6,109 research outputs found

    Holistic Model of Website Design Elements that Influence Trustworthiness

    Get PDF
    Trustworthiness of a website relies foremost on a good first impression which includes the visitor’s perception of the user interface. The focus of this research is to investigate the effects of website design elements on user perception of trustworthiness of a site and provide a set of guidelines for website designers. The research design is based on Yosef Jabardeen’s (2009) “conceptual framework analysis”. In this research paper, a holistic model is developed to depict the relationships among website design elements and trustworthiness. The model was tested, validated and updated using the results of the repertory grid technique, a process that elicits perceptions about a topic from an individual. For this research, the topic was website trust, the objects were the website design elements, and the constructs were elicited perceptions regarding those website design elements. The repertory grid technique was applied in two stages to a set of participants made up of website users and website designers. Analysis yielded useful information regarding website design associations and correlations of perceptions. The research findings confirmed original suggestions regarding associations and produced an updated, validated model of website design elements. The research indicated that while all design elements had their importance regarding trust, those elements that provided for the function and security of the website rated the highest in importance and expectation. The validated model will aid website designers in understanding what elements are appealing to the visual senses and conjure credibility and trust. Most importantly, this new understanding may help designers to create websites that attract and retain new users and establishing a successful presence on the Internet

    Efficient and scalable IPv6 communication functions for wireless outdour lighting networks

    Get PDF
    Outdoor lighting today is becoming increasingly network-connected. The rapid development in wireless communication technologies makes this progress faster and competitive. Philips Research and Philips Lighting are part of the leading forces in exploration and development of a wide spectrum of low-maintenance, high-quality outdoor/indoor lighting systems that are state of the art. City Touch is a proprietary outdoor lighting connectivity system of Philips Lighting, which is based on a client-server architecture. In an outdoor lighting context, an embedded computer (Node) is installed on a light pole and is connected to different sensors to provide connectivity for the luminaires. Thus, connectivity of luminaires generally refers to the computer network of Nodes. In this report, I present a survey of mechanisms, protocols and technologies that are needed for bootstrapping of wireless Nodes to an IPv6 based personal area network (PAN). The survey indicates that there is no single off-the-shelf product or standard that meets all the requirements of Philips research for its future solution. Hence, I designed a thorough bootstrapping protocol that is custom tailored to Philips 's POLAR architecture. The design brings a solution from pre-deployment configuration to the point where a new Node successfully becomes a part of a wireless network. The design is partially demonstrated with two software implementations. Finally I provide recommendations for future work based on my research

    Spartan Daily, November 19, 1999

    Get PDF
    Volume 113, Issue 58https://scholarworks.sjsu.edu/spartandaily/9487/thumbnail.jp

    A Framework for Cyber Vulnerability Assessments of InfiniBand Networks

    Get PDF
    InfiniBand is a popular Input/Output interconnect technology used in High Performance Computing clusters. It is employed in over a quarter of the world’s 500 fastest computer systems. Although it was created to provide extremely low network latency with a high Quality of Service, the cybersecurity aspects of InfiniBand have yet to be thoroughly investigated. The InfiniBand Architecture was designed as a data center technology, logically separated from the Internet, so defensive mechanisms such as packet encryption were not implemented. Cyber communities do not appear to have taken an interest in InfiniBand, but that is likely to change as attackers branch out from traditional computing devices. This thesis considers the security implications of InfiniBand features and constructs a framework for conducting Cyber Vulnerability Assessments. Several attack primitives are tested and analyzed. Finally, new cyber tools and security devices for InfiniBand are proposed, and changes to existing products are recommended

    A Task-Centered Visualization Design Environment and a Method for Measuring the Complexity of Visualization Designs

    Get PDF
    Recent years have seen a growing interest in the emerging area of computer security visualization which is about developing visualization methods to help solve computer security problems. In this thesis, we will first present a method for measuring the complexity of information visualization designs. The complexity is measured in terms of visual integration, number of separable dimensions for each visual unit, the complexity of interpreting the visual attributes, number of visual units, and the efficiency of visual search. This method is designed to better assist fellow developers to quickly evaluate multiple design choices, potentially enables computer to automatically measure the complexity of visualization data. We will also analyze the design space of network security visualization. Our main contribution is a new taxonomy that consists of three dimensions – data, visualizations, and tasks. Each dimension is further divided into hierarchical layers, and for each layer we have identified key parameters for making major design choices. This new taxonomy provides a comprehensive framework that can guide network security visualization developers to systematically explore the design space and make informed design decisions. It can also help developers or users systematically evaluate existing network security visualization techniques and systems. Finally it helps developers identify gaps in the design space and create new techniques. Taxonomy showed that most of the existing computer security visualization programs are data centered. However, some studies have shown that task centered visualization is perhaps more effective. To test this hypothesis, we propose a task centered visualization design framework, in which tasks are explicitly identified and organized and visualizations are constructed for specific tasks and their related data parameters. The center piece of this framework is a task tree which dynamically links the raw data with automatically generated visualization. The task tree serves as a high level interaction technique that allows users to conduct problem solving naturally at the task level, while still giving end users flexible control over the visualization construction. This work is currently being extended by building a prototype visualization system based on a Task-centered Visualization Design Architecture

