
Physical-layer Network Coding for Cooperative
Wireless Networks

Dong Fang

Doctor of Philosophy

University of York

Electronics

March 2014



Abstract

As a newly-emerged paradigm in the networking techniques, physical-layer network cod-

ing (PNC) [1, 5] takes advantage of the superimposition of the electromagnetic waves,

and embraces the interference which was typically deemed as harmful, by performing

exclusive-or mapping. Therefore, the spectral efficiency is utilized, which in turn boosts

the network throughput. In the classical 2-way relay channel (2-WRC), PNC only spends

two channel uses for the bi-directional data exchange. However, one challenge for such

a paradigm is that the singular fading states in the uplink of 2-WRC, might result in am-

biguity for decoding the network coded symbol. One major focus of this thesis is to

address the fading issue for PNC in the 2-WRC. Another fundamental challenge for PNC

is to extend the PNC from the 2-WRC to a multi-user network such as the multi-way re-

lay channel (M-WRC) or the hierarchical wireless network (HWN). To tackle these two

fundamental challenges of PNC, several solutions are proposed in this thesis, which are

summarized as follows: First, we introduce two efficient fading correction strategies, i.e.,

the rotationally-invariant coded modulation and the soft-bit correction. Second, a novel

multilevel coded linear PNC scheme with extended mapping for the Rayleigh fading 2-

WRC is proposed. Third, we design a new type of linear PNC for the Rayleigh fading

2-WRC, based on rings. We refer to such design as linear PNC over the hybrid finite ring.

Fourth, we redesign PNC for the HWN, which facilitates the multi-user data exchange.

To combat the co-channel interference introduced by multi-user data exchange, two effi-

cient interference exploitation strategies based on network coding are proposed: 1) PNC

with joint decoding; and 2) analogue network coding with interference-aware maximum

likelihood detection. Finally, we propose a multilevel coded LPNC for the data exchange

in the M-WRC.
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years, the application of physical-layer network coding (PNC) [1] has attracted

significant attention. Compared with the conventional network coding which consumes

three time slots and time scheduling scheme which consumes four time slots, PNC pro-

vides a substantial throughput enhancement in two-way relay channels (2-WRC) as it

requires only two transmission time slots. For the PNC enabled bi-directional relaying

in 2-WRC, we refer to the uplink in the first time slot as the multiple access (MAC)

phase and the downlink in the second time slot as the broadcast (BC) phase. However,

the authors in [7, 8] pointed out that some singular fading states in the MAC phase in-

evitably reduce the minimum distance between different network coded symbols (NCS).

This significantly degrades the performance of PNC. As such, one fundamental challenge

for PNC is how to deal with the fading in the 2-WRC.

We note that the 2-WRC only supports two users’ data exchange. As a natural and

enriched extension, redesigning the PNC to accommodate the multi-user network (more

than two users) is seen as an attractive topic. However, the PNC should be able to deal

with interference which increases proportionally with the increase of the number of users.

Moreover, the PNC should ensure that the NCS can be unambiguously decoded at each

user such that the desired symbol from the other users can be extracted. One possible
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CHAPTER 1. INTRODUCTION 2

solution is to transmit the NCSs with larger code space. However, this sacrifices the

spectral efficiency. In summary, the the challenge of PNC in multi-user network is that

the redesigned PNC should transmit fewer symbols but support more users.

1.2 Contributions

The aims of this thesis are to tackle the aforementioned challenges of combating fading

in 2-WRC and redesigning PNC in multi-user network. The major research outputs are

concluded in the following contributions:

1) We propose a coded modulation strategy, named rotationally-invariant coded mod-

ulation (RICM), for PNC in 2-WRC. To fully exploit the nature of phase shift which is

introduced by the relative fading of 2-WRC, the RICM provides a solution for ambiguous

decoding caused by the phase shift using independent decoding for each bit level. Using

an adaptive soft demodulator and independent decoding levels, the RICM can eliminate

the effect of fading on the 2-WRC. Furthermore, we introduce a low-complexity approach

for RICM such that only two fixed demodulators are required. Simulations confirm the

performance enhancements by the proposed RICM strategies over the traditional hierar-

chical decode-and-forward strategy using XOR mapping.

2) We propose a novel PNC based bi-directional data exchange protocol in 2-WRC,

in which the fading correction is implemented at the user side. We call it the soft-bit

correction (SBC). In such a strategy, the relay maps the received superimposed signal

into the network coded soft-bit rather than decoding them. Then the network coded soft-

bit is quantized and forwarded to users. The fading effect is then removed at the soft-bit

level at each user. The SBC provides the advantages in terms of system complexity and

error performance over the the traditional hierarchical decode-and-forward strategy using

XOR mapping.

3) We propose a novel linear physical-layer network coding scheme with extended

mapping (LPNC-EM) for Rayleigh fading 2-WRC. The LPNC-EM scheme forms two or

three independent coding levels which facilitate the use of multilevel coding. This enables

the hierarchical decode-and-forward strategy. The numerical results show that uncoded
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CHAPTER 1. INTRODUCTION 3

LPNC-EM outperforms the original PNC using bit-wise eXclusive-OR (XOR) mapping

and can achieve a error performance as good as the 5QAM denoise-and-forward (5QAM-

DNF) in [8]. Furthermore, the multilevel coded LPNC-EM also provides coding gain

over 5QAM-DNF and the coded original PNC.

4) We propose a new type of PNC for 2-WRC by extending the size of alphabet of

NCS. We refer to such design as linear physical-layer network coding over hybrid finite

ring (HFR-LPNC). In HFR-LPNC, the relay maps the superimposed signal of the two

users to a linear network coded combination (LNCC) over the hybrid finite ring, rather

than using the simple bit-wise XOR mapping [1]. The optimal linear coefficients are se-

lected to generate the LNCC, aiming to: 1) maximize the sum-rate in the MAC phase;

and 2) ensure unambiguous decoding. To avoid the performance degradation caused by

high-order irregular mappings, properly designed source coding is used for compressing

the LNCC alphabet over the hybrid finite ring into the unifying 4-ary alphabet. We de-

rive the constellation constrained sum-rates for HFR-LPNC in comparison with 5QAM

denoise-and-forward (5QAM-DNF) [8], which we use as a reference scheme. Further-

more, we explicitly characterize the rate difference between HFR-LPNC and 5QAM-

DNF. Our analysis and simulation show that: 1) HFR-LPNC has a superior ability to

mitigate the singular fading compared with 5QAM-DNF; and 2) HFR-LPNC is superior

to 5QAM-DNF over a wide range of SNRs.

5) We extend the PNC from the 2-WRC to the hierarchical wireless network (HWN).

We redesign the PNC such that network coded symbols of the useful signal and interfer-

ence signal are jointly decoded. The proposed PNC transforms the naturally occurring

co-channel interferences (CCI) into useful signal instead of suppressing them. By fully

utilizing the network infrastructure, the proposed strategies provide extra diversity. In

addition, we design a new analogue network coding (ANC) for HWN which adopts the

interference-aware maximum likelihood detection to mitigate the interference. A straight-

forward design, the TDMA based PNC (TDMA-PNC), is also introduced as the bench-

mark. We further derive and compare the constellation constrained sum-rate for each

scheme, which clearly demonstrates the substantial performance enhancement provided

by the proposed strategies over the TDMA-PNC in HWN.

6) A novel multi-way data exchange enhanced by the coded LPNC is proposed. In
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such a design, the relay maps the superimposed signal into the LNCC by multiplying

the user data vector by a properly selected generator matrix. A sum-rate based mapping

selection scheme is also introduced for generating the optimal LNCC. The unambiguous

decoding and minimum cardinality of the proposed LPNC mapping are investigated. The

proposed LPNC facilitates the multilevel coding structure using the parallel independent

coding levels in which each level is a linear function of user data. This enables the hi-

erarchical decode-and-forward paradigm as in [7]. The simulation results show that: 1)

the un-encoded LPNC achieves equal error performance compared with the latin cube

based PNC [12]. 2) the un-encoded LPNC provides a superior sum-rate over the oppor-

tunistic scheduling based PNC. and 3) MLC-LPNC shows the coding gain over the two

benchmarks.

1.3 Thesis Outline

The rest of thesis is organized as follows:

In Chapter 2, the fundamentals of PNC are presented. Firstly, the concept of 2-WRC

and PNC are described. Secondly, the challenges of PNC in 2-WRC are discussed. Lastly,

the detailed challenge of PNC in multi-user networks is investigated.

In Chapter 3, two fading-resistant strategies for PNC are introduced. The whole chap-

ter is divided into 2 sub-chapters for the RICM and SBC, respectively. The first sub-

chapter describes the RICM for PNC in 2-WRC, in which the fully adaptive design and

the low-complexity design are introduced. The second sub-chapter describes the SBC for

PNC in 2-WRC, in which the fading correction at soft-bit level and robust quantization

design are introduced.

In Chapter 4, a novel multilevel coded linear PNC scheme with extended mapping

(LPNC-EM) for Rayleigh fading 2-WRC is proposed. We design a mapping selection

criterion for LPNC-EM which ensures unambiguous decoding and maximizes the indi-

vidual rate of each user. The LPNC-EM scheme forms two or three independent coding

levels which facilitate the use of multilevel coding. Lastly, we compare the end-to-end

sum-rate and frame error rate for LPNC-EM, original PNC and 5QAM-DNF.

Dong Fang, Ph.D. Thesis, University of York 2014



CHAPTER 1. INTRODUCTION 5

In Chapter 5, a new LPNC over the hybrid finite ring is proposed. The analysis of

sum-rate in MAC phase for LPNC over different rings are presented. Based the analyzed

results of sum-rate, we provide a simplified design for LPNC. A rate based 5QAM-DNF

is also introduced as the benchmark. Lastly, we compare the end-to-end sum-rate for each

strategy.

In Chapter 6, we redesign the PNC and ANC for HWN. The TDMA based PNC is also

introduced as the benchmark. The constellation constraint sum-rate for each strategy are

derived. The rate analysis for each strategy is also given. Lastly, we discuss the resulting

diversity performance of each strategy, based on the outage probability analysis.

In Chapter 7, a coded LPNC for M-WRC is proposed. We firstly present the detailed

design of its mapping strategy. Then the unambiguous decoding and sum-rate of proposed

are discussed. Lastly, we compare the proposed LPNC with several strategies in the

literature.

In Chapter 8, conclusions and a discussion on possibilities for future work are pre-

sented.

1.4 Notation

In this thesis, we use upper case characters to denote random variables, and lower case

characters to denote the numerical values of a random variable. We use capital and small

bold fonts to denote matrices and vectors. E{·} denotes the statistical expectation opera-

tor.
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Chapter 2

The Fundamentals of Physical-layer

Network Coding

2.1 The 2-way Relay Channels

Wireless relaying is identified as a promising technique to offer spatial diversity and to

extend the coverage of wireless networks. In a wireless relay network, the relay acts as

the ‘intermediary’ for data exchange among different users. The 2-way relay channel is

regarded as a classical representative of wireless relay network and has been investigated

extensively in recent years. The origin of 2-WRC can be traced to Shannnon’s pioneering

work in [9], where the rudiment of 2-WRC, i.e., the 2-way channel (2-WC) without relay

was investigated. Later on, some pioneer work was led and done by Van der Meulen [10],

Cover and El Gamal [11].

The 2-WRC can be treated as a combination of 2-WC and relay network. As seen in

Fig. 2.1, the 2-WRC is a three-node linear network in which two users A and B want to

exchange their data via a relay node R. The uplink of 2-WRC, i.e., the links from the two

users to the relay, can be seen as a multiple access channel (MAC) while the downlink,

i.e., the links from the relay to the two users, can be seen as a broadcast channel (BC). All

nodes operate in half-duplex mode and a direct link between the two users is unavailable.

Similar to other types of relay network, the traditional amplify-and-forward (AF) and
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CHAPTER 2. THE FUNDAMENTALS OF PHYSICAL-LAYER NETWORK CODING 7

decode-and-forward (DF) strategies can be implemented in the 2-WRC [5].

Figure 2.1: (a) Conventional TDMA (b) Standard NC (c) PNC

A conventional bi-directional data exchange protocol is TDMA, as shown in Fig.

2.1(a). In such a protocol, each user alternately transmits their signal to the relay which

avoids the co-channel interference. However, this consumes four orthogonal time slots

and hence sacrifices spectral efficiency. As an alternative approach, standard network

coding, as shown in Fig. 2.1(b), allows the relay to generate the XOR combination (re-

garded as the network coded data) of the data from the two users and forward to them.

Two users then extract the desired data by using the XOR operation on the received net-

work coded data and their side-information. However, the standard NC still requires three

transmission phases as each user transmits data to the relay using different time-slots.

By fully exploiting the superposition nature of electromagnetic waves, PNC in [1, 5]

allows two users simultaneously to transmit their signals to the relay in the MAC phase,

as shown in Fig. 2.1(c). The relay directly maps the superimposed signal into the XOR

combination of data from the two users, which is referred to as the network coded symbol.

Then in the BC phase, the resulting network coded symbol is forwarded to the users. PNC

provides a substantial improvement in terms of the spectral efficiency over the TDMA

and standard NC protocol as it only consumes two transmission time slots. The concept

of PNC is detailed in the next section.
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2.2 The Multi-way Relay Channels

The natural extension of the 2-WRC is the multi-way relay channel (M-WRC), as shown

in Fig. 2.2. The M-WRC consists of M users (Ui, i ∈ {1, 2, 3, ...,M}) and a shared

relay (R). All users operate in half-duplex mode and there is no direct link among users.

The multi-way data exchange takes place among the users with the help of the relay. Each

user expects to decode the data from all other users based on exploiting the signal received

from the relay and its own side information.

Figure 2.2: The model of M-WRC

The conventional data exchange protocol is the user scheduling [14], in which the users

alternately transmit their signal to avoid co-channel interference. However, this results in

a low spectral efficiency. In contrast to the scheduling approach, PNC allows the users

to simultaneously transmit the signals in the same channel. The spectral efficiency is

thus much improved. However, due to the co-channel interference in the MAC phase, the

question of how the users recover their desired signal with the minimum cost is the major

concern for PNC design in M-WRC.
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2.3 Physical-layer Network Coding

In this section, we provide the fundamental concept of PNC.

2.3.1 PNC using XOR mapping

Here, we show the simplest case of PNC in the 2-WRC, where two users adopt BPSK

modulation. Let A2 = {−1,+1} denote the Gray coded BPSK alphabet. The mapping

from user symbol to modulated symbol is denoted asMB : GF (2) → A2. The BPSK

symbols transmitted by user i, i ∈ {A,B} denoted as xi, is then given by xi =MB(si) =

1 − 2si. The channel gain from user i to R is denoted as hi. In the MAC phase, A and B

simultaneously transmit their signal to R. Due to the superimposition nature of EM waves,

the relay R receives

yR = hAxA + hBxB + nR, (2.1)

where nR is the additive white Gaussian noise (AWGN) with the variance σ2. Without

loss of generality, we assume that |hA| ≥ |hB|. The noiseless superimposed constella-

tion at the relay is illustrated in Fig. 2.3, where the PNC mapping proposed in [1] is

implemented. We observe that the superimposed signal is in fact mapped as the XOR

combination of data from the two users, given by sR = sA ⊕ sB, where sR denotes the

network coded symbol (NCS) and ⊕ denotes the bit-wise XOR operation (the module-2

sum in the binary field). Let xAB , hAxA+hBxB denote the superimposed signal. Based

on Fig. 2.3, the mapping from the superimposed signal into the NCS is given by

xAB → sR

s.t. sR = sA ⊕ sB.
(2.2)

Let SR denote the alphabet of NCS. Clearly, the above mapping function results in a

compression on data from the two users since the cardinality of SR is equal to that of the

user alphabet. As such, BPSK can be adopted to transmit the NCS. The BPSK modulated

NCS, denoted as xR, is given by xR =MB(sR). After receiving the NCS, each user can

decode their desired symbol by using XOR operation, i.e., s̃B = sA⊕sR and s̃A = sB⊕sR,

where s̃i denotes the recovered symbol.

Dong Fang, Ph.D. Thesis, University of York 2014



CHAPTER 2. THE FUNDAMENTALS OF PHYSICAL-LAYER NETWORK CODING 10

Figure 2.3: Superimposed Constellation of PNC when using BPSK

2.3.2 Rate Region of PNC

The authors in [5,7] pointed out that in PNC, the individual rate of each user in the MAC

is bounded by the mutual information between the received signal and the NCS, ,denoted

by I(YR;SR), where YR and SR are the random variable of yR and sR, respectively. The

mutual information I(YR;SR) can be expanded as

RA = RB ≤ I(YR;SR), (2.3)

where Ri denotes the achievable rate of user i.

The mutual information I(YR;SR) is expanded as

I(YR;SR) = H(YR)−H(YR|SR). (2.4)

The entropy of the received signal is given by

H(YR) = −
∫

yR∈C

p(yR)log2 (p(yR)) dyR, (2.5)

where the PDF of the received signal is calculated as

p(yR) =
∑

xA,xB∈A2

P (xA)P (xB)p(yR|xA, xB). (2.6)
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The conditional entropy H(YR|SR) in (12) can be calculated as

H(YR|SR) = −
∑
sR∈A2

∫
yR∈C

p (yR, sR) log2 (p (yR|sR)) dyR

= −
∑
sR∈A2

P (sR)

∫
yR∈C

p (yR|sR) log2 (p (yR|sR)) dyR.

(2.7)

Note that neither H(YR) in (2.5) nor H(YR|SR) in (2.7) can be written in closed form.

Hence, we use Monte-Carlo integration instead. The mutual information in (2.4) thus can

be computed as

I(YR;SR) = E [log2 (p(YR))]− E [log2 (p (YR|SR))] , (2.8)

where E[·] means the the empirical mean.

2.3.3 Fading issue of PNC in 2-WRC

The well-known challenge for PNC in 2-WRC is the fading in the MAC phase. We can

see that when two channels in MAC phase experience different fading, there will be a

relative phase rotation and amplitude variation. So the fading issue can be treated as a

combination of phase synchronization and amplitude variation [8]. In the following, we

describe the fading issue of PNC in detail.

Consider a 2-WRC where the users adopt QPSK modulation. Let A4 =

{+1,+j,−1,−j} denote the Gray coded QPSK alphabet with unit energy constraint.

The mapping from user symbol to complex symbol is denoted asMQ : GF (22) → A4.

The QPSK symbols transmitted by user i, i ∈ {A,B} denoted as xi, is then given by

xi = MQ(si). The superimposed signal is given in (2.1). Let hre , hB/hA = rejφ

denote the relative fading factor, where r is the channel amplitude ratio and φ is phase

shift. We refer to

xAB , hAxA + hBxB (2.9)

as the noiseless superimposed signal (SS).

Based on the original PNC design using XOR mapping, we have the following maxi-
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mum likelihood (ML) detection

ŝR = arg max
sR∈A4

p(yR|sR) = arg max
sR∈A4

∑
xA,xB :sR=sA⊕sB

P (xA)P (xB)p(yR|xA, xB),, (2.10)

where the conditional probability density function (PDF) p(yR|xAB) is given by

p(yR|xA, xB) =
1

2πσ2
w

exp

(
−|yR − xAB|

2

2σ2
w

)
. (2.11)

We define the set of xAB associated with the same sR as XAB(sR) while we define

X̄AB(sR) , ∪
sR 6=s′R

XAB(s′R) as its complementary set. The minimum squared Euclidean

distance (MSED) between different xAB associated with different sR is computed as

d2
min(sR) = min

xAB∈XAB(sR)
x′AB∈X̄AB(s′R)

|xAB − x′AB|2. (2.12)

The authors in [8] pointed out that the original PNC using XOR mapping has a sig-

nificant performance degradation when hre occurs on: hre = ±j, hre = ±1
2
(1 ± j),

hre = ±1± j and hre ≈ 0, which are referred to as singular fading. This can be reflected

on the MSED plot over the complex plane of hre, as shown in Fig. 2.4. We can clearly

observe that the MSED around the singular fade states approaches zero. As such, around

these singular points, the XOR mapping cannot distinguish the nearest neighbouring xAB

associated with different sR. As a result, the mutual information I(YR;SR) is degraded,

as shown in Fig. 2.5. From Fig. 2.5, we clearly observe that different singular fading has

different the degradation effect on I(YR;SR). The most severe degradation is caused by

hre ≈ 0. In such circumstances, one of the links from users is completely faded such that

the NCS can not be generated from (2.10).

2.3.4 Denoise-and-forward in 2-WRC

In the previous section, we discussed the challenge of PNC in 2-WRC, i.e., the singular

fading in the MAC phase. To address this issue, several fading correction strategies for

PNC are proposed [8, 12, 15]. Of all these strategies, DNF in [8] is a remarkable one

which investigates the issue of singular fading for PNC and proposes a solution for it. In

the following, we describe the basic idea of DNF.
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Consider a QPSK based 2-WRC. The authors in [8] propose a non-linear mapping for

PNC, i.e., the 4-ary user data are adaptively mapped into the 4- or 5-ary NCS, defined as

C : xAB → sR, sR ∈ Z4 or Z5, (2.13)

where Zq = {0, 1, 2, ..., q − 1}.

For successful decoding, the non-linear mapping C must meet the following require-

ment
C(sA, sB) 6= C(s′A, sB), ∀sA 6= s′A,

C(sA, sB) 6= C(sA, s′B), ∀sB 6= s′B,
(2.14)

which is referred to as the exclusive law.

The authors in [8] also proposed the so-called closest-neighbour clustering algorithms,

taking the exclusive law into consideration, as shown in Algorithm 1 of [8]. The resulting

mapping C is provided in Table 1 of [8]. This algorithm provides an optimal code which

has the largest MSED profile for a given channel condition. Fig. 2.6 shows the MSED

d2
min of DNF against the relative fading factor hre. Based on Fig. 2.6, we observe that the

DNF mitigates the singular fading around hre = ±j, hre = ±1
2
(1± j) and hre = ±1± j

except hre ≈ 0.
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Figure 2.6: d2
min v.s. hre for DNF [8].

DNF extends the cardinality of NCS alphabet from 4-ary to 5-ary. As such, the BC

Dong Fang, Ph.D. Thesis, University of York 2014



CHAPTER 2. THE FUNDAMENTALS OF PHYSICAL-LAYER NETWORK CODING 15

phase might require the irregular modulation. Greedy sphere packing is used to generate

the 5QAM for 5-ary mapping [8]. The 5QAM modulation brings out the irregularity in

the modem communication systems. In Chapter 4, we propose a novel linear physical-

layer network coding which avoids the irregular modulation and has a superior capability

to mitigate the singular fading.

2.3.5 The challenge of PNC in M-WRC

In this subsection, we discuss the challenges of PNC in the M-WRC. The design criteria

of PNC in the M-WRC mainly focus on: 1) ensuring the multi-user exclusive law; and 2)

following the minimum cardinality constraints as in [8].

We extend the 2-WRC to the M-WRC. We assume that there are M users which em-

ploy the same constellation mapper MU(·). The superimposed signal at the relay R is

given by

yR =
M∑
i=1

hixi + nR, (2.15)

where xi =MU(si), i ∈ {1, 2, ...,M} is the modulated symbol of the i-th user and si is

the user data.

We refer to

xss ,
M∑
i=1

hixi (2.16)

as the noiseless superimposed signal (SS) at R.

The PNC mapping for the M-WRC is defined as

M : xss → sR (2.17)
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such that

M(s1, s2, s3, · · · , sM) 6=M(s1, s
′
2, s3, · · · , s′M) , ∀(s2, s3, · · · , sM) 6=(s′2, s

′
3, · · · , s′M)

M(s1, s2, s3, · · · , sM) 6=M(s′1, s2, s
′
3, · · · , s′M) , ∀(s1, s3, · · · , sM) 6=(s′1, s

′
3, · · · , s′M)

M(s1, s2, s3, · · · , sM) 6=M(s′1, s
′
2, s3, · · · , s′M) , ∀(s1, s2, · · · , sM) 6=(s′1, s

′
2, s
′
4 · · · , s′M)

...

M(s1, s2, s3, · · · , sM) 6=M(s′1, s
′
2, s
′
3, · · · , sM) , ∀(s1, s2, · · · , sM−1) 6=(s′1, s

′
2, · · · , s′M−1)

(2.18)

is satisfied. We refer to (2.18) as the multiuser exclusive law which extends (2.14) from

the 2-WRC to the M-WRC.

We define the alphabet of NCS as SR. The cardinality of SR is defined as |SR|. Given

that (2.18) is satisfied, |SR| should be as small as possible. This is referred to as the min-

imum cardinality constraint. Clearly, the minimum cardinality guarantees the superiority

of PNC in BC transmission.

In summary, the multiuser exclusive law and the minimum cardinality constraint

should be jointly taken into account. This poses a challenge for PNC in the M-WRC.

2.3.6 Latin Hyper-Cube PNC in the M-WRC

The authors in [12] proposed an adaptive PNC for the M-WRC, which adopts the Latin

hypercube to generate the network coded mapping at the relay. The elements in such a

Latin cube are the value of NCS for which the superimposed signal is mapped into.

Consider a 3-WRC, the received signal is given in (2.15). The mapping function at the

relay is denoted as (2.17), which is generated from a 3-fold Latin cube as shown in Fig.

2.7. The definition of the Latin cube is given by

Definition 1 [12, 57]: A 3-fold Latin cube L of side N on the symbols from the set

Zt = {0, 1, 2, ..., t − 1}, where t = M2, is an N × N × N array, in which each cell

contains one symbol and each symbol occurs at most once in each row, column and file.

The cell of such a Latin cube, namely, the NCS is generated from Algorithm 1 of [57].
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It is worth noting that if any side of the Latin cube and resulting NCS are determined,

then the values of the other two sides are uniquely determined. This in fact indicates that

the multiuser exclusive law (2.18) is satisfied. The Algorithm 1 in [57] generates the NCS

using row-wise or column-wise permutation such that the singular fade states in the MAC

phase are mitigated. For a given channel state, the Algorithm 1 of [57] always outputs

the NCS with the largest MSED profile. However, this results in an enlarged cardinality

of NCS alphabets and requires a 3-dimensional exhaustive search. The Latin cube based

mapping design is in fact a type of non-linear mapping. As such, linear codes cannot be

adopted.

Figure 2.7: A 3-fold Latin Cube for 3-WRC.

2.3.7 Hierarchical Decode-and-forward

The hierarchical decode-and-forward (HDF) paradigm for PNC was originally proposed

in [7]. In essence, such a scheme aims to exploit the PNC mapping in order to use the

linear codes, that is, the mapped NCS sequence is a valid code sequence which can be

directly fed into the channel decoder. In this subsection, we will describe the HDF scheme

in detail.

Suppose that both users in the 2-WRC employ a rate k/n linear code C : {0, 1}k 7→
{0, 1}n such that the uncoded data sequence di, i ∈ {A,B} is mapped into the coded

sequence si, i.e., C(di) = si. Then the two users adopt the same modulation scheme

MS(.) to transmit simultaneously in the MAC phase. The electromagnetic signals are

superimposed and received by the relay, given by

yR = hAxA + hBxB + nR, (2.19)
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where xi =MS(xi), i ∈ {A,B} is the modulated symbol.

Let xss , hAxA + hBxB denote the superimposed sequence. In [7], the authors

state that the HDF paradigm enables the PNC mapping: MR : xss[t] 7→ sR[t], where sR

denotes the resulting NCS and t is the symbol index, such that the NCS sequence sR is

a valid codeword belonging to C, i.e., sR ⊂ C. Therefore sR can be directly fed into the

channel decoder C−1 : {0, 1}n 7→ {0, 1}k. The output of the channel decoder, denoted by

dR is also a network coded combination of the original data sequences of the two users,

given by dR = C−1 (sR). The diagram of HDF is shown in Fig. 2.8.

Figure 2.8: System Diagram of HDF.

Clearly, the HDF for PNC should also satisfy the exclusive law, given by

C (MR (dA,dB)) 6= C (MR (d′A,dB)) ,dA 6= d′A,

C (MR (dA,dB)) 6= C (MR (dA,d
′
B)) ,dB 6= d′B.

(2.20)

where we note that the linearity of codes should be guaranteed by the PNC mappingMR.

This implies that to facilitate the HDF scheme, constructing linear PNC (LPNC) mapping

is necessary. Some examples of HDF are provided in Chapters 3, 4 and 5.

Dong Fang, Ph.D. Thesis, University of York 2014



Chapter 3

Fading Correction for Physical-layer

Network Coding in the 2-way Relay

Channels

Contents
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Overview

In this chapter, we propose two schemes for PNC to combat fading in 2-WRC: 1) ro-

tationally invariant coded modulation (RICM) for PNC; and 2) soft-bit correction with

robust quantize-and-forward (SBC-QF) for PNC. These two schemes provides different

approaches to combat fading, i.e., RICM mitigates the fading of MAC phase at relay while

SBC eliminates the effect of fading at destination.
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3.2 Scheme 1: Rotationally Invariant Coded Modulation

for Physical-layer Network Coding

3.2.1 Overview

In this section, we propose a novel coded modulation scheme for PNC in the fading 2-

WRC. Using an adaptive soft demodulator and several parallel decoders, the proposed

scheme can eliminate the effect of fading on the 2-WRC. To reduce system complexity at

the relay, we also give a low-complexity two-demodulator scheme. Based on maximizing

the mutual information between received signal at the relay and network coded symbol,

the optimal one of two PNC mappers is then selected. The proposed simplified scheme

exhibits advantages in terms of flexibility, complexity and performance.

