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A TASK-CENTERED VISUALIZATION DESIGN ENVIRONMENT AND A METHOD FOR 

MEASURING THE COMPLEXITY OF VISUALIZATION DESIGNS 

 

by 

 

XIAOYUAN SUO 

 

 

Under the Direction of Ying Zhu 

 

ABSTRACT 

Recent years have seen a growing interest in the emerging area of computer security 

visualization which is about developing visualization methods to help solve computer security 

problems. In this thesis, we will first present a method for measuring the complexity of 

information visualization designs. The complexity is measured in terms of visual integration, 

number of separable dimensions for each visual unit, the complexity of interpreting the visual 

attributes, number of visual units, and the efficiency of visual search. This method is designed to 

better assist fellow developers to quickly evaluate multiple design choices, potentially enables 

computer to automatically measure the complexity of visualization data.  

 

We will also analyze the design space of network security visualization. Our main contribution is 

a new taxonomy that consists of three dimensions – data, visualizations, and tasks. Each 

dimension is further divided into hierarchical layers, and for each layer we have identified key 



 

parameters for making major design choices. This new taxonomy provides a comprehensive 

framework that can guide network security visualization developers to systematically explore the 

design space and make informed design decisions. It can also help developers or users 

systematically evaluate existing network security visualization techniques and systems. Finally it 

helps developers identify gaps in the design space and create new techniques. 

 

Taxonomy showed that most of the existing computer security visualization programs are data 

centered. However, some studies have shown that task centered visualization is perhaps more 

effective. To test this hypothesis, we propose a task centered visualization design framework, in 

which tasks are explicitly identified and organized and visualizations are constructed for specific 

tasks and their related data parameters. The center piece of this framework is a task tree which 

dynamically links the raw data with automatically generated visualization. The task tree serves 

as a high level interaction technique that allows users to conduct problem solving naturally at the 

task level, while still giving end users flexible control over the visualization construction. This 

work is currently being extended by building a prototype visualization system based on a Task-

centered Visualization Design Architecture. 

 
INDEX WORDS: Information visualization, Complexity, Evaluation  
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1. Introduction 

This thesis consists of three parts: complexity analysis of the security visualization designs, 

survey of the current security visualization systems and a description of the system that has been 

developed. 

 

1.1 Complexity Analysis 

Today information overload is a major challenge in many areas. For example, computer security 

professionals need to process data from a myriad of sources, including network devices, 

firewalls, intrusion detection programs, vulnerability scanners, and operating systems. This 

overabundance of information incurs heavy cognitive load on the users. Data visualization has 

the great potential to alleviate the heavy cognitive load associated with processing this 

overabundance of information. However, poorly designed visualizations can be 

counterproductive or even misleading. Therefore, visualizations must be carefully designed and 

evaluated.  

 

The evaluations of visualization generally involve user studies. Common measures of 

visualization include task completion time, error rate, or subjective satisfaction. However, these 

are largely black-box approaches and the results often do not explain whether or why certain 

features of visualizations cause the performance or usability problems. Besides, user studies are 

often difficult to manage and can only be conducted after a program has been developed. 

 

In this thesis, we developed an alternative evaluation method – complexity analysis, which 

systematically evaluates a set of factors that influence the efficient processing of visual 



 

 2

information. The proposed method is grounded in well established psychological theories [1-5] 

and the outcome of this analysis serves as an indicator of the cognitive load associated with 

comprehending a visualization design. To my knowledge, this research is the first attempt to 

systematically evaluate the complexity of information visualization.  

 

The complexity analysis is particularly useful during the visualization design stage before any 

user study can take place. It allows designers to quickly evaluate multiple visualization designs 

in terms of their complexity. The results of the complexity analysis not only provide guidance to 

the design but also help generate hypotheses for user studies to verify. It helps to reduce the cost 

and improve the quality of visualization design. It also helps to reduce the cost and improve the 

quality of visualization design. This rather focused method could be combined with other 

heuristic evaluation methods, especially the user studies. 

 

The evaluation method can be applied on the existing security visualization systems. Results 

obtained from the evaluation can be formulated and categorized based on their score or purposes; 

we therefore build a matrix for the results. The matrix can then be applied as guidance for future 

designs of the same purposes.   

 

1.2 Task Centered Framework for Computer Security Data Visualization 

A fundamental question for visualization design is what makes visualizations effective? There 

have been different answers to this question. Some researchers take a more data-centric view and 

suggest that effectiveness depends on the accurate interpretation of presented data [6-8], or a 

matching between data structure and visual structure [9, 10]. However, a number of 
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psychological studies have also shown that the effectiveness of visualization is task specific [11, 

12].  

 
In this thesis, we propose a new task centered framework of visualization and apply it to 

computer security visualization. In our framework, a visualization system is optimized for 

specific tasks by mapping the task related parameters to the visual elements that have high 

accuracy, utility, and efficiency ratings.  

 
Before visualizations are created, users specify tasks and their associated parameters. This 

process is essentially a task complexity analysis. Knowing the data parameters associated with a 

task helps users consciously control the complexity of the tasks and correlate task complexity 

and visualization complexity. This new framework provides a different way for users to interact 

with data set and potentially will provide new insights into how visualization can be better 

constructed to serve users' specific tasks. 

 

1.3 Design Space of Current Security Visualization  

Recent years have seen a growing interest in the emerging area of computer security 

visualization, which is about developing visualization methods to address computer security 

problems. In contrary, there has been little research in systematic analysis of the design space of 

computer security visualization; regardless of its many obvious benefits. In this paper, we 

analyze the design space of network security visualization by developing a new taxonomy. 

Within this taxonomy framework, we identify key parameters and classes that define the 

structure of this design space. Using taxonomy to define a design space is a common method that 

has been used in the area of computer security [13, 14], information visualization [15-17], and 

computer-human interaction [15, 18].  
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Our in-detailed analysis intends to provide the fellow developers with a better understanding of 

the structure of the design space. This would help network security visualization developers 

understand the tasks at a more detailed level and understand how various visualization 

techniques address the tasks. First the analysis can help to explore the design space and make 

informed design decisions.  Second, it helps developers or users systematically evaluate existing 

techniques and systems. Third, it helps developers identify gaps in the design space and create 

new techniques.  

 

Our main contribution is a taxonomy that consists of three dimensions – data, visualizations, and 

tasks. Each dimension is further divided into hierarchical layers, and for each layer we have 

identified key parameters for making major design choices, (figure 1). 

raw data

Design Space

data visualization task

view

work space

trasformed
data

data
transformation

visual
structure

visual units
and visual
variables

high level
tasks

low level
tasks

 

Figure 1: Three major dimensions that determine the design space of network security; and their 

sub-hierarchical layers. 
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We define the design space of network security visualization in three dimensions: data, 

visualization, and task. The data dimension consists of two layers: raw data and transformed 

data. The visualization dimension is divided into five layers: workspace, view, visual structure, 

and visual unit and visual variable. The task dimension consists of two layers: high level task and 

low level task, (figure 1). 

 

In the next section, we will discuss each dimension of the design space in sequence. We will 

explain the relationship between different layers, identify key parameters, and list categories of 

possible design choices for each parameter.  

 

Since design choices made in one dimension often affect the design choices in other dimensions, 

we will also discuss the relationship of a parameter or category with parameters or categories in 

other dimensions.  
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2 Background and Related Works 

2.1 Complexity Analysis and Heuristic Evaluations 

Heuristic evaluation is a discount usability engineering method for quick, cheap, and easy 

evaluation of a user interface design. Heuristic evaluation is a well known discount evaluation 

technique in human-computer interaction (HCI) but has not been utilized in information 

visualization (InfoVis) to the same extent [19]. 

   

 

Figure 2: Heuristic evaluation tree [19]. 
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The heuristic tree is shown above in figure 24; the three layers of the tree represent an 

organization intended to help evaluators. The authors of the work [19] also used existing 

evaluation methods and divided them into three different sets; the sets are shown in the table 

below. 

 

Table 1: Heuristics applied in evaluation. 

set Heuristics 

Zuk and Carpendale’s 
Selection of perceptual and cognitive 
heuristics [20] 

Ensure visual variable has sufficient length [20-22] 
Selection of perceptual and Don’t expect a reading 
order from color [20-22] 
cognitive heuristics [20]  
Color perception varies with size of colored item 
[20-22] 
Local contrast affects color & gray perception [20, 
22] 
Consider people with color blindness [20, 22, 23] 
Pre attentive benefits increase with field of view 
[20-22, 24] 
Quantitative assessment requires position or size 
variation [20, 21] 
Preserve data to graphic dimensionality [20, 21, 25] 
Put the most data in the least space [20, 25] 
Remove the extraneous (ink) [20, 25] 
Consider Gestalt Laws [20, 22] 
Provide multiple levels of detail [20, 22, 25] 
Integrate text wherever relevant [20, 22, 25] 
Overview first [26] 
 

Shneiderman’s Overview first  
“Visual Information-Seeking 
Mantra”[26] 
 

Zoom and filter [26] 
Details on demand [26] 
Relate [26] 
Extract [26] 
History [26] 

Amar and Stasko’s Expose uncertainty 
[27] 
Knowledge and task-based framework 
[27] 
 

Expose uncertainty [27] 
Concretize relationships [27] 
Determination of Domain Parameters [27] 
Multivariate Explanation [27] 
Formulate cause & effect [27] 
Confirm Hypotheses [27] 
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The approach proposed in the paper [19] provided useful results and revealed some 

characteristics, such as redundancy and conflict that may be generally useful when comparing 

different heuristics. The work used three sets of previously published heuristics (listed in the 

table above) to access a visual decision support system that is used to examine simulation data. 

The meta-analysis shows that the evaluation process and results have a high dependency on the 

heuristics and the types of evaluators chosen. 

 

Shneiderman et, Al. [28] proposed a method called multi-dimensional in-depth long-term case 

studies. The steps discussed include: Specify research goals; Identify 3-5 users; document the 

current methods or tools being advanced by the new tool; determine user’s expertise; establish 

observation schedule, instrument the tool to record usage data; make recording user comments 

available; provide training; conduct interviews; encourage users to continue use the best possible 

tool; modify tool as needed; document success and failures.  

 

The work [28] inspired us on our future work. Our work differs from the traditional visualization 

work by providing the user with a visualization building tool rather than one or two pre-

fabricated visualization, therefore user studies should be case dependent. In addition to the 

general steps as Shneiderman et, al. [28] has proposed, we feel the selection of evaluators should 

also be a critical step, since each evaluator may have specific need and experience on certain 

type of visualization.  
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When formal laboratory user studies cannot accommodate exploratory phase of research, expert 

reviews could be one of the possible alternatives. Tory et, al. [29] suggested that selection of 

experts is critical. The author suggested that chosen experts should have the quality of strong 

communication skills; experience conducting usability inspections; and experience with data 

display (not just usability). With several case studies, the author recommended: 1. including 

experts with experience in data display as well as usability, and 2. developing heuristics based on 

visualization guidelines as well as usability guidelines. The author also concluded that expert 

reviews should not be used exclusively, since experts might not fully predict end-user actions. 

 

There are other types of evaluation metrics. The work by Brath [30] proposed one type of 

information visualization metrics, which intend to help designers create and evaluate 3D 

information visualizations. Some of the criteria included are:  

 

1. Number of data points and data density.  Key factors are data density and bounds (lower 

bounds and upper bounds). Data density is defined as the number of data points / number of 

pixels in the display. The author also proposed that visualizations with less than 500 data points 

are questionable visualizations. However, the lower bound depends on the use and interaction 

with the application.  

 

2. Number of dimensions and cognitive overhead. Number of dimensions directly affects the 

complexity of the visualization. The author also mentioned maximum of the number of 

dimensions for each separable task representation; it depend on the definition of task.  
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Figure 3: Number of dimensions representation.  

