

Efficient and scalable IPv6 communication functions for
wireless outdour lighting networks
Citation for published version (APA):
Mamo, S. T., & Technische Universiteit Eindhoven (TUE). Stan Ackermans Instituut. Software Technology (ST)
(2014). Efficient and scalable IPv6 communication functions for wireless outdour lighting networks. [EngD
Thesis]. Technische Universiteit Eindhoven.

Document status and date:
Published: 01/10/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/f83a11f0-3494-4186-bed3-92c30a839444

Efficient and Scalable IPv6
Communication Functions For

Wireless Outdoor Lighting Networks

Surafel Teshome Mamo

September 2014

Efficient and Scalable IPv6 Communication

Functions For Wireless Outdoor Lighting

Networks

Surafel Teshome Mamo

September 2014

1

2

Efficient and Scalable IPv6
Communication Functions For Wireless

Outdoor Lighting Networks

Eindhoven University of Technology Stan Ackermans
Institute / Software Technology

By Surafel Teshome Mamo

Partners

Project Owner:
POLAR Research Team

Project Manager:
Oscar Garcia Morchon

Project Mentor:
Dr. Esko Dijk

Project Supervisor:
Dr. Andrei Jalba

September 2014

Contact Address Eindhoven University of Technology Department of Mathematics
and Computer Science MF 7.090, P.O. Box 513, NL-5600 MB, Eind-
hoven, The Netherlands +31402474334

Published by Eindhoven University of Technology Stan Ackermans Institute

Printed by Eindhoven University of Technology UniversiteitsDrukkerij

ISBN 978-90-444-1325-0

Keywords Beacon frame, Bootstrapping, Design, Network, Node, Wireless,
6LoWPAN, 802.15.4

Partnership This project was supported by Eindhoven University of Technology
and Philips Research.

Disclaimer Endorsement Reference herein to any specific commercial products, process, or
service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorse-ment, recommenda-
tion, or favoring by the Eindhoven University of Technology or
Philips Research. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the Eindhoven
University of Technology or Philips Research, and shall not be used
for advertising or product endorsement purposes.

Disclaimer Liability While every effort will be made to ensure that the information
contained within this report is accurate and up to date, Eindhoven
University of Technology makes no warranty, represen-tation or un-
dertaking whether expressed or implied, nor does it assume any
legal liability, whether direct or indirect, or responsibility for the
accuracy, completeness, or usefulness of any information.

Trademarks Product and company names mentioned herein may be trademarks
and/or service marks of their respective owners. We use these
names without any particular endorsement or with the intent to
infringe the copyright of the respective owners.

Copyright Copyright c© 2014. Eindhoven University of Technology. All rights
reserved. No part of the material protected by this copyright no-
tice may be reproduced, modified, or redistributed in any form or
by any means, electronic or mechanical, including photocopy-ing,
recording, or by any information storage or retrieval system, with-
out the prior written permission of the Eindhoven University of
Technology and Philips Research.

Preferred reference Efficient and Scalable IPv6 Communication Functions For Wire-
less Outdoor Lighting Networks: Mesh Bootstrapping. Eindhoven
University of Technology, SAI Technical Report, December, 2013.
(978-90-444-1325-0)

4

Foreword
In 2013, Philips Research started a project to explore a new architecture for connected

outdoor lighting. The new architecture, making use of 6LoWPAN radio mesh networking, is

designed to bring end-to-end IPv6 connectivity to every light pole. For this project we needed

"network-minded" people who understand embedded systems and could contribute to the design,

implementation and evaluation of various data-communication related functions. The exact

functions to work on were not even defined at the time we wrote the project description! When

Surafel started this project, he showed to be capable and motivated to dive right into the new

subject of networking for Internet-of-Things, where quite different design choices are taken and

protocols are used than in the "regular" IP networking domain. After a quest for the right

topic/function to work on, with some detours due to the quite dynamic and agile nature of the

research project, we arrived at the topic of node bootstrapping (also known as "secure joining")

in the mesh network. This function is a key part of the new communication architecture.

Surafel managed to create an extensive overview of existing bootstrapping methods and

standards, and provided us with a good overview of the design space. Also a preferred design

is described in this report. One of the key functions of the design is the so-called DTLS Re-

lay. For this function, Surafel provided us with a reference implementation in Java and also

showed that it would work for our connectivity architecture. Our expectation is that we can

take Surafel’s implementation in Q4 and integrate it as part of the prototype system we are

developing. Thanks Surafel for your valuable work and contribution to Philips!