3.2.2 Introduction

For the PNC protocol, it has been proven [2, 3] that fading in MAC phase can introduce

phase shifts which lead to exclusive law failure for some points in the superimposed con-

stellation, which significantly degrades the performance. Thus, to combat fading in the

2-WRC is an important issue for PNC. The achievement in [3] provides a novel denoise-

and-forward (DNF) scheme to mitigate the effect of fading on the 2-WRC. A 5-ary irreg-

ular constellation mapping is involved in the design of the adaptive network coding for

different channel parameters. But their proposed 5-ary mapping is too irregular to be em-

ployed in common wireless systems. Moreover, the adaptive receivers at the relay need to

use the closest-neighbor clustering algorithm to select the proper mapping, which would

require exhaustive search. In [4], the authors combine DNF with trellis coded modulation

(TCM). The drawback of their scheme is that the coding structure for TCM is changed

and the relay needs to adapt two different relaying protocols. Another novel scheme was

introduced in [15], the authors introduced a kind of Pseudo XOR (PXOR) algorithm to

optimize the LDPC Coded PNC in a fading 2-WRC. In order to compensate the channel

fading, the PXOR algorithm optimizes the Euclidean distance by dynamically adjusting

the symbol distance. Their scheme is limited to the LDPC code, and is not flexible for an
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arbitrary channel code. In addition, we should notice that a common shortcoming of the

above mentioned schemes is the high system complexity.

In this section, we aim to eliminate the effect of fading in the 2-WRC. We propose the

RICM scheme which is robust for any phase shifts and flexible for any channel code. The

proposed scheme can achieve a proper balance between the complexity and performance.

3.2.3 Simple Model of PNC in 2-WRC

The 2-WRC consists of two users (A and B) and one relay (R). PNC allows two users

using the same modulation schemeMS(.) to transmit simultaneously in the MAC phase.

The electromagnetic signals are superimposed and received by the relay, given by

yR = hAsA + hBsB + nw, (3.1)

where si = MS(xi), i ∈ {A,B} is the modulated symbol for each user, especially, we

assume that both users employ Gray mapped QPSK whose constellation has unity energy

(thus, si ∈ Q4, i ∈ {A,B}, ∀si ∈ si, where Q4 is the QPSK alphabet whose cardinality

is 4). The codeword xi is obtained by encoding the data word di, i ∈ {A,B}. For QPSK,

each symbol in the codeword sequence can be represented as a 2-bit binary tuple, i.e.

xi ∈ Z4, i ∈ {A,B}, (where Zq = {0, 1, ...q − 1}). We refer to the result of the bit-

wise eXclusive-OR (XOR) operation on xA and xB as the network coded symbol x⊕, i.e.

x⊕ = xA ⊕ xB, which also takes the form of a 2-bit binary tuple. Here, we suppose

that both users are memoryless uniform sources and they employ an identical codebook

C. hA and hB are the channel gains from A and B to C, respectively. nw is the complex

Additive Gaussian White Noise (AWGN) with the variance σ2
w per complex dimension.

We substitute the superimposed signal s⊕ = hAsA + hBsB into (3.1) and obtain yR =

s⊕ + nw. The relay processes the received signal based on the network coding paradigm

and forwards network coded data stream x⊕ or its variations (compressed version, etc.)

with modulation schemeMR(.) for the BC phase.
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3.2.4 RICM with Fully Adaptive Demodulator

Normally, it is assumed that the channel status information (CSI) is known to the receiver

side only, that is, to the relay only for the MAC phase and to the destination users only

for the BC phase [2, 3]. We pay particular attention to the fading in the MAC phase since

the fading in the BC phase can be well compensated at the destination users. Based on

(3.1), we denote the relative fading factor as h = hB/hA = rejϕ which is the ratio of two

channel gains (r is the channel amplitude ratio and ϕ is the phase shift). So after a scaling

by 1/hA, the superimposed signal can be equivalently expressed as s⊕ = sA + hsB. As

in [2-5], we also assume that two channel links in MAC phase have same average power:

E[|hA|2] = E[|hB|2] (E[.] is the expectation function) to respect the symmetry of the rates

from A and B.

Adaptive Soft Demodulator with Network Coded Symbol based Clustering

 
Self-Adjustment

Soft Demodulator
with 

Clustering

Superimposed
Constellation

Generator

Hash Table

 +

Figure 3.1: Structure of Adaptive Soft Demodulator.

Clearly, an appropriate mapping schemeM(xA, xB) will determine the performance

of PNC. In [3], the authors state the requirement of successful decoding with an arbitrary
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mapping: the exclusive law, which is

M(xA, xB) 6=M(x
′

A, xB)∀xA 6=x
′

A∈Z4 andxB∈Z4,

M(xA, xB) 6=M(xA, x
′

B)∀xB 6=x
′

B∈Z4 andxA∈Z4.
(3.2)

Note that DNF is an uncoded scheme. In order to effectively eliminate the distortion,

DNF must avoid the reduction of Euclidean distance between neighboring points in the

superimposed constellation. Under some specific singular fade states, the irregular 5-ary

mapping is involved. In order to avoid using such an irregular network coding and fully

utilize the capability of the channel codes, we propose a network coded symbol based

clustering algorithm to design the adaptive soft demodulator. The detailed structure is

shown in Fig. 3.1.

At the relay, we build a virtual scenario in which two sources are used to simulate

A and B. Each virtual user generates the integer set Z4 and then maps its elements to

the QPSK symbols. Also, a phase shift ϕ̃ and signal superimposition are introduced to

simulate the PNC paradigm in the MAC phase. Here, note that the phase shift is taken

modulo-90◦, i.e.
∼
ϕ = ϕ mod 90◦ (the reason for this is explained below). In this virtual

scenario, both source symbols and the corresponding superimposed signals with fading

information will be stored in a Hash table. At the same time, the constellation generator

provides a superimposed constellation Q⊕(
∼
ϕ) to the self-adjustment soft demodulator

based on the virtual code superimposition. At the final stage, the demodulator queries

the Hash Table to check all possible original code pairs (xA, xB) ∈ Z4 × Z4 for each

superimposed signal s⊕ ∈ Q⊕(
∼
ϕ).

Fig. 3.2 shows an example of store-and-query procedure for our designed Hash table.

The superimposed codes are all stored in a super-table and all possible signal superimpo-

sition actions are stored in the sub-tables. The soft demodulator will check whether the

closest neighbor superimposed codes s⊕ ∈ Q⊕(
∼
ϕ) can be clustered and mapped to a same

network coded symbol x⊕. It successively queries the superimposed code s⊕ in the Hash

Table. The super-table is firstly traversed and the matched ones are picked, then the cor-

responding sub-table gives all superimposition actions. By demapping functionM−1
S (.),

the original code pairs (xA, xB) will be given. Then the network coded symbols x⊕ are

obtained by eXclusive-OR operation and the satisfaction of clustering and mapping to a

same network coded symbol for the closest points can be easily checked. Obviously, the
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Figure 3.2: Store-and-query procedure of Hash Table (ϕ = 0◦).

network coded symbol based clustering always guarantees the eXclusive-OR mapping:

M⊕(xA, xB)=xA ⊕ xB (see Fig. 3.1), which satisfies the principle (3.2).

Detecting the network coded symbols is based on the MAP (Maximum A Posteriori)

principle. We denote x⊕,n(s⊕) as the n-th (n∈{1, 2}) network coded bit corresponding to

a superimposed signal s⊕. The n-th network coded LLR (log-likelihood ratio) Λ⊕,n can

be computed as

Λ⊕,n = ln

(
p(x⊕,n(s⊕) = 0|yR)

p(x⊕,n(s⊕) = 1|yR)

)
, n ∈ {1, 2}, (3.3)

where for each network coded bit x⊕,n(s⊕), the alphabet of the superimposed signal,

Q⊕(
∼
ϕ), can be split into two parts: S(0)

n and S(1)
n , which correspond to x⊕,n(s⊕) = 0

and x⊕,n(s⊕) = 1, giving: S(0)
n = {s⊕|x⊕,n(s⊕) = 0, s⊕ ∈ Q⊕(

∼
ϕ)} and S

(1)
n =

{s⊕|x⊕,n(s⊕) = 1, s⊕ ∈ Q⊕(
∼
ϕ)} . Then (3.3) can be rewritten as

Λ⊕,n = ln


∑

s⊕∈S(0)
n

p(yR|s⊕)P (s⊕)∑
s⊕∈S(1)

n

p(yR|s⊕)P (s⊕)

 , n ∈ {1, 2}, (3.4)

where p(yR|s⊕) is the conditional probability density function (PDF) of the received sig-

nal and P (s⊕) is the prior probability, both depend on the specific superimposed constel-

lation design in virtual PNC scenario. With the store-and-query procedure, it is easy to

calculate them. The calculated network coded LLRs are directly used by channel decoder

to implement the Hierarchical Decode-and-forward (HDF) scheme [2].
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Phase shifts over [0◦, 360◦)

We find that with the modulo-90◦ operation for the phase shift:
∼
ϕ = ϕ mod 90◦, the

generated superimposed constellations are relevant to the range [0◦, 90◦). Thus, we need

to extend this to all phase shifts in the range [0◦, 360◦). For a point-to-point Gray Mapped

QPSK system, the effect of 90◦ phase shift can be illustrated as in Fig. 3.3. The 2-

bit binary tuple (x1, x2) for QPSK is transformed to (x2, x1) (where (.) is the inverse

operation for binary bit) after passing through a 90◦ phase shift channel.

01

00

10

11

00

10

11

01

Figure 3.3: The effect of 90◦ phase shift for point-to-point QPSK system.

non-fading

Figure 3.4: The effect of 90◦ phase shift relative fading for PNC-QPSK system.

Obviously, if both codewords xA and xB experience non-fading channel link, the PNC

paradigm generates each network coded symbol in the form: (xA,1 ⊕ xB,1, xA,2 ⊕ xB,2)

(2-bit binary tuple of x⊕). This makes the network coded sequence x⊕ still a valid code

sequence in the codebook C, which is x⊕ ⊂ C. That is a prerequisite for HDF [2].

However, Fig. 3.4 shows that with 90◦ phase shift relative fading, the 2-bit binary tuple of

network coded symbol is obtained in the form: (xA,1 ⊕ xB,2, xA,2 ⊕ xB,1), which makes

x⊕ an invalid code sequence: x⊕ 6⊂ C. HDF thus completely fails. Intuitively, a simple

way is that an inverse operation on the 2nd bit of network coded symbol could correct it to

the normal eXclusive-OR combination, that is: xA,2 ⊕ xB,1 = xA,2⊕xB,1. And if xi,1 and

xi,2 (i ∈ {A,B}) are obtained by separately encoding at users and separately decoding

for x⊕,1 and x⊕,2 are applied at the relay, the correct operation of the HDF scheme can be
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guaranteed. The simple illustration is as shown in Fig. 3.5.

non-fading

Figure 3.5: The illustration of independent encoding and decoding for 90◦ phase shift in

PNC system.

The independent encoding and decoding scheme can thus ensure correct operation of

HDF when ϕ = 90◦. For ϕ = 180◦ or ϕ = 270◦, we only need to change the correction

pattern. With the appropriate correction pattern, the Adaptive Soft Demodulator with

independent decoding is robust for any phase shift in the range [0◦, 360◦). This scheme

is thus named Rotationally Invariant Coded Modulation (RICM). The detailed structure

of the decoder for RICM is shown in Fig. 3.6. The Switch Array controls the correction

patterns for different phase shifts. From top to bottom, the switches can be changed to a

specific correction pattern according to Table 3.1.

-1Adaptive 
Soft 

Demodulator
For PLNC

Decoder

Decoder

Switch Array

M
ul

ti
pl

ex
in

g

-1

Figure 3.6: Detailed structure of decoder for RICM system.

Table 3.1: Selection Principle of Correction Pattern

Order No. Switch Array Action Available Range (ϕ)

Correction Pattern I {On, Off, On, Off} Range I:[0◦, 90◦)

Correction Pattern II {On, Off, Off, On} Range II:[90◦, 180◦)

Correction Pattern III {Off, On, Off, On} Range III:[180◦, 270◦)

Correction Pattern IV {Off, On, On, Off} Range IV:[270◦, 360◦)
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Here, we give an example to illustrate the capability of RICM dealing with all phase

shifts. For a specific phase shift ϕ=200◦ in the Range III. A superimposed constellation

for
∼
ϕ = 200◦ mod 90◦ = 20◦ is first generated, i.e. Q⊕(20◦) (clearly, the relative posi-

tions of superimposed signals in Q⊕(20◦) are the same as in Q⊕(200◦)). Based on this

constellation, the network coded LLRs are computed by the adaptive soft demodulator.

The switch array chooses the correction pattern III for Λ⊕,n, n ∈ {1, 2}. Then corrected

network coded LLRs: Λ⊕,1 and Λ⊕,2 are separately fed into two channel decoders for

independent decoding.

3.2.5 Simplified Low-Complexity Scheme

In the previous subsection, we have provided the detailed design of RICM with fully

adaptive demodulator for PNC. Although compared with the schemes in [3, 4, 15], it is

a flexible and simple design for the fading 2-WRC, nevertheless we still want to further

reduce its complexity. Fig. 3.7(a) shows the comparison between the superimposed con-

stellations Q⊕(22◦) and Q⊕(0◦) . The blue squares represent points on Q⊕(22◦). Points

which can be clustered and mapped by the principle provided in section III are encircled

by a black solid line. It is clear that there are some mismatches between the points of

Q⊕(0◦) and the clustered points for Q⊕(22◦). However the basic shapes of these two

superimposed constellations are almost the same. Similarly, Fig. 3.7(b) shows that the

superimposed constellations for ϕ = 58◦ and ϕ = 45◦ again are very similar.

Inspired by this observation, we simplify the adaptive soft demodulator by using only

two soft demodulators, designed for ϕ = 0◦ and ϕ = 45◦. The fundamental idea of this

simplification is to apply an approximate constellation Q⊕(0◦) or Q⊕(45◦) to approach

a constellation whose phase shift is near 0◦ or 45◦ respectively. This approximation is

a form of simplified network coded symbol based clustering. Fig. 3.8 illustrates the

structure of the decoder for our simplified scheme.

We need to determine how to adaptively select these two demodulators according to

phase shifts and how to optimize this adaptive selection. It has been proven that for HDF,

when each user employs the same mapping scheme and codebook, the achievable rates in

Dong Fang, Ph.D. Thesis, University of York 2014



CHAPTER 3. FADING CORRECTION FOR PHYSICAL-LAYER NETWORK CODING IN THE

2-WAY RELAY CHANNELS 28

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

I

Q

φ=0°
φ=22°

(a)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

I

Q

φ=45°
φ=58°

(b)

Figure 3.7: Comparison of Superimposed Constellations.
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Figure 3.8: Structure of decoder for the simplified low-complexity scheme.

the MAC phase should obey

RA = RB = Rx⊕ ≤ I(YR;X⊕), (3.5)

where Ri,i ∈ {A,B} is the achievable rate for A or B. Rx⊕ is the virtual achievable

rate for network coded symbol x⊕ and I(YR;X⊕) is the mutual information between

received signal and network coded symbol. So it is clear that maximizing I(YR;X⊕)

thus maximizes all achievable rates for HDF in MAC phase. So we aim to maximize

I(YR;X⊕) to optimize the adaptive selection. I(YR;X⊕) can be given as

I(YR;X⊕) = H(YR)−H(YR|X⊕), (3.6)

where H(YR) is the received signal’s Entropy

H(YR) = −
∫

yR∈C

p(yR)log2(p(yR))dyR, (3.7)

where the PDF of received signal pY (Y ) is

p(yR) =
1

M2
C

∑
s⊕

1

2πσ2
w

exp(−|yR − s⊕|
2

2σ2
w

), (3.8)

where MC is the cardinality of symbol alphabet for specific modulation scheme, and here

it is 4 for QPSK (Note that all coincident points on the superimposed constellation need

to be separately counted). s⊕ is dependent on specific constellation (Q⊕(0◦) orQ⊕(45◦)).

The conditional entropy H(YR|X⊕) can be computed as

H (YR|X⊕) = −
∑
x⊕∈A4

∫
yR∈C

P (x⊕)p (yR|x⊕) log2 (p (yR|x⊕)) dyR, (3.9)
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where P (x⊕) = 1
MC

and the conditional PDF p (yR|x⊕) can be expressed as

p (yR|x⊕) =
1

MC

∑
S⊕:∀S⊕→X⊕

1

2πσ2
w

exp(−|yR − s⊕|
2

2σ2
w

), (3.10)

where the summation is operated over all possible superimposed signals s⊕ which can be

mapped to a specific x⊕.

By using the Monte-Carlo Evaluation on (3.7) and (3.9), we can separately compute

I(YR;X⊕) as the function of ϕ when employing the demodulator for 0◦ or 45◦, denoted

as I(YR;X⊕)0◦(ϕ) and I(YR;X⊕)45◦(ϕ), which are shown in Fig. 3.9.
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Figure 3.9: Simulated I(YR;X⊕)0◦(ϕ) and I(YR;X⊕)45◦(ϕ) when SNR=15dB.

Clearly, for a specific SNR, in some range of ϕ, I(YR;X⊕)0◦ is better than

I(YR;X⊕)45◦; and vice versa in its complement. The critical angles are defined as

the boundaries of the optimized adaptive selection for 0◦ and 45◦ demodulation, such

that I(YR;X⊕)0◦ = I(YR;X⊕)45◦ . We give the details of an algorithm to find criti-

cal angles as follows. The pair of critical angles in in the first quadrant is denoted as

(θ(1), θ(2)) ∈ ΦE . Due to the symmetry, the critical angles in the other three quadrants

should be (θ(1) + 90◦, θ(2) + 90◦), (θ(1) + 180◦, θ(2) + 180◦) and (θ(1) + 270◦, θ(2) + 270◦),

as illustrated in Fig. 3.10.

The Switch Array action for each correction pattern is same with that in Table 3.1. The
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The Algorithm to find the critical angles:

1. Make a Cell Array Φ in which each cell is initialized as

a null set to store the critical angles:

Φ[i]=∅, i=1,2...length(SNRs)

2. for all SNRs do

for all phase shifts ϕ ∈ [0◦, 90◦) do

Compute I(YR;X⊕)0◦(ϕ, SNR[i])

Compute I(YR;X⊕)45◦(ϕ, SNR[i])

if I(YR;X⊕)0◦(ϕ, SNR[i])=I(YR;X⊕)45◦(ϕ, SNR[i]), then

Update current phase shift in angle set:Φ[i]←Φ[i]∪ϕ

end if

end for

end for

3. Average Φ over all SNRs to obtain a new set:ΦE = E(Φ)
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Figure 3.10: Adaptive Selection for two demodulators and correction patterns.
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resulting mutual information I(YR;X⊕) can be maximized as

I(YR;X⊕)max = max
θ(1),θ(2)∈ΦE

{I(YR;X⊕)0◦ , I(YR;X⊕)45◦} . (3.11)

The corresponding simulation result is given in Fig. 3.11. Here, we denote the average

SNR as E[|hA|2 + |hB|2]/2σ2
w and an extreme scenario for relative fading factor is also

considered, where the phase shift obeys: ϕ ∼ U(0◦, 360◦).
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Figure 3.11: Comparison of Mutual Information I(YR;X⊕) for proposed schemes.

From Fig. 3.11, we see that for both the fully adaptive demodulator scheme of section

III and the two-demodulator scheme, the mutual information is very close to the QPSK

alphabet constrained cut-set bound of the PNC system. The constellation approximation

results in a small performance degradation for the two-demodulator scheme compared

with the fully adaptive scheme.

3.2.6 Performance Evaluation

In this section, we evaluate the end-to-end throughput efficiency for our proposed RICM

schemes.The end-to-end throughput efficiency is defined as the ratio of successful packets

received by users. In our simulation, 105 trials are implemented, where one trial means a
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whole transmission from one user to the other user. Both hA and hB are assumed to be

frequency-flat, quasi-static Rician fading channels with a certain K factor. The Rician K

factor is the ratio between the power in the direct path and the power in the scattered paths.

Here we consider K = 10dB and K = 0dB. The length of the original data packet is

512 bits. A rate 1/3 convolutional code with generator polynomials G = (133, 171, 145)8

is applied.

In order to give a clear comparison, we choose the traditional HDF scheme [2] as

the benchmark in which a fixed XOR demodulator is employed to obtain the network

coded/hierachical LLRs which are then directly fed into the channel decoder. Fig. 3.12

and Fig. 3.13 show the corresponding simulations when K = 10dB and K = 0dB,

respectively.
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Figure 3.12: Performance evaluation on the end-to-end throughput efficiency for Rician

fading channels when K = 10dB.

Based on Fig. 3.12 and Fig. 3.13, it is clear the traditional HDF scheme (the bench-

mark) can not achieve the full (100%) throughput efficiency at high SNR even though the

channel fading condition (K = 10dB) is not too bad. However, the performance of the

benchmark when K = 0dB is severely degraded, compared with that when K = 10dB.

This is because the fixed XOR mapping can not deal with all phase shifts of the relative

fading which causes the failure of the exclusive law which further leads to a mismatch
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Figure 3.13: Performance evaluation on the end-to-end throughput efficiency for Rician

fading channels when K = 0dB.

between data bits and parity bits. And we can see that our proposed schemes (both fully

adaptive mapping scheme and the low complexity two-demodulator scheme) can rapidly

reach full throughput efficiency in both fading cases. The proposed schemes can fully

utilize the error correction capability of channel code. So compared with the 5QAM DNF

(see Figs. 5 and 6 in [3]), the proposed schemes can achieve 100% throughput faster for

Rician fading both with K = 10dB and K = 0dB.

In addition, compared with the DNF scheme [2], the proposed two-demodulator

scheme avoids both the irregular 5QAM modulation and the exhaustive search required

for the closest-neighbor clustering algorithm, which significantly mitigates the burden on

the relay and hence results in a low system complexity.
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3.3 Scheme 2: Soft-bit Correction for Physical-layer Net-

work Coding

3.3.1 Overview

In this section, we propose a novel fading correction and relaying scheme for PNC in

a fading 2-WRC. The fading correction on the soft-bit level at users can eliminate the

effect of fading in the 2-WRC. In order to broadcast the soft-bit in an optimal way, we

design a quantize-and-forward scheme which is robust for the fading 2-WRC. In addition,

an optimized mapping is used to implement unequal error protection (UEP) for bits with

different significance in the quantization index. The soft-bit correction and the robust

quantize-and-forward scheme are fully compatible with one another. The relay is thus

effectively transparent: it can be entirely agnostic to the coding scheme employed at users,

and the relay itself does not need to have decoding ability. It provides an appropriate

approach to balancing system complexity and performance.

3.3.2 Detailed Structure of Proposed Scheme

PLNC-QPSK
Soft Demod. 

Soft Estimator
Soft

Transformation

Soft Estimator

Soft
Extractor

Node A Node B

 + +

 +
Relay C

Soft
Transformation

Soft Estimator

Soft
Extractor

Figure 3.14: System Diagram of Proposed Soft-bit Correction.

The block diagram of the proposed scheme is shown in Fig. 3.14. We separately de-
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scribe the detailed design of each functions and components in Fig. 3.14 in the following

subsections.

3.3.3 Generating network coded soft-bit

The reliability of the superimposed code is obtained by the designed PNC-QPSK soft

demodulator. Detecting the network coded symbol is based on the maximum a posteriori

(MAP) principle. We use x⊕,n(s⊕) to denote the n-th (n∈{1, 2}) bit in the network coded

symbol corresponding to the superimposed signal s⊕. The bit-wise network coded LLR

(log-likelihood ratio) can be computed as

Λ⊕,n = ln

(
p(x⊕,n(s⊕) = 0|yR)

p(x⊕,n(s⊕) = 1|yR)

)
, n ∈ {1, 2}, (3.12)

where for each network coded bit x⊕,n(s⊕), the alphabet of the superimposed signal,

S⊕, can be split into two parts: S
(0)
n and S

(1)
n , which correspond to x⊕,n(s⊕) = 0

and x⊕,n(s⊕) = 1, giving as: S
(0)
n = {s⊕|x⊕,n(s⊕) = 0, s⊕ ∈ S⊕} and S

(1)
n =

{s⊕|x⊕,n(s⊕) = 1, s⊕ ∈ S⊕} . As such, (3.12) can thus be rewritten as

Λ⊕,n = ln


∑

s⊕∈S(0)
n

p(yR|s⊕)P (s⊕)∑
s⊕∈S(1)

n

p(yR|s⊕)P (s⊕)

 , n ∈ {1, 2}, (3.13)

where p(yR|s⊕) is the conditional probability density function (PDF) of the received sig-

nal and P (s⊕) is the prior probability. Both depend on the mapping strategy of the soft

demodulator. Fig. 3.15 illustrates the PNC’s superimposed constellation with 0◦ phase

shift, i.e., S⊕ (0◦) (M⊕ ⇒ m, m ∈ Z4 represents the bit-wise XOR mapping). Then

p(YR|S⊕) can be calculated as

p(yR|s⊕) =
1

2πσ2
w

exp(−|yR − s⊕|
2

2πσ2
w

), s⊕ ∈ S⊕ (0◦ ) . (3.14)

Unlike [4, 15], there is no adaptive-selection in our proposed scheme. Regardless of

the channel parameters, the relay employs only one PNC-QPSK soft demodulator, that

corresponding to the superimposed constellation S⊕ (0◦) with ϕ = 0◦ and r = 1. The

network coded soft-bit can be calculated as

z⊕ = tanh(Λ⊕/2), (3.15)

Dong Fang, Ph.D. Thesis, University of York 2014



CHAPTER 3. FADING CORRECTION FOR PHYSICAL-LAYER NETWORK CODING IN THE

2-WAY RELAY CHANNELS 37

(3,3)

(1,1)

(0,0)

(2,2)

(1,3)
(3,1)

(1,0)
(0,1)

(2,3)
(3,2)

(2,0)
(0,2)

(0,3)
(3,0)
(1,2)
(2,1)

Figure 3.15: Superimposed constellation for h = hA
hB

= 1.

where tanh(·) is the bit-wise hyperbolic tangent function. The soft-bit has several advan-

tages compared with LLR: 1) the hyperbolic tangent domain has a fixed range [−1,+1]

rather than (−∞,+∞) for logarithm domain; 2) the eXclusive-OR operation in hyper-

bolic tangent domain is simpler than that in logarithm domain; and 3) the soft-bit is more

effective than the LLR in power constrained scenarios.

Robust Quantize-and-Forward for fading 2-WRC

Note that directly transmitting analogue signal in digital communication systems is tech-

nically nontrivial. There are several quantize-and-forward strategies which have been pro-

posed to overcome the weakness of broadcasting the analogue signal. In [16] and [17],

an information bottleneck method (IBM) is involved to quantize the LLR in the 2-WRC.

However, note that this scheme is designed for the AWGN channel and is not optimized

for PNC. In addition, our soft-bit correction scheme is applied on the soft-bit rather than

the LLR level.

Consider that the amplitude of the soft-bit lies only within the range [−1,+1]. A big
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amplitude variation in the logarithm domain (for LLR) transforms to only a small change

in the hyperbolic tangent domain (for soft-bit). Inspired by this, we suggest that the

mean-square error (MSE) optimal quantization (Lloyd [18]-Max [19]) would be suitable

for soft-bit. The MSE is mathematically defined as: E
[
|x−Q (x)|2

]
, where Q is the

quantization function. The Lloyd-Max algorithm determines quantization levels based on

minimizing the MSE for the input signal with a known distribution. So it is necessary to

find out the statistical properties of the soft-bit to achieve the optimal quantization.

According to the Bayes’ principle, the PDF of the received signal can be expressed as

p(yR) =
∑

s⊕∈S⊕(0◦)

p(yR|s⊕)P (s⊕). (3.16)

The transformation for a function of a random variable [10] to calculate the PDF of

network coded LLR can be expressed as

pΛ⊕(λ) = pYR(w(λ))

∣∣∣∣dw(λ)

dλ

∣∣∣∣ , (3.17)

where λ is the random variable for network coded LLR andw(λ) is the inverse function of

(3.15) for variable yR. Based on (3.14), (3.16) and (3.17), the distribution of the network

coded LLR can be calculated as

pΛ⊕(λ)=
exp

(
−λ−cosh−1(−λ+ 1

σ2
w

)− 1
4
σ2
wcosh−1(−λ+ 1

σ2
w

)
2
)

4
√
π exp(−2λ+ 2

σ2
w

)

×
(

1+exp(2cosh−1(−λ+
1

σ2
w

))+2 exp(cosh−1(−λ+
1

σ2
w

))

)
σw.

(3.18)

Due to the symmetry of the points on the superimposed constellation, both the 1st bit

Λ⊕,1 and 2nd bit Λ⊕,2 obey the same distribution as (3.18). Similarly, the PDF of the soft

bit can also be calculated by the transformation for a function of a random variable:

pZ⊕(z) = pΛ⊕(h(z))

∣∣∣∣dh(z)

dz

∣∣∣∣ , (3.19)

where z is the random variable for the soft-bit and h(z) is the LLR extraction function,
denoted as h(z) = 2tanh−1(z). The final PDF of soft-bit thus can be derived as

pZ⊕(z)=
exp

(
−2tanh−1(z)−cosh−1(−2tanh−1(z)+ 1

σ2
w

)− 1
4σ

2
wcosh−1(−2tanh−1(z)+ 1

σ2
w

)
2
)

2(1−z2)
√
π exp(−4tanh−1(z)+ 2

σ2
w

)

×
(

1+exp(2cosh−1(−2tanh−1(z)+
1

σ2
w

))+2 exp(cosh−1(−2tanh−1(z)+
1

σ2
w

))

)
σw.

(3.20)
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The theoretical analysis of the PDF (3.20) can be verified by Monte-Carlo simulation.

Fig. 3.16 illustrates the comparison between the theoretical and simulated PDF of the

soft-bit. The consistency between the theoretical and simulated results is clear, which

implies that based on our derived theoretical PDF, the optimum MSE quantization in the

non-fading MAC phase can be achieved.
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Figure 3.16: Comparison between theoretical and simulated PDF for soft-bit with differ-

ent SNRs in non-fading MAC phase.