 

The figure on the left hand side has a very specific but easy to understand mapping of data 

attributes to different visual objects.  The figure on the right hand side is general but difficult to 

understand mapping of data to 5 different properties of a cube. [30] 

 

3. Occlusion percentage. Occlusion percentage is defined as number of data points completely 

obscured / number of data points.  

 

 

Figure 4: Occlusion percentage.  
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Figure(4) left has a lot of partial occlusion, but sufficient redundancy in the representation for 

comprehension. The figure on the right has increasing partial occlusion obscures the 

relationships [30] 

 

4. Reference context and percentage of identifiable points. The two figures below showed the 

difference in using proper references in the graphs.  

 

 

Figure 5: Reference context.  

 

 

Figure 6: Reference context. (Scatter plot). 

 

In the figure above, scatter points are difficult to locate. Drawing lines from scatter point to plane 

locates the points. [30] Each of the separable dimensions will be given a score based on 4 
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different categories: n-to-1 mapping, 1-to-1 general mapping, 1-to-1 intuitive mapping and 

preexisting understood representations. A sample table of measures as applied to sample 

visualizations is shown in the figure 7 below.  

 

In the figure above, the scatter points on the left figure are difficult to locate in 3D space − the 

depth is not known. The figure on the right hand side has drawing lines from scatter point to 

scatter point as a set of series helps to visually locate the points and establish the field. [30] 

 

 

Figure 7: Table of measures as applied to sample visualizations [30]. 

 

Several visualization researchers have touched on the issues of complexity in visual display, but 

none of them have considered it in a systematic way. Bertin [21] and Trafton, et al. [3] have used 

number of dimensions as a measure for the complexity of visual displays, and considered 

visualizations with more than three variables to be complex. Brath [30] has proposed a heuristic 

method to measure the effectiveness of the mapping from the data dimension to the visual 

dimension by classifying the visual mappings into one of the four categories. My evaluation 

method is more comprehensive than the previous methods and considers many factors that are 

not considered by previous research.  



 

 13

 

The proposed complexity analysis is a type of heuristic evaluation methods of information 

visualization [31-34]. Existing heuristic evaluation methods are largely based on heuristic rules 

or guidelines that come from intuition. But as Scaife and Rogers [35] point out, the effectiveness 

of visualization cannot be evaluated by intuition, but rather through a set of interdependent 

factors. The proposed complexity analysis is an attempt to address this issue – it systematically 

evaluates a set of factors that influence the efficiency of visualization comprehension. More 

importantly, my evaluation process is grounded in well established psychological theories. 

  

2.2 Cognitive Fit Theory  

Cognitive fit theory was developed by Iris Vessey [36].Cognitive fit is an investigation of the fit 

of technology to task, the user’s view of the fit between technology and task, and the relative 

importance of each to problem-solving or decision-making performance [36].  

 

With a set of 128 MBA students in two identical, repeated measures designs, the authors 

produced the results:  

• Performance improved markedly for symbolic tasks when the problem representation 

matched the task 

• Performance effects also resulted from matching specific problem-solving skills to the 

problem representation and the task, and to a lesser extent when the skills matched the 

task alone.  
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• The incremental effects of matching skills to the problem representation and/or the task 

were small compared with the primary effects of cognitive fit-that of matching problem 

representation to task. 

• A large proportion of problem solvers have insight into the concept of supporting tasks 

with certain types of problem representation and vice versa 

• Participants preferred to use tables rather than graphs; they also preferred to solve 

symbolic rather than spatial problems.  

• Finally, the problem representation more significantly influenced the mental 

representation than did task conceptualization. [36] 

 

 

Figure 8: Cognitive fit in problem solving [37]. 

 

Cognitive Fit Theory states that task performance improves when the problem representation 

match the cognitive characteristic of the task. In this thesis, we described a framework that 
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supports visual problem solving based on this theory. The framework consists of two major 

components: a task window and a data window. 

 

 

Figure 9: Extended cognitive fit model [37]. 

 

Figure 10: General model of interacting tasks in software maintenance  [37]. 
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In the task window, users’ problem solving process and strategies are expressed in the form of a 

dynamic and interactive task tree, which contains a hierarchical set of tasks and sub-tasks. The 

data window contains multiple frames that are organized as a tree map. The tree map structure is 

synchronized with the task tree so that each task node on the task tree is dynamically linked to a 

data frame. In each data frame, data is presented in either visual or non-visual format based on 

the cognitive characteristic of the corresponding task. As users explore various problem solving 

strategies by editing the task tree, the tree map in the data window is automatically updated for 

the best “cognitive fit”. This problem solving framework is particularly useful for complex 

problem solving with large amount of data. We present a computer security data visualization 

tool as an example of the proposed framework. 

 

2.3 Task-Centered Visualization Designs 

Many visualization designs have been proposed for computer security analysis. Noted examples 

include TNV [38], IDS RainStorm [39], PortVis [40], etc. Most of these designs, however, are 

prefabricated visualizations that cannot be easily reconfigured by users for different tasks. An 

implicit assumption is that users can use interaction techniques to customize data visualization 

for different tasks. While interaction is essential for making visualization usable, two important 

issues need to be addressed.  First, for most existing visualization systems it is often not clear 

what specific tasks they are designed for. As a result, users may use the visualization for 

unintended tasks. Second, most existing visualization systems provide only low level interaction 

techniques, such as zooming, panning, that are restrained by the predefined visualization 

structure. They may be suitable for problem solving process with relatively stable procedure and 
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task structure. However, many complex problem solving process are not so well defined. In 

many cases, problem solving is a process of searching in the solution space. This means that 

users may constantly testing different hypotheses and apply different strategies. The task 

structure may keep changing during the problem solving process. A new set of higher level 

interaction techniques are needed to support this dynamic problem solving method. 

 

In the 8 vertical axes are shown that represent the 2.5 Class B IP addresses. The thicker 

horizontal lines between these axes show Class B’s starting position. The other horizontal lines 

show the start and end of each department. Those addresses not in a department are either 

unallocated or reserved for special use by OIT and other departments. This screenshot shows an 

entire day’s worth of real alarms generated. [39] 

 

 Note that all of the available visualization tools are present simultaneously, so it is easy to 

correlate data and mentally shift between visualizations. Visualization generally begins at the 

timeline (1), followed by the hour (main) visualization (2). The main visualization contains a 

circle, which helps users locate the magnification square in its center. Magnifications from the 

square within the main visualization are shown in (3); a port may be selected from (3) to get the 

port activity display in (4). Several parameters (5) control the appearance of the main display and 

port displays. The panel of options in (6) permits the selection of a data source to display, and 

offers a color-picker for selecting new colors for gradients. [40] 

 

A detailed view and analysis of IDS Rain Storm is displayed in the figure below, this is a screen 

shot from the original system.  
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Figure 11: IDS RainStorm main view. 

Some visualization systems, such as RUMINT [41], do provide a more configurable interface 

that allow users to assign parameters to different coordinate axes, or choose different types of 

diagrams. Outside the field of computer security visualization, Tableau Software is noted for its 
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highly flexible and configurable interface that allows users to quickly construct different data 

visualizations. Another example is Many-Eyes [42], a web site that allows different users to 

construct different visualizations of the same data set.  

 

Figure 12: PortVis.  
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Although these are powerful user interface techniques, users are still operating at the 

visualization level. But most end users would prefer to operate at a higher level of thinking – ask 

questions, test hypotheses, etc. For end users, constructing and configuring visualization is a 

secondary activity to their primary tasks. Again, we need a higher level interaction technique to 

help end users operate at the level of tasks. 

 

The research presented in this thesis is an attempt to address this issue. The central component of 

the proposed visualization framework is a task tree that is dynamically linked to data 

visualizations and data tables. 

 

 
Figure 13: Rumint [43]. 

 

Users operate by constructing and maintaining a task tree. A frame of data visualization is 

created automatically (or semi-automatically) for each task on the task tree, with the support of a 

visualization engine.  

 

2.4 Automated Visualization Designs 

Automated layout of presentation is becoming increasingly important when it comes to usability 

and the vast amount of data being presented. Effective layout is one of the most important 

aspects of creating an information presentation. Majority of layouts today are done “by hand” 

[44]; it is typically done by a “human designer” or “layout expert”; such process can be very 
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expensive and time-costly.  Automated layout designs, in the recent years, have been seen in 

almost all contemporary user interface designs. Not only does it ease the programmers and 

layout designers’ work, it also gives the end user more flexibility to deal with their specific tasks.  

 

In the early 1990’s, COMET [45] was developed at the Columbia University; it is being used in 

the field of maintenance and repair domain for a military radio receiver-transmitter. COMET 

generates multimedia explanations that instruct the user in how to carry out diagnostic tests. User 

may interact with COMET by choosing from a simple menu, or during the symptom diagnosis, 

the user can request an explanation for any diagnostic procedure the system specifies must be 

carried out. Even though COMET targets only in a small application domain, but the research 

prototype provided us with immersive insights for the knowledge-based user interfaces designs.  

 

 

Figure 14: A linear model for generating presentations.  

 

Another very early work by Mackinlay et, al. [6] can date back to the 1980’s. The work 

developed an application-independent presentation that automatically designs effective graphical 

presentations (such as bar charts, scatter plots, and connected graphs) of relational information. 

Artificial intelligence techniques are used to implement a prototype presentation tool called APT 

(A Presentation Tool), which is based on the composition algebra and the graphic design criteria 

[6]. Artificial intelligence remains to be the similarity among all early works of automated 
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visualization; it is mainly being used for choosing an appropriate graphical presentation of 

relational data. Graphic design issues are an important concern of user interface design. The 

work discussed a few important issues at the end, including user interface management; adapting 

dialogue specifications appropriate to the observed skill level of users.  

 

This simplified model, which does not include feedback loops that are required for difficult 

design problems, describes the fundamental process of generating a graphical presentation. A 

graphical design synthesized by a presentation tool describes the basic structure and meaning of 

a graphical presentation. The rendering process fills in the details that are required to form the 

final image. [6] 

 

Autovisual, designed by Beshers et, al. [46] is a rule-based system that designed to implement 

the n-Vision’s virtual worlds. The user specifies the visualization task, rather than a particular 

visualization; and then Autovisual generates an interactive virtual world appropriate for the task. 

Autovisual is an early prototype. Among the issues it does not yet address if certain aspects of 

the relation are being visualized. Autovisual also does not respond to changes in visualization 

tasks by reusing or modifying an existing visualization, rather than creating a new one.  

 

The user studies and analysis by Komlodi et, al. [47] leads the later design of TNV (recall from 

the previous section) [38]. This work gathered feedbacks from ID analysts’ daily activities in 

order to understand their routine work practices and the need for designing information 

visualization tools.  A three-phase process model that frames corresponding requirements for 

information visualization tools was also developed. The three phases are: monitoring, analysis 
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and diagnosis, and response. Current security visualization lacks the second and third phase; 

most of the designers either focused on graphical designs. Intelligent response systems and 

intelligent visualization systems are crucial.  

 

 

Figure 15: Visualizations user created from the Many-Eyes website. [48]. 

 

Another work by the research group from IBM at the TJ Watson Research Center [49] addressed 

the automatic designs of visualization system.  Many-Eyes [50] is a website that provides 

collaborative visualization services, allowing users to upload data sets, visualize them, and 

comment on each other’s visualizations. The goal of this site is to support collaboration around 

visualizations at a large scale by fostering a social style of data analysis in which visualizations 

not only serve as a discovery tool for individuals but also as a medium to spur discussion among 
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users. To support this goal, the site includes novel mechanisms for end-user creation of 

visualizations and asynchronous collaboration around those visualizations. 

 

 

Figure 16: A visualization on Many-Eyes [50]. 

 

Figure 15 showed several visualizations users created by matching their own data to the 

website’s design components [48]. This site is designed for all purpose visualization 

constructions.  
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Figure 17: Users may browse visualization thumbnails [50]. 