Esko Dijk

September 15th, 2014

5

Preface
This report is a step by step description of my work at Philips Research from January

to September 2014. It discusses about a particular design challenges in outdoor lighting con-

nectivity. more specifically, bootstrapping of Nodes in an IPv6 based Personal Area Network

(6LoWPAN). The work presented in this document is a collaborative work between POLAR

research team of Philips Research and the author of this document. Dr. Esko Dijk (Project

Mentor) has been involved in every steps of this document in clarifying research questions,

suggesting and recommending design methodologies, reviewing my work, as well as being a

great support through out the life time of the project.

September 15th, 2014

6

Acknowledgments
would like to thank my supervisors, Dr. Esko Dijk and Assistant Professor Andrei Jalba for

their support and guidance throughout the course of this project. It has been a great pleasure

and experience working with you.

I would also like to deliver my big appreciation to the working culture of The Netherlands

which make me keep the belief that people should be arbitrated by the work they have done.

These two years of my PDEng study has not been too easy on me. I would finally like to

tell myself that “I did it again! ”

September 15th, 2014

7

Executive Summary
Outdoor lighting today is becoming increasingly network-connected. The rapid development

in wireless communication technologies makes this progress faster and competitive. Philips

Research and Philips Lighting are part of the leading forces in exploration and development

of a wide spectrum of low-maintenance, high-quality outdoor/indoor lighting systems that are

state of the art. City Touch is a proprietary outdoor lighting connectivity system of Philips

Lighting, which is based on a client-server architecture.

In an outdoor lighting context, an embedded computer (Node) is installed on a light pole and

is connected to different sensors to provide connectivity for the luminaires. Thus, connectivity

of luminaires generally refers to the computer network of Nodes.

In this report, I present a survey of mechanisms, protocols and technologies that are needed

for bootstrapping of wireless Nodes to an IPv6 based personal area network (PAN). The survey

indicates that there is no single off-the-shelf product or standard that meets all the requirements

of Philips research for its future solution. Hence, I designed a thorough bootstrapping protocol

that is custom tailored to Philips ’s POLAR architecture. The design brings a solution from

pre-deployment configuration to the point where a new Node successfully becomes a part of

a wireless network. The design is partially demonstrated with two software implementations.

Finally I provide recommendations for future work based on my research.