Next, we need to check the robustness of our design in approaching the quantization

in fading MAC phase. As in [2, 4, 15], we also assume that two channel links in MAC

phase have same power: E[|hA|2] = E[|hB|2] (where, E[·] is the expectation function) to

respect the symmetrical rates from A and B. We denote the average SNR in MAC phase as

E[|hA|2 + |hB|2]/2σ2
w. An extreme scenario for relative fading factor is also considered,

where the phase shift obeys: ϕ ∼ U(0◦, 360◦). Fig. 3.17 shows the comparison between

PDF for soft-bit in the non-fading and fading MAC phase .

Based on Fig. 3.17, it is clear that although the phase shift fading varies dramatically,

the statistical properties of the soft-bit changes only slightly. This implies that our de-

signed MSE quantization can be approximated in the fading MAC phase. But it is still

not certain that this is a robust solution. So in the following parts of the chapter, we suc-
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cessively measure the performance loss in terms of both MSE and mutual information (as

shown in Fig. 3.18 and Fig. 3.19, respectively).

The designed MSE quantizer Q(·) has 2RQ levels (RQ is the number of quantization

bits). If a soft-bit z⊕ is located within the quantization interval `u (u ∈ {0, 1, ..., 2RQ − 1}
is the quantization index), the quantizer maps it to the reconstruction value ẑ⊕. This

procedure can be described as

Q(z⊕) = ẑ⊕, if z⊕ ∈ `u, (3.21)

where each quantization interval `u is iteratively calculated by the implementation of the

Lloyd-Max algorithm [18, 19] .
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Figure 3.17: Comparison between simulated PDF for soft-bit in non-fading MAC phase

and fading MAC phase with different SNRs.

In Fig. 3.18, we set SNR equal to 10dB, obviously, the more quantization bits involved,

the higher quantization precision can be provided. We observe that if the number of

quantization bits RQ ≥ 3, the MSE for the fading MAC can achieve almost the same

level as that for the non-fading case.

The mutual information loss ∆I can be measured as the difference between the un-

quantized and the quantized mutual information: ∆I = Iunquant. − Iquant.. Here, the un-

quantized mutual information is the bit-wise mutual information between network coded
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Figure 3.18: MSE vs. number of quantization bits when SNR=10dB.

bit and network coded LLR. In practice, this can be calculated by the ergodicity theorem

[11]

Iunquant. = I(x̃⊕,k; Λ⊕,k) ≈ 1− 1

K

K∑
k=1

log2(1 + e−x̃⊕,k·Λ⊕,k), (3.22)

where K = length(x⊕) and k ∈ {1, 2...K}. As the binary antipodal signal for the

network coded bit, x̃⊕,k is defined in GF(2) with the elements {+1,−1} (where +1 rep-

resents the ‘null’ element). Note that for (3.22), a long data sequence would guarantee

the availability and precision of the measure of the mutual information even for a non-

Gaussian or unknown distribution [21] (It is clear from (3.18) that the distribution of

Λ⊕,k is non-Gaussian). Moreover, by invoking the definition of fidelity in [21] and [22]:

E[z⊕] = 1
K

K∑
k=1

x̃⊕,k · z⊕,k, (3.23) can be rewritten as

Iunquant. ≈
1

K

K∑
k=1

log2(1 + x̃⊕,k · z⊕,k) (3.23)

Note that (3.23) is also not limited to the Gaussian distribution. Thus, the measure of the

mutual information can be transformed to the soft-bit domain. Similarly, the quantized

mutual information can be expressed as

Iquant.=I(x̃⊕,k; Λ̂⊕,k)≈
1

K

K∑
k=1

log2(1+x̃⊕,k · ẑ⊕,k), (3.24)
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where Λ̂⊕,k is the recovered bit-wise network coded LLR, which is Λ̂⊕,k = 2tanh−1(ẑ⊕,k)

and ẑ⊕,k is the reconstruction value of soft-bit: ẑ⊕,k = Q−1(uk).
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Figure 3.19: Comparison of bit-wise Mutual Information Loss ∆I .

Fig. 3.19 shows the comparison of the mutual information loss for quantization with

different numbers of bits between the fading and non-fading MAC phase. Here, we choose

107 bits per frame and 10000 frames for Monte-Carlo evaluation of (3.23) and (3.24) to

guarantee the precision. The simulation results imply that: 1. with RQ ≥ 2, the mutual

information loss ∆I can decrease to an acceptable level (< 4 × 10−2) for the quantiza-

tion in both fading and non-fading MAC phase; 2. the performance degradation caused

by the designed approximated quantization for fading 2-WRC is small if the number of

quantization bits RQ≥2.

Soft-bit fading correction at each user

In this sub-section, we explore the soft-bit fading correction at each user, which is based

on the following principles

x̂B = [F (xA)⊕ xB]⊕ F (xA),

x̂A = [xA ⊕ F
′
(xB)]⊕ F ′(xB),

(3.25)

Dong Fang, Ph.D. Thesis, University of York 2014



CHAPTER 3. FADING CORRECTION FOR PHYSICAL-LAYER NETWORK CODING IN THE

2-WAY RELAY CHANNELS 43

where F (·) represents the effect of the relative fading factor h = hA
hB

on the data stream

from A, and F ′(·) represents the effect of the relative fading factor’s reciprocal h−1 = hB
hA

on the data stream from B. From user A’s perspective, the data stream broadcasted by the

relay affected by fading can be represented as F (xA) ⊕ xB and from B’s perspective, it

is xA ⊕ F
′
(xB). The corrected data at each user is denoted as x̂i, i ∈ {A,B}. Note that

we apply this principle at the level of the soft-bit. Unlike hard bit, the soft-bit contains

reliability information rather than simply ‘1’ or ‘0’. The following equations show the

equivalent relationship between hard bit and soft-bit for the eXclusive-OR operation

x⊕ = xA ⊕ xB ⇔ z⊕ = zA.× zB, (3.26)

where both ‘⊕’ and ‘.×’ are bit-wise operations.

Besides the principle for fading correction of the soft-bit, the correction factor is also

important. The correction factor for A then equals the relative fading factor h = hA
hB

; for

B, it is the reciprocal of the relative fading factor h−1 = hB
hA

. Note that the destination

users do not know the relative fading factor. Thus we need to quantize the relative fading

factor. Since we assume symmetric channel power for both channel links in MAC phase,

only the phase shift needs to be quantized uniformly over unit circle. Here, we apply

8-bit quantization to ensure sufficient accuracy for the phase shift. The quantized relative

fading factor is inserted in the payload of each frame.

For A and B, the modulated signals will multiply the relative fading factor/its recip-

rocal, respectively. Next, the single user end-to-end QPSK soft demodulator is used to

transform these faded signals into soft information ΛA and ΛB. Then they are fed to the

soft estimator to obtain their own soft-bit zA and zB, which can be treated as the Comple-

mentary Side Information (C-SI) at each user. The C-SI contains the fading information

which corresponds to that included in the network coded soft-bit. After recovering the

network coded soft-bit ẑ⊕, the fading correction at the soft-bit level can be expressed

using the following equations. This is equivalent to the correction principle

ẑB = ẑ⊕.× zA and ẑA = ẑ⊕.× zB, (3.27)

where ẑi, i ∈ {A,B} represents the fading corrected soft-bit which can be extracted to

obtain the corrected LLR (Λ̂i = 2tanh−1(ẑi), i ∈ {A,B}) for decoding. The mismatch

caused by the fading between the data bits and parity bits can be removed by the soft-
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bit correction. Thus, the system can utilize the error-correction capability of the channel

code.

Optimized mapping for UEP based Broadcasting

Note that each network coded symbol carries two soft-bits, each soft-bit is quantized sep-

arately. So there are two quantization indices associated with one network coded symbol.

If we apply 2-bit quantization, a group of quantization indices corresponding to a specific

network coded symbol can be represented by their binary form: (u
(0)
1 , u

(1)
1 ;u

(0)
2 , u

(1)
2 ),

where u(0)
n and u(1)

n (n ∈ {1, 2}) represent the MSB (Most Significant Bit) and the LSB

(Least Significant Bit) in binary representation of the index which corresponds to the n-th

bit of the network coded symbol. Similarly, if 3-bit quantization is applied, the binary

form for quantization indices can be represented as (u
(0)
1 , u

(1)
1 , u

(2)
1 ;u

(0)
2 , u

(1)
2 , u

(2)
2 ). In or-

der to conserve bandwidth efficiency and without reducing throughput, we should keep

the transmission rate equal for the MAC and BC phases. Thus the 16QAM and 64QAM

need to be employed for 2-bit and 3-bit quantization. It is obvious that different bits in

the quantization index have different importance. Note that the MSB of the quantization

index determines the sign of the quantized soft-bit. If the MSB is corrupted, a sign er-

ror will occur which could lead to a serious decision error. So the Gray mapping is not

optimal. In [17], the authors use the binary switching algorithm (BSA) [13] to find an

optimal mapping to achieve unequal error protection (UEP) for LLR quantization. We

test the availability of BSA and find that the natural mapping gives the same results as

using BSA (in [17], their designed optimized mapping is actually the natural mapping). In

Fig. 3.20, the optimal/natural mapping for 64QAM is illustrated. We can clearly observe

that UEP for the bits with different significance is achieved.

3.3.4 Simulation Results

In this section, we evaluate the BER (bit error rate) performance of the proposed scheme.

Both hA and hB are assumed to be frequency-flat, quasi-static Rayleigh fading channels.

The length of the original data packet on each user is 5000 bits. Then the data packet is

encoded by a rate 1/3 turbo code with generator polynomials: (Gr, G) = (37, 21)8 (where
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Figure 3.20: 64QAM Mapping with UEP for broadcasted quantization indices.

Gr stands for the recursive code polynomial). And the number of decoding iterations at

the users is 18 for all simulations. The BER performance is measured at one of the users

because of the symmetry of the 2-WRC. The simulation scenario includes channel links

from user to relay (MAC phase) and relay to user (BC phase). So the average SNR in

the MAC phase as defined above is unsuitable here. Considering the bit-wise property

of the soft-bit, we choose Eb/N0 (Bit Energy to Noise Power Spectral Density Ratio) as

the simulation parameter. Note that due to the symmetry of the 2-WRC, the values of

Eb/N0 on MAC and BC phases are set to be equal. Fig. 3.21 shows the corresponding

simulation.

In order to independently test the fade resistance capability of soft-bit correction, we

introduce a perfect scenario in which the fading in MAC phase is set as described above

but the BC phase is assumed to be undistorted (suppose that the soft-bits are unquan-

tized and perfectly received by each user). From Fig. 3.21, we can see that, in such a

scenario, the BER curve of the soft-bit correction scheme can rapidly converge to a low

level compared with the scheme without soft-bit correction (in the case of without soft-bit

correction, the relative fading causes the failure of the exclusive law and further leads to

a mismatch between data bits and parity bits ). It implies that the soft-bit correction could

erase the fading effects on MAC phase and utilize the error-correction ability for channel
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Figure 3.21: Comparison of BER performance.

codes.

To test the realistic performance, we separately choose 3-bit and 2-bit quantization for

soft-bit correction (including the optimized mapping and a distorted BC phase). From

Fig. 3.21, it is clear that the performance of 3-bit quantization with optimized 64QAM

mapping can closely approach the limit for soft-bit correction in a perfect scenario. And

we can conclude that in the BC phase, the quantization error will be the dominant factor

affecting performance, rather than the noise.

In terms of system complexity at relay, the proposed scheme avoids the irregular

5QAM mapping [3], the exhaustive search required for the closest-neighbor clustering

algorithm and adaptive-selection for mappings [3, 15]. The burden on the relay is signif-

icantly decreased since there is only one demodulator, one quantizer and one modulator

at relay. The proposed scheme is a reliable approach to balancing the performance and

system complexity.
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3.4 Summary

In this section, we have proposed a two fading compensation strategies for PNC in 2-

WRC: 1) rotationally invariant coded modulations (RICM) and soft-bit fading correction

with robust quantize-and-forward (SBF-QF). These two schemes provided different ap-

proaches to combat fading, i.e., RICM mitigates the fading of MAC phase at relay while

SBC-QF eliminates the effect of fading at destination.

The simulation results show that the RICM can effectively reduce the performance

degradation which is caused by relative fading, hence improves performance. Since there

is no need to employ the 5-ary irregular modulation scheme, the proposed scheme is

more practical than the scheme in [3]. Moreover it is more flexible than the schemes

in [4] and [15] as RICM does not change the coding structure and is suitable for arbitrary

channel code.

The simulation result shows that the SBF-QF can eliminate the fading effect at des-

tinations. With the robust quantize-and-forward, the soft-bit can be broadcasted over a

noisy channel with less degradation. Since there is no need to employ the 5-ary irregu-

lar modulation scheme [3] or an exhaustive search for the optimum mapping [3, 15], the

proposed scheme is more practical and flexible than the schemes in [3, 15]. In addition,

the proposed scheme does not need the relay to decode the received signal. It exhibits

significant advantages in terms of system complexity, flexibility and performance.
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Multilevel Coded Linear Physical-layer

Network Coding over Fading 2-way
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4.1 Overview

In this Chapter, we propose a novel multilevel coded LPNC scheme with extended map-

ping (LPNC-EM) for Rayleigh fading 2-WRC. The relay node adaptively selects the lin-

ear generator matrix and directly maps the superimposed signal of the two users into the

linear network coded combination over the hybrid Galois Field (GF(22) or GF(23)). The

selection criterion ensures unambiguous decoding and maximizes the individual rate of

each user. The LPNC-EM scheme forms two or three independent coding levels which

facilitate the use of multilevel coding. This enables the HDF as in [7]. The numerical re-

sults show that uncoded LPNC-EM outperforms the original PNC in [1] and can achieve

Dong Fang, Ph.D. Thesis, University of York

48

2014



CHAPTER 4. MULTILEVEL CODED LINEAR PHYSICAL-LAYER NETWORK CODING OVER

FADING 2-WAY RELAY CHANNELS 49

a error performance as good as the 5QAM-DNF in [8]. Furthermore, the multilevel coded

LPNC-EM also provides a superior error performance compared with the coded original

PNC.

4.2 Introduction

Motivated by RICM for PNC in pervious chapter, in this chapter, we still discuss the

HDF paradigm for PNC. We propose the LPNC-EM, using multilevel coding, aiming

at: 1) maximizing the rate of each user in the MAC phase; and 2) making the strategy

flexible for any channel code. We exploit the ‘layered’ approach to coded PNC introduced

in [7], which allows any binary linear code to be used with a LPNC mapping. Unlike the

prime q-ary mapping in [34], we focus on QPSK signalling. The relay directly maps the

superimposed signal into the linear network coded combination by multiplying the user

data by a properly selected generator matrix. The selection criterion ensures unambiguous

decodablility and maximizes the individual achievable rate of each user in the MAC phase.

The LPNC-EM over GF(22) or GF(23) facilitates the multilevel coded structure using

either two or three independent coding levels in which each level is a linear function of

two users’ data bits. The numerical results, show that the multilevel coded LPNC-EM

outperforms the original PNC and can achieve an average rate very close to 5QAM-DNF

in [8], while providing a practical coding approach. In this Chapter, we focus on the MAC

phase, assuming that the BC phase is lossless. We also focus on achievable rates rather

than error rate performance.

4.3 System Model and Scheme Description

4.3.1 Multiple Access Phase

The 2-WRC consists of two users (A and B) and one relay (R). Two users A and B simul-

taneously transmit signals to relay R in the MAC phase. We assume that the two users

employ the same constellation mapperMS(·). The electromagnetic signals are superim-
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posed and received by R, given by

yR = hAxA + hBxB + nw, (4.1)

where xi =MS(si), i ∈ {A,B}, is the modulated symbol for users A and B respectively.

In particular, we assume that both users employ Gray mapped QPSK whose constellation

has unit energy. The user data si is thus the 2-bit binary tuple. We define the channel gain

from A or B to R as hi, i ∈ {A,B}. We assume that all channels experience quasi-static

i.i.d. frequency-flat Rayleigh fading with unit variance. We assume that the channel state

information is perfectly known to the receiver side only as in [8]. The received signal is

corrupted by complex Additive White Gaussian Noise (AWGN) nw with variance σ2
w per

complex dimension. We refer to

xAB
∆
= hAxA + hBxB (4.2)

as the noiseless superimposed signal.

Generating Linear Network Coded Combination

In the proposed LPNC-EM design, the relay R performs the linear mapping L in the

hybrid Galois Field, given by

L : xAB → sL, (4.3)

where the mathematical notation→ indicates the mapping relationship. The quantity sL

is referred to as the linear network coded combination (LNCC). The user data symbol si,

i ∈ {A,B}, since it is drawn from a QPSK constellation, is treated as a member of a

binary extension field GF(22). As such, the user data si can be re-expressed in a binary

extension field form, given as si =

 si,1

si,2

 , i ∈ {A,B}. The linear mapping L is a

linear function in either GF(22) or GF(23) of sA and sB, given by

sL = A⊗ sA ⊕ B⊗ sB (4.4)

where A and B are members of GF(22) or GF(23). These can be represented as 2 × 2

(or 3 × 2) binary matrices, and the field elements as length 2 (or 3) binary vectors. The

resulting LNCC sL is the member of binary extension fields GF(22) or GF(23). It can be
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expanded as sL =


sL,1

sL,2

sL,3

 , where sL,n, n ∈ {1, 2, 3}, represents the n-th bit level of sL.

If sL,1 = 0, sL is a member of binary extension field GF(22); otherwise, sL is a member

of binary extension field GF(23).

All matrix operations in the linear mapping function (4.3) obey modulo-2 arithmetic,

i.e., x ⊗ y = mod(x · y, 2) and x ⊕ y = mod(x + y, 2), which are closed within GF(2).

We define the generator matrix as G ∆
=
[

A B
]

and the source symbol vector as sAB
∆
= sA

sB

. Hence, (4.4) can be rewritten as

sL = G⊗ sAB = G⊗


sA,1

sA,2

sB,1

sB,2

 =


sL,1

sL,2

sL,3

 . (4.5)

The user data si, i ∈ {A,B} is treated as the complementary side information (C-SI).

Based on this, the linear mapping function should guarantee the unambiguous decodabil-

ity of the LNCC for users A and B, which is:

L (sA, sB) 6= L (s′A, sB) , ∀sA 6= s′A

L (sA, sB) 6= L (sA, s
′
B) , ∀sB 6= s′B.

(4.6)

This is referred to as the exclusive law in [8].

Embedding the linear mapping function (4.3) into the maximum likelihood (ML) de-

tection, we have

sL=arg max
sL

p(yR|sL)

=arg max
sL

∑
∀(xA,xB) s.t. L:xAB→SL

P (xA)P (xB)p(yR|xAB),
(4.7)

where we note that the summation includes all xA and xB such that L : xAB → sL. The

conditional probability density function (PDF) p(yR|xAB) is the Gaussian distribution,

given by

p(yR|xAB) =
1

2πσ2
w

exp

(
−|yR − xAB|

2

2σ2
w

)
. (4.8)
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The details of the selection criterion for the linear mapping functions are described in the

next section.

4.3.2 Broadcast (BC) Phase

In the BC phase, R maps the LNCC into the modulated symbol, given as xR =MR(sL),

whereMR(·) is the relay constellation mapper. Then R broadcasts xR to A and B. The

received signal at each user is given by

yi = xR + ni, (4.9)

where ni is the complex AWGN at user i, i ∈ {A,B}.

4.4 Adaptive Selection criterion For Linear Mapping

In this section, we provide the detailed design for the adaptive selection criterion of the

linear mapping functions. As all channel states are known to R, the mapping functions

are then selected according to these channel states, firstly to ensure unambiguous decod-

ability, and secondly to maximize the individual achievable rate of each user.

4.4.1 Unambiguous Decodablity for Linear Mapping

At user A’s side, to successfully recover the desired symbol sB, the user A should exploit

the generator matrix G to solve the linear equation (4.3) and similarly for user B. Hence

fulfilling the unambiguous decoding criterion is equivalent to choosing the generator ma-

trix G from those for which the linear function (4.3) is solvable. Given this, we provide

the following Condition for unambiguous decoding.

Condition 1: Unambiguous decoding is possible if and only if both A and B have full

column rank: that is, all columns are linearly independent. We note that when A and B
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have two columns each. This implies that the two columns are different and contain at

least one ‘1’.

Proof. We note that the linear mapping in (4.3) in fact forms a set of linear Diophantine

equations with four variables. Since each user has its own C-SI, (4.3) may be simplified

to a set of linear equations with two variables for each user. These are soluble for sA and

sB if and only if A and B are invertible, that is, have rank at least two. Since the row rank

is equal to the column rank and there are two columns, A and B must have full column

rank. Since there are only two columns, they are linearly independent if neither is zero

and they are different. The proof of Condition 1 is thus complete.

We note that if we select the generator matrix as G =


0 0 0 0

1 0 1 0

0 1 0 1

, the value re-

turned by the mapping function in 4.3 is in fact the original PNC, i.e., the bit-wise XOR

mapping. Hence, the original PNC is a subset of the proposed LPNC-EM.

4.4.2 Rate based Adaptive Selection

In this subsection, we discuss the rate based adaptive selection in details. We denote the

rate of each user in the MAC phase as R(1)
i , i ∈ {A,B} and the mutual information

between yR and sL as I(YR;SL).

The mutual information I(YR;SL) is calculated as

I(YR;SL) = log2(MsL)

+
∑
sL

P (sL)

∫
yR∈C

p (yR |sL ) log2

 p (yR |sL )P (sL)∑
s′L

P (s′L) p (yR |s′L )

 dyR, (4.10)

where MsL is the cardinality of the LNCC.

We note that the rate region of LPNC-EM in the MAC phase is determined by the

mapping function in (4.3). Here, we show the impact of the mapping function on the
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individual achievable rate of each user. If the resulting LNCC is a member of GF(22), the

rate region of LPNC-EM is given as

R
(1)
A = R

(1)
B ≤ I(YR;SL), sL ∈ GF(22). (4.11)

However, when we select a G to generate a LNCC sL in GF(23), the rate of each

user is proportional to I(YR;SL). For example, given G =


1 0 0 1

1 0 1 0

0 1 0 1

, the result-

ing LNCC is calculated as sL =


sA,1 ⊕ sB,2
sA,1 ⊕ sB,1
sA,2 ⊕ sB,2

. We note that if the resulting LNCC

sL is a member of GF(23), the following observations are obtained: 1) sL provides the

redundancy for the binary bit si,j, i ∈ {A,B}, j ∈ {1, 2}; and 2) the maximum mutual

information I(YR;SL) can achieve 3bits/symbol when SNR is high. However, the effec-

tive achievable rate of user i, i ∈ {A,B}, is equal to the sum of the rates with respect to

binary bits si,1 and si,2 in the sL. Assuming an error-free BC phase, based on Condition

1, what each user needs to solve are the two and only two unknown variables si,1 and si,2

even though these two variables may appear more than once in the linear equations (4.5).

As a result, we may expand the rates R(1)
A and R(1)

B as

R
(1)
A ≤ I(YR;SA,1(SL)) + I(YR;SA,2(SL))

R
(1)
B ≤ I(YR;SB,1(SL)) + I(YR;SB,2(SL)),

(4.12)

where si,j(sL), i ∈ {A,B}, j ∈ {1, 2}, is the j-th data bit of user i carried by sL and

I(YR;Si,j(sL)) denotes the mutual information between the received signal at relay and

the user’s binary bit carried by LNCC. Since the LNCC sL is uniformly distributed over

either GF(22) or GF(23), each mapping level in (4.5) are equiprobable. Based on this,

we have I(YR;Si,j(sL)) = 1
3
I(YR;SL). Hence, the rate region in (4.12) can be rewritten

as R(1)
A = R

(1)
B ≤ 2

3
I(YR;SL), SL ∈ GF(23), where 2

3
I(YR;SL) equals to the effec-

tive bits per symbol received by each user if the BC phase is error-free. Based on these

observations, we have the following remark.

Remark 1: The individual achievable rate of each user in the MAC phase is propor-

tional to the mutual information between the received signal and the LNCC, given by

R
(1)
A = R

(1)
B ≤

H(Si)

H(SL)
I(YR;SL), i ∈ {A,B}, (4.13)

Dong Fang, Ph.D. Thesis, University of York 2014



CHAPTER 4. MULTILEVEL CODED LINEAR PHYSICAL-LAYER NETWORK CODING OVER

FADING 2-WAY RELAY CHANNELS 55

where H(·) denotes the entropy function. The quantity H(Si)
H(SL)

is the proportion of user

symbol si in sL and we have H(Si) = 2 due to the QPSK signaling and H(SL) =

log2(q), q ∈ {22, 23} as sL is uniformly distributed over either GF(22) or GF(23).

Based on the Remark 1, we observe that maximizing 2
log2(q)

I(YR;SL) is equivalent

to maximizing the individual achievable rate of each user in the MAC phase. Since the

mutual information I(YR;SL) is strongly dependent on the generator matrix G, we re-

express I(YR;SL) in terms of G, given as IG(YR;SL). The selection criterion of maxi-

mizing the individual achievable rate of each user returns the optimal G, given by

G̃ = arg max
G

[
2

log2(q)
IG(YR;SL)

]
︸ ︷︷ ︸

∆(G)

, (4.14)

where G̃ is the generator matrix returned after exhaustive searching. The objective func-

tion for optimization is defined as ∆(G).

4.4.3 Rate Analysis for LPNC-EM

In this subsection, we explore the impact of fading on the effective individual achievable

rate of each user. We note that after scaling by 1/hA, the SS in (4.2) can be re-expressed

in terms of hre, given as x∗AB , xA+hrexB. This indicates that the individual rate of each

user in (4.13) is also a function of hre. We plot this rate over the whole complex plane of

hre when SNR=10dB for LPNC-EM, 5QAM-DNF and the original PNC, as shown in Fig.

4.1. The authors in [2] pointed out that the original PNC has a significant performance

degradation when hre occurs on these places: hre = ±j, hre = ±1
2
(1± j), hre = ±1± j

and |hre| ≈ 0, which are referred to as the singular points.

Based on Fig. 4.1, we have the following observations: 1) the original PNC cannot

eliminate any of the singular points mentioned above; 2) the proposed LPNC-EM can

eliminate the singular points around hre = ±j. It cannot eliminate the singular points

around hre = ±1
2
(1 ± j) and hre = ±1 ± j but can mitigate them; 3) 5QAM-DNF can

eliminate the singular points around hre = ±j, hre = ±1
2
(1 ± j) and hre = ±1 ± j;

and 4) The LPNC-EM has a superior capability of mitigating the singular points around

|hre| ≈ 0 compared with 5QAM-DNF.
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Figure 4.1: The rate R(1)
i , i ∈ {A,B} against the real and imaginary parts of hre when

SNR=10dB.
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Figure 4.2: System Diagram of Multilevel Coded LPNC-EM.

4.5 Multilevel Coded LPNC-EM

In this section, we provide the detailed design of multilevel coded LPNC-EM. The LNCC

in (4.5) forms a group of linear functions for user data bits si =

 si,1

si,2

 , i ∈ {A,B}.
This inspires us to employ the independent coding levels for si,1 and si,2 to construct the

HDF paradigm as in [7]. The details of the proposed multilevel coded LPNC-EM are

described as follows.

In the proposed multilevel coded LPNC-EM, the user data bits si,1 and si,2 are the

coded data stream, which are generated by independently encoding the input binary bits

di,1 and di,2, given by si,j = C(di,j), where j ∈ {1, 2} and C(·) is the channel encoder.

The relay R performs the proposed LPNC-EM mapping as in (4.4) and inputs each

level of the resulting LNCC sL into the channel decoder C−1(·). The independent decod-

ing for each level of sL is formulated as
C−1(sL,1)

C−1(sL,2)

C−1(sL,3

 =


C−1 (G(1, :)⊗ sAB)

C−1 (G(2, :)⊗ sAB)

C−1 (G(3, :)⊗ sAB)

 , (4.15)

where G(m, :),m ∈ {1, 2, 3}, is the m-the row of G.

Dong Fang, Ph.D. Thesis, University of York 2014



CHAPTER 4. MULTILEVEL CODED LINEAR PHYSICAL-LAYER NETWORK CODING OVER

FADING 2-WAY RELAY CHANNELS 58

As each bit level of sL is a linear function of the coded data stream si,j , the output of

the decoder function is then a linear combination of di,j . This because LPNC-EM does

not break the linearity of channel codes. Based on these, (4.15) can be expanded as


C−1(sL,1)

C−1(sL,2)

C−1(sL,3

=G⊗


C−1(sA,1)

C−1(sA,2)

C−1(sB,1)

C−1(sB,2)

=G⊗


dA,1

dA,2

dB,1

dB,2

 ,DL, (4.16)

where we denote the linear combination of di,j as DL and DL =


dL,1

dL,2

dL,3

 in which

dL,n, n ∈ {1, 2, 3} is the n-th bit level of DL.

The results of (4.15) and (4.16) show the fundamental principle of multilevel coded

LPNC-EM. Based on this, we plot the system structure of the multilevel coded LPNC-

EM, as shown in Fig. 4.2.

4.6 Performance Evaluation

In this section, we evaluate the frame error rate (FER) performance for the proposed

strategy and the benchmarks in the Rayleigh fading 2-WRC. Due to the nature of network

coding, we note that the transmission of the BC phase in 2-WRC is in fact the same as

that of the point-to-point channel. The authors in [8] pointed out that the MAC phase is

the performance bottleneck of 2-WRC for PNC strategy. For this reason, we pay more

attention to the performance in the MAC phase than that in the BC phase, that is, we

assume that the BC phase is free from error and the LNCC or network coded symbol

can be perfectly received by each user. Fig. 4.3 shows the FER performance for the

proposed strategy and the benchmarks when the BC phase is error-free. The length of the

original data packet is 512 bits. A rate 1/3 convolutional code with generator polynomials

(133, 171, 145)8 is applied. We choose the original PNC and 5QAM-DNF in [8] as the

benchmarks.

