are flexible enough to allow the modification of simulation or model parameters; such as the number of signal channels, modulation method used, different spreading code sequences and so on. All these changes can be made with minimal effort. Another significant contribution made in this thesis is the extended research into evaluating the Bit Error Rate (BER) performance of different spread spectrum COMA coding schemes for an indoor microwave A1M LAN [8]. Different spread spectrum CDMA coding schemes are compared for their transmission error rate in Additive White Gaussian Noise (AWGN) channel with varying transmitted signal power and at different channel Signal to Noise Ratio (SNR) levels. Since a wireless microwave channel is very prone to transmission errors, a major contribution of the simulation testbed developed in this thesis is its use in the finding of an optimal physical layer transmission scheme with the best Bit Error Rate (BER) performance in an indoor environment

    Error control techniques for satellite and space communications

    Get PDF
    The results included in the Ph.D. dissertation of Dr. Fu Quan Wang, who was supported by the grant as a Research Assistant from January 1989 through December 1992 are discussed. The sections contain a brief summary of the important aspects of this dissertation, which include: (1) erasurefree sequential decoding of trellis codes; (2) probabilistic construction of trellis codes; (3) construction of robustly good trellis codes; and (4) the separability of shaping and coding

    A novel high-speed trellis-coded modulation encoder/decoder ASIC design

    Get PDF
    Trellis-coded Modulation (TCM) is used in bandlimited communication systems. TCM efficiency improves coding gain by combining modulation and forward error correction coding in one process. In TCM, the bandwidth expansion is not required because it uses the same symbol rate and power spectrum; the differences are the introduction of a redundancy bit and the use of a constellation with double points. In this thesis, a novel TCM encoder/decoder ASIC chip implementation is presented. This ASIC codec not only increases decoding speed but also reduces hardware complexity. The algorithm and technique are presented for a 16-state convolutional code which is used in standard 256-QAM wireless systems. In the decoder, a Hamming distance is used as a cost function to determine output in the maximum likelihood Viterbi decoder. Using the relationship between the delay states and the path state in the Trellis tree of the code, a pre-calculated Hamming distances are stored in a look-up table. In addition, an output look-up-table is generated to determine the decoder output. This table is established by the two relative delay states in the code. The thesis provides details of the algorithm and the structure of TCM codec chip. Besides using parallel processing, the ASIC implementation also uses pipelining to further increase decoding speed. The codec was implemented in ASIC using standard 0.18ƒÝm CMOS technology; the ASIC core occupied a silicon area of 1.1mm2. All register transfer level code of the codec was simulated and synthesized. The chip layout was generated and the final chip was fabricated by Taiwan Semiconductor Manufacturing Company through the Canadian Microelectronics Corporation. The functional testing of the fabricated codec was performed partially successful; the timing testing has not been fully accomplished because the chip was not always stable

    Broadband wireless communication systems: Channel modeling and system performance analysis

    Get PDF
    Wideband channel modeling, which can accurately describe the most important characteristics of wideband mobile fading channels, is essential for the design, evaluation, and optimization of broadband wireless communication systems. In the field of wideband channel modeling, the tradeoff between the prediction accuracy and simulation efficiency has to be taken into account. On one hand, channel models should be as accurate as possible. On the other hand, channel models are supposed to be simple and easy to put into use. There are several commonly used approaches to channel modeling, e.g., measurement-based channel modeling and deterministic channel modeling. Both methods are efficient in capturing the fading behavior of real-world wireless channels. However, the resulting channel models are only valid for the specific environments as those where the measurements were carried out or the ray-tracing scenario was considered. Moreover, these methods are quite time consuming with high computational cost. Alternatively, the geometry-based stochastic channel modeling approach can be employed to model wideband mobile fading channels. The most attractive feature of this method is that the derived channel models are able to predict fading behavior for various propagation environments, and meanwhile they can be easily implemented. Thus, the dissertation will complete the wideband channel modeling task by adopt the geometry-based stochastic approach. In the dissertation, several geometry-based channel models are proposed for both outdoor and indoor propagation scenarios. The significance of the work lies in the fact that it develops channel models under more realistic propagation conditions which have seldom been considered, such as for non-isotropic scattering environxi ments and mobile-to-mobile (M2M) fading channels. In addition, the proposed channel models remove the scarcity that proper geometry-based channel models are missing for indoor environments. The most important statistical properties of the developed channel models including their temporal autocorrelation function (ACF), the two-dimensional (2D) space cross-correlation function (CCF), and the frequency correlation function (FCF) are analyzed. Furthermore, efficient channel simulators with low realization expenditure are obtained. Finally, the validity of the proposed channel models is demonstrated by comparing their analytical channel statistics with the empirical ones measured from real world channels. Besides the work in the field of wideband channel modeling, another part of the dissertation is dedicated to investigate the performance of SISO1 orthogonal frequency division multiplexing (OFDM) broadband communication systems and space-time (ST) coded MIMO2 OFDM broadband communication systems. This work provides a deep insight into the performance of a broadband mobile radio communication system over realistic wideband fading channels. Analytical expressions are derived for bit error probability (BEP) or symbol error rate (SER) of systems. In order to confirm the correctness of the theoretical results as well as to show the usefulness of the wideband channel models in the testing and analysis of a broadband communication system, SISO OFDM systems and space-time coded MIMO OFDM systems are simulated in the dissertation. In order to improve the reliability of digital transmission over broadband wireless radio channels, a differential super-orthogonal space-time trellis code (SOSTTC) is designed for noncoherent communications, where neither the transmitter nor the receiver needs the channel state information (CSI) for decoding. In addition, a new decoding algorithm is proposed. The new algorithm has exactly the same decoding performance as the traditional one. However, it is superior from the standpoint of overall computing complexity

    Physical-layer Network Coding for Cooperative Wireless Networks

    Get PDF
    As a newly-emerged paradigm in the networking techniques, physical-layer network coding (PNC) [1, 5] takes advantage of the superimposition of the electromagnetic waves, and embraces the interference which was typically deemed as harmful, by performing exclusive-or mapping. Therefore, the spectral efficiency is utilized, which in turn boosts the network throughput. In the classical 2-way relay channel (2-WRC), PNC only spends two channel uses for the bi-directional data exchange. However, one challenge for such a paradigm is that the singular fading states in the uplink of 2-WRC, might result in ambiguity for decoding the network coded symbol. One major focus of this thesis is to address the fading issue for PNC in the 2-WRC. Another fundamental challenge for PNC is to extend the PNC from the 2-WRC to a multi-user network such as the multi-way relay channel (M-WRC) or the hierarchical wireless network (HWN). To tackle these two fundamental challenges of PNC, several solutions are proposed in this thesis, which are summarized as follows: First, we introduce two efficient fading correction strategies, i.e., the rotationally-invariant coded modulation and the soft-bit correction. Second, a novel multilevel coded linear PNC scheme with extended mapping for the Rayleigh fading 2-WRC is proposed. Third, we design a new type of linear PNC for the Rayleigh fading 2-WRC, based on rings. We refer to such design as linear PNC over the hybrid finite ring. Fourth, we redesign PNC for the HWN, which facilitates the multi-user data exchange. To combat the co-channel interference introduced by multi-user data exchange, two efficient interference exploitation strategies based on network coding are proposed: 1) PNC with joint decoding; and 2) analogue network coding with interference-aware maximum likelihood detection. Finally, we propose a multilevel coded LPNC for the data exchange in the M-WRC
    corecore