 

Our work is similar to IBM Many-Eyes [50], but focuses on task-centered visualization designs. 

Instead of building one visualization interface only, our system allows users to solve problems 

by building visualization systems based on their specific tasks. The tasks are higher level 

problem solving tasks; the possible tasks may include: problem detection; problem identifying; 

problem diagnose and problem response. Traditional visualization systems focus on more on 

problem detection; it is not enough in order to solve a problem. Our system is a not only a 

visualization building tool; it’s also a problem solving device. 

 



 

 26

BOZ [51] is an automated graphic design and presentation tool that designs graphics based on an 

analysis of the task for which a graphic is intended to support. A key feature of BOZ’S approach 

is that it is able to design different presentations of the same information customized to the 

requirements of different tasks, BOZ is used to design graphic presentation of airline schedule 

information to support five different airline reservation tasks. Reaction time studies done with 

real users for one task and graphic showed that the BOZ-designed graphic significantly reduces 

users’ performance time to the task. 

 
Polaris [52], a work by the research group at Stanford University, is an interface for exploring 

large multidimensional databases that extends the well-known Pivot Table interface. The novel 

features of Polaris include an interface for constructing visual specifications of table-based 

graphical displays and the ability to generate a precise set of relational queries from the visual 

specifications. Several issues were addressed, including analysis. The author mentioned several 

potential improvements, such as display of data hierarchical structure, and generate database 

table from a selected set of graphical marks.  

 

The proposed complexity analysis is based on a number of psychological theories [1-5], 

including Guided Visual Search theory [5], Gestalt theory [4], Cognitive Load Theory [1]. 

According to the Cognitive Load Theory, there are three types of cognitive load: intrinsic 

cognitive load, extraneous cognitive load, and germane cognitive load. The mental effort to 

comprehend data visualization is part of the extraneous cognitive load, which is a major factor 

that influences the task performance. The proposed visualization complexity analysis is an 

attempt to measure the extraneous cognitive load of visualization comprehension.  
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3 An Analysis of the Existing Security Visualization Systems 

We define the design space of network security visualization in three dimensions: data, 

visualization, and task. The data dimension consists of two layers: raw data and transformed 

data. The visualization dimension is divided into five layers: workspace, view, visual structure, 

and visual unit and visual variable. The task dimension consists of two layers: high level task and 

low level task, (figure 1). 

 

In the next three sections, we will discuss each dimension of the design space in sequence. We 

will explain the relationship between different layers, identify key parameters, and list categories 

of possible design choices for each parameter.  

 

Since design choices made in one dimension often affect the design choices in other dimensions, 

we will also discuss the relationship of a parameter or category with parameters or categories in 

other dimensions.  

 

3.1 Visualization Classifications 

3.1.1 Data  

The data dimension is divided into raw data and transformed data layers. Raw data becomes 

transformed data through data transformation operations.  

 

Raw Data: in network security visualization, raw data is the network traffic data. Although a 

wide variety of network data are presented in network security visualization systems, the 
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majority of them focus on the raw network traffic data at the transportation layer and network 

layer. From my survey of the network security visualization literature, we have identified the 

most commonly visualized raw data as follows. 

• Source and destination IP addresses 

• Source and destination port numbers 

• Time and date 

• Protocols (e.g. TCP or UDP) 

 

Some applications also make use of application layer data such as user information and 

application type.  

 

Transformed Data: When raw data is processed to fit into the proper visualization media; this 

process is defined as data transformation. More specifically, most network security visualization 

programs obtain their data from various log files such as IDS logs, net flows, syslog, firewall 

logs, etc. The designated data for the specific visualization purposes maybe extracted or 

normalized from the raw network traffic data.  

  

Presumably, there are many data transformation methodology; the most common ones are listed 

as follows: 

• Classifying 

• Counting and aggregation 

• Filtering 
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• Sorting 

• Clustering 

 

Classifying. Network traffic can be classified in different ways. For example, it can be classified 

by the application types [53], such as WWW, mail, or multimedia, and some systems visualize 

such data. Intrusion detection systems (IDS) try to classify network traffic into normal and 

malicious categories [39].  

 

Counting and aggregation can help to reduce the size of the data and therefore allow 

visualization systems to display the data at multiple levels of detail [54]. In addition, certain user 

groups may not want their network traffic details to be exposed, and therefore the aggregated 

data is the only thing that is allowed to be visualized.  

 

Filtering can help reduce the data size and dimensions, eliminate noises and duplications, and 

help users focus on the important data. Most network log files are filtered by their application 

programs. However often in times, data filtering can be done interactively by users as well [55-

57]. 

 

Sorting is a very common type of data transformation. For example, users may want to sort 

network data by time or by source IP. Sorting is particularly useful in table based visualizations.   

 

Clustering is often used as part of a data mining process. Again, the clustering can be done 

automatically by programs or semi-automatically with user intervention. 
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Relationship with the visualization dimension: Both raw network traffic data (e.g. IP address, 

port number) and transformed data (e.g. IDS classifications) may be presented in the same 

visualization.  

 

The selection of visualization techniques are largely influenced by the type and number of 

dimensions of the data. For example, some visualization techniques, such as parallel coordinates, 

are particularly useful for visualizing multi-dimensional data. The volume of data is also an 

important factor in making visualization design decisions. Another important design decision is 

how to map different data attributes to different visual structures, visual units, and visual 

variables.  

 

Relationship with the task dimension: Data transformation is closely related to tasks.  When data 

transformation is integrated with the visualization system, data transformation operations 

become tasks. That is, interactive data transformations become user tasks, while non-interactive 

data transformations become developer/program tasks. 

 

Table 2 classifies data being used for some major existing security visualization systems. The 

raw data, data transformation, transformed data are all listed in table 1 below. Some of the 

published work did not discuss data transformation method in detail, we leave those blank.  

 

The detailed classification of the existing systems is shown in table below. 
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3.1.2.1 High Level Tasks  

Based on my definition, high level tasks can be further divided into several categories: problem 

detection, problem identification, diagnosis, problem projection, and problem response.  

 

With only a few exceptions [58, 59], the current research on network security visualization has 

been focusing on low level tasks. The only high level task that has been effectively addressed so 

far is problem detection – that is, to detect malicious or anomalous behavior patterns through 

visualization. Current network security visualization systems support two types of problem 

detection: signature based and anomaly based detections. 

 

In signature based detection, users know the visual patterns (signature) of the malicious behavior 

and try to look for the patterns in the visualization. Such visual patterns are specific to 

visualization design (particularly visual structure, visual units and visual variables). As a result 

the visual signature of a malicious behavior (e.g. denial of service attack) is usually different 

from system to system. In anomaly based detection, users establish a visual profile of the normal 

behavior and use it to find anomalous visual patterns. As discussed in section 4.4, much of the 

visual problem detection is associated with the concept of Gestalt.  

 

In summary, we still do not have a good understanding of the high level tasks of network 

security professionals and how visualization techniques can assist in their work. Much research 

needs to be done in this area. 
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3.1.2.2 Low Level Tasks 

Low level tasks are mainly about information gathering and presentation. A key parameter for 

low level tasks is who initiates the task. The initiators can be users, developers, or program.   

 

It is important to differentiate the task initiators because it helps guide the design. The 

visualization of network security data is often the result of a combination of design choices made 

by developers, users, and programs.  In majority of the network security visualization systems, 

developers make most of the design choices. But in some information visualization systems [60-

62], users construct the visualization at run time. In systems that automatically generate 

visualizations, design choices are made by programs.  

 

Therefore, we can further classify low level tasks based on the dimensions and layers they are 

associated with. Table 2 contains such a classification. Note that the tasks listed in the table are 

example tasks and the list is not complete. More tasks can be added.  

Table 3: Low level task classification 

 Low level tasks 
Raw data Add, delete, or change data source 

Transforme
d data 

filter, aggregate, classify, sort, cluster 

Workspace Add, delete, arrange, or coordinate multiple  
views 

View Zoom, pan, overview, focus+context 
Visual 

structure 
Add, delete, or modify relations, define visual 

structure 
Visual unit Identify, locate, distinguish, categorize, 

cluster, rank, compare, associate, correlate, 
retrieve, find anomalies 

Visual 
variable 

Change visual mapping 
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Table 4: Task classification of the existing systems. 

 
task

User/tasks

TNV{Goodall, 2005} multiple levels of details, problem detection

NVisionIP{Bearavolu, 2005} multiple levels of details, problem detection

canine{Li, Luo, 2005} converts and anonymizes NetFlow logs, user interactive technique

ATN{Yao, Shin 2005} problem analysis

VisFlowClusterIP{Yin, 2005} high level(arranging relevant IP, anomaly based)

VisFlowConnectIP{Yin, 2005}
problem detection, investigate anomalous internal and external network 
traffic

IDGraphs{Ren, 2005} problem diagnosis, anomaly based, discover corelated attacks

visualizingNetwork {Abdullah, Conti, 2005} scalling technique to reduce occlusion of data. Problem detection

exploringThreeDimensional {Oline, Reiner, 2005} findinig false alarms, problem detection(finding malcious activities)

fusionSummarization of behavior {Erbacher, 2005} problem detection, problemanalysis

IDSRainstorm{Abdullah, Lee, 2005} problem detection
InteractiveDynamicVisualPortMonitoring { Erbacher 
2005}

problem detection, problem analysis

IPMatrix {koike, 2005} user visualization technique

methodNetwork problem detection, problem analysis

RootPolar{Fink, 2005} problem detection

userCenteredLook(Idtk){Komlodi,2005}
problem detection, problem diagnoise, problem analysis, user interactive 
technique

VisCapbilityofIDS{Erbacher, 2005} user interactive technique, problem detection

VisualCorrelationOfHost (portal) {Fink, 2005} problem detection, user interactive technique

VisualExploreMalicious {Conti, 2005} problem detection, user interactive technique, problem analysis

VisualParadigm {Livnat, 2005} problem detection, user interactive technique

portvis {McPherson, Ma, 2004} problem detection, detail analysis

Visual Analytics( from visData {Teoh, Kwanliu, 
cga04})

problem detection, problem analysis

BGPEye problem detection

VAST_Oberheide2006 user interactive technique, problem detection

ESVT_Li 2006
a modular, component-based topology editor,
a TCL script generator, a worm experiment designer, and a visualization tool 

Knave-II, Shabtai 2006 user interactive technique, problem detection

DNS_Ren_2006 problem detection/problem understanding/problem response

3DGrameEngine_Harrop user interactive tool. problem understanding/ problem response

Visual Motifs_Wright_2006 problem detection/ problem classification

Sybil Attacks_Wang_2006 problem detection

major techniques
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3.1.3 Visualization 

We divide the visualization dimension into five layers: workspace, view, visual structure, visual 

unit, and visual variables. Each layer is built on top of the preceding layer.  That is, each 

workspace consists of one or more views. Each view contains one or more visual structures. 

Each visual structure contains multiple visual units, which are defined by visual variables. 

Therefore each layer captures a different level of detail in the design space.  

 

The main benefit of this taxonomy is that it gives order and structure to visualization design 

process. Developers can use either a top down or bottom up approach to design their systems. 

For example, using a top down approach, a developer would first decide whether to use multiple 

views in the workspace, and then for each view, decide what visual structure should be adopted. 

The developer can then select the appropriate visual units and map data attributes to different 

visual variables.  

 

Relationship with the data dimension: all the design decisions in every layer need to be made 

with regards to the underlying data. The structure of the visualization should preserve the 

structure of the data. The relationship among visual units should reflect the relationship among 

data items. The most important data attributes should be mapped to visual variables that can be 

quickly perceived and easily interpreted.  