Based on Fig. 4.3, we observe that uncoded LPNC-EM is superior to uncoded orig-
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Figure 4.3: FER for different strategies

inal PNC. Compared with 5QAM-DNF, uncoded LPNC-EM still achieves almost equal

performance. We also clearly observe the coding gain by the chosen convolutional codes.

Similar to uncoded scenario, multilevel coded LPNC-EM outperforms the coded original

PNC.

Fig. 4.4 shows the sum-rate for different strategies in the MAC phase. Based on Fig.

4.4, we see that LPNC-EM outperforms the original PNC and achieves an almost equal

performance (with a negligible rate degradation) compared with 5QAM-DNF. This is in

accordance with our FER results.

4.7 Summary

In this Chapter, we proposed a novel LPNC-EM for Rayleigh fading 2-WRC. The relay

node adaptively selects the linear generator matrix and directly maps the superimposed

signal of the two users into the linear network coded combination over the hybrid Galois

Field (GF(22) or GF(23)). The selection criterion ensures unambiguous decoding and

maximizes the individual rate of each user. The LPNC-EM forms two or three indepen-

dent coding levels which facilitates the multilevel coded structure. This enables the HDF
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paradigm as in [7]. The numerical results show that the uncoded LPNC-EM outperforms

the original PNC and can achieve equal error performance compared with 5QAM-DNF

in [8]. Furthermore, the multilevel coded LPNC-EM also provides a superior error per-

formance over the coded original PNC.
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5.1 Overview

In this chapter, we propose a novel LPNC scheme over hybrid finite ring (HFR-LPNC) for

Rayleigh fading two-way relay channels. The relay maps the superimposed signal of the

two users to a linear network coded combination (LNCC) over hybrid finite ring, rather

than using the simple bit-wise XOR mapping [1]. The optimal linear coefficients are se-

lected to generate the LNCC, aiming to: 1) maximize the sum-rate in the MAC phase;

and 2) ensure unambiguous decoding. To avoid the performance degradation caused by
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high-order irregular mappings, properly designed source coding is used for compressing

the LNCC alphabet over the hybrid finite ring into the unifying 4-ary alphabet. We de-

rive the constellation constrained sum-rates for HFR-LPNC in comparison with 5QAM

denoise-and-forward (5QAM-DNF) [8], which we use as a reference scheme. Further-

more, we explicitly characterize the rate difference between HFR-LPNC and 5QAM-

DNF. Our analysis and simulation show that: 1) HFR-LPNC has a superior ability to

mitigate the singular fading compared with 5QAM-DNF; and 2) HFR-LPNC is superior

to 5QAM-DNF over a wide range of SNRs.

5.2 Introduction

In order to deal with the fading in the MAC phase of the 2-WRC, the authors of [8] pro-

posed a novel, non-linear 5QAM-DNF scheme for PNC, which can mitigate these singular

fade states by extending the mapping from 4-ary to 5-ary. The authors in [56,57] proposed

a new non-linear PNC constructed from the Latin square, which has similar capability to

mitigate the singular fading. However, the drawbacks of 5QAM-DNF and Latin square

based PNC are also clear: both the nonlinear mapping and the 5QAM constellation used

on the BC phase introduce irregularities in the communication system which mean that

they cannot readily be implemented in conventional systems. Moreover, the selection cri-

terion of their non-linear mapping is based on the maximization of minimum Euclidean

distance which cannot guarantee the maximum sum-rate in the MAC phase.

The algebraic approach to network coding proposed in [25, 26], namely, the so-called

compute-and-forward (CPF), has extended the PNC beyond the 2-WRC to general Gaus-

sian multiple access channels (GMAC). However, we note that their scheme requires a

high dimensional lattice construction which may not be practical. The degrees of freedom

(DoF) of CPF was investigated in [27], in which the authors proved that the DoF of CPF

using lattice codes for a K transmitters and K relays network is at most 2/(1 + 1/K).

In [28], the authors proposed a novel distributed space-time coding for two-way relay

channels, which mitigates the singular fading at the user side without any channel state

information at the transmitter (CSIT) and only adopts simple XOR mapping at the relay.

The authors in [4,32] proposed a combined PNC approach with interference alignment for
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multi-antenna base stations and relays. In [29], the authors proposed a novel decoding al-

gorithm for PNC which can deal with the symbol and phase synchronization. The authors

in [30] proposed a joint design of channel coding and PNC for frequency selective chan-

nels. The authors in [31] proposed a precoding based PNC for the generalized MIMO Y

channels, where the precoding at each user and the relay is carefully constructed to ensure

that the users are grouped in pairs and the interference among user pairs can be canceled.

The authors in [33] investigated the error probability bound at the relay which uses a

punctured codebook method for explicitly computing the distance spectrum of the PNC.

The symbol error rate (SER) of PNC with BPSK and QPSK modulation in non-fading

2-WRC was studied in [35]. The author in [37] analyzed the SER for QAM modulated

PNC with the phase error. An exact bit error rate (BER) performance of the PNC for the

fading 2-WRC was derived in [36]. The concept of linear network coding in the switching

networks was originally proposed in [38,39] and further extended to the wireless 2-WRC

in [34], namely, linear physical-layer network coding (LPNC). However, their designed

LPNC can only be optimized for the prime q-ary modulation (e.g., 5PAM in [34]) at

sources. This restricts its application with common modulation schemes such as QPSK,

16QAM and etc. Moreover, their LPNC design is based on the maximization of minimum

Euclidean distance which cannot guarantee the maximum sum-rate in the MAC phase.

To tackle the aforementioned challenge of singular fading for PNC, in this chapter,

we propose HFR-LPNC for the Rayleigh fading 2-WRC. Unlike the 5PAM modulation

in [34], we restrict the two users of 2-WRC to employ simple QPSK signalling. By

properly selecting the linear coefficients belonging to the hybrid finite ring, the relay

directly maps the superimposed signal of the two users into the linear network coded

combination (LNCC) over these finite rings. The selection criterion ensures unambiguous

decodablility and maximizes the sum-rate in the MAC phase. We explicitly characterize

the sum-rates of LPNC and 5QAM-DNF. Based on our analysis and numerical results,

we demonstrate that: 1) HFR-LPNC has a superior ability to mitigate the singular fading

compared with 5QAM-DNF [8]; and 2) HFR-LPNC is superior to 5QAM-DNF over a

wide range of SNRs. The four major contributions of this chapter are summarized as

follows:

1. We design a new linear mapping over the hybrid finite ring for the superimposed

signal of two users. This makes the decoding of neighboring network coded com-
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binations more reliable, as the hybrid finite ring offers multiple decoding choices

for a specific superimposed signal.

2. We optimize the designed linear mapping using the criterion of maximizing the

sum-rate in the MAC phase. We also redesign 5QAM-DNF based on rate maxi-

mization rather than maximizing the minimum Euclidean distance [8].

3. We introduce source coding (SC) for compressing the LNCC alphabet over the

hybrid finite ring into the unifying 4-ary alphabet. This avoids performance degra-

dation for the BC phase transmission.

4. We derive the constellation constrained sum-rate for HFR-LPNC and 5QAM-DNF

[8] (as the benchmark) and explicitly characterize the rate difference between them.

5.3 Preliminaries, System Model and Design

In this section, we first provide some preliminary definitions of modern algebra; then, we

describe the system model and the design of the proposed scheme in detail.

5.3.1 Algebraic Preliminaries

Let S(q) , {0, 1, 2, ..., q − 1} denote a finite set of the consecutive integers from 0 to

q − 1. The cardinality of S(q) is denoted by |S(q)| = q. Clearly, the finite set S(q) is

closed under modulo-q addition and multiplication [42], given by

a�b , mod(a+ b, q),

and

a�b , mod(a · b, q),

respectively, where a, b ∈ S(q).

Based on the defined modulo-q operations on the finite set S(q), the following axioms

are satisfied for a, b, c ∈ S(q)
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1. Associative law: (a�b)�c = a� (b�c) and (a�b)�c = a� (b�c);

2. Commutative law: a�b = b�a and a�b = b�a.

Definition 1 [41]. A semigroup is a set with an associative binary operation ∗ defined

on it.

Definition 2 [41]. A monoid is a semigroup G that contains an element e such that for

any element a in G,

e ∗ a = a ∗ e = a.

Then e is called an identity element of G with respect to the operation ∗.

Definition 3 [41]. A group is a monoid G in which for any element a of G, there exists

an element a′ in G such that

a ∗ a′ = a′ ∗ a = e,

where a′ is called an inverse of a, and vice versa, with respect to the operation ∗. A group

G is said to be commutative if the binary operation ∗ defined on it is commutative.

Definition 4 [41]. A set R with two binary operations + and · forms an algebraic

structure (R,+, ·), which is called a ring if and only if the following axioms for a, b,

c ∈ R are satisfied:

1. (R,+) forms a commutative group;

2. (R, ·) forms a monoid;

3. the operation + distributes over the operation ·:

(a+ b) · c = a · c+ b · c,

a · (b+ c) = a · b+ a · c.

4. If the operation · also satisfies the commutative law, then the ring is called commu-

tative.
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Definition 5 [41].: A bijection is a function that defines an exact one-to-one corre-

spondence between members of two sets of the same size.

Remark 1: (S(q),�,�) forms a finite commutative ring since: 1) (S(q),�) forms

a commutative group, in which the identity element with respect to � is 0; 2) (S(q),�)

forms a monoid since � is associative and the identity element is 1; and 3) it is easy to

verify that the operation � distributes over �.

Remark 2: (S(q),�) for non-prime q is not a group, since not all elements have

inverses. For example, in S (6) = {0, 1, 2, 3, 4, 5} neither the even elements (2, 4) nor 3

have inverses, since no multiple of these numbers, taken modulo-6, can be 1. However

the subset {1, 5} forms a group under �, again with 1 as the identity, since 5 is then its

own inverse. In general, the non-zero elements in S (q) which are relatively prime to q

form a group under �.

Remark 3: Multiplication (using �) by a member a of S (q) constitutes a bijection

of S (q) to itself if and only if a has an inverse under � (a multiplicative inverse), since

a bijective function is reversible, and clearly multiplication by the inverse must reverse

the multiplication. Hence multiplication by any non-zero element in S (q) which is rela-

tively prime to q constitutes a bijection. Similarly addition (�) of any member of S (q)

constitutes a bijection, since all elements have an additive inverse (under �).

Definition 6. The set SH(q1, q2, · · · , qn) with the operations � and �, where

q1, q2, · · · , qn are integers, defined as

SH(q1, q2, · · · , qn) , {(S(q1),�,�) , (S(q2),�,�) , · · · , (S(qn),�,�)} ,

is called a hybrid finite ring.

5.3.2 MAC Phase

The 2-WRC involves two users (A and B) and one relay (R). It is assumed that both users

adopt the Gray coded QPSK constellation with unity energy constraint. The constellation

mapper is denoted asMS(·). In the MAC phase, the PNC allows A and B to simultane-

ously transmit signals. The electromagnetic signals are superimposed and received by the
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relay, given by

yR = hAxA + hBxB + nR, (5.1)

where xi =MS(si) is the modulated symbol of user i, i ∈ {A,B} and si represents the

user data, which serves as the complementary side information (C-SI) for user i. Let hi,

i ∈ {A,B} denote the channel gain between user i and R. We assume that two channels

experience independent and identically distributed (i.i.d.) frequency-flat Rayleigh fading

with unit variance. The ratio hre , hB/hA is referred to as the relative fading factor.

The received signal is corrupted by complex Additive White Gaussian Noise (AWGN)

nR with variance σ2
w per complex dimension. For simplicity, each user adopts the same

transmission power of one unit. We define the average signal-to-noise-ratio (SNR) per

information symbol as 1
2σ2

w
. We refer to

xAB , hAxA + hBxB (5.2)

as the noiseless superimposed signal (SS).

5.3.3 Linear Mapping at Relay

The authors in [8] pointed out that if both users employ QPSK modulation, the origi-

nal PNC [1] using bit-wise eXclusive-OR (XOR) mapping has a significant performance

degradation when hre takes the values: ±j, ±1
2
(1 ± j) and ±1 ± j, which are referred

to as the singular points. In addition, when hre → 0 or ∞, performance is necessarily

degraded, since one of the source-relay channels is severely faded.

Around these singular points, the bit-wise XOR mapping cannot distinguish the near-

est neighboring SSs associated with different network coded combinations. Because

of this drawback, we propose to extend the linear mapping for PNC over the hybrid

finite ring, which provides multiple decoding choices to distinguish the nearest neigh-

boring SSs. Each SS is mapped into an element of the finite ring S(q). Note that the

cardinality q may lie in the range 4 (described in [8] as a minimal mapping) to 16 (a

full mapping). Hence, the initial hybrid finite ring is then given as SH(4, · · · , 16) =

{S(4),S(5),S(6),S(7),S(8),S(9),S(10),S(11),S(12),S(13),S(14),S(15),S(16)}.

In the proposed design, the relay R performs the linear mapping L to generate a linear
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network coded combination (LNCC) (where linearity is in the finite ring sense), taking

the form

s
(q)
L = Lq (sA, sB) = αq � sA � βq � sB, ∀αq, βq ∈ Zq, (5.3)

where αq and βq represent the linear coefficients of LNCC and Zq , S(q)/{0} denotes

the domain of αq and βq. The LNCC alphabet of s(q)
L is denoted as S(q)

L =
{
s

(q)
L

}
and its

cardinality is
∣∣∣S(q)
L

∣∣∣.
Given the received signal yR at the relay, the relay estimates the LNCC s

(q)
L based on

the maximal likelihood (ML) rule. Integrating the designed linear mapping in (5.3) into

the ML detection, we have

ŝ
(q)
L = arg max

s
(q)
L

p(yR|s(q)
L ) = arg max

s
(q)
L

∑
xA,xB :s

(q)
L =Lq(sA,sB)

P (xA)P (xB)p(yR|xAB), (5.4)

where ŝ(q)
L represents the decoded version of s(q)

L ; p(yR|s(q)
L ) is the likelihood function; and

the summation includes all transmitted symbol pairs (xA, xB) such that the SS is mapped

into the LNCC s
(q)
L . The conditional probability density function (PDF) p(yR|xAB) is

given by

p(yR|xAB) =
1

2πσ2
w

exp

(
−|yR − xAB|

2

2σ2
w

)
. (5.5)

The proposed HFR-LPNC generates several LNCCs in different finite rings and se-

lects the one which can (in order of priority) 1) ensure the unambiguous decodability; 2)

maximize the sum-rate in the MAC phase and 3) minimize the cardinality q of the ring

(so as to minimize the required capacity in the BC phase). The details of the selection

criteria for the coefficients of (5.3) are described in the following subsections.

5.3.4 Unambiguous Decodability of Linear Mapping

Each user should be able to decode the desired signal from the other user by exploiting

the received LNCC and its C-SI. This requires the linear mapping in (5.3) to be unam-

biguously decodable, that is:

Lq (sA, sB) 6= Lq (s′A, sB) , ∀sA 6= s′A

Lq (sA, sB) 6= Lq (sA, s
′
B) , ∀sB 6= s′B,

(5.6)
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which is called the exclusive law in [8]. For given sB, it defines a bijection from sA to

s
(q)
L = Lq (sA, sB), and similarly for given sA, a bijection from sB to s(q)

L = Lq (sA, sB),

Clearly, the unambiguous decoding is possible if and only if the pair (αq, βq) is prop-

erly selected such that the linear mapping in (5.3) satisfies (5.6). Recall from Remark 3

above and the domain of αq and βq, that multiplication by αq or βq constitutes a bijection

(and therefore satisfies (5.6)) if and only if the coefficient has a multiplicative inverse with

respect to�. This applies only to the non-zero elements of S (q) which are also relatively

prime to q. Hence, the updated valid domain of αq and βq, denoted by Z ′q, is given by

αq, βq ∈ Z ′q =



{odd integers in S(4)} , if q = 4

S(5)/ {0} , if q = 5

{odd integers in S(6)} / {3} , if q = 6

S(7)/ {0} , if q = 7

{odd integers in S(8)} , if q = 8

S(9)/ {0, 3} , if q = 9

{odd integers in S(10)} / {5} , if q = 10

S(11)/ {0} , if q = 11

{odd integers in S(12)} / {3} , if q = 12

S(13)/ {0} , if q = 13

{odd integers in S(14)} / {7} , if q = 14

S(15)/ {0, 3, 5} , if q = 15

{odd integers in S(16)} , if q = 16

. (5.7)

Since the addition of any given element from S (q) also constitutes a bijection, then if αq

and βq are selected from the above domain, (5.6) is automatically satisfied.

5.3.5 Search Space of Linear coefficients

For a given q, we have (αq, βq) ∈ Z
′
q × Z

′
q, where Z ′q × Z

′
q indicates the search space of

pair (αq, βq). However, searching (αq, βq) over such large search space requires a high

computational complexity. The following Theorem 1 shows that the size of the search

space can be reduced from
∣∣Z ′q∣∣2 to

∣∣Z ′q∣∣.
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Theorem 1. The linear coefficient pairs (αq, βq) ∈ 1 × Z ′q and (αq, βq) ∈ Z
′
q × Z

′
q

yield the same LNCC alphabet.

Proof. let αq = 1 and βq ∈ Z
′
q, we generate the following LNCC alphabet

S(q)
L =

{
s

(q)
L |
(
s

(q)
L = 1� sA � βq � sB

)}
(5.8)

Multiplying s(q)
L by λ ∈ Z ′q, we generate a new LNCC alphabet S ′(q)L , given as

S ′(q)L =
{
s′

(q)
L |s′

(q)
L = λ� s(q)

L = λ� (1� sA � βq � sB)
}

(5.9)

The algebraic associative law indicates that

λ� (1� sA � βq � sB) = (λ� 1)� sA � (λ� βq)� sB (5.10)

where we define α′q , λ� 1and β′q , λ� βq. Hence, S ′(q)L is re-expressed as

S ′(q)L =
{
s′

(q)
L |s′

(q)
L = α′q � sA � β

′
q � sB

}
(5.11)

where (α′q, β
′
q) ∈ Z

′
q × Z

′
q. From Section II.A above, we know that Sq in (5.9) is closed

under the multiplication operation. Hence we have S(q)
L = S ′(q)L and the proof of Theorem

1 is complete.

5.3.6 LPNC for Maximizing the Sum-rate in MAC Phase

Recall from the rate region of PNC established in [5,7] that for HFR-LPNC, the sum-rate

in the MAC phase strongly depends on the rate of LNCC, i.e., the mutual information

between yR and s(q)
L , denoted as I(YR;S

(q)
L ). The mutual information I(YR;S

(q)
L ) is cal-

culated as

I(YR;S
(q)
L ) = H(YR)−H(YR|S(q)

L ). (5.12)

The entropy H(YR) of the received signal is given by

H(YR) = −
∫
yR∈C

p(yR) log2 (p(yR)) dyR. (5.13)
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The PDF of yR in (5.13) is calculated as

p(yR) =
∑
xA,xB

P (xAB)p(YR|xAB) =
∑
xA,xB

P (xA)P (xB)p(xR|xAB), (5.14)

where p(yR|xAB) is defined in (5.5).

The conditional entropy H(YR|S(q)
L ) in (7.13) can be calculated as

H(yR|s(q)
L )=−

∑
s
(q)
L

∫
y∈C

p
(
yR, s

(q)
L

)
log2

(
p
(
yR|s(q)

L

))
dyR

=−
∑
s
(q)
L

P (s
(q)
L )

∫
y∈C

p
(
yR|s(q)

L

)
log2

(
p
(
yR|s(q)

L

))
dyR,

(5.15)

where p
(
yR|s(q)

L

)
is defined in (5.4).

Note that neither H(YR) in (5.13) nor H(YR|S(q)
L ) in (5.15) can be written in closed

form. Hence, we use Monte-Carlo integration instead for computing (5.13) in (5.15). As

such, the mutual information in (7.13) is computed as

I(YR;S
(q)
L ) = −E [log2 (p(YR))] + E

[
log2

(
p
(
YR|S(q)

L

))]
, (5.16)

where Mi, i ∈ {A,B}, is the cardinality of the user alphabet assuming that the channel

input is uniformly distributed, a common assumption for current communication systems.

Based on the calculated I(YR;S
(q)
L ), the following Theorem 2 provides the rate region

of the two users in the MAC phase given that HFR-LPNC is decoded at R. Note that

unlike conventional multiple access channels, the sum-rate or individual rate in the MAC

phase of 2-WRC is in fact the rate achieved by the two users assuming that the BC phase

is free from error. Similarly, the sum-rate or individual rate in the BC phase is in fact

the rate achieved by the two users assuming that decoding at the relay is error-free. The

individual achievable rate of user i, i ∈ {A,B} in the MAC phase is denoted by R(1)
i and

the sum-rate in the MAC phase is denoted by R(1)
AB.

The proof of Theorem 2 is detailed in the Appendix.

Theorem 2. For the proposed HFR-LPNC, the rate region in the MAC phase is given
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by

R
(1)
A ≤

1

2
I
(
YR; ŜA|SB

)
R

(1)
B ≤

1

2
I
(
YR; ŜB|SA

)
R

(1)
AB ≤

1

2
· 4

H
(
S

(q)
L

)I (YR;S
(q)
L

)
,

(5.17)

where the quantity 4 is the entropy of 4-bit binary tuple (sA, sB); and H(s
(q)
L ) =

−
∑
s
(q)
L

P (s
(q)
L )log2

(
P (s

(q)
L )
)

is the entropy of s(q)
L . The quantity ŝi denotes the recovered

version of si.

For a given channel state, the objective of the proposed design is to find an optimal

linear mapping such that the sum-rate bound of Theorem 2 is maximized. The results

of (5.3) and (5.16) indicate that I(YR;S
(q)
L ) depends on different LNCC, which in turn

depends on the linear coefficient pair (αq, βq). Therefore, we re-express the mutual in-

formation I(YR;S
(q)
L ) in terms of the linear coefficient pair (αq, βq), which we write as

I(αq ,βq)(YR;S
(q)
L ). Based on these, our final selection criterion to maximize the sum-rate

is given by

(α̃q, β̃q) = arg max
(αq ,βq)∈1×Z′q

[
4

H(s
(q)
L )

I(αq ,βq)(YR;S
(q)
L )

]
︸ ︷︷ ︸

∆(αq ,βq)

, (5.18)

where (α̃q, β̃q) is the returned linear coefficient pair. The objective function for optimiza-

tion, defined as ∆(αq, βq), is in fact the scaled (doubled) bound of sum-rate as given in

(5.17).

5.3.7 The size-reduced HFR-LPNC

In this subsection, we provide an approach which can reduce the size of the initial hybrid

finite ring SH(4, · · · , 16) and hence results in a lower computational complexity. Here,

we use 5QAM-DNF as the performance benchmark. The sum rate of 5QAM-DNF in the

MAC phase is denoted as R(1)
AB,DNF. The following algorithm is proposed to reduce the

size of SH(4, · · · , 16) based on comparing the rate difference with R(1)
AB and R(1)

AB,DNF.

We note that the above algorithm only selects those finite rings that could result in
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Algorithm 1 Reduce the size of SH(4, · · · , 16)

1: for all SNR=-10dB:40dB do

2: for all q ∈ {4, ..., 16} do

3: for all Re(hre) = −2 : 2 do

4: for all Im(hre) = −2 : 2 do

5: Make a set empty: Q = ϕ;

6: Generate the LNCC s
(q)
L = Lq (sA, sB);

7: Compute R(1)
AB(q) and R(1)

AB,DNF;

8: if R(1)
AB(q) ≥ R

(1)
AB,DNF for a given q then;

9: Include this q in the set: Q ← {Q ∪ q};
10: end if

11: end for

12: end for

13: end for

14: end for

15: Let Q ← unique(Q), which corresponds to the selected finite rings.

a superior performance for HFR-LPNC relative to 5QAM-DNF. Algorithm 1 returns a

size-reduced hybrid finite ring, given as SH(4, 5, 8) = {S(4),S(5),S(8)} and excludes

other finite rings in the initial hybrid finite ring SH(4, · · · , 16). We refer to the LPNC

using hybrid finite ring SH(4, 5, 8) as the size-reduced HFR-LPNC. We plot the scaled

sum-rate bound of the size-reduced HFR-LPNC in the MAC phase as shown in Fig. 5.1,

over the complex plane of hre when SNR=10dB. We are interested especially in singular

fading points as discussed in Section II.C above, which tend to result in local minima of

the sum-rate. Based on Fig. 5.1, we have the following observations:

1) LPNC in S(4) cannot mitigate any singular fading points mentioned in Section II.C

above. However, we note that it has a higher sum-rate bound (a scaled version in fact)

around |hre| = 0 compared with that in S(5).

2) LPNC in S(5) mitigates the singular points around hre = ±j, hre = ±1
2
(1± j) and

hre = ±1 ± j. However, the sum-rate bound for S(5) is lower than those in other finite

rings around |hre| = 0.

Dong Fang, Ph.D. Thesis, University of York 2014



CHAPTER 5. LINEAR PHYSICAL-LAYER NETWORK CODING IN HYBRID FINITE RING FOR

RAYLEIGH FADING 2-WAY RELAY CHANNELS 74

3) LPNC in S(8) mitigates the singular points around hre = ±j, hre = ±1
2
(1 ± j)

and hre = ±1± j but its mitigation on these points is weaker than that of LPNC in S(5).

However, LPNC in S(8) has the highest sum-rate bound around |hre| = 0 compared with

those in other finite rings.

4) HFR-LPNC combines the advantages of LPNC over rings S(4), S(5) and S(8).

It is interesting to note that despite causing exclusive law failure, singular fading does

not reduce the sum-rate to zero. This is because typically only some symbol combinations

are affected, resulting effectively in erasures of those symbols only. Note also that the

sum-rate of the MAC phase is non-zero for hre = 0. In this case R(1)
B = 0 since hB = 0,

but R(1)
A is non-zero; similarly for hA = 0.

Based on Theorem 2, the size-reduced HFR-LPNC only needs to search over∑
q=4,5,8

∣∣Z ′q∣∣ = 10 pairs of linear coefficients to select the optimal one. The computation

complexity is thus reduced.

5.3.8 The Selection Algorithm for HFR-LPNC

In this subsection, we provide a selection algorithm for HFR-LPNC based on the selection

criterion in (5.18) and Theorem 2. We note that after scaling by 1/hA, the SS in (5.2)

can be re-expressed in terms of hre, and given as x∗AB(hre) = xA + hrexB. This indicates

that the objective function in (5.18) is also a function of hre, and can be re-expressed as

∆(αq, βq, hre).

Given a specific relative fading factor hre, the Algorithm 2 is proposed to determine

the optimal HFR-LPNC to: 1) satisfy the unambiguous decoding in (5.6); 2) maximize

the sum-rate in the MAC phase; and 3) minimize the cardinality q.
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(a) LPNC in S(4)
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(b) LPNC in S(5)
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(c) LPNC in S(8)
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(d) HFR-LPNC after selection (S(q), q ∈
{4, 5, 8})

Figure 5.1: The scaled bound of sum-rate, ∆(αq, βq, hre), for LPNC in different finite

rings v.s. hre when SNR=10dB.
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Algorithm 2 Optimal LPNC over Hybrid Finite Ring SH(4, 5, 8)

1: Given hre;

2: for all q ∈ {4, 5, 8} do

3: Make the rate set empty: FI = ϕ;

4: for all (αq, βq) ∈ 1×Z ′q do

5: Generate the LNCC s
(q)
L = Lq (sA, sB);

6: Compute ∆(αq, βq, hre);

7: Include it in the rate set: FI ← FI ∪ {∆(αq, βq, hre)};
8: end for

9: end for

10: Let ∆(αq, βq, hre)max be the maximum value among all the rates:

∆(αq, βq, hre)max = max (FI);

11: Select (αq, βq) ∈ 1 × Z ′q whose rate corresponds to ∆(αq, βq, hre)max and with the

smallest q (for minimal cardinality).

5.3.9 BC Phase and Decoding of the Desired Signal

In the BC phase, transmitting HFR-LPNC poses a challenge as the linear mapping in

hybrid finite ring requires irregular modulation and sacrifices spectral efficiency. This is

similar to 5QAM in [8]. To tackle this challenge, we propose to use source coding (SC) to

compress the LNCC alphabet over the hybrid finite ring into an unifying 4-ary alphabet.

In this subsection, we firstly systematically describe the joint design of SC and the HFR-

LPNC; and then we determine the compression efficiency using SC; finally, we discuss

decoding procedure of the desired signal for each user.

HFR-LPNC 
Detector

Source
Encoder

Figure 5.2: The Block Diagram of jointly designed HFR-LPNC and SC.

The block diagram of the jointly designed HFR-LPNC and SC is shown in Fig. 5.2.

Based on different channel conditions, the HFR-LPNC detector generates the LNCC that

maximizes the sum-rate in the MAC phase and also outputs the a priori probability of each
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LNCC. The conditional probability of LNCC over different S(q) is denoted as p(S(q)
L |q).

Since S(4) and S(5) are subsets of S(8), the source encoder treats the hybrid finite ring

SH(4, 5, 8) as a general S(8). We can obtain the a priori probability of the unified LNCC

as follows

P (S
(q)
L = m) =

∑
q=4,5,8

p(S
(q)
L = m|q)P (q),m ∈ {0, 1, 2, 3}

P (S
(q)
L = 4) =

∑
q=5,8

p(S
(q)
L = 4|q)P (q),

P (S
(q)
L = 5) = p(S

(q)
L = 5|q = 8)P (q = 8),

P (S
(q)
L = 6) = p(S

(q)
L = 6|q = 8)P (q = 8),

P (S
(q)
L = 7) = p(S

(q)
L = 7|q = 8)P (q = 8).