    Seven Key Principles of Program and Project Success: A Best Practices Survey

    Get PDF
    The National Aeronautics and Space Administration (NASA) Organization Design Team (ODT), consisting of 20 seasoned program and project managers and systems engineers from a broad spectrum of the aerospace industry, academia, and government, was formed to support the Next Generation Launch Technology (NGLT) Program and the Constellation Systems Program. The purpose of the ODT was to investigate organizational factors that can lead to success or failure of complex government programs, and to identify tools and methods for the design, modeling, and analysis of new and more-efficient program and project organizations. The ODT conducted a series of workshops featuring invited lectures from seasoned program and project managers representing 25 significant technical programs spanning 50 years of experience. The result was the identification of seven key principles of program success that can be used to help design and operate future program organizations. This paper presents the success principles and examples of best practices that can significantly improve the design of program, project, and performing technical line organizations, the assessment of workforce needs and organization performance, and the execution of programs and projects

    Proceedings of the Seventh International Space University Alumni Conference

    Get PDF
    The Seventh Alumni Conference of the International Space University, coordinated by the ISU U.S. Alumni Organization (IUSAO), was held at Cleveland State University in Cleveland, Ohio on Friday, July 24, 1998. These proceedings are a record of the presentations. The following topics are included: Remote sensing education in developing countries; Integrated global observing strategy; NASA's current earth science program; Europe's lunar initiative; Lunarsat: Searching for the South Polar cold traps; Asteroid hazards; ESA exobiological activities; Space testbed for photovoltaics; Teledesic Space infrastructure; Space instrument's concurrent design; NASA advanced fuel program; Mission preparation and training for the European Robotic Arm (ERA); and Global access to remote sensing systems

    OpenPolarServer (OPS) - An Open Source Spatial Data Infrastructure for the Cryosphere Community

    Get PDF
    The Center for Remote Sensing of Ice Sheets (CReSIS) at The University of Kansas has collected approximately 700 TB of radar depth sounding data over the Arctic and Antarctic ice sheets since 1993 in an effort to map the thickness of the ice sheets and ultimately understand the impacts of climate change and sea level rise. In addition to data collection, the storage, management, and public distribution of the dataset are also one of the primary roles of CReSIS. The OpenPolarServer (OPS) project developed a free and open source spatial data infrastructure (SDI) to store, manage, analyze, and distribute the data collected by CReSIS in an effort to replace its current data storage and distribution approach. The OPS SDI includes a spatial database management system (DBMS), map and web server, JavaScript geoportal, and application programming interface (API) for the inclusion of data created by the cryosphere community. Open source software including GeoServer, PostgreSQL, PostGIS, OpenLayers, ExtJS, GeoEXT and others are used to build a system that modernizes the CReSIS SDI for the entire cryosphere community and creates a flexible platform for future development

    Management, Optimization and Evolution of the LHCb Online Network

    Get PDF
    The LHCb experiment is one of the four large particle detectors running at the Large Hadron Collider (LHC) at CERN. It is a forward single-arm spectrometer dedicated to test the Standard Model through precision measurements of Charge-Parity (CP) violation and rare decays in the b quark sector. The LHCb experiment will operate at a luminosity of 2x10^32cm-2s-1, the proton-proton bunch crossings rate will be approximately 10 MHz. To select the interesting events, a two-level trigger scheme is applied: the rst level trigger (L0) and the high level trigger (HLT). The L0 trigger is implemented in custom hardware, while HLT is implemented in software runs on the CPUs of the Event Filter Farm (EFF). The L0 trigger rate is dened at about 1 MHz, and the event size for each event is about 35 kByte. It is a serious challenge to handle the resulting data rate (35 GByte/s). The Online system is a key part of the LHCb experiment, providing all the IT services. It consists of three major components: the Data Acquisition (DAQ) system, the Timing and Fast Control (TFC) system and the Experiment Control System (ECS). To provide the services, two large dedicated networks based on Gigabit Ethernet are deployed: one for DAQ and another one for ECS, which are referred to Online network in general. A large network needs sophisticated monitoring for its successful operation. Commercial network management systems are quite expensive and dicult to integrate into the LHCb ECS. A custom network monitoring system has been implemented based on a Supervisory Control And Data Acquisition (SCADA) system called PVSS which is used by LHCb ECS. It is a homogeneous part of the LHCb ECS. In this thesis, it is demonstrated how a large scale network can be monitored and managed using tools originally made for industrial supervisory control. The thesis is organized as the follows: Chapter 1 gives a brief introduction to LHC and the B physics on LHC, then describes all sub-detectors and the trigger and DAQ system of LHCb from structure to performance. Chapter 2 first introduces the LHCb Online system and the dataflow, then focuses on the Online network design and its optimization. In Chapter 3, the SCADA system PVSS is introduced briefly, then the architecture and implementation of the network monitoring system are described in detail, including the front-end processes, the data communication and the supervisory layer. Chapter 4 first discusses the packet sampling theory and one of the packet sampling mechanisms: sFlow, then demonstrates the applications of sFlow for the network trouble-shooting, the traffic monitoring and the anomaly detection. In Chapter 5, the upgrade of LHC and LHCb is introduced, the possible architecture of DAQ is discussed, and two candidate internetworking technologies (high speed Ethernet and InfniBand) are compared in different aspects for DAQ. Three schemes based on 10 Gigabit Ethernet are presented and studied. Chapter 6 is a general summary of the thesis

    A study on the e-navigation modus operandi

    Get PDF
    • …
    corecore