 

Next, we will discuss each layer in detail.   
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3.1.3.1 Workspace 

Visualization workspace is the top layer of the visualization dimension and contains two 

categories based on the number of views: single view and multiple views.  

 

Multiple views have many benefits. It provides flexibility [61], encourages users to look at data 

from different perspectives [63], and also helps visualize multi-dimensional data. The majority of 

the network security visualization systems have multiple views.  

 

Multiple view workspaces can be further classified based on two parameters: view coordination 

and data source.  

 

Multiple views may be coordinated or not coordinated. “Coordinated” means that the views are 

dynamically linked or synchronized – if one view is changed, the other views will be 

automatically updated. Based on Roberts [64], the key concepts of view coordination include the 

scope of the correlation, initiator, and what is correlated.  

 

Multiple views may share the same data source or use different data sources. In the former case, 

the same data is visualized in different ways. For example, one view may display the raw 

network traffic data, while the other view displays aggregated data generated from the same raw 

network traffic. Multiple views that share the same data source are usually coordinated.  

 

Relationship with the task dimension: the arrangement of multiple views is a low level task. Such 

arrangement can be determined by developers (a developer task), by the program (a program 
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task), or by users (a user task). A particularly interesting design is to allow users to snap-together 

multiple view and dynamically link them [61, 62].  

 

3.1.3.2 View 

A view can be a window or a frame within a window. It contains one or more visual structures. 

The key parameters for the view layers are contents and viewpoint.  

 

Contents can be dynamic or static. Dynamic contents means that the data visualized in the view 

may be changed during runtime.  The update of the view content is a low level task that can be 

performed automatically by program (e.g. network data or IDS data streaming) or manually by 

users (e.g. load a different IDS log file).  

 

Viewpoint can also be dynamic or static. Dynamic viewpoint means that the viewpoint can be 

manipulated, mostly by users, while static viewpoint means that viewpoint is fixed. Dynamic 

viewpoint is particularly useful when the entire data set is too big to be visualized in a view, 

which is a typical problem for network security visualization due to the enormous size of 

network data.  

 

Relationship with the task dimension: viewpoint manipulations are low level tasks. Typical 

examples include zoom, pan, and focus+context [15].  
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3.1.3.3 Visual Structure 

A visual structure is made up of one or more visual units. This layer determines how visual units 

are organized. A large number of information visualization techniques belong to this layer. 

Examples include bar chart, scatter plot, color map, parallel coordinates, tree and graph, etc. 

 

We identify three key parameters for the visual structure layer: coordinate systems, relationship 

among visual units, and space filling.  

 

In network security visualization, the most commonly used coordinate systems are Cartesian 

coordinate systems (both 2D and 3D), Polar coordinate systems [65, 66], and Parallel coordinate 

system [67]. The majority of the network security visualization systems use 2D coordinates, 

while a few systems use 3D coordinates.  

 

There are three types of relationship among visual units: no connection, hierarchical connection, 

and non-hierarchical connection. Hierarchical connections are used to represent tree data 

structures (such as attack tree), while non-hierarchical connections are used to represent general 

graph data structures (such as computer networks) [68]. 

 

The visual units may be space filling or non-space filling. Space filling means that the entire 

visual structure is occupied by visual units. Non-space filling means that there may be gaps 

between visual units. Space filling techniques generally make better use of the display space, but 

they may suffer from information overloading. Note that table based visualizations are 

considered as space filling techniques when we treat each table cell as a visual unit.  
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A visual structure may encircle other visual structures [38]. For example, a table may contain 

scatter plots or bar charts in its cells. A bar chart may be placed on top of a geographical map.  

 

Relationship with the data dimension: the selection of visual structures is largely determined by 

the nature, the number of dimensions, and the size of the data set. For example, if there are 

relationships among data elements, then connections need to be established among visual units. 

Node-link diagram is often used to visualize network connections [69]. Multi-dimensional data 

set may be visualized using parallel coordinates or visual pivot table [70]. The space filling dense 

pixel map is often selected to visualize IP address space because it can visualize a large amount 

of information in a small space. 

 

A typical design problem in the visual structure layer is how to map network data to the axes of 

the coordinate system. A common practice is to convert IP address into two numbers, each of 

them mapped to one axis of the Cartesian coordinate. Port numbers are often sequentially 

mapped to pixels in a dense pixel map, either by column or by row. Temporal data is typically 

mapped to a horizontal or vertical axis [39].  

 

Relationship with the task dimension: the selection of visual structure is a low level task. Often 

visual structures are selected by developers and are not changed during run time. However, in 

automatic visualization generation systems, the visual structure can be selected by the program 

based on pre-defined rules. Or the visual structure can be defined by users at run time.  
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3.1.3.4 Visual Units and Visual Variables 

Visual units are the building blocks of visualization. Some examples such as: point, line, 2D 

shape (glyph), 3D object, text, and image. Each visual unit is defined by, but may not limit to, 

seven visual variables [21]: position, size, shape, value, color, orientation, and texture. For each 

visual unit, a visual variable is either assignable or fixed. An empty cell means the visual 

variable is not applicable to the visual unit.  

 

An assignable variable visual means that data attributes can be mapped to this visual variable, 

otherwise, if it is fixed, data attributes cannot be mapped to it. For example, for dense pixel 

maps, IDS classification can be mapped to pixel colors, but not to its size [39].  

 

Table1 presents the relationship between some common visual units and visual variables.  

Table 5: Visual units and visual variables. 

position Size shape value color orientation text
position assignable fixed fixed assignable assignable fixed
line assignable assignable fixed assignable assignable assignable
2D assignable assignable assignable assignable assignable assignable assignable
3D assignable assignable assignable assignable assignable assignable assignable
text assignable assignable fixed assignable assignable assignable
image assignable assignable fixed fixed fixed assignable  

 

Sometimes the selection of a particular visual structure would limit the choices of visual units. 

For example, if parallel coordinate is selected as visual structure, then lines should be used as 

visual units. Similarly, the selection of a particular visual unit may also limit the choices of 

visual structure.  
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Perhaps we can add a special visual unit – Gestalt, as in Gestalt psychological theory. Here, a 

Gestalt is defined as a group of visual units that can be easily perceived by humans as a “pattern” 

due to the Gestalt theory – that is, the laws of proximity, similarity, symmetry, continuity, etc.   

 

Gestalt is particularly important for network security visualization because one of the primary 

purposes of such visualization systems is to help users detect malicious or anomalous network 

traffic patterns.  Such patterns are often visualized as a Gestalt of pixels, lines, or glyphs. For 

example, in current network security visualization systems, port scanning is often visualized as a 

cluster of lines or a group of closely packed pixels with the same color. If a malicious or 

anomalous pattern is not visualized as a Gestalt, then it is usually difficult to be detected by 

human.  

 

Thus a fundamental challenge for network security visualization designers is “how to design the 

visualization so that the malicious or anomalous behavior can be perceived by users as Gestalt?” 

And the network security visualization systems should be evaluated by whether they can 

effectively convert malicious or anomalous behavior patterns to Gestalts. 

 

Unfortunately, most of the current research in network security visualization still focuses on the 

low level details of how to map network data to visual units and variables, and the high level task 

of mapping malicious patterns to Gestalt has not received much attention.  

 

Relationship with the data dimension: a basic design question a developer would face is how to 

map data items to visual units and how to map data attributes to visual variables. Again, the 
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selection of visual units and visual variables is largely determined by the nature, the number of 

dimensions, and the size of the data set. For example, Chernoff faces [71], a 2D shape, is often 

selected to visualize multi-dimensional data. For large volume of data set, pixel is often selected 

as the visual unit because it allows more data to be visualized in a small display space.  

 

The selection of visual variables is also influenced by the characteristics of visual variables. 

Bertin [21] has identified five characteristics: selective, associative, quantitative, order, and 

length. For example, color is selective but not quantitative, meaning it is appropriate to map 

categorical data (such as IDS classification) to color [39], but it is usually not appropriate to map 

quantitative data to color. 

 

Relationship with the data dimension: the mapping of data to visual units and visual variables is 

a low level task. This visual mapping can be pre-defined by developers, automatically performed 

by programs based on certain rules [72, 73], or manipulated by users at run time.  

 

Majority of the works we have found uses multiple views. Multiple views allow the user to 

browse several windows and several concepts at the same time; it’s both cognitive efficient and 

view efficient.  

 

Table 6 provided a visualization classification of the existing systems. Multi-view appeared to be 

a more popular style of window design; simply because it is more user-friendly. Some other 

systems chose single view, depending on their design goals.  
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3.2 Other Taxonomy  

Various taxonomies have been proposed in the field of information visualization [15-17, 74-82]. 

Both Shneiderman [15] and Wehrend [76] proposed a two dimension taxonomy based on data 

types and low level tasks. However, they do not provide a classification for the visualization 

techniques. Tory and Moller [82] extended Shneiderman’s work by dividing data into two 

categories, continuous and discrete, and introduced structure as a parameter. They also describe a 

data centered, two dimensional task taxonomy based on continuous/discrete data and data 

spatialization. Card and Mackinlay [15] analyzed the information visualization design space 

based on data type, data transformation, mark types, retinal properties (similar to visual 

variables), position in space time, view transformation, and widget – all of them are included in 

our taxonomy.  Card, et al. [15] and Chi [16] described a pipeline based framework to classify 

visualization techniques. In general, our taxonomy is closer to the one proposed by Keim [17], 

who describe a taxonomy in three dimensions: data, visualization techniques, interaction and 

distortion techniques. Keim provides a categorical classification for each dimension, but does not 

further divide them into layers or identify key parameters. Our taxonomy is more comprehensive 

and detailed than other taxonomies.  

 

Our analysis of the data dimension is influenced by the pipeline model proposed by Card, et al. 

[15] and Chi [16], who both classify data into raw data and transformed data. Our analysis of the 

data transformation operations is influenced by the work of Tang, et al. [83] 

 

Our analysis of the visualization dimension is based a comprehensive survey of the literatures on 

computer security visualization, many of which are published in the proceedings of the first two 
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International Workshop on Visualization for Computer Security (VizSEC). The five layer 

hierarchical framework is partially inspired by Zhou and Feiner [73]. However, Zhou and Feiner 

discuss their hierarchical layers in the context of automatic visualization generation. Unlike our 

work, they do not identify key parameters and categories for each layer. The analysis of the 

visual unit and visual variable layers are influenced by the work of Card and Mackinlay [15] and 

Bertin [21]. 

 

There has not been a comprehensive analysis of the tasks in network security visualization. Our 

analysis of the low level tasks is based on our experience and many previous works on general 

visualization tasks [15, 16, 72, 78, 82-87]. Our high level task analysis of the network security 

visualization also benefits from some previous works [58, 59, 88]. 
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4 A Method for Measuring Visualization Complexity 

4.1 A Theoretical Framework for Defining and Measuring Effectiveness 

Visualization should be: accurate, user friendly, and efficient.  

The accuracy can be measured in three steps. First, develop a classification of visual attributes 

and structures. Second, conduct a domain specific data analysis and classify data attributes and 

structures. Identify the possible mappings between visual attributes and data attributes as well 

mappings between visual structures and data structures. Finally, an accuracy score can be 

assigned to each mapping.  

 

An effective visualization should help the users to achieve the goals of specific tasks. The utility 

principle defines the relationship between visualizations and tasks. A data-visualization should 

be designed for specific tasks so that the utility and efficiency of the visualization can be 

evaluated. To measure the utility of visualizations, a task classification should be developed 

through domain task analysis. Second, a shared and annotated benchmark database should be 

created, with benchmark tasks and measurable goals clearly defined. Third, assess the utility of 

the visualizations by measuring how well they help achieve the goals of the benchmark tasks in 

comparison with non-visual representations. User studies can play a major role in this part; 

traditional user studies would normally assemble a group of undergraduate students, the result 

can be biased. An improved version of the user studies should be carried out based on the 

domain experts’ opinions, using the same visualization performing the same task with the same 

database.  
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Table 7:  Quantitative and qualitative measurements of effectiveness. 