(5.19)

where P (q) denotes the probability of the ring S(q) being selected, which can be ob-

tained by a Monte-Carlo method averaging over a large number of channel realizations

for Rayleigh fading 2-WRC. Note that the entropy of s(q)
L obtained from its distribution

for each channel and averaged over all channels is the same as that obtained from the

distribution averaged over all channels.

In the proposed design, we apply classical Huffman coding to compress the LNCC

alphabet into a unifying 4-ary alphabet using the above a priori probability. The output

sequence of source encoder, namely, the compressed LNCC, is denoted as s̃(q)
L .
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Figure 5.3: Entropy and Codeword Length of LNCC v.s. SNR.

The entropy of LNCC provides a bound on the compressed length for jointly designed
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HFR-LPNC and SC. Based on the a priori probability in (5.19), we simulate the entropy

and average length of compressed LNCC, as shown in Fig. 5.3, which shows that the

average length of compressed LNCC is very close to the entropy of LNCC and they both

strongly depend on the SNR: they vary inversely with the SNR. This can also be confirmed

by the distribution of LNCC s
(q)
L , as illustrated in Fig. 5.4. From Fig. 5.4, we can observe

that when SNR is high, LNCC s
(q)
L is more uniformly distributed over S(4).
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Figure 5.4: Distributions of LNCC with different SNRs.

We note that for rings other than S(4) and S(8) the distribution of s(q)
L over the el-

ements is not uniform, and that this non-uniformity increases with SNR, thus reducing

entropy. We note also that the minimum cardinality constraint in Algorithm 2 causes

S(4) to be selected more often at higher SNR, and hence entropy tends to 2 bits/symbol

as SNR increases. On the other hand at low SNR the larger rings S(5) and S(8) result in

less ‘quantization error’, which offers a superior denoise performance and hence higher

mutual information, and hence they are more frequently selected and entropy is increased.

For comparison, the entropy per network coded symbol of 5QAM-DNF [8] is also

shown in Fig. 5.3, in which the selection criterion of the mapping is the minimum-

distance algorithm. For this algorithm, the mapping depends only on the channel, and

is not affected by the SNR, and hence the average entropy is constant with SNR. In con-

trast, our HFR-LPNC scheme using the mutual information criterion is able to adapt the

sum-rate in MAC phase according to the SNR.
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The relay R maps the compressed LNCC onto the modulated symbol, given as xR =

MR(s̃
(q)
L ), whereMR(·) is the relay constellation mapper using QPSK modulation. The

relay then broadcasts xR to A and B. The received signal at each user is given by

yi = hixR + ni, (5.20)

where ni is the complex AWGN at user i, i ∈ {A,B}.

Each user decompresses the received unified 4-ary LNCC to recover the original

LNCC s
(q)
L over the hybrid finite ring SH(4, 5, 8). Thanks to the unambiguous decod-

ability in (5.6), user A decodes its desired signal sB by exploiting s(q)
L and its C-SI sA

according to

ŝB = arg min
sB∈S(4)

dH

(
L(sA, sB), s

(q)
L

)
, (5.21)

where dH (X, Y ) denotes the Hamming distance between the quantities X and Y and

ŝB represents the decoded version of sB . User B applies the same decoding pattern to

recover its desired signal sA.

5.3.10 HFR-LPNC with diversity reception

In this subsection, we investigate diversity reception for HFR-LPNC, where the relay can

observe multiple replicas of the transmitted signals. Regarding frequency-selective mul-

tipath fading scenarios, we consider the same scenario as in [8] where a perfect equalizer

is assumed. In such circumstance, the proposed HFR-LPNC should have the capability

of diversity reception. Given that the relay uses D-branch diversity, the received signal is

expressed as

yR = hAxA + hBxB + nR, (5.22)

where yR =
[
yR,1 · · · yR,D

]T
, hi =

[
hi,1 · · · hi,D

]T
and nR =[

nR,1 · · · nR,D

]T
. Then the maximum likelihood (ML) detector where the linear

mapping is integrated, is given by

ŝ
(q)
L = arg max

s
(q)
L

p(yR|s(q)
L ) = arg max

s
(q)
L

∑
xA,xB :S

(q)
L =Lq(sA,sB)

1

2πσ2
w

exp

(
−‖yR − hAxA + hBxB‖2

2σ2
w

)
.

(5.23)
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Based on (5.23), the metric of the mapping selection of the proposed HFR-LPNC in

(5.18), is rewritten as

∆ (αq, βq) =
4

H
(
S

(q)
L

)I (YR;S
(q)
L

)
, (5.24)

where the mutual information I
(

YR;S
(q)
L

)
is calculated as

I
(
YR;S

(q)
L

)
= −E [log2 (p(YR))] + E

[
log2

(
p
(
YR|S(q)

L

))]
. (5.25)

5.3.11 HFR-LPNC with 16QAM

In this subsection, we investigate HFR-LPNC using 16QAM. We adopt the Algorithm 1

to check the finite ring with size q = 16 to 32, where those finite rings which can provide

a superior sum-rate compared with the 29QAM-DNF in [8] are picked out. Based on this

and the algebraic preliminaries in Section II, we list valid domain as Z ′q of αq and βq of

selected finite rings, given by

αq, βq ∈ Z ′q =



{odd integers in S(16)} , if q = 16

S(17)/ {0} , if q = 17

{odd integers in S(18)} / {3, 9} , if q = 18

S(19)/ {0} , if q = 19

{odd integers in S(20)} / {5} , if q = 20

S(21)/ {0, 3, 7} , if q = 21

{odd integers in S(22)} / {11} , if q = 22

S(23)/ {0} , if q = 23

{odd integers in S(24)} / {3} , if q = 24

S(25)/ {0, 5} , if q = 25

{odd integers in S(26)} / {13} , if q = 26

S(27)/ {0, 3, 9} , if q = 27

{odd integers in S(28)} / {7} , if q = 28

S(29)/ {0} , if q = 29

{odd integers in S(30)} / {0, 3, 5, 15} , if q = 30

, (5.26)
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where we note that the proposed HFR-LPNC with 16QAM would need to search over
30∑
q=16

|Z ′q| = 230 codes while the 29QAM-DNF needs to search over 400 codes.

5.4 Benchmarks

In this section, we introduce several schemes in existing literature to use as the bench-

marks.

5.4.1 Benchmark 1: Rate based 5QAM-DNF

Algorithm 3 Rate based 5QAM-DNF Mapping Selection
1: Obtain possible best codes by using the design method based on the Closest-

neighbour clustering [8]: C0, ..., C9, where Cq (q ∈ Z10) is the mapping function

of 5QAM-DNF, which is shown in the Table I of [8])

2: Given hre

3: for all Cq where q ∈ Z10 do

4: Make the rate set empty: DI = ϕ;

5: for all Cq(sA, sB) 6= Cq(s′A, s′B), where (sA, sB)× (s′A, s
′
B) ∈ Z4 ×Z4 do

6: Compute the I(yR; sCq).

7: Include it in the rate set: DI ← DI ∪ {I(yR; sCq)}.
8: end for

9: end for;

10: Let I(YR;SCq)max be the maximum value among all the rates.

11: Select Cq whose rate corresponds to I(YR;SCq)max.

12: Select one of such codes with the minimum cardinality.

The selection criterion for the original 5QAM-DNF in [8], namely, the minimum-

distance algorithm, is intended to maximize the minimum Euclidean distance (MED).

The pros and cons of HFR-LPNC and 5QAM-DNF can be summarized as: 1) the pro-

posed HFR-LPNC requires selection of coefficients for the linear equation (3), based on

the ring while 5QAM-DNF requires an exhaustive search over a wider range of possible

mappings; 2) the mapping selection method of HFR-LPNC is based on sum-rate maxi-
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mization while that of 5QAM-DNF is based on distance profile; and 3) the joint design of

HFR-LPNC and source coding can avoid the irregular mapping, e.g., 5QAM.

However, we note that the MED based mapping selection approach for 5QAM-DNF

cannot guarantee the maximum sum-rate in the MAC phase. To this end, we improve

the selection criterion of 5QAM-DNF. Algorithm 3 is the improved selection algorithm.

Using this improved selection criterion, we obtain a rate based 5QAM-DNF, which is

used as a benchmark.

5.4.2 Benchmark 2: DSTC based PNC

The novel DSTC-PNC proposed by Muralidharan and Rajan in [28] is also considered as

a benchmark. Clearly, the DSTC-PNC scheme has several advantages: 1) the relay only

employs the bit-wise XOR mapping which does not need to adapt to the channels; 2) both

users do not necessarily know the CSI; and 3) DSTC based PNC exploits the distance

profile to avoid the singular fade states.

To measure the rate of the network codded symbol, we rewrite the ML decoding for

DSTC-PNC [28] as

ŝR = arg max
sR

∑
xA,xB :

sR1 = sA1 ⊕ sB1

sR2 = sA2 ⊕ sB2

exp

− 1

2σ2

∥∥∥∥∥∥yR − hAB

 MAxA

MBxB

∥∥∥∥∥∥
2, (5.27)

where ŝR is the decoded network coded symbol andH (SR) = 4 bits/symbol; the matrices

MA and MB are the coding matrices of DSTC-PNC. We note that the DSTC-PNC based

on constructions 1 and 2 in [11] achieve the almost equal performance in Rayleigh fading

2-WRC. Therefore we only choose construction 2 for simplicity.
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5.4.3 Benchmark 3: Precoding based PNC

In [31], Wang, Ding, Dai and Vasilakos proposed a precoding based PNC for the general-

ized MIMO Y channels. We also use this precoding based PNC as a benchmark. Similar

to DSTC-PNC, the precoding based PNC resolves the singular fade states when two users

transmit their signals. Hence, the relay only needs to employ the simple XOR mapping.

However, such precoding based PNC scheme requires CSIT.

5.5 Sum-rate Analysis and Evaluation

In this section, we analyze and evaluate the sum-rate of the proposed HFR-LPNC in 2-

WRC.

5.5.1 Sum-rate Analysis for HFR-LPNC

Based on Theorem 2 and the returned linear coefficients for maximizing the sum-rate in

(5.18), the rate region of HFR-LPNC in the MAC phase is given by

R
(1)
A ≤ 1

2
I
(
YR; ŜA|SB

)
R

(1)
B ≤ 1

2
I
(
YR; ŜB|SA

)
R

(1)
AB ≤ 1

2
· 4

H
(
S
(q)
L

)I(α̃q ,β̃q)
(
YR;S

(q)
L

)
.

(5.28)

Due to the nature of network coding, the individual achievable rates of users A and B

in the BC phase are in fact bounded by the point-to-point channel capacities, given by

R
(2)
A ≤ 1

2
I(YA;XR),

R
(2)
B ≤ 1

2
I(YB;XR),

(5.29)

where I(yi;xR) is the mutual information between received signal at user i and the trans-

mitted signal from R. The quantity R(2)
i denotes the individual achievable rate of user i in

the BC phase.
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The sum-rate in the BC phase, denoted by R(2)
AB, is then given by

R
(2)
AB ≤

1

2
[I(YA;XR) + I(YB;XR)] . (5.30)

Based on the results of (5.28)-(5.30), the rate region (in terms of end-to-end transmis-

sion) of HFR-LPNC in 2-WRC yields

RA ≤ 1
2

min
[
I
(
YR; ŜA|SB

)
, I(YA;XR)

]
RB ≤ 1

2
min

[
I
(
YR; ŜB|SA

)
, I(YB;XR)

]
RAB ≤ 1

2
min

{
4

H
(
S
(q)
L

)I(α̃q ,β̃q)
(
YR;S

(q)
L

)
, [I(YA;XR) + I(YB;XR)]

}
,

(5.31)

where the mutual information is determined using Monte-Carlo integration. The quantity

Ri represents the end-to-end achievable rate of user i and RAB is the overall sum-rate.

5.5.2 Sum-rate Comparison
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Original 5QAM−DNF in [5] 

Figure 5.5: End-to-end average sum-rate against SNR in Rayleigh fading channels.

(QPSK used at the MAC phase)

In this subsection, we evaluate and compare the average sum-rates (in terms of end-to-

end transmission) for the jointly designed HFR-LPNC and SC, the original and improved
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5QAM-DNF schemes in 2-WRC. We assume that all channel links in the 2-WRC ex-

perience quasi-static i.i.d. frequency-flat Rayleigh fading, i.e., each channel coefficient

is modelled as a zero-mean complex Gaussian random variable with unit variance. Fig.

5.5 shows the average sum-rates against SNR for all schemes on the Rayleigh fading 2-

WRC. Based on Fig. 5.5, we have the following observations: 1) the joint HFR-LPNC/SC

scheme outperforms the others; and 2) the improved 5QAM-DNF is superior to the orig-

inal design in the low SNR regime. The sum-rate of the joint design of HFR-LPNC and

SC is higher than that of the original 5QAM-DNF by about 0.3 bits/symbol at best (where

SNR≈0dB). We can see that HFR-LPNC achieves a performance equal to the DSTC-

PNC over a wide range of SNRs. However, it is difficult to say which of HFR-LPNC

and DSTC-PNC is to be preferred. This is because: 1) HFR-LPNC needs to adapt to

the channels while DSTC-PNC does not; 2) DSTC-PNC would require four phases to

form a whole data exchange; 3) DSTC-PNC requires the channel coefficients in the first

two MAC phases to remain static (although it can split a MAC phase into two sub-MAC

phases this requires precise network synchronization); and 4) it is not known whether or

not DSTC-PNC is delay-robust. The precoding based PNC definitely provides the best

performance as it completely eliminates the singular fading at each user. However, it re-

quires CSIT. We know that when the compression is not employed, the relay might choose

QPSK, 5QAM or 8PSK to transmit the LNCC in the BC phase, depending on the selected

linear mapping. We can observe that the HFR-LPNC without compression is slightly de-

graded compared with that with the compression. This implies that the BC might be a

bottleneck in the low SNR regime. However, in the moderate-to-high SNR regime, the

degradation of the HFR-LPNC without the compression reduces. This is because in the

moderate-to-high SNR regime, the ring S(4) is more frequently selected such that even

though the compression is not employed, the performance degradation is not too great.

Fig. 5.6 depicts the end-to-end average sum-rate against SNR in flat-fading Rayleigh

fading channels where 16QAM is used in the MAC phase. The simulation results show

that when the 16QAM is adopted by both users, the proposed HFR-LPNC still outper-

forms both rate based 5QAM-DNF and the original 5QAM-DNF. Clearly, the proposed

design has the capability to accommodate in a higher-order modulation system.

Fig. 5.7 shows the end-to-end average sum-rate against SNR in frequency-selective

3-path Rayleigh fading channels with different exponential decaying (ED) profiles. As
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in [8], we assume that all the nodes employ the optimum equalizer to deal with the de-

layed waves. The simulation results show that the proposed HFR-LPNC still outperforms

5QAM-DNF in frequency-selective fading scenario, which confirms that our proposed

HFR-LPNC has the capability of diversity reception.

Fig. 5.8 shows the end-to-end average sum-rate against SNR in Rayleigh fading chan-

nels with the estimation error of noise variance (EENV), denoted by ∆σ2. We observe

that if the EENV is not too large (∆σ2 < 0.015), the performance degradation due to

the EENV is negligible. We also observe that in the low-to-moderate SNR regime, the

proposed HFR-LPNC still outperforms 5QAM-DNF which is based on the MED selec-

tion criterion, even for larger EENV. Note that because the mapping selection criterion

depends on noise variance, it is sensitive to EENV. However we have shown that the per-

formance degradation in HFR-LPNC due to this is negligible for EENV < 0.015, and the

scheme still outperforms 5QAM-DNF for low to medium SNR, even with larger EENV.
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Figure 5.6: End-to-end average sum-rate against SNR in Rayleigh fading channels.

(16QAM used at the MAC phase)
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Figure 5.7: End-to-end average sum-rate against SNR in frequency-selective 3-path

Rayleigh fading channels with exponential decaying profile. (QPSK used at the MAC

phase)
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Figure 5.8: End-to-end average sum-rate against SNR in Rayleigh fading channels with

the estimation error of noise variance. (QPSK used at the MAC phase)
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5.6 Summary

We have proposed a novel HFR-LPNC for Rayleigh fading two-way relay channels. The

relay node generates linear network coded combinations over a hybrid finite ring by prop-

erly selecting the linear coefficients. The selection criterion ensures unambiguous decod-

ing and maximizes the sum-rate in the MAC phase. To prevent the performance degra-

dation caused by high-order mapping employed in the BC phase, jointly designed HFR-

LPNC and source coding is used to compress the LNCC alphabet over the hybrid finite

ring into a unified 4-ary alphabet. We have derived constellation constrained sum-rates

for HFR-LPNC and 5QAM denoise-and-forward (5QAM-DNF) [8] and further explic-

itly characterized the rate difference between HFR-LPNC and 5QAM-DNF. Our analysis

and simulation show that our HFR-LPNC is superior to 5QAM-DNF scheme over a wide

range of SNRs.
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6.1 Overview

The hierarchical wireless network (HWN) is a network architecture which includes cell

extension relaying and in-band backhauling and can be treated as a set of multiuser 2-

WRC. Bi-directional relaying protocols may thus be used, i.e., PNC and ANC, performed

at RNs. However, the multiple relay nodes (RN) give rise to co-channel interference (CCI)

which severely degrades the network performance. In this Chapter, two efficient interfer-

ence exploitation strategies based on network coding are proposed to address the above
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challenge: 1) PNC with joint decoding (PNC-JD); and 2) ANC with interference-aware

maximum likelihood detection (ANC-IAML). The proposed strategies transform the nat-

urally occurring CCIs into the useful signal instead of suppressing them, and exploit the

network topology to provide extra diversity. A straightforward design, the TDMA-PNC,

is also introduced as a benchmark for comparison. We further derive and compare the

constellation constrained sum-rate for each scheme, which clearly demonstrates the sub-

stantial performance enhancement provided by the proposed strategies over the TDMA-

PNC in HWN.

6.2 Introduction

The bi-directional relaying protocols in the 2-WRC have attracted considerable atten-

tion in recent years. Two state-of-the-art bi-directional relaying protocols, PNC [1] and

ANC [6], both exhibit a significant spectral efficiency improvement compared to the tra-

ditional network coding using three time slots, as they require only two transmission time

slots. In PNC, the relay node (RN) performs network coding functions on the Galois field

by extracting the network coded symbols (NCS) directly from the superimposed electro-

magnetic signals and then broadcasts the NCS to the two users. Based on the exclusive

law [3], any user in the 2-WRC can recover the other user’s signal by exploiting the re-

ceived NCS and side information (SI). ANC on the other hand allows the RN to linearly

amplify the superimposed electromagnetic signals, and then forwards the resulting signal

to the two users. By subtracting the SI (self-interference cancellation), the two users can

obtain their desired signals.

Based on the concepts of PNC and ANC, several significant developments have been

proposed recently. The constellation constrained capacity regions for PNC in 2-WRC

were established in [7]. A denoise-and-forward scheme with irregular mapping for PNC

to combat fading in 2-WRC was proposed in [8]. The pseudo-XOR (PXOR) algorithm

for LDPC coded PNC in faded 2-WRC was introduced in [15]. A novel eigen-direction

alignment enhanced PNC for MIMO was introduced in [34]. The authors of [33] in-

vestigated the error probability bound at the relay which uses a punctured codebook for

explicitly computing the distance spectrum of the PNC. The authors in [43] proposed non-
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coherent detection at the relay for PNC in 2-WRC. The authors in [44] provided a new

non-coherent detector for ANC in 2-WRC. The authors of [45] investigated the outage

probability and optimal power allocation for ANC in 2-WRC. However, it is worth not-

ing that these developments are constrained by the original PNC/ANC design, i.e., their

proposed strategies only support the two users in the 2-WRC, and both users need to em-

ploy the same modulation scheme. In [25, 26], an algebraic approach to network coding,

namely compute-and-forward (CPF), extends PNC beyond the 2-WRC to general Gaus-

sian multiple access channels (GMAC). The authors in [46] provided the outage probabil-

ity of CPF in generalized multi-way relay channels. However, we note that CPF [25, 26]

is based on lattices of very large dimension, and has yet to be demonstrated in practice.

Some practical code designs for CPF were proposed in [58]. However, these designs re-

quire multi-dimensional constellations and hence cannot be directly adopted by current

communication systems which commonly use low dimensional constellations. Motivated

by these, we focus on designing more realistic network coding (PNC and ANC) proto-

cols, which can make use of regular modulation schemes, such as PSK or QAM, and can

support multiple users in a more complex network model compared to 2-WRC.

As a promising layered network architecture, the HWN [47–49] encompasses both cell

extension using relays and wireless in-band backhauling in which a single hub base station

(HBS) is deployed to communicate with multiple relay nodes (RN), which in turn are

responsible for information exchange between the HBS and mobile stations (MS). This

can be considered as an important element of cooperative multipoint (CoMP). The HWN

can be treated as a set of 2-WRCs. As all network nodes cooperate, the whole network

supports numerous MSs by deploying only a small number of HBSs at the vertex of the

HWN. Without requiring multiple antennas per network node, the HWN provides a cost-

effective approach to improve the connectivity, transmission reliability and quality-of-

service (QoS). The spectral efficiency of the HWN can be enhanced by the bi-directional

relaying protocol, i.e., PNC or ANC. However, we note that the high density deployment

of RNs in HWN gives rise to aggressive frequency reuse resulting in large co-channel

interference (CCI) between neighbouring RNs. From the receivers’ perspective, CCIs are

conventionally treated as noise, which impairs the decodability of the desired signal and

hence degrades the network performance. A straightforward design to completely avoid

CCI is to allocate different orthogonal frequency bands/time slots for each data exchange.

However, this leads to poor spectral efficiency. Therefore, a fundamental question in
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such a system design is how to mitigate CCI in the HWN while improving its spectral

efficiency.

Motivated by the above challenge, we propose two interference exploitation strategies:

1) PNC-JD and 2) ANC-IAML. In PNC-JD, each RN decodes the joint network coded

symbol (J-NCS) for the useful symbol pair and the interfering symbol pair. To mitigate

the error-propagation, we propose a novel rate based relay selection (RS) scheme. The

proposed RS allows only the RN with the higher instantaneous rate related to the J-NCS

to transmit in the next time slot. The HBS and MSs can recover their desired signals by

exploiting the received J-NCS and their SI. In ANC-IAML, all RNs amplify the linear

sum of the signals transmitted from the HBS and MSs and forward it to the HBS and

MSs. The different copies of the amplified sum signal are naturally combined at the HBS

and MSs, which offers extra transmit diversity. After cancelling out the self-interference,

the HBS/MS performs interference aware ML detection to extract its desired signal. For

comparison purposes, we also consider a benchmark scheme: the time-division multiple

access based PNC (TDMA-PNC) which uses orthogonal time slots to avoid frequency

reuse among different data exchanges. There are four main contributions in this Chapter,

summarized as follows:

1) We propose two new network coding strategies, PNC-JD and ANC-IAML, which

can fully utilize the CCI and the network infrastructure by naturally transforming the

CCI into useful signals. Moreover, both PNC-JD and ANC-IAML can provide transmit

diversity.

2) We extend the PNC and ANC protocols beyond the traditional 2-WRC to a more

complex multiuser network, namely, the HWN, which also is a model for CoMP networks.

Such a network structure may be used to allow data exchange among several groups of

users.

3) We propose novel decoding strategies which allow the PNC and ANC protocols

to support multiple users without involving any irregular constellations. Moreover, the

proposed designs allow the HBS and MSs to employ different modulation schemes.

4) We derive the constellation-constrained sum-rates for the proposed PNC-JD and

ANC-IAML, which provide a more realistic performance metric compared with the con-
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stellation unconstrained sum-rates for HWN.

We compare our proposed protocols with the TDMA-PNC. The analytical and simu-

lated results clearly demonstrate that our proposed PNC-JD and ANC-IAML strategies

can substantially enhance the sum-rate compared with the TDMA-PNC. Moreover, the

inherent denoise characteristic [4] of PNC makes the sum-rate of PNC-JD superior to that

of ANC-IAML.

6.3 System Model and General Assumptions

HBS

RN1 RN2

MS2MS1

BH

AC

(a)

MS1 MS2

HBS

(b)

Figure 6.1: (a) System Model of HWN; (b) Expected data exchange between the HBS

and MSs.

Fig. 6.1(a) depicts a simplified system model of the HWN consisting of two MSs,

one HBS and two RNs. We assume that each node is equiped with an omni-directional

half-duplex antenna. The links between the HBS and the RNs are defined as the backhaul

network (BH), while the links between the RNs and the MSs are defined as the access

network (AC). It is expected that the binary data streams s1/s2 from MS1/MS2 are cor-

respondingly exchanged with s3/s4 from the HBS with the help of RN1/RN2, as shown

in Fig. 6.1(b). We note that the two node groups ({MS1, RN1, HBS} and {MS2, RN2,

HBS}) should work independently without interfering with each other. However, in prac-

tice, the multiple access signals from MS1 and HBS to RN1 causes interference to RN2
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while the broadcast from RN1 to MS1 and HBS causes interference to MS2 and vice versa

(see the blue lines in Fig. 6.1(a)).

The structure of the HWN is equivalent to a set of 2-WRCs in the presence of inter-

ference. Similar to the traditional 2-WRC, we assume the transmission channels in HWN

are reciprocal. As such, we denote the channel coefficients between MS1 and RN1 as h1,

MS2 and RN2 as h2, HBS and RN1 as h3, HBS and RN2 as h4, RN1 and MS2 as h1(I)

and MS2 and RN1 as h2(I), respectively. We assume that all channel links experience

quasi-static, independent and identically distributed (i.i.d.) frequency-flat fading. We also

assume that the received signals at each node are corrupted by circularly symmetric Addi-

tive Gaussian White Noise (AWGN) with variance N0. The cardinality of the modulation

alphabet for a symbol x is denoted as Mx. The rate of a symbol x in the m-th time slot is

denoted as R(m)
x .

We assume that the RNs can transmit the signalling to the HBS but cannot commu-

nicate with each other. The HBS deals with all the signalling from the RNs and decides

whether the RNs can transmit or not.

6.4 The Benchmark: TDMA based PNC (TDMA-PNC)

6.4.1 System Description

The TDMA-PNC is a straightforward design and is easy to implement in the HWN. The

TDMA-PNC scheme, depicted in Fig. 6.2, uses four orthogonal time slots and ensures

that the two nodes groups ({MS1, RN1, HBS} and {MS2, RN2, HBS}) do not interfere

with each other.

Without loss of generality, we assume the MSs and HBS employ the same BPSK

modulationMB(·), whereMB(·) is the BPSK mapper. As such, each modulated symbol

with unit variance is given by

xi =MB(si), i ∈ {1, 2, 3, 4}. (6.1)
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The 1st Time  Slot

HBS

RN1 RN2

MS2MS1

HBS

RN1 RN2

MS2MS1

The 2nd Time  Slot

The 3rd Time  Slot

HBS

RN1 RN2

MS2MS1

HBS

RN1 RN2

MS2MS1

The 4th Time  Slot

Figure 6.2: The straightforward design: TDMA based PNC strategy.
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In the first time slot, MS1 and HBS simultaneously transmit symbols x1 and x3 to

RN1. The received signal at RN1 can be expressed as

yRN1 = h3x3 + h1x1 + nRN1, (6.2)

where nRN1 is the AWGN at RN1. In the absence of CCIs, RN1 decodes the NCS

s⊕,13 , s1 ⊕ s3 by performing PNC detection on yRN1. For simplicity, we omit the

simple traditional PNC detection here. Please refer to [7] for details.

In the second time slot, RN1 broadcasts the modulated NCS x⊕,13 = MB(s⊕,13) to

MS1 and HBS.

Due to the symmetrical structure of the HWN, all operations at RN2 are the same

as those at RN1. The PNC decoding performed at RN2 is used to obtain the NCS

s⊕,24 , s2 ⊕ s4 in the third time slot. Then RN2 broadcasts the modulated NCS

x⊕,24 =MB(s⊕,24) to MS2 and the HBS in the fourth time slot.

6.4.2 Sum-rate Analysis

In this subsection, we analyze the constellation constrained sum-rate, i.e., the sum-rate

when the HBS and MSs employ finite size constellations with uniform distribution over

their elements. The sum-rate with respect to all valid symbols can be calculated as

RSum =
4∑
i=1

Rxi , (6.3)

where Rxi is the achievable rate of the symbol xi.

The author in [7] pointed out that the rate region in the uplink of 2-WRC for two

transmitting nodes has a rectangular shape when PNC is decoded at the relay, i.e., both

users’ rates are bounded by the computation rate of NCS. Hence the rate region of TDMA-

PNC in the first time slot yields

R(1)
x1

= R(1)
x3
≤ I(YRN1;S⊕,13), (6.4)

where I(YRN1;S⊕,13) is the mutual information between the received signal yRN1 and the

NCS s⊕,13, which indicates the computation rate of s⊕,13. To this end, we can measure

the rate region of x1 and x3 by equivalently examining I(YRN1;S⊕,13).
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As in [7], Monte-Carlo integration is used to calculate the mutual information

I(YRN1;S⊕,13), using:

I(YRN1;S⊕,13) = log2(Ms⊕,13) + E

log2

 p (Y |S⊕,13 )∑
S′⊕,13

p (Y |S ′⊕,13 )


 , (6.5)

where Ep(YRN1|s⊕,13) (·) is the the empirical mean of p (YRN1|S⊕,13) provided that we gener-

ate random variable YRN1 with the distribution p(yRN1|s⊕,13). Here we set the cardinality

of the NCS Ms⊕,13 = 4 since there are four distinct superimposed signals for x1 and x3.

The cardinalities of the users’ alphabets are Mx1 = Mx3 = 2 as x1 and x3 are BPSK

symbols.