8

Contents

1 Introduction 17

1.1 Overview . 17

1.2 Context . 17

1.3 Outline . 18

2 Stakeholder Analysis 19

3 Problem Analysis 21

3.1 Overview . 21

3.2 Scope . 22

4 Domain Analysis 23

4.1 Overview of bootstrapping protocols . 23

4.1.1 IEEE 802.15.4 . 23

4.1.2 Internet Protocol Version 6 (IPv6) . 24

4.1.3 6LoWPAN . 25

4.1.4 RPL . 26

4.1.5 CoAP . 26

4.1.6 MLE . 27

4.2 Survey on bootstrapping protocols . 27

4.2.1 Commissioning in 6LoWPAN . 27

4.2.2 ZigBee IP (ZIP) bootstrapping protocol 28

4.2.3 ZigBee association procedure . 32

4.3 Summary . 32

4.3.1 Comparison of selected bootstrapping procedures 33

4.3.2 Conclusion . 35

9

5 Requirements Analysis 37

5.1 Customer objectives . 37

5.2 Requirements . 39

5.3 Usecases . 41

6 Design 45

6.1 Overview . 45

6.2 Design Options . 45

6.2.1 Pre-deployment configuration . 46

6.2.2 Network discovery . 47

6.2.3 Network selection . 49

6.2.4 Parent selection . 50

6.2.5 Authentication . 50

6.2.6 Bootstrapping request . 50

6.2.7 Data representation . 52

6.2.8 Joining routing tree . 52

6.2.9 Summary . 54

6.3 Design details . 55

6.3.1 Parameter distribution using DTLS relay 59

7 Implementation 67

7.1 Overview . 67

7.2 Bootstrapping in the POLAR demonstrator . 67

7.2.1 Modification . 68

7.3 DTLS relay demonstrator . 69

7.3.1 Setup and architecture . 69

8 Validation and Verification 73

8.1 Overview . 73

8.2 Design Verification . 73

8.3 Test result . 74

8.3.1 POLAR demonstrator . 74

8.3.2 DTLS relay demonstrator . 75

10

9 Conclusion 81

9.1 Overview . 81

9.2 Deliverables . 81

9.3 Limitations . 82

9.4 Recomendation . 83

11

12

List of Figures

1-1 The POLAR Outdoor Lighting Context . 18

4-1 IP vs 6LoWPAN Stack . 26

4-2 RPL DODAG . 27

4-3 Commissionig in 6LoWPAN Bootstrapping: Open PAN 29

4-4 Commissionig in 6LoWPAN Bootstrapping: Secured PAN 29

4-5 ZIP Bootstrapping . 30

5-1 Customer Objectives and Requirements . 38

5-2 Requirement Overview . 39

5-3 Bootstrapping Requirements . 41

5-4 Single-hop Bootstrap . 42

5-5 Multi-hop Bootstrap . 44

6-1 Life Path of POLAR Node . 46

6-2 IEEE 802.15.4 MAC Beacon Frame . 48

6-3 Example Parameter Representations . 53

6-4 Design Options . 54

6-5 Summary of Design Choices . 55

6-6 Pre-deployment Configuration . 56

6-7 Network Discovery . 57

6-8 802.15.4 MAC Command Frame . 57

6-9 802.15.4 Beacon Frame and Payload . 58

6-10 Joining RPL DODAG . 60

6-11 Destination Advertisement in Storing Mode . 60

6-12 Destination Advertisement in Non-Storing Mode 60

6-13 Parameter Distribution Using DTLS Relay(Stateful) 62

6-14 Parameter Distribution Using DTLS Relay(Stateless) 64

13

7-1 POLAR Demo Architecture . 68

7-2 Mesh bootstrapping-POLAR demo . 69

7-3 DTLS relay demo . 70

7-4 DTLS relay class diagram . 71

8-1 Mesh bootstrapping visualization . 75

8-2 Packet traffic in POLAR demonstrator . 76

8-3 DTLS relay program output log . 77

8-4 Packet traffic in order 1 . 78

8-5 Packet traffic in order 2 . 79

8-6 Packet traffic in order 3 . 80

14

List of Tables

2.1 Stakeholders and interests . 20

4.1 IEEE 802.15.4 PHY variations (Partial) . 24

4.2 Comparision of bootstrapping protocols . 34

4.3 Summary of bootstrapping protocols . 35

5.1 Single-hop bootstrapping . 42

5.2 Multi-hop bootstrapping . 43

6.1 Pre-deployment configuration options . 47

6.2 Network discovery options . 48

6.3 Network selection options . 49

6.4 Parent selection options . 50

6.5 Bootstrapping parameters . 51

6.6 Parameter representation options . 53

6.7 Predeployment configuration parameters (partial) 55

6.8 Specification of beacon payload . 57

6.9 Flow of events (Stateful) . 63

6.10 DRY header . 64

6.11 Flow of events (Stateless) . 65

8.1 Design Verification . 74

8.2 Testing order . 76

9.1 Requirement checklist . 82

15

16

Chapter 1

Introduction

1.1 Overview

Outdoor lighting today is becoming increasingly network-connected. The main drivers for this

development are cost-saving (on energy and maintenance activities), public safety, and the

drive for “green” lighting solutions. Outdoor lighting connectivity mainly includes creating

and maintaining an end-to-end network of luminaires. This enables remote operations such as

dimming, monitoring, enforcing scheduled lighting, and maintaining luminaires. In an outdoor

lighting context, an embedded computer (Node) is installed on a light pole and is connected

to different sensors to provide connectivity for the luminaires. Thus, connectivity of luminaires

generally refers to the computer network of Nodes.

Philips Research and Philips Lighting are part of the leading forces in exploration and devel-

opment of a wide spectrum of low-maintenance, high-quality outdoor/indoor lighting systems

that are state of the art.

1.2 Context

Due to the ubiquitous nature of luminaire deployment over a certain area (mainly a city),

outdoor lighting connectivity can be used in a wide range of application contexts. This includes

surveillance, connectivity, hosting, and lighting management systems.