 

 Quantitative measurements Qualitative 
measurements 

Accuracy • Measure the number of interpretation errors  
 
 
• Observation 
• Interview 
• Expert/novice 
comparison 
 

Utility • Measure the number of achieved benchmark goals  
• Record the number of times a visualization design is 
selected by users to conduct a task 

Efficiency • Complexity analysis 
• Record task completion time 
• Record eye movements  
• Measure the learning curve 

 

The three different criteria are closely related; their relationship can be best described by the 

following diagram: 

 

Figure 18: Overview of the proposed design methodology. 

 

4.2 Visualization Design Methodology 

The processing of a data visualization depends on a host of psychological processes [89], 

including information read-off, integration, and inference [3].  
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The processing of a data visualization depends on a host of psychological processes [89], 

including information read-off, integration, and inference [3]. The main goal of the proposed 

complexity analysis is systematically evaluate the major factors that influence the efficiency of 

information read-off and integration. Visual inference is currently beyond the scope of this study 

due to a lack of understanding of its psychological process. However, as Trafton, et al. [3] point 

out, visual inference is likely to depend on visual integration and information read-off. 

 

Graphically, the complexity measuring is carried out in the following steps: 

 

Hierachical
Analysis

Integration
Complexity

Tree

Visual Mapping
Complexity Tree

Analyze
Visual

Effectiveness

Define
Separable
Dimensions  

Figure 19: General steps complexity analysis. 

 
In the following sections, we give more details about the major factors of the complexity 

measurement; furthermore, we will incorporate the TNV visual interface as an example in each 

stage to demonstrate the idea.  

 

4.3 Hierarchical Analysis of Data Visualization 

We divide data visualization into five hierarchical layers: workspace, visual frame, visual 

patterns, visual units, and visual attributes. Each one is a component of the previous layer. A 

workspace is one or more visual frames that are designed for a specific purpose. A visual frame 

is a window within a workspace and contains multiple visual patterns. A visual pattern is a set of 

visual units that are readily perceived as a group; and they are identified based on four Gestalt 

laws [4]. Some examples of visual units such as: point, line, 2D shape (glyph), 3D object, text, 



 

51 
 

and image. Each visual unit is defined by seven visual attributes [21]: position, size, shape, 

value, color, orientation, and texture. 

 

4.4 Visual Integration 

Larkin and Simon [90] point out that a main advantage of visualization is that it helps group 

together information that is used together, thus avoiding large amounts of search. In complex 

problem solving, the visual units need to be integrated [3], which adds to the extraneous 

cognitive load [1].  

 

In this study, the cognitive load of visual integration is estimated by building a visual integration 

complexity tree (figure 3). For each visual frame, we identify the visual patterns in that frame 

based on four Gestalt laws: proximity, good continuation, similarity, and common fate [4, 89]. 

The number of nodes on the visual integration complexity represents the upper bound of visual 

integration a reader might perform.  

 

Visual frame Visual frame

Visual
pattern

Visual
pattern

Visual
pattern

Workspace

(maximum number of
visual integrations)

Visual
pattern

Visual
pattern

Visual
pattern

…...

 

Figure 20: Visual integration complexity tree. 
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4.5 Separable Dimensions for Visual Units 

Psychological studies showed that the eye can only see three variables at once, and the difficulty 

of using a graph is determined by how many fixations are required [91]. Therefore the number of 

separable dimensions is another field. The following are some of the visual units’ criterion of 

separating dimensions:  

• X and Y coordinates (position)  

• Shape, Size, Color,  

• Value (gray scale), 

• Orientation 

 

Groupings are subjected to change depending on the visualization. For example, in some cases, 

shape and size may be considered as integral dimensions, or X and Y axes may be considered 

separable dimensions. Generally, commonly associated dimensions should be considered as 

integral dimensions (e.g. profit/time, etc.) Otherwise, they are separable dimensions. Identifying 

separable dimensions can be different from evaluator to evaluator, but as long as it's consistent, 

the outcome of evaluation should not be affected.  

 

4.6 Interpreting the Values of Visual Attributes 

Readers also need to interpret the values of these visual attributes. The mental effort for such 

interpretation is another source of extraneous cognitive load [1]. In my analysis, for each 

separable dimension, we assign a score for the complexity of interpreting the values of the visual 

attribute based on the following criteria: 
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Table 8: Complexity scores for interpreting the meaning of visual units. 

Complexity 
score 

Criteria 

5 Very difficult to interpret. There is no legend. A typical reader has 
to memorize the mapping between the value of the visual attribute 
and the value of the corresponding data parameter 

4 More difficult to interpret. A typical reader needs to frequently 
refer to a legend to interpret the value of the visual attributes 

3 Somewhat difficult to interpret. A typical reader needs to refer to a 
legend from time to time. 

2 Relatively easy to interpret. A typical reader only needs to refer to 
a legend occasionally.  

1 Easy to interpret. This is based on common knowledge. There is 
no need to memorize or refer to a legend.  

 

For integral dimensions, each separable dimension has a complexity score. The complexity score 

for a type of visual unit is the sum of complexity scores of its separable dimensions. The 

complexity score for a visual frame is the sum of scores of different types of visual units it 

contains, and so on. The standard prototype of a visual mapping complexity tree is shown in 

figure 7.  

 

Counting the total number of visual units is a quick way to estimate the amount of visual 

information a reader needs to process. In case of a very dense pixel map, an approximate count is 

usually sufficient for evaluation purposes. 

4.7 Efficiency of Visual Search 

According to Wolfe and Horowitz [5], target-distracter difference is the key to efficient visual 

search, and there are four major factors that affect the target-distracter differences -- color, 

motion, size, and orientation. Target-distracter difference indicates how a target stands out from 

the background; background can be any other surrounding objects or the neighboring 

background colors. Distracters as opposite to a targeted object can be identified based on 
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different evaluators’ intentions. The accurate calculations are performed through the following 

equations. 

 

Workspace
(complexity  score)

Visual  Unit
(complexity  score)

Dimension
(complexity
score)

Visual  Unit
(complexity  score)

Visual  Unit
(complexity  score)

Visual  Frame
(complexity  score)

Visual  Frame
(complexity  score)…...

…...

Dimension
(complexity
score)

…...
Dimension
(complexity
score)

Dimension
(complexity
score)  

Figure 21: Visual mapping complexity tree. 

 

765/)( 111
b

n

i
b

g

n

i
g

r

n

i
r

D
N

T
D

N

T
D

N

T
c −+−+−=

∑∑∑
===

   (1) 

F

Df
N

Tf

M

n

i −

=

∑
=1

  
N
s

DsTs

s

n

i
∑
=

−

= 1   
180

1

1∑
∑

=

=

−

=

n

i

n

i

N

DoTo

o  

Equation 1: rT , gT , and bT are the R/G/B values of target color, rD , gD , bD are the R/G/B values 

of the closest distracter color. The N and n are the number of color components represented in 

the graphic scene. Number 765 is the distance between the two most distant colors. 

  

Equation 2: The formula for calculating target-distracter motion ratio for graphics associated 

with entity node such that Tf and Df  are the target and distracter frequency, F is the fastest 

(2) (3) (4) 
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moving frequency represented in the visualization scene, and N and n are the number of moving 

items.  

 

Equation 3: Formula for calculating the target-distracter size ratio such that Ts  and Ds  are 

target and distracter graphics’ size in ps, S is the visualization area in ps, and N and n are the 

number of entity nodes. The larger size ratio means it is easier for the user to find the pattern 

through the size hint provided by the visualization.  

 

Equation 4: Formula for calculating target-distracter orientation ratio such that To  and Do  are 

the target and distracter graphics’ orientation, and N and n are the numbers of distracters. 
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5 Task Centered Visualization Design Frame Work.   

This section contains three parts: theoretical backgrounds, system implementation, and a case 

study using SNORT.  

 
5.1 System Description 

The following diagram describes the system functions: 

 

 
Figure 22: Overview of the proposed task-centered visualization architecture. 

 

5.1.1 User Controlled Visualization Constructions 

A central theme of TVDA is to enhance the role of domain experts in the collaborative 

construction of visualizations. In a typical visualization design process, domain experts are often 

limited to specifying requirements and testing the programs. With TVDA based visualization 

tools, domain experts are in control of constructing the visualizations. (Of course, developers can 

still construct visualization if necessary.) To domain experts, the visualization construction is no 

longer a black-box process – they can break visualization into different layers of visual mappings 
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and use the visualization database to find the psychological theories and empirical studies behind 

these mappings. For example, domain experts will be particularly interested in finding the 

rationale behind the accuracy scores of these mappings.  

 

User controlled visualization construction is necessary for several reasons. First, complex 

problem solving is a dynamic process. In search for a solution, users need to test different 

hypotheses or different strategies. This means the task structure may be constantly changing, and 

a good visualization tool should allow users to dynamically reorganize visualizations to 

accommodate this change – because the effectiveness of visualization is task specific. From PI’s 

experience, such flexibility is very important to domain experts. Second, studies have shown that 

the effectiveness of visualizations depends on users’ background and knowledge. Visualization is 

also a learned skill – as users become more experienced, their behavior for reading and 

constructing visualization may change [92]. Prefabricated visualizations combined with low 

level interactions – such as zooming, panning, and level-of-detail – are insufficient to address the 

individual differences. Third, self-constructed visualizations may assist problem solving in ways 

different from prefabricated visualizations [11, 93]. Over time, these benefits will outweigh the 

initial learning curve.  

 

To construct visualization, users start with a visual frame and then drag and drop visual 

structures into the view. They are assisted by a design-gallery style interface [94, 95] that 

contains multiple visual structures provided by a visualization engine. Once visual structures are 

selected, users then map visual units and visual attributes to the selected data attributes of the 

selected task. Again, the visualization engine and design gallery interface will assist users to 
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choose among multiple visual unit and visual variable combinations, which are ranked based on 

their accuracy, utility, and efficiency scores.   

 

User

OpenFile

snortFileObject

otherFileObject

VisualizationEngine

MainViz

fileProcessing

VizDictionary

TaskTree

ProcessSnortFile ProcessOtherFile

snortFileObject otherFileObject

vizProcessing

visualUnit
visualFrame
visualStructures
visualAttributes

Associate

taskList

Select

Associate

vizResult

Select

Associate

 

Figure 23: UML diagram of the proposed System. 

 

A data-visualization may be constructed for multiple tasks, but the link between the visualization 

and the tasks must be explicitly identified.  

 

5.1.2 Task Tree 

Tree is an appropriate data structure for organizing and storing problem solving activities [96-

98]. Each node on the task tree represents a specific task. For each task, users can add, delete, 

edit, merge or split tasks; they can create task hierarchy by dividing a task into sub-tasks. In the 

proposed system, we use a task tree to help user organize the tasks. For each task, users are 

required to explicitly identify the data parameters that are needed to perform the task. More 
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specifically, these are the parameters that have to be kept in the working memory simultaneously 

in order to carry out the task. The proposed visualization tool allows users to open data files, 

select parameters, and attach them to a task.  

 

The requirement for users to explicitly specify tasks and their related parameters is grounded in 

the proposed theoretical framework. It is based on the belief that the effectiveness of a data-

visualization is task specific. Therefore visualization should be optimized for specific tasks by 

mapping the task related parameters to the visual elements that have high accurate, utility, and 

efficiency scores. Second, the process of specifying tasks and their associated parameters is 

essentially a task complexity analysis. Knowing the data parameters associated with a task helps 

users consciously control the complexity of the tasks and correlate task complexity and 

visualization complexity. For example, users would focus their attention on constructing 

visualizations for high complexity tasks, because visualizations are shown to be more effective 

for high complexity tasks than simple tasks [99-101].   