Since RN1 broadcasts the modulated NCS x⊕,13 to HBS and MS1 in the third time

slot, the achievable rates of x1 and x3 are bounded by the point-to-point channel capacities

I(YHBS;X⊕,13) and I(YMS1;X⊕,13), respectively. Based on these, the equivalent end-to-

end achievable rates of x1 and x3 can be calculated as

Rx1 ≤
1

4
min [I(YRN1;S⊕,13), I(YHBS;X⊕,13)] (6.6)

and

Rx3 ≤
1

4
min [I(YRN1;S⊕,13), I(YMS1;X⊕,13)] (6.7)

respectively. Here the factor 1
4

is due to the use of four time slots.

Due to the symmetrical structure of the HWN, we calculate the end-to-end achievable

rates Rx2 and Rx4 using an approach similar to Rx1 and Rx3 . Substituting the achievable

rates of each symbol into (6.3), the constellation constrained sum-rate is thus calculated.

6.5 PNC with Joint Decoding

In the previous section, TDMA-PNC splits the data exchanges into two independent

groups ({MS1, RN1, HBS} and {MS2, RN2, HBS}) by using four orthogonal time slots

which help the HWN to completely avoid CCI. However, the TDMA-PNC strategy (or

generally speaking, the orthogonal multiple access scheme with PNC) consumes a large

number of time-slots which implies a poor spectral efficiency. We note that the PNC
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The 1st Time  Slot

HBS

RN1 RN2

MS2MS1

HBS

RN1 RN2

MS2MS1

The 2nd Time  Slot

Figure 6.3: Two time slots interference exploitation strategies (including PNC-JD in sec-

tion V and ANC-IAML in section VI.)

strategy can improve the spectral efficiency for HWN. Nevertheless, traditional PNC only

supports two users with the same modulation scheme in the traditional 2-WRC. Hence,

the proposed strategy aims to: 1) jointly mitigate CCI and improve spectral efficiency;

and 2) modify the traditional PNC to support multiple users with different modulation.

6.5.1 System Description

Figure 6.4: The constellation of Gray coded symbol x34: the first bit of the 2-bit binary

tuple s34 carries s3 while the second bit of it carries s4.
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In the proposed design, MS1 and MS2 employ BPSK modulation for data stream s1

and s2, respectively, i.e, x1 = MB(s1) and x2 = MB(s2). The modulation scheme at

the HBS is shown in Fig. 6.4. In order to exchange the data packets with MSs within

two time slots, the HBS applies QPSK modulation to transmit s3 and s4 simultaneously,

i.e., the first and second bits of the 2-bit binary tuple s34 carry the bit data streams of

s3 and s4, respectively. Then s34 is modulated to a Gray coded QPSK symbol x34, i.e.,

x34 = MQ(s34), whereMQ(·) is the QPSK mapper. In this way, the data streams of s3

and s4 are in fact combined together for transmission.

Processing at RNs

-1 +1

Figure 6.5: Virtually postfix a redundant 0 to s1 (see the red 0 in the figure).

-1 +1

Figure 6.6: Virtually prefix a redundant 0 to s2 (see the red 0 in the figure).

In the first time slot, the received signal at RN1 is given by

yRN1 = h3x34 + h1x1 + h2(I)x2 + nRN1. (6.8)

where we observe that there are two interference components for signals x1 and x3: one

is the signal x2 from MS2 and the other appears in the quadrature part of x34 (the second

bit of s34) from the HBS. Motivated by this, we aim to exploit these interference signals

in detecting the useful signal. To this end, in the proposed design, PNC detection is

performed to obtain the NCS of s1 and s3 jointly with the NCS of s2 and s4. We thus call

the proposed design PNC with joint decoding.

The procedure of PNC-JD can be summarized as follows:
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Figure 6.7: Fullly exploiting the superimposed constellation at RN1: performing PNC-

JD. Note that this figure is intended to represent a generic constellation, not corresponding

to any specific channel realization.
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1. The RN virtually treats the BPSK symbol x1 as a 2-bit binary tuple in which the

first bit carries the real data stream s1 and the second bit is a redundant postfix bit,

set to 0, giving s∗1 = (s1, 0). The virtual mapping relationship between s∗1 and x1

is denoted byM(1)
B,V(s∗1) = x1, given asM(1)

B,V(10) = −1 and M(1)
B,V(00) = +1,

as shown in Fig. 6.5. On the other hand, the data word s2 is virtually prefixed with

a redundant bit 0, i.e., s∗2 = (0, s2), as shown in Fig. 6.6. The virtual mapping

function between s∗2 and x2 is denoted by M(2)
B,V(s∗2) = x2, giving M(2)

B,V(01) =

−1 and M(2)
B,V(00) = +1.

2. The joint network coded symbol (J-NCS) of s∗1, s∗2 and s34 is denoted as s⊕,JNC,

obtained by the eXclusive-OR (XOR) operation:

s⊕,JNC , s∗1 ⊕ s∗2 ⊕ s34, (6.9)

where it is clear that s⊕,13 = s1 ⊕ s3 is the first bit of s⊕,JNC and s⊕,24 = s2 ⊕ s4 is

the second bit of s⊕,JNC.

3. Instead of treating the interference as noise, all points on the superimposed constel-

lation of RN1 are explicitly taken into account. In this way, PNC-JD can fully ex-

ploit the superimposed constellation in the presence of interference. This is shown

in Fig. 6.7. We observe that each superimposed signal is mapped into a J-NCS in

which its first bit carries s⊕,13 and its second bit carries s⊕,24. The ML estimate of

the J-NCS s⊕,JNC can be calculated as

ŝ⊕,JNC = arg max
s⊕,JNC

p(yRN1|s⊕,JNC)

= arg max
s⊕,JNC

1

Mx1Mx2Mx34

∑
x1,x2,x34:s⊕,JNC=s∗1⊕s∗1⊕s34

p(yRN1|x34, x1, x2),
(6.10)

where we observe that the summation includes all signals in the superimposed constel-

lation which map to the same J-NCS s⊕,JNC, as shown in Fig. 6.7. The conditional

probability p(yRN1|x34, x1, x2) is given by

p(yRN1|x34, x1, x2)

=
1

πN0

exp

(
−
∣∣yRN1 − h3x34 − h1x1 − h2(I)x2

∣∣2
N0

)

=
1

πN0

exp

−
∣∣∣yRN1 − h3MQ(s34)− h1M(1)

B,V(s∗1)− h2(I)M(2)
B,V(s∗2)

∣∣∣2
N0

 .

(6.11)
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Due to the symmetrical structure of the HWN, RN2 applies the same PNC-JD ap-

proach to decode the RN2’s J-NCS ŝ⊕,JNC.

RN Selection

Due to the nature of the decode-and-forward strategy, we note that after performing PNC-

JD, the residual decoding error broadcasted to the MSs and HBS can give rise to severe

error propagation. The relay selection (RS) technique can be used to mitigate error prop-

agation from the relay. Moreover, due to the reciprocity of channels in the HWN, RS can

guarantee the best transmission in both the first and the second time slot. Those RNs with

a poorer channel condition will remain silent in the second time slot.

Several RS algorithms have been proposed in the literatures, e.g., the Max-Min al-

gorithm in [50, 51] and CRC check algorithm in [52, 53]. However, for the Max-Min

algorithm, acquisition of global channel state information (CSI) at each relay is neces-

sary, which gives rise to an excessive burden. For the CRC check method, at the low

SNR, there may be residual errors at all RNs, and hence none will transmit in the second

time slot. Motivated by this, we propose a novel RS scheme based on the instantaneous

rate, which is summarized as Algorithm 1, listed below. As synchronization is not the

main issue of this thesis, we assume that perfect network synchronization is achievable.

Compared with the Max-Min algorithm, instantaneous rate based RS only requires

RNs to exchange a small amount of data with the HBS, and does not require global CSI.

Moreover, in the scenario of multi-relay assisted HWN, as the number of RNs is less than

that of MS, thus the proposed RS algorithm is still affordable.

In the second time slot, the selected RN modulates its own J-NCS s⊕,JNC as x⊕,JNC =

MQ(s⊕,JNC) and broadcasts x⊕,JNC to the MSs and HBS.
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Table 6.1: The proposed RS algorithm.

Algorithm 1: Instantaneous Rate based Relay Selection

1. Given h1, h3 and h1(I), RN1 calculates I(YRN1;S⊕,JNC) and forwards it to HBS.

2. Given h2, h4 and h2(I), RN2 calculates I(YRN2;S⊕,JNC) and forwards it to HBS.

3. if I(YRN1; s⊕,JNC) > I(YRN2;S⊕,JNC) then

4. HBS broadcasts one bit ‘0’ to RN1 and RN2.

5. RN1 transmits s⊕,JNC in the second time slot while the RN2 keeps silent.

6. elseif I(YRN1;S⊕,JNC) < I(YRN2;S⊕,JNC) then

7. HBS broadcasts one bit ‘1’ to RN1 and RN2.

8. RN2 transmits s⊕,JNC in the second time slot while RN1 keeps silent.

9. else

10. The HBS broadcasts two bits ‘11’ to RN1 and RN2.

11. Both of them transmit s⊕,JNC in the second time-slot.

6. end if

Processing at MSs and HBS

The received signals at HBS and MS1 are represented as

yHBS = hMS1x⊕,JNC + nHBS (6.12)

and

yMS1 = hHBSx⊕,JNC + nMS1 (6.13)

respectively. Here hMS1 and hHBS are determined by the selected RN, given by hMS1 ∈
{h1, h1(I), h1 + h1(I)} and hHBS ∈ {h3, h4, h3 + h4}.

We note that when RN1 and RN2 achieve equal instantaneous rate, in our designed RS

scheme, we have hMS1 = h1+h1(I) and hHBS = h3+h4. According to [54], the sum of two

Gaussian random variable (R.V.) with zero mean and variance Ω is still a Gaussian R.V.

with zero mean and variance 2Ω. This indicates that the selected superimposed channels

hMS1 = h1 + h1(I) and hHBS = h3 + h4 still experience Rayleigh fading (the variance is

doubled) when both RNs transmit. The detection of x⊕,JNC at the HBS is the same as the

detection for QPSK symbol on the point-to-point fading channel. The first and second bit

of decoded s⊕,JNC are s⊕,13 and s⊕,24, respectively. By performing the XOR operation
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with s3 and s4 respectively, the HBS’ desired data s1 and s2 can be obtained. MS1 and

MS2 perform the same operation to obtain s3 and s4, respectively.

6.5.2 Sum-rate Analysis

In this subsection, we examine the constellation-constrained sum-rate for the PNC-JD

strategy in the HWN.

Analysis for the first time slot

We can evaluate the rates with respect to x3 and x4 in the first time slot by examining

the rates related to x34 as x3 and x4 are jointly embedded in x34. As we employ an RS

algorithm based on instantaneous rate, the rate region for symbols x1, x2, x3 and x4 in the

first time slot should obey

R(1)
x1

= R(1)
x3
≤ max

[
1

2
I(YRN1;S⊕,JNC),

1

2
I(YRN2;S⊕,JNC)

]
R(1)
x2

= R(1)
x4
≤ max

[
1

2
I(YRN1;S⊕,JNC),

1

2
I(YRN2;S⊕,JNC)

], (6.14)

where I(YRN1;S⊕,JNC) and I(YRN2;S⊕,JNC) are the mutual information between the re-

ceived signal and the J-NCS, at RN1 and RN2, respectively. Since s⊕,13 and s⊕,24 are the

first and second bits of the 2-bit binary tuple s⊕,JNC, the rates of s⊕,13 and s⊕,24 are half of

I(YRN1;S⊕,JNC) or I(YRN2;S⊕,JNC). As such, I(YRN1;S⊕,JNC) and I(YRN2;S⊕,JNC) are

scaled by the factor 1
2

in (6.14).

In the following, we derive I(yRN1; s⊕,JNC) in detail. We expand I(yRN1; s⊕,JNC) as

I(YRN1;S⊕,JNC) = H(YRN1)−H(YRN1|S⊕,JNC). (6.15)

The entropy H(YRN1) of the received signal is given by

H(YRN1) = −
∫
yRN1

p(yRN1)log2 (p(yRN1)) dyRN1. (6.16)
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The probability density function (PDF) p(yRN1) of the received signal is given by

p(yRN1) =
1

Mx34Mx1Mx2

∑
x1,x2,x34

p(yRN1|x34, x1, x2), (6.17)

where p(yRN1|x34, x1, x2) is defined in (6.11).

The conditional entropy H(YRN1|S⊕,JNC) can be calculated as

H(YRN1|S⊕,JNC) = −
∑
s⊕,JNC

∫
yRN1

p (yRN1, s⊕,JNC)log2 (p (yRN1|s⊕,JNC)) dyRN1, (6.18)

where p (yRN1|s⊕,JNC) is defined in (6.10).

Note that both H(YRN1) in (6.16) and H(YRN1|S⊕,JNC) in (6.18) cannot be written

in closed forms. Hence, we use Monte-Carlo integration and the mutual information in

(6.15) thus can be calculated as

I(YRN1;S⊕,JNC) = −E [log2 (p(YRN1))] + E [log2 (p (YRN1|S⊕,JNC))] , (6.19)

where Mx1 = Mx2 = 2 since x1 and x2 are BPSK symbols and Mx34 = 4 since x34

is QPSK symbol. The cardinality of J-NCS is Ms⊕,JNC
= 16 as there are 16 distinct

superimposed signals for x1, x2 and x34.

Due to the symmetrical structure of the HWN, we can proceed similarly for

I(yRN2; s⊕,JNC). Then the rate region for symbols x1, x2, x3 and x4 in the first time

slot in (6.14) can be calculated.

Analysis for the second time slot

In the second time slot, based on (6.10), we note that the first bit of the decoded s⊕,JNC is

s⊕,13. As such, the achievable rate of x1 is in fact equal to half of that of x⊕,JNC, given by

R(2)
x1
≤ 1

2
I(YHBS;X⊕,JNC) =

1

2
[H(X⊕,JNC)−H(X⊕,JNC|YHBS)] , (6.20)

where H(X⊕,JNC) = log2(Mx⊕,JNC
) and H(X⊕,JNC|YHBS) is given by

H(X⊕,JNC|YHBS) =

∫
yHBS

p(x⊕,JNC, yHBS)log2

(
1

p(x⊕,JNC|yHBS)

)
dyHBS

=

∫
yHBS

p(x⊕,JNC, yHBS)log2


∑

x′⊕,JNC

p(yHBS|x′⊕,JNC)

p(yHBS|x⊕,JNC)

 dyHBS.

(6.21)
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Using Monte-Carlo integration, (6.20) can be calculated as

R(2)
x1
≤ 1

2
I(YHBS;X⊕,JNC) =

1

2
log2(Mx⊕,JNC)− 1

2
E


∑

X′⊕,JNC

p(YHBS|X ′⊕,JNC)

p(YHBS|X⊕,JNC)

 . (6.22)

Similarly, the achievable rates of x3 in the second time slot is also bounded by the

point-to-point channel, given by

R(2)
x3
≤ 1

2
I(YMS1;X⊕,JNC) =

1

2
log2(Mx⊕,JNC)− 1

2
E
∑
X⊕,JNC


∑

X′⊕,JNC

p(YMS1|X ′⊕,JNC)

p(YMS1|X⊕,JNC)

.
(6.23)

The end-to-end results

Based on (6.14) and (6.22), the equivalent end-to-end achievable rate of x1 is bounded by

Rx1 ≤
1

2
min

{
max

[
1

2
I(YRN1;S⊕,JNC),

1

2
I(YRN2;S⊕,JNC)

]
,
1

2
I(YHBS;X⊕,JNC)

}
,

(6.24)

where the first coefficient 1
2

is due to the consumed time slots for the PNC-JD strategy.

Based on (6.14) and (6.23), the equivalent end-to-end achievable rate of x3 can be

calculated as

Rx3 ≤
1

2
min

{
max

[
1

2
I(YRN1;S⊕,JNC),

1

2
I(YRN2;S⊕,JNC)

]
,
1

2
I(YMS1;X⊕,13)

}
.

(6.25)

Due to the symmetrical structure of the HWN, the achievable rates of x2 and x4 can

be obtained by the same approach as x1 and x3. Substituting the achievable rates of each

symbol into (6.3), the constellation constrained sum-rate for PNC-JD is thus calculated.
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6.6 ANC with Interference-Aware ML detection (ANC-

IAML)

The ANC strategy can be well-suited for bi-directional data exchange in HWN when

RNs do not have detection capability or the relay node is constrained by a low system

complexity. Motivated by this, in this section, we propose the ANC-IAML strategy in

HWN.

6.6.1 System Description

Suppose that MS1 and MS2 employ BPSK modulation for data stream s1 and s2, respec-

tively, i.e, x1 = MB(s1) and x2 = MB(s2). As for PNC-JD, in order to exchange the

data packets with MSs within two time slots, the HBS applies QPSK modulation (see Fig.

6.4) to transmit s3 and s4 simultaneously: the first and second bits of the 2-bit binary tuple

s34 carry the binary data streams of s3 and s4, respectively. Then s34 is modulated to a

Gray coded QPSK symbol x34, i.e., x34 =MQ(s34).

In the first time slot, the received signal at RN1 is given by

yRN1 = h3x34 + h1x1 + h2(I)x2 + nRN1. (6.26)

Then RN1 amplifies and forwards the received signal to the MSs and HBS, with a

normalization factor:

βRN1 =
[(
|h3|2 + |h1|2 + |h2(I)|2

)
+N0

]− 1
2 . (6.27)

In addition, RN1 sends the CSIs h3, h1 and h(I),2 to the MSs and HBS prior to the

data frame. Note that although forwarding CSIs consumes extra resources (both time and

bandwidth) for the whole system, this cost can be ignored compared with the cost of the

data transmission, assuming a block fading channel with a large channel coherence time.

The signal received by RN2 is given as

yRN2 = h4x34 + h1(I)x1 + h2x2 + nRN2. (6.28)
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Then RN2 amplifies and forwards the received signal to the MSs and HBS, with a

normalization factor:

βRN2 =
[(
|h4|2 + |h2|2 + |h1(I)|2

)
+N0

]− 1
2 . (6.29)

Due to the symmetrical structure of HWN, all operations at RN2 is the same with that

at RN1. The available CSIs at RN2, i.e., h4, h2 and h1(I), are broadcasted to the MSs and

HBS.

Processing at MSs

In the second time slot, the received signal at MS1 can be expressed as

yMS1 = h1βRN1yRN1 + h1(I)βRN2yRN2 + nMS1. (6.30)

As MS1 knows its side information x1, after canceling out the self-interference, the

received signal at MS1 can be rewritten as

y∗MS1 = h1βRN1(h3x34 + h2(I)x2 + nRN1) + h1(I)βRN2(h4x34 + h2x2 + nRN2) + nMS1

= (h1βRN1h3 + h1(I)βRN2h4)x34 + (h1βRN1h2(I) + h1(I)βRN2h2)x2

+ (h1βRN1nRN1 + h1(I)βRN2nRN2 + nMS1).

(6.31)

Based on the reciprocity of channels and the forwarded channel coefficients, MS1

knows the global CSIs. As such, MS1 can exploit the superimposed constellation. We

denote the virtual channel coefficients hV,1 , h1βRN1h3 + h1(I)βRN2h4 and hV,2 ,

h1βRN1h2(I) + h1(I)βRN2h2. We let nt,MS1

∆
= h1βRN1nRN1 + h1(I)βRN2nRN2 + nMS1 which

represents the total noise at MS1. Based on these, (6.31) can be represented as

y∗MS1 = hV1,MS1x34 + hV2,MS1x2 + nt,MS1. (6.32)

Note that we do not need to decode one signal and treat the other as noise. The ML

detection we propose here fully exploits the superimposed constellation for signal y∗MS1,

resulting in the ML estimate of s3

ŝ3 = arg max
s3

p(y∗MS1|s3) = arg max
s3

1

Mx34Mx2

∑
x34,x2:s3

p(y∗MS1|x34, x2), (6.33)
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where the summation includes all signals on superimposed constellation corresponding to

the same s3. Based on this, we can split the superimposed constellation into two decision

region, i.e., D`, ` ∈ {I, II}, as shown Fig. 6.8, corresponding to x3 is mapped as 0 or

1. Thus we have DI = {hV1,MS1x34 + hV2,MS1x2|s3 = 0} and DII = {hV1,MS1x34 +

hV2,MS1x2|s3 = 1}. For p(y∗MS1|x34, x1), we have

p(y∗MS1|x34, x1) =
1

πN0,eqv

exp

(
−|y

∗
MS1 − hV1,MS1x34 − hV2,MS1x2|2

N0,eqv

)
. (6.34)

where N0,eqv = (|h1βRN1|2 + |h1(I)βRN2|2 + 1)N0 is the equivalent noise variance at MS1.

Figure 6.8: Decision Regions for the superimposed constellation of xMS1.

The same detection strategy as (6.33) may be performed at RN2 for symbol x4, by

symmetry.

Processing at the HBS

In the second time slot, the received signal at the HBS is given as

yHBS = h3βRN1yRN1 + h4βRN2yRN2 + nHBS2. (6.35)

As the HBS knows its side information x34, the received signal after self-interference
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cancellation is given by

y∗HBS = h3βRN1(h1x1 + h2(I)x2 + nRN1)

+ h4βRN2(h1(I)x1 + h2x2 + nRN2) + nHBS

= (h3βRN1h1 + h4βRN2h1(I))x1 + (h3βRN1h2(I) + h4βRN2h2)x2

+ (h3βRN1nRN1 + h4βRN2nRN2 + nHBS).

(6.36)

As for MS1, y∗HBS can be represented in terms of the virtual channels:

y∗HBS = hV1,HBSx1 + hV2,HBSx2 + nt,HBS. (6.37)

where hV1,HBS
∆
= h3βRN1h1 + h4βRN2h1(I) , hV2,HBS

∆
= h3βRN1h2(I) + h4βRN2h2 and

nt,HBS

∆
= h3βRN1nRN1 + h4βRN2nRN2 + nHBS.

As x1 and x2 are the desired symbols for the HBS, it is optimal to decode x1 and

x2 at the same time. Similar to RN1 in PNC-JD, the HBS virtually treats the BPSK

symbol label corresponding to x1 as a 2-bit binary tuple in which the first bit carries the

real data stream s1 and the second bit is postfixed with a redundant bit 0, giving s∗1 =

(s1, 0). As such, the mapping relationship between s∗1 and x1 is given asM(1)
B,V(10) = −1

and M(1)
B,V(00) = +1. On the other hand, the data word s2 is virtually prefixed with a

redundant bit 0, i.e., s∗2 = (0, s2). The mapping function between s∗1 and x1 is given as

M(1)
B,V(01) = −1 and M(1)

B,V(00) = +1. As such, the NCS of s∗1 and s∗2 is denoted as

s⊕,12, given by

s⊕,12 = s∗1 ⊕ s∗2. (6.38)

Thus it is clear that s1 is the first bit of s⊕,12 and s2 is the second bit of s⊕,12. The ML

estimate of the NCS s⊕,12 is given by

ŝ⊕,12 = arg max
s⊕,12

p(y∗HBS|s⊕,12) = arg max
s⊕,12

1

Mx1Mx2

∑
x1,x2:s⊕,12=s∗1⊕s∗2

p(y∗HBS|x1, x2),

(6.39)

where the conditional PDF p(y∗HBS|x1, x2) is calculated as

p(y∗HBS|x1, x2) =
1

πN0

exp

(
−|y

∗
HBS − hV1,HBSx1 − hV2,HBSx2|2

N0

)

=
1

πN0

exp

−
∣∣∣y∗HBS − hV1,HBSM(1)

B,V(s∗1)− hV2,HBSM(2)
B,V(s∗2)

∣∣∣2
N0

 .

(6.40)

The PNC detection for the NCS s⊕,12 is illustrated in Fig 6.9.
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Figure 6.9: Modified PNC detection for s⊕,12 at HBS.

6.6.2 Analysis of Sum-rates

In this subsection, we analyze the constellation constrained sum-rate for the ANC-IAML

strategy.

Analysis for end-to-end results at the HBS

Based on the designed decoding strategy at HBS, the achievable rate of x1 at the HBS is

given by

Rx1 ≤
1

2
× 1

2
I (Y ∗HBS;S⊕,12) =

1

4
[H (Y ∗HBS)−H (Y ∗HBS|S⊕,12)] . (6.41)

where the first coefficient 1
2

is due to the two time slots used and the second coefficient 1
2

is due to the fact that the rate of x1 is half of that of s⊕,12.

The entropy of the received signal is given by

H(Y ∗HBS) = −
∫
y∗HBS

p(y∗HBS)log2 (p(y∗HBS)) dy∗HBS. (6.42)

The PDF of the received signal is given by

p(y∗HBS) =
1

Mx1Mx2

∑
x1,x2

p(y∗HBS|x1, x2), (6.43)

where p(y∗HBS|x1, x2) is defined in (6.39).

The conditional entropy H(y∗HBS|x⊕,12) can be calculated as

H(Y ∗HBS|S⊕,12) = −
∑
s⊕,12

∫
y∗HBS

p (y∗HBS, s⊕,12)log2 (p (y∗HBS|s⊕,12)) dyHBS, (6.44)

where p (y∗HBS|s⊕,12) is defined in (6.40).
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Note that both H(Y ∗HBS) in (6.42) and H(Y ∗HBS|S⊕,12) in (6.43) cannot be written in a

closed form. Again, we use Monte-Carlo integration and the mutual information thus can

be calculated as

I(Y ∗HBS;S⊕,12) = −E [log2 (p(Y ∗HBS))] + E [log2 (p (Y ∗HBS|S⊕,12))] . (6.45)

Analysis for end-to-end results at MS1

Based on the designed decoding strategy at MS1, the achievable rates of x3 at MS1 is

given by

Rx3≤
1

2
I(Y ∗MS1;S3) =

1

2
[H(S3)−H(S3|Y ∗MS1)] , (6.46)

where H(S3) = log2(Ms3) and H(S3|Y ∗MS1) is given by

H(S3|Y ∗MS1) =
∑
s3

∫
y∗MS1

p (y∗MS1, s3) log2

(
1

p (s3|y∗MS1)

)
dy∗MS1

=
∑
s3

∑
x34,x2:s3

∫
y∗MS1

p (y∗MS1, x34, x2) log2


∑
s′3

p (y∗MS1|s′3)

p (y∗MS1|s′3)

dy∗MS1.

(6.47)

Using Monte-Carlo integration, the achievable rate of x3 can be rewritten as

Rx3 ≤
1

2
I(Y ∗MS1;S3) =

1

2
log2(Ms3)−

1

2
E

log2


∑
S′3

p (Y ∗MS1|S ′3)

p (Y ∗MS1|S3)

 . (6.48)

By symmetry, we may apply the same approach for the achievable rates Rx2 and Rx4 .

Based on the derived achievable rates of each symbol, the constellation constrained sum-

rate in (6.3) is thus calculated.

6.7 Performance Evaluation and Discussion

In this section, we evaluate and compare the sum-rate and outage probability of all strate-

gies, i.e., the TDMA-PNC (benchmark), PNC-JD and ANC-IAML strategies. We assume

that all channel links experience quasi-static i.i.d. frequency-flat Rayleigh fading, i.e.,
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Figure 6.10: Comparison of constellation constrained sum-rates of different strategies.
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each channel coefficient is modelled as a zero-mean complex Gaussian random variable

with unit variance. The average signal-to-noise-ratio (SNR) is denoted as 1
N0

.

Fig. 6.10 shows the comparison of the ergodic constellation constrained sum-rate of

the different strategies. The ergodic constellation constrained sum-rate is obtained by av-

eraging (6.3) over the channel realizations of the HWN, given by RSum = EH {RSum},
where H , {h1, h2, h3, h4, h1(I), h2(I)} denotes the set of channels in the HWN. We

observe that in the high SNR regime, due to the finite input constellations adopted

by the MSs and HBS, the sum-rates of PNC-JD and ANC-IAML are limited to 2

bits/symbol/time slot which implies that this strategy can maximally guarantee a 4 bit data

exchange in 2 time slots while the sum-rate of TDMA-PNC is limited to 1 bit/symbol/time

slot. This is clearly because the TDMA scheme inherently requires twice the number of

time slots. We observe that PNC-JD outperforms TDMA-PNC at any SNR, but ANC-

IAML is slightly worse than TDMA-PNC at lower SNRs. While TDMA-PNC treats

signals between RN1 and MS2, and RN2 and MS1, as interference, and uses TDMA to

avoid it, both PNC-JD and ANC-IAML exploit these paths to provide additional diver-

sity. We also observe that PNC-JD is superior to ANC-IAML. This is because in the

ANC-IAML strategy, RNs not only forward the useful signal but also the amplified noise

to the destinations, which lowers the SNR at relevant destinations hence decreases the

rates. In PNC-JD, on the other hand, the inherent denoise characteristic of PNC avoids

this [4], and the novel RS scheme also mitigates error-propagation from relay.

The outage probability for a given transmission rate is given by the probability of that

the achievable rate falls below a given threshold [54]. The overall outage probability

can be measured as Pout = Pr{Rsum < Rth} where Rth is the rate threshold. Fig.6.11

shows the resulting curves for the overall outage probability versus SNRs with different

rate thresholds. We may observe that PNC-JD and ANC-IAML achieve a lower outage

probability compared with TDMA-PNC. In the low SNR regime, TDMA-PNC is just

slightly better than ANC-IAML. This is consistent with the discussion and results in Fig.

6.10. The reason is that at a low SNR, the ANC-IMAL amplifies more noise than the

useful signal to the HBS and MSs, which results in a higher overall outage probability.

We also observe that, because they exploit two signal paths to each MS, PNC-JD and

ANC-IAML both achieve second order diversity while TDMA-PNC cannot.