This section discusses common systems and services that can be operational in the appli-

cation context. As Figure 1-1 illustrates, entities with green boundary line are systems and

infrastructures that could use all diversions of the City Touch network infrastructure in order to

be operational while entities with blue boundary line are systems and infrastructures that the

17

City Touch could use to be operational. The directed dotted lines indicate that the interaction

is not mandatory.

The diagram only demonstrates the most significant systems that interact with the City

Touch Network infrastructure. However, there could be other domains in which the proposed

network could be used.

Figure 1-1: The POLAR Outdoor Lighting Context

1.3 Outline

The rest of the document is organized in the following manner. Chapter two discusses stake-

holders, their interest, and contribution to the project. Chapter three explains about the

problems and scope of the solutions. Chapter four brings a summery of selected approaches for

solving the problems defined in earlier chapter. It investigates the feasibility of the approaches

in context of this project. Chapter five defines the requirements of the project. Chapter six

introduces design options and presents the selected technologies, procedures(methods) and stan-

dards.Chapter seven describes the demonstrator software programs developed in this project.

Chapter eight presents validation and verification of the artifacts delivered. Finally, chapter

nine concludes the findings of the project and points to directions for future studies.

18

Chapter 2

Stakeholder Analysis

The POLAR Research team of Philips Research owns this project. The team guides the design

modifications, technology choices, and implementation of proof of concept. Philips Lighting

is the owner of the already developed City Touch architecture and product. It is a direct

client of the project since it is expected to use the deliverables of this project as an input for

product creation. TU/e (Technical University of Eindhoven) holds a stake through the PDEng

(Professional Doctorate in Engineering) trainee who is primarily conducting this project. Hard-

ware/Software suppliers also hold a stake through their products, which are used for exper-

imental, demonstration, and product creation purposes. All of the City Touch instances are

set to be deployed in cities and municipalities. Service providers in those cities play an indi-

rect role in the design of outdoor lighting connectivity through their lighting needs. Table 2.1

demonstrates stakeholders and their role in the conception, development, or deployment of the

proposed network.

Role Index
Owner (O): An entity who have the proprietary right of the system

to be developed.

Direct client (DC): An entity who is the direct user of the system

to be developed.

Ultimate client (UC): An entity who is the final user of the outdoor

lighting solution. High level requirements arise from this stake-

holder.

Partner (P): Entities who do not have a direct contribution to the

project but through the products and services that they provide.

19

Table
2.1:

Stakeholders
and

interests

Stakeholder
R
epresented

by
Interest

R
ole

Philips
R
esearch,Lighting

C
ontrolsystem

s
PO

LA
R

R
esearch

Team
D
esigning

and
m
aking

a
dem

onstration
ofoutdoorlight-

ing
connectivity

options
w
ith

proof
of

concept
im

ple-
m
entation

ofusecases.

O

C
ityTouch

G
roup,Philips

Lighting
C
ity

Touch
G
roup

D
eveloping

and
m
aintaining

the
current

outdoor
solu-

tion
by

Philips.
D
C

PLS
O
utdoor,Philips

Lighting
PLS

O
utdoor

D
eveloping

innovative
outdoor

lighting
solutions.

D
C

T
U
/e

O
O
T
I

Educating
com

petent
professionals

w
ho

can
design

and
develop

com
plex

technologicalproducts.
Ensurethattheprojectisofhigh

quality
and

offerssuffi
-

cientdesign
challengesforthePD

Eng
candidateto

prove
them

selves.
Evaluate

the
know

ledge,
skill

and
perform

ance
of

the
PD

Eng
candidate.

A
ssessthe

potentialofthe
projectoutcom

esasa
m
eans

forprom
oting

the
program

towardsstudentsand
indus-

try.

P

H
ardware

and
Software

Suppliers
R
edw

ire(Econotag)
ST

M
icroelectronics

C
ontiki

D
esign

and
m
anufacture

IEE
802.15.4

enabled
devices.

D
esigning

boards
and

com
puters

that
are

used
in

out-
door

lighting
networks.

D
eveloping

and
distributing

operating
system

s
for

In-
ternet

ofthings.
D
eveloping

and
distributing

protocolstack
for

Internet
ofthings.

P

M
unicipalities

and
service

providers
Lighting

needs
Purchasing

and
using

the
finalproductofoutdoorlight-

ing
solution.