 

A task tree also has other benefits. First, the task tree itself can be seen as a visualization of the 

problem solving process, reducing the cognitive load by externalizing the task structure that 

would otherwise be stored in the working memory. Second, a task tree is essentially a visual 

language for describing a specific problem solving strategy and expertise [102, 103], which can 

be shared or reused.     
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5.1.3 Interactions 

In addition to the traditional interaction techniques (e.g. zooming, panning, level-of-detail [104]), 

the TVDA also includes a number of new interaction techniques: 

• Merging and splitting visualizations. Users will be able to merge two or more visual frames. 

This technique is designed to reduce the cognitive load of visual integration and inference by 

externalizing the mental transformations [3, 105-107].  

 

• Encode the legend in audio. For example, when users place the mouse cursor on a visual unit, 

the encoded data is spoken out through speech synthesis. This technique is inspired by the dual-

coding theory [108, 109]. It reduces the cognitive load of memorizing the mapping between 

visualization attributes and data attributes, and also eliminates the need for moving the eyes 

between data visualization and the legend.  

 

• User constructed annotation. Users are able to insert visual, textual, or audio annotations 

directly into the data visualization frames. This technique helps reduce the cognitive load by 

offloading part of the reasoning processing from working memory to external representations. 

 

5.2  Implementation 

In this section I will discuss a task centered visualization design framework, in which tasks are 

explicitly identified and organized and visualizations are constructed for specific tasks and their 

related data parameters. The center piece of this framework is a task tree which dynamically 

links the raw data with automatically generated visualization. The task tree serves as a high level 
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interaction technique that allows users to conduct problem solving naturally at the task level, 

while still giving end users flexible control over the visualization construction.  

 

I have built a system based on the proposed framework. This prototype is implemented with Java 

and uses the prefuse [88] – an open source interactive information visualization library. 

 
 
5.2.1 Design Strategies and Criteria 

There are two main visualizations in this case, a display that contains all visual frames and a task 

tree. The center control agent in this design is the task tree, task tree controls opening of all 

visual frames and manipulations of all currently opened visual frames, although manipulation 

can also be done through toolbars within the visual frames. Task tree nodes are the controlling 

agent, and leaf nodes are the manipulating agent. Task tree is not part of the display, but the 

display contains all other visual frames. Task tree can be modified directly by the user, but visual 

frames can only be modified through task tree nodes.  

 

Table of data must be loaded before any other action takes place; the only type of data the system 

can accept is SNORT data.  

 

5.2.2 Task Tree 

A task tree servers as the center piece of this system; not only does it have control over all 

graphical visualizations, it also allows the user to have full control over the task tree. User may 

modify the tree by deleting, re-arranging, and adding new nodes; user may also add and delete 

the parameters associated with each individual task.  
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A typical task tree would contain a main task, which describes the main purpose of the task tree. 

The main task can be divided into sub-steps or individual tasks (task 1, task 2 etc.); the sub-steps 

are described or composited by sub-tasks; and sub-tasks can be even further divided if necessary. 

Finally, the leaf nodes of the task tree represent the controlling tasks or parameters for the each 

sub-task. The whole task tree can be viewed as a problem-solving process; each node represents 

a step to accomplish in order to solve its parent node’s task. User may choose to divide the task 

into sub layers based on their need; there’s no limit on the number of child nodes a task tree can 

contain.  

 

Task tree is built to be visually efficient, only the clicked node will be expanded and the sub tree 

of the clicked node will be displayed. Without any user activities, the tree will only show limited 

number of nodes. This special feature is kept to reduce user’s cognitive load by reducing their 

visual load significantly.   

 

The figure below shows the general structure of the task tree, depending on the user’s design 

goal, the task tree may vary accordingly. In this example provided, main task is the ultimate goal 

or the problem the user is trying to solve. Task 1 and task 2 are the tasks involved in this goal. 

Sub tasks are optional, they can be the general steps involved, or the individual frames that 

construct the main frame. Controlling tasks do not generate any new frames; they only control 

the opened visualization.  

 

Each sub-task will generate an individual visualization which is pre-defined by the user. User 

may directly manipulate the visualization by click on each controlling task.  
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Task tree is built based on a pre-defined XML file. The XML file is publicly available and can 

be modified. User may also choose to modify from the display instead of reading through XML 

code and modify from there. The functions we provided are: adding task, deleting task, moving 

task and see parameters. Parameters defines a task, they are the essential component of a task. 

User may choose to modify the parameters by accessing the parameter table. The parameters can 

be deleted, modified, and new parameters may be added simply by typing in the parameters into 

the table.  

 

Mouse over tree node
to see the parameters

Search by the name of
the tree node

Task Tree

 

Figure 24: A general task tree. 

 

The figure below shows the general task tree, when user right clicks, a popup menu will provide 

options of “add task”, “delete task” and “see parameters”. Parameters can only be modified 
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through accessing of the parameter table.  Modifying of the parameters can be done by directly 

modification of the table entries, or “edit” menu item provided on the menu bar. In case the task 

tree is too large to browse through, user may also choose to search the task by using the search 

bar located on the right bottom corner of the display.   

Add a Task
See Parameter

Delete a Task

Right Click to see
the popup menu

 

Figure 25: Right click on task tree. 

 

Task tree can be controlled through simple mouse motion, such as clicking, dragging, double 

clicking, or mouse over. A brief summary of the common functions are described by the 

following table (table 9).  
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Figure 26: Right click on task tree then select “add parameter”. 

 

Table 9: Functions for task tree. 

Mouse Motion Task Tree 

Nodes 

Action description  

Single Click on Tree Node Main Tasks, 

Tasks, Sub 

Tasks, 

Controlling 

Tasks 

The sub tree of node will be expanded, 

if there’s a sub tree.   

Mouse Drag and Drop on 

Tree 

 The Tree will be relocated to the 

dropped position.  

Double Click on Tree 

Node 

Tasks, Sub Tasks A corresponding visualization will be 

displayed; the display will be 

configured based on the number of 

visualization being opened. The 

visualization is pre-fabricated but can 

be modified by controlling tasks. 
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Controlling 

Tasks 

The control task will modify the 

corresponding visualization. The 

controlling tasks are pre-fabricated but 

can be modified.  

Double Click on Tree 

Node the Second time 

Tasks, Sub Tasks The opened visualization will be 

removed, and visualization 

arrangement will be reconfigured  

Mouse Enter on Tree Node Main Tasks, 

Tasks, Sub 

Tasks, 

Controlling 

Tasks 

The parameters defines the nodes will 

be displayed on the left bottom corner 

(Title Bar) 

Mouse Leave on Tree 

Node 

Main Tasks, 

Tasks, Sub 

Tasks, 

Controlling 

Tasks 

Title Bar will be set to null. Nothing 

will be displayed 

Right Click—select add 

task 

 Simply enter the parent node and the 

label for new task node. 

Right Click—select delete 

task 

 Enter the label of the node to be 

deleted 

Right Click—See 

Parameter 

 Click to see all the parameters, the first 

column displays the node names; the 
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second column displays the related 

parameter.  

Click Edit then Delete 

Parameter – See Parameter 

 Highlight a row in the table, and then 

click on delete parameter to delete the 

row.   

Click Edit then Add 

Parameter – See Parameter 

 Enter a node label and the 

corresponding parameter. One 

parameter per row.  

Mouse Drag and Drop on 

Tree Node 

Tasks, Sub 

Tasks, 

Controlling 

Tasks 

The dragged node and its child nodes 

will be added as child nodes to the 

dropped node.  

 

5.2.3 Data Table  

The only type of data TVDA is currently using is SNORT data. SNORT data will be further 

processed, and relevant information will be extracted, such as: alert name, classification, date, 

time, source IP, and destination IP etc. the extracted data are displayed in a table format for the 

user to view and look up.  

 

The data shown on the data table will be displayed in the visualization. User may choose to open 

their saved data file by using the “file” menu item on the menu bar. In the following figure, we 

used a simple SNORT file gathered within the GSU network. The file has a format as the 

following figure showed:  
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Figure 27: A portion of the SNORT alert file to be used by the system. 

 

The user may choose to use a SNORT alert file with any length. The SNORT file can come from 

any network with any kind of alert. The data table displayed in figure 28 contains the processed 

data; processed data are displayed in a table format. Each column is one array that contains the 

relevant alert information. User may choose to scroll down the data table to see all available 

processed data. In this case, the raw data is the SNORT alert file; we processed the raw data 
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using java regular expressions; the extracted data which displayed in the data table view is the 

extracted data.  

 

The figure above is only a part of the SNORT data file we used for our system; the actual file 

contains more than 40 paragraphs.  

 

 

Figure 28: A data table. 
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5.2.4 Visualization  

Visualizations will appear when user clicks on the sub-task nodes on the task tree. User may 

control the visualization by clicking on controlling task nodes. Depending on the task tree’s 

design and the user’s intention, several pre-fabricated visualizations will be displayed, some 

examples are: scatter plots, bar chart etc. Our system emphasis on spatial constraints, in order to 

increase the visual quality of the design.  

 

Figure 29: (a) A simple layout that can be generated by a system that only considers abstract 

relationships between components. (b) A layout of the same components where additional spatial 

constraints are enforced so that each component completely fills a regular grid and leave margins 

between the elements. [44]. 
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Main Task

Task 1 Task 2

Sub Task 1 Sub Task 1

Sub Task 2 Sub Task 3

Sub Task 2

Sub Task 4

 

Figure 30: Visualization tree map arrangement and associated task tree. 

 

Spatial constraints are relations that directly express the geometric structure of the presentation 

[44]. Proper design of spatial constraints can maximize the visual quality of a visualization 

design. Figure 16 exemplifies what might happen in a system that employs abstract constraints 
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without spatial constraints. A system that considers only abstract constraints will not be able to 

generate layouts with the same aesthetic appeal as systems that consider both because the system 

has no visual restrictions on where components of the layout are placed [44]. 

 

The visualizations are arranged on a single display; we use tree map to organize our 

visualizations. [89] The tree map visualization technique makes efficient use of the available 

display space, maximize the visualization quality by proper use of spatial constraints [110]. The 

visualization maps hierarchies onto a rectangular region in a space-filling manner, so all opened 

visualization can be properly fitted into the display. This efficient use of space allows large 

hierarchies to be displayed and facilitates the presentation of semantic information. [89] 

 

Each task will be displayed within their parent task, and arranged sequentially based on the order 

which they have been clicked to open. While the visualization has been opened, User may 

double click on the node again to close the visualization; the display will be arranged again to 

accommodate tree map rule. The figure below describes the arrangement as well as the 

association with the task tree.  
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6 Case Study  

In this case study, we used SNORT alert information gathered during a short period of time.  

 

6.1 Visualization Management  

 

 

Figure 31: Task tree and tree-map arrangement of the opened visualizations.  
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Once the data table is loaded, the task tree will be triggered. By clicking on each sub-task, the 

corresponding pre-fabricated visualizations will be displayed accordingly.  The purpose of this 

design is to show the data we gathered from our network using SNORT during a short period of 

time. The data table is the same as referred back to section 4.2. In this example, user has clicked 

on “ scatter plot”, “Bar chart view” then “check user info”, and “add another user”. Since “add 

another user” is a controlling-task for “check user info”, it is displayed within the frame with 

“check user info”. 

 

The following Scattered Plot (figure 32) showed source IP on X-axis, time of each packet’s 

capture on Y-axis, the shapes in this case represent the five different alert names we have 

received. Evaluators may choose to select different values for X-axis, Y-axis and Shape by using 

the menu options on the tool bar. A legend of different shapes and their represented alert names 

is displayed on the bottom of this display. User may also choose to mouse over on a certain 

shape to see the specific alert information.  

 

Different shapes in scatter plot represent different alert types. User can choose different 

parameters (Source IP, time, date, priority, alert name) for the X and Y axes. 