Dong Fang, Ph.D. Thesis, University of York 2014



CHAPTER 6. PNC IN MULTIUSER HIERARCHICAL WIRELESS NETWORK 115

6.8 Summary

In this Chapter, we have proposed two interference exploitation strategies for HWN: 1)

PNC-JD and 2) ANC-IAML. In PNC-JD, each RN decodes the J-NCSs for useful symbol

pair and interference symbol pair. The proposed mutual information based relay selection

scheme only allows the RN with the maximal instantaneous rate to broadcast the J-NCS

to the HBS and MSs. The HBS and MSs can recover their desired signal by exploiting

the received J-NCS and their SI. In ANC-IAML, all RNs amplify the linear sum of the re-

ceived signals and forward it back to HBS and MSs. The different copies of the amplified

sum signal are naturally combined at HBS and MSs, which results in extra diversity. After

cancelling out their corresponding self-interference, HBS/MS performs the interference

aware ML detection to extract its desired signal. Our proposed strategies naturally trans-

form the CCIs into the useful signal and enhance the spectral efficiency compared with

TDMA-PNC. We have derived the constellation constrained sum-rate as the performance

metric for each strategy. The theoretical analysis and simulation confirm that: 1) PNC-JD

can provide a substantial sum-rate enhancement compared to TDMA-PNC over a suffi-

ciently wide range of SNR regimes; 2) ANC-IAML achieves a sum-rate almost equal to

TDMA-PNC in the low SNR regime while ANC-IAML outperforms TDMA-PNC in the

moderate-to-high SNR regime; 3) PNC-JD offers a superior sum-rate relative to ANC-

IAML over a wide range of SNR regimes; and 4) PNC-JD and ANC-IAML both provide

transmit diversity while TDMA-PNC cannot.
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7.1 Overview

In this chapter, we propose a novel LPNC over 3-WRC. The relay maps the superimposed

signal into the linear network coded combination (LNCC, regarded as network coded

symbol) by multiplying the user data by a properly selected generator matrix. A sum-rate

based mapping selection scheme is also introduced for generating the optimal LNCC.

The unambiguous decodability and minimum cardinality of the proposed LPNC mapping
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are investigated. The proposed LPNC facilitates the multilevel coding structure using

parallel independent coding levels, in which each level is a linear function of user data.

This enables the HDF paradigm [7] for multiuser data exchange. The simulation results

show that: 1) the uncoded LPNC achieves equal error performance compared with the

Latin cube based PNC [56, 57]; 2) the uncoded LPNC provides a superior sum-rate over

the opportunistic scheduling based PNC; and 3) MLC-LPNC shows coding gain over two

benchmarks.

7.2 Introduction

PNC [1] in the 2-WRC exhibits a significant throughput enhancement over the conven-

tional three-phase network coding scheme, requiring only two transmission phases: the

multiple access channel (MAC) and the broadcast channel (BC) phases.

PNC has attracted enormous attention in recent years. The constellation constrained

capacity regions for PNC in 2-WRC were established in [7]. The authors in [7,8] pointed

out that some singular fading in the MAC phase inevitably shortens the minimum distance

between different network coded symbols (NCS). A non-linear PNC mapping, namely,

the so-called 5QAM denoise-and-forward (5QAM-DNF) scheme, was proposed in [8] to

mitigate these singular fade states by extending the PNC mapping from 4-ary to 5-ary.

However, the drawback of 5QAM-DNF is also clear: both the nonlinear mapping and the

5QAM constellation used on the BC phase introduce irregularities in the communication

system which cannot readily be implemented in conventional systems. Moreover, due

to the non-linear mapping, the linear codes cannot be adopted for 5QAM-DNF, which

restricts its usage in conventional systems. In [55] and [34], the concept of linear net-

work coding [4] was extended from the wireline network to wireless 2-WRC to form the

LPNC. The authors in [55] proposed to use non-binary channel codes to improve the error

performance of LPNC. The authors in [34] investigated the asymptotic symbol error rate

of LPNC. However, their designed LPNC requires the user to adopt the irregular p-ary

immolation, where p is a prime, e.g., 5-PAM modulation. This restricts its usage in con-

ventional systems. Moreover, we note that the aforementioned PNC designs in [34, 55]

only focused on the 2-WRC.
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A Latin cube based PNC was proposed for 3-WRC [56] and M-WRC [57], respec-

tively, in which the relay adaptively transforms the Latin cube to generate the PNC map-

ping based on the channel states. The users decode the desired symbols by looking up

the Latin cube. However, the channel codes cannot be employed due to the fact that the

Latin cube based PNC is in essence a type of non-linear mapping. Moreover, such design

requires enlarging the cardinality of NCS alphabet, which results in performance degrada-

tion in BC phase. The algebraic approach of PNC was proposed in [25,26], which extends

the PNC beyond the 2-WRC to general Gaussian multiple access channels (GMAC), i.e.,

compute-and-forward (CPF). However, we note that CPF requires infinite dimensional

lattices construction which is not practical in the common communications systems. In

summary, the existing multi-user PNC strategies either require irregular constellations

( [8, 25, 26, 34, 55–58]) or cannot directly adopt the channel codes ( [8, 56, 57]).

To tackle the drawbacks of the aforementioned strategies in [8, 25, 26, 34, 55–58], we

propose a multilevel coded LPNC for the M-WRC. The superimposed signal at the re-

lay is mapped into the linear network coded combination (LNCC, regarded as NCS) by

multiplying the user data by a properly selected generator matrix. The selection criterion

guarantees the multiuser exclusive law and maximizes the sum-rate in the MAC phase.

The proposed LPNC facilitates the multilevel coding structure using parallel indepen-

dent coding levels in which each level is a linear function of user data. This enables the

hierarchical decode-and-forward paradigm [7] for multiuser data exchange. That is, the

resulting LNCC sequence is a valid codeword and can be directly decoded. The minimum

cardinality of LNCC alphabet is guaranteed given that LNCC can be unambiguously de-

coded at each user. As a result, the proposed design improves the spectral efficiency in

BC phase compared with the Latin cube based PNC in [56, 57]. The contributions are

summarized as four-fold:

1. We propose a new LPNC such that the data exchange in the M-WRC only requires

two transmission phases and hence increases the throughput

2. Our proposed LPNC guarantees the linearity of channel codes such that the hierar-

chical decode and forward paradigm [3] is enabled.

3. We propose a sum-rate maximization based mapping selection approach which gen-

erates the optimal LPNC mapping for maximizing the sum-rate in the MAC phase.

Dong Fang, Ph.D. Thesis, University of York 2014



CHAPTER 7. A NEW TYPE OF COMPUTE-AND-FORWARD USING LINEAR CODES:

MULTILEVEL NETWORK CODED MULTI-WAY RELAYING 119

4. Our proposed LPNC always ensures the minimum cardinality constraint as in [2]

for saving the spectral efficiency in the BC phase.

Based on the our analytical and simulation results, we highlight that 1) the uncoded

LPNC achieves the equal error performance compared with the Latin cube based PNC

[7,8]; 2) the uncoded LPNC provides a superior sum-rate over the opportunistic schedul-

ing based PNC; and 3) MLC-LPNC shows coding gain over two benchmarks. The pro-

posed design achieves the triple-goal of flexibility, low-complexity and performance.

7.3 System Model and Scheme Description

In this section, we describe the system model of the proposed LPNC in M-WRC. The M-

WRC consists of multiple users and one relay. It is assumed that the all users operate in

half-duplex mode and there is no direct link among users. The multi-way data exchange

takes place among the users with the help of the relay. Each user expects to exchange its

own data with those of the other two.

Figure 7.1: System Model of 3-WRC

We focus on a simplified model of M-WRC, i.e., the 3-way relay channels (3-WRC), as

shown in Fig. 7.1. We note that the proposed LPNC for 3-WRC can be easily extended to
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the general M-WRC. The LPNC facilitates the 3-way data exchange with only two trans-

mission phases, i.e., multiple access (MAC) phase and broadcast (BC) phase. All chan-

nels experience quasi-static independent and identically distributed (i.i.d.) frequency-flat

Rayleigh fading with unit variance. It is assumed that a binary FEC encoder is employed

by each user. The coded symbol is generated by encoding the user’s original data.

7.3.1 Multiple Access Phase

In the MAC phase, the three users (A, B and C) simultaneously transmit signals to the relay

(R). It is assumed that all users adopt QPSK modulation. Due to the QPSK signaling, each

channel coded symbol from user i, i ∈ {A,B,C}, is thus a member of GF (22) and can

be expressed by a binary extension field form, i.e., si =

 si,1

si,2

, where si,j ∈ GF (2),

j ∈ {1, 2}, represents the j-th binary bit of si. The channel coded symbol si serves as

the complementary side information (C-SI) of each user. Let A4 denote the Gray coded

QPSK alphabet with unit energy constraint. The mapping from coded symbol to complex

symbols is denoted asMS : GF (22)→ A4. The complex symbols transmitted by user i,

denoted as xi, is then given by xi =MS(si).

The electromagnetic signals from users are superimposed at R, i.e.,

yR = hAxA + hBxB + hCxC + nw, (7.1)

where hi, i ∈ {A,B,C} is the channel gain from user i to R. We assume that the channel

state information is perfectly known to the receiver side only. The received superimposed

signal is corrupted by complex additive Gaussian white noise (AWGN) nR with variance

σ2
w per complex dimension. We refer to

xABC , hAxA + hBxB + hCxC (7.2)

as the noiseless superimposed signal (SS).
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7.3.2 Proposed Linear Mapping at Relay

In the proposed design, the relay R linearly maps the SS into the linear network coded

combination (LNCC), given by

L : xABC → sL, (7.3)

where sL is the LNCC. The alphabet of the LNCC is denoted as SL, whose cardinality is

denoted as MSL .

Similar to the original PNC in the 2-WRC, the linear mapping L in (7.3) should ensure

that for the given LNCC and C-SI, each user can unambiguously decode the symbols of

other users. In other words, the linear mapping L should be invertible. This is referred to

as the multi-user exclusive law of the proposed LPNC, given by

L (sA, sB, sC) 6=L (sA, s
′
B, s

′
C) , ∀(sB, sC) 6=(s′B, s

′
C ) ,

L (sA, sB, sC) 6=L (s′A, s
′
B, sC) , ∀(sA, sB) 6=(s′A, s

′
B) ,

L (sA, sB, sC) 6=L (s′A, sB, s
′
C) , ∀(sA, sC) 6=(s′A, s

′
C) .

(7.4)

This is obtained from extending the original exclusive law [8] from the 2-WRC to 3-

WRC. Clearly, the results of (7.4) can be also extended to the M-WRC. The unambiguous

decoding of the proposed LPNC is detailed in the next section. To conserve spectral

efficiency, the following condition is introduced as the constraint of the cardinality of the

LNCC alphabet.

Condition 1. The resulting LNCC alphabet should satisfy both the multi-user exclusive

law and the minimum cardinality.

Recall that the cardinality of the user alphabet is 4 due to the QPSK signaling. A

necessity that the multi-user exclusive law is ensured is that the cardinality of LNCC

alphabet is between 42 and 43, i.e., 42 ≤ MSL ≤ 43. Condition 1 indicates that the

cardinality of the resulting LNCC alphabet is restricted to 42. As such, sL returned by

L, which is generated from linearly combining sA, sB and sC , is a member of the binary

extension field GF (24), given by

sL = A⊗ sA ⊕B ⊗ sB ⊕C ⊗ sC (7.5)
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where all matrix operations obey modulo-2 arithmetic, i.e., x ⊗ y = mod(x · y, 2) and

x ⊕ y = mod(x + y, 2), which are closed within GF (2). The quantities A, B and C

are 4 × 2 binary matrices which are referred to as the parameter matrices. The resulting

LNCC sL can be expanded as

sL =


sL,1

sL,2

sL,3

sL,4

 , (7.6)

where sL,n, n ∈ {1, 2, 3, 4}, represents the n-th bit level of sL.

We define the generator matrix as G ∆
=
[
A B C

]
and the users’ symbol vector

as sABC ,


sA

sB

sC

. Hence, (7.6) can be rewritten as sL = G⊗ sABC

Integrating the linear mapping function (7.6) into the maximal likelihood (ML) detec-

tion, we have the following LPNC detection:

sL = arg max
sL

p(yR|sL) = arg max
sL

∑
∀(xA,xB ,xC) s.t. L:yR→sL

P (xA)P (xB)P (xC)p(yR|xABC)

(7.7)

where we note that the summation includes all (xA, xB, xC) such that L : yR → sL. The

conditional probability density function (PDF) p(yR|xAB) yields the Gaussian distribu-

tion, given by

p(yR|xABC) =
1

2πσ2
w

exp

(
−|yR − xABC |

2

2σ2
w

)
. (7.8)

The details of the selection criterion for the linear mapping functions are described in the

next section.

7.3.3 Broadcast Phase

In the BC phase, R maps the LNCC into the modulated symbol. Due to the cardinality

of resulting LNCC, 16QAM modulation is adopted by R. Let A16 denote the 16QAM

alphabet with unit energy constraint. The modulated LNCC, denoted as xR, is given by
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xR = MR(sL), whereMR : GF (24) → A16 is constellation mapper at R. Then xR is

forwarded to all users. The received signal at each user is given by

yi = hixR + ni (7.9)

where ni is the complex AWGN at user i, where i ∈ {A,B,C}. Then user i demodulates

the received signal yi to obtain the LNCC. The demodulated LNCC is denoted as ŝL.

7.4 Adaptive Selection criterion of Linear Mapping

In this section, we provide the detailed design for the adaptive selection criterion for the

linear mapping functions. As all channel states are known to R, the mapping functions are

then selected to adapt to the channel, i.e., firstly to ensure the multi-user exclusive law,

and secondly to maximize the sum-rate.

7.4.1 Unambiguous Decoding Based on Multi-user Exclusive Law

We note that the linear mapping in (7.5) in fact forms a set of linear Diophantine equations

with six variables si,j where i ∈ {A,B,C} and j ∈ {1, 2}. Since user i has its own C-SI

si, (6) is simplified to a set of linear equations with four variables for each user. Hence,

fulfilling the multi-user exclusive law is equivalent to choosing the generator matrix G

from those for which the linear equation (7.5) is solvable. More specifically, the user

i, i ∈ {A,B,C} can successfully recover the desired symbols sl and sk (l and k ∈
{A,B,C, }\{i}) through fully exploiting the C-SI si and the received LNCC ŝL. In the

following, we show the detailed recovery procedure for the desired symbols based on the

multi-user exclusive law.
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User A formulates sA and ŝL as in the following signal pattern

rA,

 sA

ŝL

=

 I⊗sA

G⊗sABC

=

 I 0 0

A B C

⊗

sA

sB

sC


=

 I 0 0

A B C

⊗sABC
(7.10)

where I is a 2 × 2 identity matrix and 0 is a null matrix. We note that the equality[
I 0 0

]
⊗sABC = I ⊗ sA holds and we refer to ΓA ,

 I 0 0

A B C

 as user

A’s decoding matrix. The multi-user exclusive law in (7.4) is then fulfilled if and only if

ΓA is invertible, i.e., ΓA is a full rank matrix. The recovered the source symbol vector,

denoted as ŝABC , is obtained by multiplying the signal pattern rA in (7.10) by Γ−1
A , given

by ŝABC = Γ−1
A ⊗ rA.

User B formulates sB and ŝL as in the following signal pattern

rB,


ŝL(1 : 2, :)

sB

ŝL(3 : 4, :)

=


G(1 : 2, :)⊗sABC

I⊗sB

G(3 : 4, :)⊗sABC



=


A(1 : 2, :) B(1 : 2, :) C(1 : 2, :)

0 I 0

A(3 : 4, :) B(3 : 4, :) C(3 : 4, :)

⊗

sA

sB

sC



=


A(1 : 2, :) B(1 : 2, :) C(1 : 2, :)

0 I 0

A(3 : 4, :) B(3 : 4, :) C(3 : 4, :)

⊗sABC

(7.11)

where the mathematical notation X(l : n, :) represents a sub-matrix of X , which contains

the l-th to n-th rows of X . We note that the equality
[

0 I 0
]
⊗sABC = I⊗sB

holds and we refer to ΓB ,


A(1 : 2, :) B(1 : 2, :) C(1 : 2, :)

0 I 0

A(3 : 4, :) B(3 : 4, :) C(3 : 4, :)

 as user B’s decoding

matrix. Likewise, if and only if ΓB is a full rank matrix, the recovered the source symbol

vector ŝABC is then obtained by multiplying the signal pattern rB in (7.11) by Γ−1
B , given

by ŝABC = Γ−1
B ⊗ rB
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User C formulates sC and ŝL as in the following signal pattern

rC,

 ŝL

sC

=

G⊗sABC

I⊗sC

=

 A B C

0 0 I

⊗sABC
=ΓC⊗sABC

(7.12)

where we note that the equality
[

0 0 I
]
⊗ sABC = I ⊗ sC holds and we refer to

ΓC ,

 A B C

0 0 I

 as user C’s decoding matrix. If and only if ΓB is a full rank matrix,

the recovered the source symbol vector ŝABC is then obtained by multiplying the signal

pattern rc in (7.12) by Γ−1
C , given by ŝABC = Γ−1

C ⊗ rC .

Based on the results of (7.10)-(7.12), we provide the following Remark.

Remark 1. For any generator matrix G =
[
A B C

]
, the multi-user exclusive law

is satisfied if and only if the resulting decoding matrices ΓA, ΓB and Γc are all full rank

matrices.

7.4.2 Sum-rate based Selection Criterion

We denote the rate of each user in the MAC phase as R(1)
i , i ∈ {A,B,C}. The authors

in [8] and [7] pointed out that in PNC, the individual rate of each user in the MAC is

bounded by the mutual information between the received signal and the network coded

combination, denoted as I(YR;SL).

The mutual information I(YR;SL) is expanded as

I(YR;SL) = H(YR)−H(YR|SL). (7.13)

The entropy H(yR) of the received signal is given by

H(YR) = −
∫

yR∈C

p(yR)log2 (p(yR)) dyR (7.14)

where the PDF of the received signal is calculated as

p(yR) =
∑

xA,xB ,xC

P (xA)P (xB)P (xC)p(yR|xABC) (7.15)
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where p(YR|XABC) is defined in (7.7).

The conditional entropy H(YR|SL) in (7.15) can be calculated as

H(YR|SL) = −
∑
sL

∫
y∈C

p (yR, sL) log2 (p (yR|sL)) dyR

= −
∑
sL

P (sL)

∫
y∈C

p (yR|sL) log2 (p (yR|sL)) dyR

(7.16)

where p (YR|SL) is defined in (7.8). Note that neither H(YR) in (7.14) nor H(YR|SL) in

(7.15) can be written in closed form. Hence, we use Monte-Carlo integration instead. The

mutual information in (7.13) thus can be computed as

I(YR;SL) = E [log2 (p(YR))]− E [log2 (p (YR|SL))] , (7.17)

where Mi, i ∈ {A,B}, is the cardinality of the user alphabet.

Unlike the original PNC, for LPNC-EM, we note that the rate region in the MAC phase

is determined by the mapping function in (7.5). Here, we show the impact of the mapping

function on the individual achievable rate of each user. The following Theorem 1 gives

the sum-rate in MAC phase given that the proposed LPNC is decoded at R.

Theorem 1. The sum-rate in the MAC phase, denoted by R(1)
ABC , should be bounded by

R
(1)
ABC ≤

6

4
I (YR;SL) , (7.18)

where the factor 6 and 4 are the entropy of sABC and sL, respectively, as indicated in the

proof of Theorem 1. .

The proof of Theorem 1 is detailed in Appendix B.

As the resulted LNCC sL is a member of GF (24), the following observations are

obtained: 1) sL might introduce some redundancy of the binary bit si,j, i ∈ {A,B,C}, j ∈
{1, 2}; and 2) the maximum mutual information I(Y ;SL) can achieve 4bits/symbol at

best. However, the effective achievable rate of user i, i ∈ {A,B}, is equal to the sum of

the rates with respect to binary bits si,1 and si,2 in the sL, given by

R
(1)
A ≤ I(YR;SA,1(SL)) + I(YR;SA,2(SL))

R
(1)
B ≤ I(YR;SB,1(SL)) + I(YR;SB,2(SL))

R
(1)
C ≤ I(YR;SC,1(SL)) + I(YR;SC,2(SL)),

(7.19)
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where si,j(sL), i ∈ {A,B}, j ∈ {1, 2}, is the j-th data bit of user i carried by sL and

I(YR;Si,j(SL)) denotes the mutual information between the received signal R and the

user’s binary bit carried by sL. Since sL is uniformly distributed over GF (24), each map-

ping level in (7.6) is equiprobable. Based on this, we have I(YR;Si,j(SL)) = 1
4
I(YR;SL).

Hence, the achievable rates of each user can be rewritten as

R
(1)
A = R

(1)
B = R

(1)
C ≤

1

2
I(YR;SL), (7.20)

where 1
2
I(YR;SL) equals the effective bits per symbol received by each user if the BC

phase is error-free.

Based on (7.20) and Theorem 1, we have the following remark.

Remark 2. The rate region of MAC phase given that the proposed LPNC is decoded at

R, takes the following form:

R
(1)
A = R

(1)
B = R

(1)
C ≤

1

2
I(YR;SL)

R
(1)
ABC ≤

6

4
I (YR;SL) .

(7.21)

Remark 2 indicates that rate region of the proposed LPNC in the MAC phase in fact

forms a cube over a three-dimensional space of R(1)
A , R(1)

B and R(1)
C .

Based on the result of (7.21), we observe that maximizing I(YR;SL) is equivalent to

maximizing the individual achievable rate of each user in the MAC phase, and hence

maximizing the sum-rate in the MAC phase. Since the mutual information I(YR;SL) is

significantly affected by the generator matrix G, we re-express I(YR;SL) in terms of G,

given as IG(YR;SL). The selection criterion of maximizing the individual achievable rate

of each user returns the optimal G, given by

G̃ = arg max
G

[
IG(YR;SL)

]
, (7.22)

where G̃ is the returned generator matrix after exhaustive searching.

In summary, for given channel coefficients, the following selection algorithm is imple-

mented at the relay such that that the sum-rate is maximized and the multiuser exclusive

law is ensured.
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Algorithm 4 Selection Criterion of G for Maximizing the Sum-rate in the MAC phase.
1: Given hA, hB and hC ;

2: for all G ∈ {G : sL = G⊗ sABC} do

3: Make the rate set empty: FI = ϕ;

4: Generate the LNCC sL = G⊗ sABC ;

5: Check the the satisfaction of multi-user exclusive law (Remark 1) for resulting

sL;

6: if the multi-user exclusive law (Remark 1) was satisfied then

7: Compute IG(YR;SL);

8: Include it in the rate set: FI ← FI ∪ {IG(YR;SL)};
9: end if

10: end for

11: Let IG(YR;SL)max be the maximum value among all the rates: IG(YR;SL)max =

max (FI);

12: Select G̃ whose rate corresponds to IG(YR;SL)max.

7.5 Multilevel Coded LPNC for 3-WRC

In this section, we introduce multilevel coded LPNC (MLC-LPNC). In the following,

we refine the notations from the perspective of the channel coded sequence. The se-

quence of si,j , where i ∈ {A,B,C} and j ∈ {1, 2}, is denoted as si,j . The se-

quence of sABC is denoted as SABC , which is a 6 × n binary matrix, i.e., SABC =

(sABC [1], sABC [2], . . . , sABC [n]). The sequence of LNCC sL is as SL, which is a 4×n bi-

nary matrix, i.e., sL = (sL[1], sL[2], . . . , sL[n]). The sequence of sL,m, m ∈ {1, 2, 3, 4},
is denoted as sL,m, which is the m-th level of sL.

The system diagram of MLC is illustrated in Fig. 1. Recall from (7.5) and (7.6) that

each bit level of SL is a linear combination of si,j , where i ∈ {A,B,C} and j ∈ {1, 2}.
This implies that the independent decoding of sL,n is feasible if and only if sL,n is a valid

channel coded sequence. Let di,j ∈ GFk (2) denotes the k-length uncoded binary data

sequence from user i,i ∈ {A,B,C}. A rate k/n linear code is adopted by each user and

the encoder function is denoted as C : GFk (2) → GFn (2). Then the coded sequence of

si,j is generated from encoding di,j using C (·), given by si,j = C (di,j).
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As the linearity of C andL in (7.5) is guaranteed, we know that the hierarchical decode-

and-forward paradigm [7] is enabled that is, the bit level sL,n of the resulting LNCC itself

is a valid code sequence of C and can be directly fed into the inverse function of C(·),

i.e., the decoder function C−1(·). Inspired by this, independent decoding on each level is

formulated as 
C−1(sL,1)

C−1(sL,2)

C−1(sL,3)

C−1(sL,4)

 =


C−1 (G(1, :)⊗ sABC)

C−1 (G(2, :)⊗ sABC)

C−1 (G(3, :)⊗ sABC)

C−1 (G(4, :)⊗ sABC)

 (7.23)

where G(m, :),m ∈ {1, 2, 3}, is the m-the row of G.

As each bit level of sL is a linear function of the coded sequence si,j , the output of

the decoder function is then a linear combination of di,j . This is due to the fact that the

proposed LPNC does not break the linearity of channel code. Based on these, (7.23) can

be expanded as


C−1(sL,1)

C−1(sL,2)

C−1(sL,3)

C−1(sL,4)

=G⊗



C−1(sA,1)

C−1(sA,2)

C−1(sB,1)

C−1(sB,2)

C−1(sC,1)

C−1(sC,2)


=G⊗



d̃A,1

d̃A,2

d̃B,1

d̃B,2

d̃C,1

d̃C,2


,DL (7.24)

where X̃ denotes the decoded version of X . Let DL denote the resulting linear combina-

tion of di,j , and it can be expanded as

DL =


d̃L,1

d̃L,2

d̃L,3

d̃L,4

 (7.25)

where d̃L,n denotes then-th decoded level of DL.

The results of (7.24)-(7.25) show the parallel independent decoding principle of

MLC-LPNC, as shown in Fig. 7.2. After the MLC decoding, d̃L,n is re-encoded

by the linear code C with rate k/n, given by s̃L,n = C
(
d̃L,n

)
. Then coded se-

quences (s̃L,4,s̃L,3,s̃L,2,s̃L,1) are mapped into the complex symbol sequence, given by
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Figure 7.2: The System Diagram of MLC-LPNC
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xR = MR (s̃L,4,s̃L,3,s̃L,2,s̃L,1), whereMR : GFn (24) → A n
16 is the constellation map-

per at R.

7.6 Low-complexity Approach and Benchmarks

In this section, we first carry out random LPNC, a low-complexity approach for multi-

level network coded M-WRC; and secondly, several existing strategies in M-WRC are

introduced as the benchmarks.

7.6.1 Random LPNC

It is worth noting that the selection criterion in (7.22) is a fully adaptive approach which

requires a high computational capability at the relay. Against this backdrop, we introduce

the concept of random LPNC, where the generator matrix is randomly selected from a

valid search space, given by

G̃ ∈{G : sL = G⊗ sABC}

s.t. ŝABC = Γ−1
A ⊗ rA,

ŝABC = Γ−1
B ⊗ rB,

ŝABC = Γ−1
C ⊗ rC .

(7.26)

Clearly, the random selection relaxes the criterion of sum-rate maximization and hence

degrades the performance compared with the fully adaptive selection in (7.22).

7.6.2 Benchmarks

Latin Cube based PNC

The Latin cube based PNC for 3-WRC is introduced in [56,57], in which, the relay adap-

tively transforms the Latin cube to generate the PNC mapping based on the channel states.
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The users decode the desired symbols by looking up the Latin cube. The cardinality of the

resulting PNC alphabet is between 16 and 23, which requires the irregular modulation in

BC phase. We note that the Latin cube based PNC is in fact a type of non-linear mapping

as 5QAM-DNF in 2-WRC [8].

Opportunistic Scheduling for PNC

The authors in [14] introduces an opportunistic user selection scheme for the 3-WRC,

where two selection criteria based on the channel norm and the minimum distance are

adopted.

7.7 Outage Probability Analysis

In this section, we provide the analysis on outage probability for the proposed MLC-

LPNC and benchmarks.

7.7.1 Outage Probability of MLC-LPNC

For MLC-LPNC facilitated 3-WRC, an outage event for data transmission by user i occurs

when either the MAC phase or the single transmission from R to user i in the BC phase is

in outage. Therefore, in terms of end-to-end transmission, the outage probability for the

MLC-LPNC facilitated 3-WRC is calculated as

POut
LPNC,i=1−

(
1− POut

MAC(RNCS)
)∏
j 6=i

(
1− POut

BC (RR,j)
)

(7.27)

where RNCS and RR,j represent the computation rate with respect to NCS and the trans-

mission rate from R to user j, (j 6= i); POut
MAC(RNCS) represents the outage probability in

the MAC phase, given by

POut
MAC(RNCS) = Pr

{
1

2
IG̃(YR;SL) < RNCS

}
(7.28)
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where the factor 1
2

is due to the two channel uses and similarly hereafter. The mutual

information IG̃(YR;SL) is obtained from (7.22), which indicates that an outage event oc-

curs in the MAC phase if the maximized mutual information 1
2
IG̃(YR;SL) cannot support

the computation rate RNCS. The quantityPOut
BC (RR,i)in (12) defines the outage probability

in the BC phase, with respect to the single transmission from R to user i, given by

POut
BC (RR,j) = Pr

{
1

2
I(Yj;XR) < RR,j

}
(7.29)

where I(Yj;XR) denotes the mutual information between received signal yj at user j and

transmitted signal xR at R.