U
C

20

Chapter 3

Problem Analysis

3.1 Overview

In the POLAR architecture, Nodes create a wireless sensor network (WSN) of spatially dis-

tributed autonomous sensors to monitor physical or environmental conditions, such as temper-

ature, sound, pressure, and ultimately lighting. Nodes cooperatively pass their data through

the network to a main location and also receive control commands.

The driving questions that this project needs to answer ascend from this problem. These

questions are the following:

• How can an mesh only Node receive bootstrapping information? This includes identifying

and stating the necessary and optional steps that should be followed by a device to

successfully acquire network information during startup.

• Where and how should the Node get the information from?

• What are the choices available?

– What protocols are available ?

– What technologies are provided by stack suppliers?

– Which of these can be reused?

– Which of these can be remodeled/redesigned?

– Which features are not available?

• What are the necessary steps for a Node to become a part of mesh network?

– are there standards or a previous designs by vendors?

21

– How can these standards be adopted to the City Touch architecture?

– What else can be added for a more robust and secured bootstrapping?

• What is the information a Node needs to receive and in what form?

• How can this process be secured?

3.2 Scope

This project aims to provide a detailed design of the bootstrapping process for POLAR ar-

chitecture. It describes steps, procedures, and technology choices for a robust and thorough

bootstrapping mechanism of Nodes. It mainly strives toward answering the driving questions

mentioned in section 3.1.

Security is one of the essential topics in designing any network. However, it is only an

optional component of this project. Other projects are being conducted separately to face the

security requirement of the POLAR architecture. Thus, this project only focuses on offering

an open architecture that could host different security designs.

Though out door lighting connectivity can be achieved by combining different link and

network layer technologies such as, wifi, Zigbee, [2, 12, ?], the design proposed in this document

is exclusively based on 802.15.4 [5, 6, 7] and IPv6 [17, 10] technologies. These are chosen to

allign POLAR with previous architectures and solutions.

A demonstrator is implemented that follows the high level design guideline (mesh boot-

strapping.) However, it can only serve the purpose of proofing a concept. It does not follow

the detailed design choices and flow of events described in this document.

The research included in this project does not guarantee an exhaustive list of already existing

solutions. Solutions are selected and discussed based on availability.

22

Chapter 4

Domain Analysis

4.1 Overview of bootstrapping protocols

Bootstrapping can be defined as obtaining network and security resources to successfully become

a part of a network. This section discusses procedures proposed by different bootstrapping

protocols from different standardization bodies. It includes a set of steps followed by a joining

Node in order to join an operational 6LoWPAN. Before going into the details of bootstrapping

protocols, it is vital to understand the following technologies listed and discussed in sections

4.1.1-4.16.

4.1.1 IEEE 802.15.4

IEEE 802.15.4 [5, 6, 7] is an Institute of Electrical and Electronics Engineers (IEEE) standard.

This standard defines the protocol and interconnection of devices via radio communication in

a personal area network (PAN). The standard initially specified two physical layers (PHY),

namely, the 868/915 MHZ direct sequence spectrum and the 2450 MHZ direct sequence spec-

trum. The 2.4GHZ PHY supports 250 kb/s and the 868/915 PHY supports 20 and 40 kb/s

respectively. The standard describes the physical layer (PHY) and medium access control

(MAC) sublayer specifications for low data rate wireless connectivity with fixed, portable, and

moving devices with no battery or very limited battery consumption requirements typically

operating in the personal operating space (POS) of up to 1km.

Since the release of the first standard in 2003, IEEE made number of amendments to the

802.15.4 standard. Currently, the standard defines more than 10 PHYs (partially shown in Table

4.1.) When designing and implementing a wireless network using an IEEE 802.15.4 device, the

PHY chosen depends on local regulations and user preference about operating frequency.

23

Table 4.1: IEEE 802.15.4 PHY variations (Partial)

PHY (MHZ) Frequency

band

(MHz)

Chip

rate(kchip/s)

Modulation Bit rate

(kb/s)

Symbol

rate

(ksymbol/s)

780 779-787 1000 O-QPSK 250 62.5

780 779-788 1000 MPSK 250 62.5

865/915
868-868.6 300 BPSK 20 20

902-928 600 BPSK 40 40

865/915 (Optional)
868-868.6 400 ASK 250 12.5

902-928 1600 ASK 250 50

865/915 (Optional)
868-868.6 400 O-QPSK 100 25

902-928 1000 O-QPSK 250 62.5

950 950-956 GFSK 100 100

950 950-956 300 BPSK 20 20

2450 DSSS 2400-

2483.5

2000 O-QPSK 250 62.5

4.1.2 Internet Protocol Version 6 (IPv6)

IPv6 [17] is the replacement Internet protocol for IPv4. It is a standard developed by the

Internet Engineering Task Force (IETF), an organization that develops Internet technologies.