 

In the non-traditional bar chart view shown in the figure below, the x-axis represents the 

different Source IP address while the y-axis represents the time the packet has been received in 

number format. Each packet’s priority is shown in an unequally different color. In this case, 2 

different colors are shown. User may mouse over on any shape, and the corresponding alert 

names will be displayed on the right upper corner of this window.  
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Figure 32: Scatter plot.  

 

In this window, the denser column mean more alerts from the same IP address, therefore more 

vigilant IP addresses may easily be identified by looking for the denser columns. User may refer 

back to the data table for detailed alert information. User may also search for a specific alert 

name on the display by typing in the alert name in the search bar located on the left bottom 

corner.  Since we only had data gathered within a short period of time, this display is largely 

empty, user may also choose to modify the y-axis by accessing design file. Direct visual 

modifications are not available yet.  
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Figure 33: Bar chart view.  

 

 

Figure 34: Controlling tasks for scatter plot. 
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6.2 Visualization Control 

Opened visualizations can be directly manipulated by the controlling task. The controlling 

mechanisms are pre-defined in this case. Controlling tasks are optional for all visualizations; they 

are also the leaf nodes of the task tree. In the example of Scatter-plot from the previous section, 

we list a few controlling task as shown in the figure below.      

 

The table below shows the several types of control-tasks and the corresponding outcome. In 

other types of designs, user may define other types of control-tasks and hard code them into the 

program. In our example, six types of control tasks are shown for the visualization: scatter plot. 

The controlling mechanisms in this case are all pre-defined, and they have full control over the 

display.  

Table 10: Control tasks vs. control of the visualization. 

alert name clicked, visualization shows source IP vs. alert names 

 

 

Data clicked, Visualization shows source IP vs. date. 
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Data clicked, Visualization shows source IP vs. date. 

 

 

Source IP clicked. Visualization shows source IP vs. source IP.  
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6.3 Visual Integration Tree 

The semi-automatic integration tree is generated when the menu item “view visual integration 

tree” is clicked from the data table view. The integration tree first counts the numbers of frames 

that have been opened, and records their names. It then calculates the number of components on 

each visualization frames, such as JMenuBar, JTable. These components as well as the shapes 

displayed in each visualization frame are the visual patterns for the visual frame. As a result, in 

the example we have shown in the previous section, the number of visual patterns is 141. The 

number deviates a little, since Prefuse tree allows partial hiding for un-used tree nodes. In reality, 

less than 33 tree nodes are displayed for task tree; in turn the design allows less cognitive load on 

user. Therefore, the main visualization has slightly less than 141 visual patterns.  

 

The figure below shows the integration tree when it is clicked to be opened, this integration tree 

has the same structure of task tree. Therefore only selected tree nodes will be expanded.  
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Figure 35: Visual integration tree for the case study. 
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The integration tree is still “partially” automatic at present stage; it only calculates and displays 

all the critical visual factors for visualization. Whether the visualization has been properly 

designed, integration simply provides little connection with the design. Ideally, we would like to 

make the integration tree to be the ultimate ruler for all visual frames generated under the same 

main visualization. In a way, such as when one visual frame has exceeded the limit of visual 

patterns, it will be warned or automatically modified by the integration tree. More details will be 

discussed in the future work section of this thesis.  

 

6.4 Visual Mapping Complexity Scoring System 

Visual mapping scores are assigned not by the system, but rather by the users, or the evaluators. 

Therefore the system do not provide any hard-coded complexity mapping scoring system, it will 

show the standards for building complexity scoring tree, then leave the rest to the users. The 

scoring code and standard can be access from menu bar options, as shown in the figure below.  

 

Figure 36: Accessing complexity score system. 

 

Once the visual complexity tables are built, they can be compared against with similar well 

established designs, such as TNV. The visual complexity system is designed to serve the 
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designer, to have a better sense of their design in comparison with the other comparable 

ones.[111]  

 

 

Figure 37: Visual complexity score table. 

 

Visual scoring system is rather a user-study type of tool. Visual scoring system can be used 

either during the design process or when the design is completed.  
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7 Comparisons with TNV and RUMINT  

Using the visual integration tree discussed in the previous sections, we evaluated our system and 

two other established works in the field. The works we listed here are TNV [38] and RUMINT 

[112]; they are both very well designed networking security monitoring tools.  

 

In TNV [38] system, there are 5 different dimensions in the main visual matrix frame; and 3 

different dimensions in the port visualization frame (figure below).  

 

 

 

 

Figure 38: Five different dimensions in TNV main visualization matrix.  
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In the figure shown above, there are five different dimensions: (a) Histograms for packets: 

categorized based on their shape/size/color. (b) Details of activities; categorized based on 

color/shape. (c) Main visualization matrix: categorized based on X-Y coordinate; in this case, 

they are local host vs. time. (d) Package information triangles: categorized based on 

shape/size/color. (e) Links: categorized based on shape/size/color.  

 

 

 

Figure 39: Three different dimensions in port visualization.  

 
The three different dimensions are: (a) Source and destination information: categorized based on 

the coordinate (vertical axis). (b) Connection lines between the two axes: categorized based on 

shape/color. 
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Figure 40: Visual integration tree for TNV.  
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In the integration tree shown above: each of the child nodes has a different number of visual 

patterns and the different Gestalt laws they are based on. Every parent node has a different frame 

number; the number of visual integration associated with the parent node is calculated by 

multiplying the number of visual frames and the sum of the visual patterns.  
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Figure 41: Visual mapping complexity tree for TNV. 

 

In the visual mapping complexity tree for TNV, each number below the visual units are the 

complexity scores based on table 2. Every parent node’s score is calculated as the sum of its 

children’s score.  

 
 

 

 

 

Figure 42: A portion of the main TNV visualization. 
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In the TNV example we mentioned before, we took a portion of the main visualization and 

calculated the resultant color, motion, size and orientation values; as table 4 shows. The color 

distracter is the background color (against the targeted object’s color), and the size distracter is 

the similar object presented in the very adjacent location.  

 

Table 11: Target-distracter difference scores for TNV. 

 Color Motion Size Orientation 

Target-distracter 

difference scores 

0.2850 N/A 0 1 

 

Rumint is an open source network and security visualization tool developed by Gregory Conti et 

al. [112] Rumint accomplishes the security visualizing tasks by loading pcap datasets and capture 

live traffic.  

 

In the following example, we took two screen shots from Rumint after it finishes capturing the 

949 packets from the sample dataset.  

 

 

Figure 43: Rumint thumbnail overview. 
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The overview screenshot contains 6 different visual frames, using the methods we mentioned in 

the previous section; we produce the following complexity tree for Rumint. Since Rumint is a 

rather complicated visualization system with considerable amount of frames and dimensions, we 

minimized our trees to fit into this paper.  

 

Main Visualization
(7737 Visual Integration)

Text Rain
fall(9)

Byte
Frequency(496)

Parallel Plot
(3420)

Binary
Rainfall(50)

Scattered
Plot(342)

Combined
(3420)

ASCII Hex Decimal
Byte

Presence

Byte
Frequency

Static
Scroll

Dynamic
Scroll

Packet
Length

Multicolumn

packet
length

rainfall (3 different
windows)

342 Different
Frames

342 Different
Frames

342
Different
Frames

3 Visual Patterns
(Similarity)

124 Visual  Patterns
(Similarity)

10 Patterns
(Similarity)

10 Patterns
(Similarity)

1 Patterns
(Similarity)

10 Patterns
(Similarity)  

Figure 44: Visual integration tree for Rumint. 

 

The simplified visual complexity tree is shown in figure 12. 
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Figure 45: Visual mapping complexity tree for Rumint. 
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No visual mapping complexity tree will be provided for our work; we will leave this part to the 

user studies.  

Table 12: Evaluation results in metrics format for RUMINT. 

Visualization Security 

Architecture 

Visual Search Guidance Number 

of Data 

Points 

Color Motio

n 

Size 

(pix2) 

Orienta

tion 
RUMINT overview 0.33333 n/a 0.43064 0 1797 

Byte 

Frequency 

0.33333 n/a 0.32169 0 421 

 

A detailed visual integration tree for our case study has been discussed in the previous sections. 

The figure below showed a manually calculated visual integration tree; the results are the same 

as the automated calculated one.  

 

The scatter plot we provided uses shapes to represents different alert names, instead of color. 

Since in reality, different systems are built for different purposes; typical designers and users 

have different intentions. It’s hard to rely on numerical systems to rank the visualization systems. 

Our method of evaluation only provides general guidelines to designers; the method should co-

exist with traditional user studies and other methods.  

 

The figure below (figure 46) is a manually generated visual integration tree for our case study, 

the results showed are exactly the same as the machine calculated visual integration tree.   
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Figure 46: Visual integration tree for our case study. 

 

 

Figure 47: Target distracter analysis for our system. 
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Table 13: Evaluation results in metrics format for our case study. 

 Color/shape Motion Size Orientation 

Target-distracter 

difference scores 

1 N/A 0 1 
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8 Conclusion  

The paper has three main elements: complexity analysis, task-centered visualization design 

strategies and task-centered visualization implementation.  

 

8.1 Complexity Analysis  

We have presented a systematic methodology to measure the complexity of visualization. Here 

the complexity is measured in terms of visual integration, number of separable dimensions for 

each visual unit, the complexity of interpreting the visual attributes, number of visual units, and 

the efficiency of visual search. These measures are derived from well established psychological 

theories. Together they indicate the amount of cognitive load involved in comprehending a 

particular visualization.  

 

The complexity analysis is particularly useful during the design phase before any user studies 

can take place. We have demonstrated the application of this method by using it to analyze two 

computer security visualization programs: TNV and Rumint. This method does not provide a 

rating system for comparing competing visualizations; it focuses on helping designers to explore 

different ways to reduce the complexity. For example, by increasing the target-distracter 

differences, or reducing the number of dimensions per visual unit.  

 

Overall, the analysis is not a comprehensive analysis of the design, but a rather focused one. It 

should be combined with other heuristic evaluation methods, especially the user studies.  
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8.2 Task Centered Visualization Design  

We also discussed a task centered visualization design framework, in which tasks are explicitly 

identified and organized and visualizations are constructed for specific tasks and their related 

data parameters. The center piece of this framework is a task tree which dynamically links the 

raw data with automatically generated visualization. The task tree serves as a high level 

interaction technique that allows users to conduct problem solving naturally at the task level, 

while still giving end users flexible control over the visualization construction.  

 

The design guidelines offered a frame work of building a design gallery style visualization 

interface that allows users to compare and select from multiple visualizations that are 

automatically generated. A significant challenge is to develop a visualization engine that helps 

automatically generate visualizations given a task and its related parameters. The key is to codify 

the many design rules from the visualization research literature and to develop a systematic 

method to evaluate and optimize the visualization. Our previous work on visualization 

complexity analysis [90] can be used as the basis for the evaluation and optimization.  

 

8.3 Implementation  

The implementation focused on security visualization using SNORT data gathered during a short 

period of time. We showed the visualization generation, management and organization. In order 

to demonstrate the usage of our implementation, a case study with real-time data and the 

corresponding visual integration tree was provided and a brief comparison between our case 

study and two other established works was also provided.  
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9 Future Works  

There are numerous potentials to perfect the current design; even though certain changes are still 

un-predictable at present stage. In this section we will list a few possible improvements. 

 

Our future work includes developing a design gallery style visualization interface that allows 

users to compare and select from multiple visualizations that are automatically generated. A 

significant challenge is to develop a visualization engine that helps automatically generate 

visualizations given a task and its related parameters. The key is to codify the many design rules 

from the visualization research literature and to develop a systematic method to evaluate and 

optimize the visualization. Our previous work on visualization complexity analysis [113] can be 

used as the basis for the evaluation and optimization. Finally, we will develop an evaluation plan 

to test the effectiveness of the discussed framework, working with domain experts in the field of 

computer security.    