7.7.2 Latin Cube based PNC

For Latin cube based PNC, the outage probability in terms of end-to-end transmission

takes the same form as (12). The outage probability for Latin square based PNC, in the

MAC phase, is given by

POut
MAC(RNCS) = Pr

{
1

2
I(YR;SNCS) < RNCS

}
(7.30)

where sNCS is Latin cube generated NCS whose cardinality is between 16 and 23. Clearly,

the outage probability in the BC phase should satisfy

POut
BC (RR,j) = Pr

{
1

2
I(Yj;XR) < RR,j

}
(7.31)

where the relay adaptively transmit the signalxR with different alphabet cardinalities (16

to 23), based on the generated NCS.

7.7.3 Opportunistic Scheduling for PNC

Clearly, the opportunistic scheduling based PNC groups all users in pairs. Let U1 ,

{A,B}, U2 , {A,C} and U3 , {B,C} define the corresponding user groups and the
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index of the user groups is denoted as m.

The outage probability with respect to the opportunistic scheduling for PNC is given

by

POut
TS,i=1−

∏
m

(
1− POut

MAC(RNCS,m)
) ∏
j∈Um/{i}

(
1− POut

BC (RR,j)
)

(7.32)

Here, POut
MAC(RNCS) is the outage probability in the MAC phase for them-the scheduled

user pair, given by

POut
MAC(RNCS,m) = Pr

{
1

6
I(YR;SNCS,m) < RNCS,m

}
(7.33)

where the factor 1
6

is due to the six channel uses and sNCS,m is the NCS, generated by the

non-linear mapping for the m-the scheduled user pair.

The quantity POut
BC (RR,j)in (7) is the outage probability in the BC phase, for broad-

casting sNCS,mto the m-the scheduled user pair, which is calculated as

POut
BC (RR,j) = Pr

{
1

6
I(Yj;XR) < RR,j

}
(7.34)

The corresponding evaluations on the derived outage probability for MCL-LPNC,

Latin cube based PNC and the opportunistic scheduling based PNC are accordingly pro-

vided in the next section.

7.8 Performance Evaluation

In this section, we evaluate the end-to-end symbol error rate (FER) and the sum-rate for

the proposed design and the benchmarks in Rayleigh fading 3-WRC. The length of the

original data packet is 512 bits. A rate 1/2 convolutional code with generator polynomials

(133, 171)8 is adopted.

Based on Fig. 7.3, we observe that the FER of the uncoded LPNC is slightly higher

than that of the Latin cube based PNC. This is because: 1) the Latin cube based PNC

has a larger cardinality (16 to 23) of NCS such that it has a better interference mitigation
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capability compared with the uncoded LPNC. and 2) the uncoded LPNC has a smaller

cardinality (16) of LNCC alphabet which results in a superior transmission performance

in the BC phase. A key superiority of the proposed LPNC is that it can directly adopt the

channel codes whereas the Latin cube based PNC cannot due to its non-linear property.

In Fig. 7.3, we also observe that the proposed MLC-LPNC provides a significant coding

gain over the Latin cube based PNC.

Fig. 7.4 shows the sum-rate comparison, in terms of end-to-end transmission, for

proposed design and benchmarks. We observe that the proposed design outperforms the

other two benchmarks. This is due to the minimum cardinality constraint (compared with

Latin cube based PNC) and improved spectral efficiency (compared with the opportunistic

scheduling based PNC) of the proposed design.
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Figure 7.3: FER comparison for different strategies

7.9 Summary

In this chapter, we have proposed a novel LPNC over the 3-WRC. The relay maps the

superimposed signal into the linear network coded combination (LNCC, regarded as net-

work coded symbol) by multiplying the user data by a properly selected generator matrix.
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Figure 7.4: Sum-rate comparison for different strategies

A sum-rate based mapping selection scheme is also introduced for generating the opti-

mal LNCC. The unambiguous decoding and minimum cardinality of the proposed LPNC

mapping were investigated. The proposed LPNC facilitates the multilevel coding struc-

ture using parallel independent coding levels in which each level is a linear function of

the user data. This enables the hierarchical decode-and-forward paradigm as in [7]. The

simulation results show that: 1) the uncoded LPNC achieves the equal error performance

compared with the Latin cube based PNC [56, 57]; 2) the uncoded LPNC provides a su-

perior sum-rate over the opportunistic Scheduling based PNC; and 3) MLC-LPNC shows

coding gain over two benchmarks.
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8.1 Summary of Work

In this thesis, we have focused on designing PNC for cooperative wireless networks. To

address the challenge of fading in the 2-WRC, we proposed two coded strategies for PNC

to compensate the phase shift introduced by the relative fading. Furthermore, a new LPNC

over the hybrid ring was also proposed for Rayleigh fading 2-WRC, where all singular

fade states can be eliminated by the enlarged NCS alphabet, based on the ring theory.

We then redesigned the PNC to accommodate the multi-user scenario such as HWN and

M-WRC. For HWN, we have proposed the PNC-JD and ANC-IAML for exploiting the
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C-CI. For M-WRC, we have proposed the MLC-LPNC strategy which facilitates the HDF

paradigm for multi-user data exchange.

In the following, we summarize the work reported in each chapter of this thesis.

In Chapter 3, RICM and SBC-QF are proposed for coded PNC in the fading 2-WRC.

The RICM and SBC-QF eliminate the fading effect at relay and destination, respectively.

The RICM exploits the nature of the phase shift which is introduced by the relative fading

factor of the 2-WRC such that the rotated coding levels have been shown to mitigate

the ambiguous decoding due to the phase shift. In contrast to RICM, SBC combats the

fading in the MAC phase at the user side. In such a strategy, the relay maps the received

superimposed signal into the network coded soft-bit rather than decodes it. Then the

network coded soft-bit is quantized and broadcasted to users. We prove that the designed

quantizer is robust in the fading 2-WRC. The fading effect is removed by the soft-bit level

XOR operation.

In Chapter 4, we have proposed a novel multilevel coded LPNC-EM for Rayleigh fad-

ing 2-WRC. The relay node adaptively selects the linear generator matrix and directly

maps the superimposed signal of the two users into the linear network coded combina-

tion over the hybrid Galois Field (GF(22) or GF(23)). The selection criterion ensures

unambiguous decoding and maximizes the individual rate of each user. The LPNC-EM

scheme forms two or three independent coding levels which facilitate the use of multilevel

coding. This enables the hierarchical decode-and-forward strategy. The numerical results

show that uncoded LPNC-EM outperforms the original PNC in [1] and can achieve a error

performance as good as that of the 5QAM-DNF in [8]. Furthermore, the multilevel coded

LPNC-EM also provides a superior error performance compared with the coded original

PNC.

In Chapter 5, HFR-LPNC is proposed for dealing with the singular fading. The su-

perimposed signal of the two users maps the LNCC in different finite rings. The optimal

linear coefficients of LNCC are selected based on: 1) maximizing the sum-rate in MAC

phase; and 2) ensuring the criterion of unambiguous decoding. The properly designed

source coding is used for compressing the LNCC alphabet over hybrid Galois field into

the unifying 4-ary alphabet. The end-to-end sum-rates of HGF-LPNC and the 5QAM-

Dong Fang, Ph.D. Thesis, University of York 2014



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 139

DNF [8] are derived for comparison. It can be confirmed by the analytical results and

simulation that 1) HFR-LPNC has a superior ability to mitigate the singular fading com-

pared with 5QAM-DNF; and 2) HGF-LPNC is superior to 5QAM-DNF over a wide range

of SNRs.

In Chapter 6, PNC are redesigned to accommodate in the multiuser HWN. To exploit

the C-CI, a joint decoding approach is proposed such that the useful and interference

symbols can be jointly decoded. For comparison, we also redesign the ANC for HWN,

in which interference-aware ML (IAML) detection is used to mitigate the C-CI. Further-

more, the constellation constrained sum-rates for PNC with JD, ANC with IAML and

TDMA based PNC are derived. The analytical and simulation result demonstrate the

substantial performance enhancement provided by the proposed strategies over the ANC-

IMAL AND TDMA-PNC in HWN.

Finally, in chapter 7, a novel linear physical-layer network coding (LPNC) over 3-way

relay channels (3-WRC) is proposed. The relay maps the superimposed signal into the

linear network coded combination (LNCC, regarded as network coded symbol) by multi-

plying the user data by a properly selected generator matrix. A sum-rate based mapping

selection scheme is also introduced for generating the optimal LNCC. The unambigu-

ous decoding and minimum cardinality of the proposed LPNC mapping are investigated.

The proposed LPNC facilitates the multilevel coding structure using the parallel indepen-

dent coding levels, in which each level is a linear function of user data. This enables the

hierarchical decode-and-forward paradigm [7] for multiuser data exchange. The simu-

lation results show that: 1) the un-encoded LPNC achieves the equal error performance

compared with the latin cube based PNC [56,57]; 2) the un-encoded LPNC provides a su-

perior sum-rate over the opportunistic Scheduling based PNC; and 3) MLC-LPNC shows

the coding gain over two benchmarks.

8.2 Future Work

Future avenues of relevant research are listed as follows:
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• The linear code based CPF for multiuser network will be further investigated. In

particular, the error correction capability of linear codes will be used to solve the

the multiple access interference. Due to the singular fade states, the cardinality of

code alphabet should be extended to compensate the error introduced by channels.

• PNC constructed from linear codes will be explored, where the NCSs, generated at

the relays, is a valid codeword of the linear block code such that the destination can

collect all NCSs and decode them as a codeword. This overcomes the deep fading

and errors in the BC phase.

• Lattice network coding will be considered to accommodate the common communi-

cation system design over finite field GF(2m) where m is an integer.
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Appendix A: Proof of Theorem 2 in Chapter 4

Proof. Assume that the MAC phase is free from errors. Then the mapping procedure for

s
(q)
L at the relay can be regarded as discrete memoryless source encoding in which the

4-bit binary tuple sAB , (sA, sB) is the input symbol; and s(q)
L is output symbol. Due to

the exclusive law, each sAB corresponds to an unique s(q)
L .

The sequence of q-ary symbols s(q)
L is denoted as s(q)

L , where the length of s(q)
L is N and

we assume N → ∞. Let b(q)
L denote the binary representation of s(q)

L , where the average

length of b(q)
L is K̄ = H

(
s

(q)
L

)
× N (the length of b(q)

L varies from frame to frame). For

simplicity of notation, we omit the index of elements in b(q)
L and similarly hereafter. The

element of b(q)
L is denoted as B(q)

L . Clearly, B(q)
L is not uniformly distributed since s(q)

L is

not uniformly distributed.

The sequence of 16-ary symbols sAB is denoted as sAB whose length is also equal

to N . We note that sAB is uniformly distributed with probability 1/16 as it is drawn

from two QPSK alphabets. Let bAB denote the binary representation of sAB, where the

length of bAB is L = log2(16) × N = 4N . An element of bAB is denoted as bAB.

Clearly, bAB is uniformly distributed since sAB is uniformly distributed. Hence we have

H(bAB) = log2(2) = 1.

We note that the entropy of s(q)
L is constant over during the whole mapping procedure.

According to Shannon’s variable–length source coding theorem, we have

H
(
B

(q)
L

)
log2(2)

+ ε ≥ K̄

L
≥
H
(
B

(q)
L

)
log2(2)

, (1)

where ε = 1
L
→ 0 as L = 4N →∞. Hence (1) can be further written as

K̄

L
=
H
(
B

(q)
L

)
log2(2)

. (2)

Based on this, we know that when N →∞ the average code rate of the equivalent source

encoder, denoted by R̄, is then given as R̄ =
H
(
S
(q)
L

)
4

.

Now we consider a distorted MAC phase. We note that the relay can receive up to

R
(1)
AB,max bits per symbol for sAB, where R(1)

AB,max denotes the maximal achievable rate
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of sAB. The linear mapper outputs the LNCC s
(q)
L with rate up to I

(
YR;S

(q)
L

)
bits per

symbol. The average code (mapping) rate R̄ is constant when N →∞ since each sAB is

corresponding to an unique s(q)
L . Based on this, we have

R̄ =
H
(
S

(q)
L

)
4

=
I
(
YR;S

(q)
L

)
R

(1)
AB,max

. (3)

Based on (13), the input rate with respect to sAB, namely, the sum-rate in the MAC

phase, R(1)
AB, should be bounded by

R
(1)
AB ≤

4

H
(
S

(q)
L

)I (YR;S
(q)
L

)
. (4)

Let Pe,i{s(q)
L 6= s̃

(q)
L } denote the error rate of the BC phase at user i, where s̃(q)

L denotes

the received LNCC. Assuming that the BC is error-free, A decodes sB using successfully

received s(q)
L and C-SI sA. Hence the the end-to-end achievable rate of B is equal to the

rate of that in the MAC phase, given by

R
(1)
B = RB, iff. Pe,A(s

(q)
L 6= s̃

(q)
L ) = 0 (5)

and similarly, we have

R
(1)
A = RA, iff. Pe,B(s

(q)
L 6= s̃

(q)
L ) = 0. (6)

Here Ri, i ∈ {A,B} denotes the end-to-end achievable rate. The results of (5) and (6)

can be used to measure the individual achievable rate of each user in the MAC phase.

We understand that if BC phase is error-free, the end-to-end achievable rate of B can

be calculated as

RB ≤ I
(
YR; ŜB|SA

)
, iff. Pe,A(s

(q)
L 6= s̃

(q)
L ) = 0 (7)

and similarly, the end-to-end achievable rate of A is given by

RA ≤ I
(
YR; ŜA|SB

)
, iff. Pe,B(s

(q)
L 6= s̃

(q)
L ) = 0. (8)

Then the individual achievable rate of each user in the MAC phase is bounded by

R
(1)
A ≤ I

(
YR; ŜA|SB

)
R

(1)
B ≤ I

(
YR; ŜB|SA

)
.

(9)
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Based on (4) and (9), we have

R
(1)
A ≤ I

(
YR; ŜA|SB

)
R

(1)
B ≤ I

(
YR; ŜB|SA

)
R

(1)
AB ≤ 4

H
(
S
(q)
L

)I (YR;S
(q)
L

)
.

(10)

This completes the proof of Theorem 2.
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Appendix B: Proof of Theorem 2 in Chapter 6

Proof. Assume that the MAC phase is free from errors. Then the mapping procedure

for s(q)
L at R can be regarded as discrete memoryless source encoding in which the 6-bit

binary tuple sABC is the input symbol; and 4-bit binary tuple sL is output symbol. Due to

the exclusive law, each sABC corresponds to an unique sL.

We understand that sABC is uniformly distributed over GF(26) as it is drawn from 3

QPSK alphabets. Therefore, in an error-free MAC phase, the rate of sABC , namely, the

sum-rate in the MAC stage, is then equal to H (sABC) = log2 (26) = 6 bits/symbol. Let

L denote the length of the binary sequence of sABC .

As the MAC stage is free from errors, the LNCC sL after LPNC decoding is then error-

free. Due to the uniformity of each source data and linearity of mapping function in (7.7),

the resulting sL tends to be uniformly distributed over GF(24). As such, the computation

rate of sL, is equal to H (SL) = log2 (24) = 4 bits/symbol. Let K denote the length of

the binary sequence of sL.

We note that the entropy of sL is constant over during the whole mapping procedure.

According to Shannon’s source coding theorem, we have

K

L
=

H (SL)

H (SABC)
(11)

such that the average code rate of the equivalent source encoder is then R̄ = K
L

=
H(sL)

H(sABC)
= 4

6
.

Now we consider a distorted MAC phase. We note that the relay R can receive up

to R(1)
ABC,max bits per symbol for sABC , where R(1)

ABC,maxdenotes the maximal achievable

rate of sABC . The linear mapper outputs the LNCC sL with rate up to I (YR;SL) bits per

symbol. The average code (mapping) rate R̄ = 4
6

is constant since each sABC corresponds

to an unique sL. Based on this, we have

R̄ =
4

6
=
I (YR;SL)

R
(1)
ABC,max

. (12)
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Based on (1), the input rate with respect to sABC , namely, the sum-rate in the MAC

phase, R(1)
ABC , should be bounded by

R
(1)
ABC ≤

6

4
I (YR;SL) , (13)

which completes the proof of Theorem 2.
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Glossary

2-WRC Two-way Relay Channel

3-WRC Three-way Relay Channel

AWGN Additive White-Gaussian-Noise

BC Broadcast Channel

BER Bit Error Rate

CPF Compute-and-Forward

CSI Channel State Information

DNF Denoise-and-Forward

EM Electromagnetic

FEC Forward Error Correction

FER Frame Error Rate

i.i.d. independent and identically distributed

LLR Log-Liklihood Ratio

LNCC Linear Network Coded Combination

LPNC Linear Physical-layer Network Coding

MAC Muliple Acess Channel

MAP Maximum A Posteriori

ML Maximum-Likelihood

MLC Muli-level Coding

M-WRC Muli-way Relay Channel

NCS Network Coded Symbol

NCC Network Coded Combination

PDF Probability density function

PNC Physical-layer Netwrok Coding

SBC Soft Bit Correction

SER Ssymbol Error Rate

SIC Successive Interference Cancelation

SINR Signal-to-Interference-plus-Noise Ratio

SNR Signal-to-Noise-Ratio

RICM Rotationally Invariant Coded Modulation
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HFR-LPNC Linear Physical-layer Network Coding over the Hybrid Finite Ring

Dong Fang, Ph.D. Thesis, University of York

147

2014



Bibliography

[1] S. Zhang, S. C. Liew, and P. K. Lam, “Hot Topic: Physical-Layer Network Cod-

ing,” in Proc. Annual Int. Conf. on Mobile Computing and Networking (MobiCom),

LA, USA, Sept. 2006.

[2] J. Sykora and A. Burr, “Hierarchical alphabet and parametric channel constrained

capacity regions for HDF strategy in parametric wireless 2-WRC,” in Proc. IEEE

Wireless Commun. Network. Conf. (WCNC), Sydney, Australia, April 2010.

[3] T. Koike-Akino, P. Popovski, and V. Tarokh, “Denoising maps and constellations

for wireless network coding in two-way relaying systems,” in Proc. IEEE Global

Telecommun. Conf. (GlobeCom), USA, 2008.

[4] T. Koike-Akino, P. Popovski, and V. Tarokh, “Denoising strategy for

convolutionally-coded bidirectional relaying,” in Proc. IEEE Int. Conf. Comm.

(ICC), Dresden, Germany, June 2009.

[5] P. Popovski and H. Yomo, “Physical network coding in two-way wireless relay

channels,” in Proc. IEEE Int. Conf. Commun. (ICC), Glasgow, Scotland, Jun. 2007

[6] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: Analog

network coding,” in Proceeding of ACM SIGCOMM, Kyoto, Japan, pp. 397-408,

Aug. 2007.

[7] J. Sykora and A. G. Burr, “Layered design of hierarchical exclusive codebook and

its capacity regions for HDF strategy in parametric wireless 2-WRC,” IEEE Trans.

Veh. Technol., vol. 60, no.7, pp.3241-3252, Sep. 2011.

Dong Fang, Ph.D. Thesis, University of York

148

2014



[8] T. Koike-Akino, P. Popovski, and V. Tarokh, “Optimized constellations for two-

way wireless relaying with physical network coding,” IEEE J. Sel. Areas Commun.,

vol. 27, no. 5, pp. 77-787, Jun. 2009.

[9] C. E. Shannon, “Two-way communication channels,” in Proc. 4th Berkeley Symp.

Math. Stat. Probab., vol. I, 1961, pp. 611644.

[10] E. C. van der Meulen, “Three-terminal communication channels,” Adv. Appl.

Probab., vol. 3, no. 1, pp. 120154, 1971.

[11] T. Cover and A. El Gamal, “Capacity theorems for the relay channel,” IEEE Trans.

Inform. Theory, vol. 25, no. 5, pp. 572584, Sep. 1979.

[12] S. Shukla and B. Sundar Rajan, “Wireless network-coded three-way relaying using

Latin Cubes”, in Proc. IEEE International Symp. on Pers. Indoor and Mobi. Radio

Comm. (PIMRC), Syndeny, Austrilia, Oct. 2012.

[13] S. Shukla, V. T. Muralidharan, and B. Sundar Rajan, “Wireless Network-Coded

Three-Way Relaying Using Latin Cubes”, available online at arXiv:1112.1584

[cs.IT], Dec. 2011

[14] Y. Jeon, Y. T. Kim, M. Park, and I. Lee, “Opportunistic Scheduling for Three-way

Relay Systems with Physical Layer Network Coding”, in Proc. IEEE Vehi. Tech.

Conf. (VTC-Spring), Budapest, Hungary, May 2011.

[15] J. Liu, M. Tao and Y. Xu, “Pseudo Exclusive-OR for LDPC coded two-way relay

block fading channels,” in Proc. IEEE Int. Conf. Comm. (ICC), Kyoto, Japan, June

2011.

[16] G. Zeitler, R. Koetter, G. Bauch, and J.Widmer,“On Quantizer Design for Soft

Values in the Multiple-Access Relay Channel,” in Proc. IEEE Int. Conf. Comm.

(ICC), Dresden, Germany, June 2009

[17] A. Winkelbauer and G. Matz, “Soft-Information-Based Joint Network-Channel

Coding for the Two-Way Relay Channel,” in Proc. IEEE Int. Symp. on Network

Coding (NetCod), Beijing, China, July 2011.

[18] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inform.Theory, vol.

IT-28, pp. 129-137, 1982.

Dong Fang, Ph.D. Thesis, University of York

149

2014



[19] J. Max, “Quantizing for minimum distortion,” IEEE Trans. Inform.Theory, vol.

IT-6, pp. 7-12, 1960.

[20] D. Zwillinger and S. Kokoska, Standard probability and Statistics tables and For-

mulae, Chapman and Hall/CRC, 2000

[21] J. Hagenauer, “The EXIT chart - Introduction to extrinsic information transferin

iterative processing,” in Proc. Eur. Signal Process. Conf., Vienna, Austria, 2004

[22] M. Tuchler, S. ten Brink, and J. Hagenauer, “Measures for tracing convergence of

iterative decoding algorithms,” in Proc. 4th IEEE/ITG Conf. on Source and Chan-

nel Coding, Berlin, Germany, Jan 2002.

[23] K. Zeger and A. Gersho, “Pseudo-gray coding,” IEEE Trans. Comm., vol. 38, no.

12, pp. 2147-2158, Dec. 1990.

[24] J. Liu, M. Tao and Y. Xu, “Pairwise Check Decoding for LDPC Coded Two-Way

Relay Block Fading Channels,” IEEE Trans. Commun., vol. 60, no. 8, pp. 2065-

2076, Aug. 2012

[25] B. Nazer and M. Gastpar,“Compute-and-Forward: Harnessing Interference

through Structured Codes,” IEEE Trans. Inform. Theory, vol. 57, no. pp.6463-6486,

Oct. 2011.

[26] B. Nazer and M. Gastpar, “Reliable physical layer network coding,” Proceeding of

IEEE, vol. 99, no. 3, pp. 438-460, Mar. 2011.

[27] U. Niesen and P. Whiting, “The degrees-of-freedom of compute-and-forward,”

IEEE Trans. Inf. Theory, vol. 58, no. 8, Aug. 2012

[28] V. T. Muralidharan and B. S. Rajan, “Distributed Space Time Coding for Wireless

Two-way Relaying,” IEEE Trans. Signal Processing, vol. 61, pp. 980-991, Feb.

2013.

[29] L. Lu and S. C. Liew, “Asynchronous Physical-Layer Network Coding,” IEEE

Trans. Wireless Commun., vol.12, pp.819-831, Feb. 2012.

[30] U. Bhat and T. M. Duman, “Decoding strategies for physical-layer network cod-

ing over frequency selective channels,” in Proc. of IEEE Wireless Commun. and

Networking Conf. (WCNC), Paris, France, pp.12-18, Apr. 2012.

Dong Fang, Ph.D. Thesis, University of York

150

2014



[31] N. Wang, Z. Ding, X. Dai and A. V. Vasilakos, “On Generalized MIMO Y Chan-

nels: Precoding Design, Mapping and Diversity Gain,” IEEE Trans. on Wireless

Commun., vol.60, no.7, pp.3525-3532, Sep. 2011.

[32] Z. Ding, I. Krikidis, J. Thompson, and K. Leung, “Physical layer network coding

and precoding for the two-way relay channel in cellular systems,” IEEE Trans.

Signal Process., vol. 59, no. 2, pp. 696–712, Feb. 2011.

[33] T. Yang, I. Land, T. Huang, J. Yuan, Z.Chen, “Distance Spectrum and Perfor-

mance of Channel-Coded Physical-Layer Network Coding for Binary-Input Gaus-

sian Two-Way Relay Channels,” IEEE Trans. Commun., vol. 60, no. 6, pp. 1499-

1510, Jun. 2012

[34] T. Yang, X. Yuan, P. Li, I. B. Collings, and J. Yuan, “Eigen-direction alignment

based physical-layer network coding for MIMO two-way relay channels,” submit-

ted on IEEE Trans. Inf. Theory,, available on arXiv: http://arxiv.org/abs/1201.2471.

[35] K. Lu, S. Fu, Y. Qian, and H.-W. Chen, “SER performance analysis for physical

layer network coding over AWGN channels,” in Proceeding of IEEE Global Com-

mun. Conf. (GlobeCom), Hawii, USA, Dec. 2009.

[36] M. Park, I. Choi, and I. Lee, “Exact BER analysis of physical layer network coding

for two-way relay channels,” in Proceeding of IEEE Veh. Technol. Conf. (VTC),

Budapest, Hungary, May 2011.

[37] Y. Huang, Q. Song, S. Wang, and A. Jamalipour, “Symbol error rate analysis for M-

QAM modulated physical-layer network coding with phase errors.” in Proceeding

of IEEE Int. Sym. on on Personal, Indoor and Mobile Radio Commun. (PIMRC),

Sydney, Austrilia, Sep. 2012.

[38] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network information flow,”

IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[39] S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. Inform.

Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003

[40] T. Yang and I. B. Collings, “Asymptotically optimal error-rate performance of lin-

ear physical-layer network coding in Rayleigh fading two-way relay channels,”

IEEE Commun. Letters, vol. 16, no. 7, pp. 1068–1071, Jul. 2012.

Dong Fang, Ph.D. Thesis, University of York

151

2014



[41] D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd ed. John Wiley & Sons, Inc.,

2004.

[42] W. E. Ryan and S. Lin, Channel Codes: Classical and Modern, Cambridge Uni-

versity Press, 2009.

[43] M. Valenti, D. Torrieri, and T. Ferrett, “Noncoherent physical-layer network cod-

ing using binary cpfsk modulation,” in Proceeding of IEEE Mil. Commun. Conf.

(MilCom), pp. 1-7, Oct. 2009.

[44] T. Cui F. Gao and C. Tellambura, “Physical layer differential network coding for

two-way relay channels,” in Proceeding of IEEE Global Commun. Conf. (Globe-

Com), New Orleans, CA, 2008.

[45] Z. Yi, M. Ju, and I.-M. Kim, “Outage probability and optimum power allocation

for analog network coding,” IEEE Trans. Wireless Commun., vol. 10, no. 2, pp.

407-412, Feb. 2011.

[46] G. Wang, W. Xiang, and J. Yuan, “Outage Performance for Compute-and-Forward

in Generalized Multi-Way Relay Channels,” IEEE Commun. Letters, vol. 16, no.

12, pp. 2099–2102, Dec. 2012.

[47] Z. Ding, T. Ratnarajah, and K. Leung, “On the study of network coded AF trans-

mission protocol for wireless multiple access channels,” IEEE Trans. Wireless

Commun., vol. 7, no. 11, pp. 4568–4574, Nov. 2008.

[48] K. Jitvanichphaibool, R. Zhang, and Y. C. Liang, “Optimal resource allocation for

two-way relay-assisted OFDMA,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp.

3311–3321, Sep., 2009.

[49] A. Papadogiannis and A. G. Burr, “Multi-beam assisted MIMO:a novel approach to

fixed beamforming,” in Proceeding of Fut. Netw. and Mobile Summit (FUNEMS),

pp. 1–8, 2011.

[50] Y. Li, R. Louie, and B. Vucetic, “Relay selection with network coding in two-way

relay channels,” IEEE Trans. Veh. Technol., vol. 59, no. 9, pp. 4489–4499, Nov.

2010.

Dong Fang, Ph.D. Thesis, University of York

152

2014



[51] I. Krikidis, “Relay selection for two-way relay channels with MABC DF: A diver-

sity perspective,” IEEE Trans. Veh. Technol., vol. 59, no. 9, pp. 4620–4628, Nov.

2010.

[52] A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, “A simple cooperative diversity

method based on network path selection,” IEEE J. Sel. Areas Commun., vol. 24,

no. 3, pp. 659–672, Mar., 2006.

[53] E. Beres and R. Adve, “Selection cooperation in multi-source cooperative net-

works,” IEEE Trans. Wireless Commun., vol. 7, no. 1, pp. 118–127, Jan., 2008.

[54] A. Goldsmith, Wireless Communications, Cambridge Univ. Press, NY, USA, 2005.

[55] Z. Faraji-Dana and P. Mitran, ”On non-binary constellations for channel-coded

physical-layer Network Coding,” IEEE Trans. Wireless Comms., vol. 12, pp. 312 -

319, Feb. 2003.

[56] S. Shukla and B. Sundar Rajan, “Wireless network-coded three-way relaying using

Latin Cubes”, in Proc. IEEE International Symp. on Pers.Indoor and Mobi. Radio

Comm. (PIMRC), Syndeny, Austrilia, Oct. 2012.

[57] S. Shukla, V. T. Muralidharan, and B. Sundar Rajan, “Wireless Network-Coded

Three-Way Relaying Using Latin Cubes”, available online at arXiv:1112.1584

[cs.IT], Dec. 2011

[58] C. Feng, D. Silva, and F. R. Kschischang, ”An Algebraic Approach to Physical-

Layer Network Coding,” in Proc. IEEE Int. Symp. Information Theory (ISIT), pp.

1017-1021, Austin, TX, June, 2010,

Dong Fang, Ph.D. Thesis, University of York

153

2014