The IETF, anticipating the need for more IP addresses, created IPv6 to accommodate the

growing number of users and devices accessing the Internet. IPv4 has proven to be robust,

easily implemented, and interoperable, and has stood the test of scaling an internetwork to a

global utility the size of the Internet. Some of the initial design goals of IPv6 are:

• Larger Adress Space: Recent exponential growth of the Internet and the impending

exhaustion of the IPv4 address space. IPV6 solves this problem by introducing a 128 bit

addressing scheme in contrast to the 32 bit addressing scheme of IPv4. This means IPv6

can allow 2128 or approximately 3.4*1038 addresses, or more than 7.9*1028 times as many

as IPv4.

• Better Management of Address Space: It was desired that IPv6 not only include

24

more addresses, but also a more capable way of dividing the address space and using the

bits in each address.

• Elimination of “Addressing Kludges”: Technologies like NAT are effectively “kludges”that

make up for the lack of address space in IPv4. IPv6 eliminates the need for NAT and

similar workarounds, allowing every TCP/IP device to have a public address.

• Requirement for security at the IP level (IPSec)

• Quality of Service: Need for better support for real-time delivery of data, known as

quality of service (QoS.)

Besides providing an almost limitless number of unique IP addresses for global end-to-end

reachability and scalability, IPv6 has a simplified header format for efficient packet handling,

larger payload for increased throughput and transport efficiency, and many interesting feature

that makes it preferable to its predecessor.

All the advantages of IPv6 did not come without a few scarifies. Specifically, IPv6 suffers

from a relatively high packet header due to bigger source and destination addresses. This

becomes a highly degrading feature when the protocol is used in low data rate devices with a

smaller MAC packet size such as IEEE 802.15.4. In addition, the Maximum Transmission Unit

(MTU) of IPv6 packets (1280 octets) is too large to be carried by MAC payload (127 octets)

of 801.15.4 packet. To overcome this drawback, the IETF 6LoWPAN working group designed

and proposed an intermediate layer as discussed in the next section.

4.1.3 6LoWPAN

6LoWPAN [10, 16]is an acronym for Ipv6 over Low Power Wireless Personal Area Network.

It is an IETF draft that describes transmission of IPv6 packets over IEEE 802.15.4 with the

help of an adaptation layer which exist between MAC and the IP network layer (shown in

figure 4-1). Furthermore, the 6LoWPAN specification adopts various IPv6 concepts such as

Neighbor Discovery and Stateless Auto Configuration with slight modification so that it fits

the 802.15.4 specification. In practice, 6LoWPAN stack implementations in embedded devices

often implement the 6LoWPAN adaptation layer together with IPv6. Thus, they can alterna-

tively be shown together as part of the network layer. The 6LoWPAN specification describes

a fragmentation and reassembly mechanism to successfully transport IPv6 Packets in IEEE

802.15.4 MAC Payload.

25

Figure 4-1: IP vs 6LoWPAN Stack

4.1.4 RPL

RPL [18] stands for Routing protocol for lossy and low power networks. RPL is defined in

RFC 6550. It is a highly used routing protocol for low power and constrained networks such as

6LoWPAN. The main idea is that Nodes in constrained networks form a Destination Oriented

Directed Acyclic Graph (DODAG) to route L3 and above packet to a root. RPL introduces

a rank (shown in Figure 4-2) for each Node which denotes a Node’s relative position within

a DODAG with respect to the DODAG root. RPL defines a new ICMPv6 message with four

possible types:

• DAG Information Object (DIO): carries information that allows a Node to discover

an RPL Instance, learn its configuration parameters, and select DODAG parents.

• DODAG Information Solicitation (DIS): used to solicit a DODAG Information

Object from a RPL Node.

• Destination Advertisement Object (DAO): used to propagate destination informa-

tion upwards along the DODAG.

• Destination Advertisement Object-Acknowladgment (DAO-ACK): Is the ac-

knowladgment message for DAO. The above messages are exchaned as discribed in RFC

6550 to form upward routes towards the DODAG root.