 

9.1 Visualization Engine 

The discussed system includes a visualization engine to automatically select a list of 

visualization design choices for users to choose from. Before constructing visualization, users are 

required to select a task and its related data parameters. With this information, the engine will 

search the three visualization dictionaries to find possible (visual structure, data structure, task) 

mappings and ((visual unit, visual attribute), data attribute, task) mappings. The mappings with 

high accuracy, utility, and efficiency scores will be selected. A simple weighted sum of scores 

can be used to calculate the final ranking. More sophisticated ranking calculation will be 

investigated. 
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The visualization engine and the design gallery interface provide the crucial connection between 

the visualization dictionaries and the visualization construction process. Because the scores in 

the visualization dictionaries are assigned based on psychological theories and empirical studies, 

together the engine and the interface provide the theoretical and empirical guidance for 

visualization design.  

 

The long-term goal is to expand this visualization engine into an automatic visualization engine 

so that it can automatically generate visualizations based on user specified tasks and data 

parameters. Building an automatic visualization engine also has theoretical significance. As 

Kosslyn [89] points out, “One way to systematically develop a program of empirical research is 

to consider how one would program a computer to emulate an expert human graph designer.” 

 

Using the visualization tool to collect user data and conduct empirical studies on how 

visualizations are constructed and used. One of the main purposes of the user studies is to refine 

the scores in the visualization dictionaries. Many initial scores are based on hypotheses that need 

to be empirically tested. To support user study, TVDA will provide extensive logging capability 

that can record and replay the entire visualization construction and exploration session, including 

visual element selection and composition, task tree configuration, task completion time, etc.  

 

The collected empirical data will be analyzed to help answer the following research questions:  

1. How does experience affect the perceived effectiveness of visualization? Do experienced 

users use more visualization or less visualization?  
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2. How are the visualizations created by experienced users different from the ones created by 

novice users? How to use this knowledge to train novice users to create better visualizations? 

3. How do the visualizations created by users change over time as they become more 

experienced? Is there any pattern in such changes?  

4. What are the domain specific and domain independent factors that influence the effectiveness 

of visualization? And how can these factors guide the creation of data visualization? 

5. How do tasks relate to visualization design layout? How do tasks affect the choices of visual 

units and visual structures? Is there any pattern we can conclude from tasks and visualization 

designs? 

6. In the end, we want to be able to answer the ultimate question: how do we design a user 

friendly yet task efficient visualization design.  

 

9.2 User Studies 

One of the main purposes of the user studies is to refine the scores in the visualization 

dictionaries. Many initial scores are based on hypotheses that need to be empirically tested. To 

support user study, TVDA will provide extensive logging capability that can record and replay 

the entire visualization construction and exploration session, including visual element selection 

and composition, task tree configuration, task completion time, etc.  

 

The collected empirical data will be analyzed to help answer the following research questions:  

1. How does experience affect the perceived effectiveness of visualization? Do experienced 

users use more visualization or less visualization?  
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2. How are the visualizations created by experienced users different from the ones created by 

novice users? How to use this knowledge to train novice users to create better visualizations? 

3. How do the visualizations created by users change over time as they become more 

experienced? Is there any pattern in such changes?  

4. What are the domain specific and domain independent factors that influence the effectiveness 

of visualization? And how can these factors guide the creation of data visualization? 

 

Table 14: User study activities planned for the target applications. 

Application Benchmark databases 
and tasks 

User study subjects User study activities 

Neural 
circuitry 
visualization 

• NeuronBank 
[114] 
• May include 
other neuroscience 
databases in the 
future 

• Neuroscientists 
and students at Dr. 
Paul Katz’s lab.  
• NeuronBank 
users 

• Measure 
interpretation errors 
• Measure the 
number of goals 
achieved for 
benchmark tasks  
• Record the 
number of times a 
visualization design 
is selected by users 
to conduct a task 
• Record task 
completion time  
• User interview 
• Observation 
• Expert/novice 
comparison 

Computer 
security 
visualization 

• DARPA 
Intrusion Detection 
Evaluation project 
[115] and KDD Cup 
1999 contest 
database [116] 
• More data will 
be provided by the 
PI’s collaborators 

• IT staff 
members at GSU’s 
IS & T division 
• Computer 
Science  students 
at GSU 

 

9.2.1 How Do User Studies Help Our Designs 

The discussed design methodology has a number of unique characteristics: 

• The creation of annotated visualization dictionaries is an attempt to organize our knowledge 

about the effectiveness of visualization – which are currently scattered in a wide variety of 
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psychological theories, heuristic rules, and empirical studies – into an organized and domain 

specific framework. Combined with the visualization engine and design gallery interface, 

they provide much needed theoretical and empirical guidance to visualization construction 

and evaluation.  

• The visualization dictionaries also help separate the visualization design knowledge from 

visualization programs. The visualization dictionaries are meant to be shared and 

collaboratively edited by both the research and user community. Users can “plug in” 

personalized visualization dictionaries to customize a visualization tool.  

• The discussed methodology promotes a task-centered visualization design that is different 

from the currently predominant data-centered design methodology. Tasks are explicitly 

identified and organized. Visualizations are constructed for specific tasks and their related 

data parameters.  

• The discussed methodology gives domain experts greater control over the visualization 

construction, exploring the benefits of self-constructed visualization.  

 

9.3 Visualization Dictionary 

Current database lacks of sufficient data on visual design documentations; in another word, the 

visualization dictionary is still bare. Visualization dictionary can only be built based on the real 

designs and real user inputs. The more input we get, the more comprehensive our visualization 

dictionary will be.  

 

A typical visualization dictionary is shown in the table below. 
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Table 15: Structure of the visualization efficiency dictionary. 

Tasks  Visual Mappings Efficiency score 
(complete by evaluator) 

Popularity (the 
number of times it 
has been used) 

 ((visual unit, visual 
attribute), data attribute) 

  

 (visual structure, data 
structure) 

  

 (visual frame, data group)   

 

The efficiency scores mainly come from two sources: recorded task completion time and 

visualization complexity analysis (see table 1). In the future, the eye movement analysis and 

learning curve may also be considered.  

 

The complexity analysis is carried out in the steps discussed under the Principle of Efficiency. 

The efficiency scores for the ((visual unit, visual attribute), data attribute, task) mappings are 

assessed based on perceptual efficiency theories [4, 22, 117-122]. The complexity scores for the 

(visual structure, data structure, task) mappings will be based on cognitive level theories [3, 105-

107, 123-126]. Because of the hierarchical structure of the visualization and data classification, a 

complexity score can be calculated for the (visual frame, data group, task) mapping based on the 

perception and cognition level scores. The outcome of the complexity analysis will be a list of 

complexity scores for different factors that are organized in a hierarchical form.  

 

The complexity analyses will be performed independently by several developers, and the final 

complexity scores are calculated by averaging the scores assigned by different people. Again, the 
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PI plans to create a Wiki-style online efficiency dictionary for neural circuitry and computer 

security visualization. 

  

9.4 Integration Tree 

As we mentioned in the previous chapter, current integration tree is still a pre-built independent 

evaluation tool. Ultimately, the integration tree should be modified as a quicker evaluation tool 

comparable to user studies.  

  

It should be made as an interactive tool with the visualization designs. Such as, when the changes 

of the visualization designs have been detected, integration tree should be able to automatically 

recalculate the integration scores and compare the score with data size, therefore re-adjust the 

design efficiency by sending warning messages to the designers.  

 

Integration tree is currently built based on theoretical values; user studies can also help to 

improve the accuracy of integration tree.  

 

9.5 Long Term User Study 

Rules involved in the current design are rather limited, and largely based on previously 

established psychological cognitive studies. The rule basis lacks of human factors, especially 

long term user studies. In-depth Long-term Case studies (MILCs) [28] suits our purposes 

perfectly. Instead of a user study alone, we also would like to see how user study may have 

impact on the designs and building of the design dictionary.  
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In-depth Long-term Case studies (MILCs) [28] contains multiple detailed steps in performing 

long term user studies. Our user studies are based on MILCs, but still differ from MILCs in 

several ways. The detailed steps are listed below:  

 

Two sets of users may participate in this case: designers and evaluators. A few steps may be 

involved:  

 

1. Identify designers and evaluators. Designers are the group of users who will be using our 

system to build their own task tree and desired visualization associated with their specific tasks. 

Evaluators are a group of people who will be evaluate the designs build by designers. Evaluators’ 

input will be recorded, and their responses will be stored in our database for further analysis.  

Both groups’ responses are critical in building our systems. Designers’ input serves as our 

guidelines on relationships between visual units and visual frames vs. visualization design; while 

evaluators’ input can help us on achieving higher universal usability of our system.  

 

2. Record designers’ problem, tasks and designs. Usability of a visualization tool is been 

measured Usability of information visualization tools can be measured in a laboratory however, 

to be convincing, utility needs to be demonstrated in a real setting. Designers’ creations help us 

to configure the best matches between tasks and visual design. The system should not only be 

able to help the designers to create proper designs, but also should be able to assist the user in 

achieving better solutions to their problem. The recorded information can be saved into our 

database in a table format; the system can use the saved data to recommend proper fit for 

designer’s tasks and problems.  
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3. Use visual mapping complexity tree. Visual mapping complexity tree was discussed in 

the previous chapter of this thesis; it requires the user to rate the system based on five different 

criteria on everything from visual unit to workspace. The visual mapping complexity of the 

design helps to monitor the design before any major user study can take place. Visual mapping 

complexity tree can also be used as survey for the evaluators. Evaluators may use visual mapping 

complexity tree to rate the system or the visual designs built by individual designers. The 

complexity tree will provide quantitative ratings for all the designs.   

 

4. Open up user network. Current system is stand-alone and not available through internet 

access. Although depending on the designer’s profession and social network, there could be 

numerous alternatives, we believe that deploying the visualization online and gather evolution 

feedback is the best approach. IBM many-eyes [50] deployed on-line a few years back, and the 

feedback received was enormous. By deploying our system online, the user group will be 

enlarged and the database could grow exponentially. The initial intention for such approach is to 

deploy all designers’ design on web, where rating tools as well as feedback forms will be 

provided. Evaluators or anybody who are interested may submit their feedbacks voluntarily. The 

results will again be saved. 

 
 

5. User studies vs. design process. Traditional user studies are done after a system or a 

design is complete. In our case, the data comes from user studies is the critical component in our 

database in order to prettify all the designs. We therefore believe that user studies and design 
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process should be done concurrently. Concurrent user studies will minimize the design error, and 

also help to gain more connections between designers and evaluators.  

 

6. Comparisons between our system and comparable systems. While prettifying our system 

is clearly the top priority, encouraging the user to continue using the best possible tool toward 

their task is still essential. Doing so would avoid a situation where users try to please the 

researcher by using the new tool while another classic one would have been more appropriate 

[28]. At the same time, conducting user interviews on “why choose the alternative” would 

further help us on the design.  

 

7. Document success and failures. Feedbacks and ratings from designers and evaluators are 

important in this stage.  Summarized reports from both designers and evaluators based on their 

experiences can be stored into the database. Typical ingredients in the reports include: goals, 

tasks, visual frames chosen, visual units utilized, etc.   

 

9.6 Addressing Universal Usability 

Making visualization tools accessible to diverse users regardless of their backgrounds, technical 

disadvantages, or personal disabilities is necessary when the tools are to be used by the public, 

but it remains a challenge for designers [127]. Currently, our system targets mainly on network 

security issues, while in reality the users may come from all background with variant abilities 

and requirements.  
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One of the biggest challenges in visualization designs is to address the visually-impaired users 

[128].  The current design does not deal with such concerns. It comes to our recognition that 

people come in different ability and technology advances, accommodate their special needs is 

our next biggest improvement.   
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