4.1.5 CoAP

Constrained Application Protocol (CoAP) [15] is an application protocol for devices in low

power, low bit rate, and high loss rates. CoAP is designed in such a way that it can be used as

a constrained web protocol, fulfilling machine-to-machine communication requirements. The

26

Figure 4-2: RPL DODAG

interaction model of CoAP is similar to the client/server model of HTTP. However, machine-

to-machine interactions typically result in a CoAP implementation acting in both client and

server roles. A CoAP request is equivalent to that of HTTP and is sent by a client to request an

action (using a method code) on a resource (identified by a URI) on a server. The server then

sends a response with a response code; this response may include a resource representation.

Unlike HTTP, CoAP deals with these interchanges asynchronously over a datagram-oriented

transport such as UDP.

4.1.6 MLE

Mesh Link Establishment Protocol (MLE) [8] is a link establishment protocol that is mainly

used to dynamically configure and secure links in a mesh network. It is also used to transport

network-wide changes to end devices. 802.15.4 links can be asymmetric in that a link between

neighboring devices may be much more reliable in one direction than in the other. This limits

the usefulness of unilateral link quality detection: a link that looks strong to one device may

not be usable because it works poorly in the other direction. To avoid wasting effort configuring

unusable links, devices can use MLE to send link-local multi-casts containing their local link

quality indicator (LQI). Neighboring Nodes can then form an estimate of the two-way quality

of their link to the sender.

4.2 Survey on bootstrapping protocols

4.2.1 Commissioning in 6LoWPAN

This document [9] releases a proposed 6LoWPAN bootstrapping protocol. The proposed draft

starts with a core definition of bootstrapping as a process by which a LoWPAN Bootstrapping

27

Device (LBD) collects a LoWPAN Information Base (LIB) message from a LoWPAN Boot-

strapping Server (LBS.) As depicted in Figure 4-3 and 4-4 a joining Node starts by scanning

its radio range looking for an existing LoWPAN network. This is followed by broadcasting

a LoWPAN Bootstrapping Agent (LBA) solicitation message. Based on the LBA solicitation

message, all LBAs and LBSs that are one hop reachable to the LBD reply by sending a unicast

LBA advertisement message addressed to the LBD. At this point the LBD have a list of devices

which it can use to bootstrap. Thus, it will choose one of the LBSs (if there is any in the range)

or LBAs. However, the document does not specify or recommend a guideline to choose the

finest LBA or LBS. After selecting the LBA, the LBD sends a unicast Join Request (JR) to the

chosen LBA. If the LoWPAN is an open network, then the LBA does two things(demonstrated

in Figure 4-3):

• Reply with Join Reply (JRep) message, which contains all PAN-Specific Information

(PSI). This information may include PANID, Server Address, and Prefix.

• Forward the JR to the LBS for Device-specific Information (DSI.)

The LBD now receives the JRep, configures its PSI, and waits for the server to send the JRep

containing the DSI. In this case (Open LoWPAN) the LBS will ultimately sends back the JRep.

It is then forwarded via the LBA to the LBD. The LBD can now configure its DSI and the

bootstrapping procedure is completed. However, if the LoWPAN is a closed/secured (demon-

strated in Figure 4-4), then the LBA must advice the LBS for an authentication, in order to

send the PSI to the LBD. Thus, in a closed/secured LoWPAN, the LBA always forwards the

JR to the LBS. Subsequently, the LBS transform the JR message to a valid authentication

request and forward it to an EAP authentication server [1]. (LBD must encapsulate its au-

thentication credentials in a JR.) When the authentication server indicates the success of the

authentication, the LBS sends all network resources (PSI, DSI, Encryption key, etc.) along

with the ACCEPTED code. In the case of failure in the authentication process, a DECLINE

code is sent to the LBD. Upon the successful arrival of the JRep with an ACCEPTED code

and all necessary network resources, the bootstrapping process is completed.

4.2.2 ZigBee IP (ZIP) bootstrapping protocol

The ZigBee IP bootstrapping protocol [2] is perhaps the most explicitly explained procedure.

It is composed of 12 consecutive steps, shown in Figure 4-5, that specify a list of actions that

28

Figure 4-3: Commissionig in 6LoWPAN Bootstrapping: Open PAN

Figure 4-4: Commissionig in 6LoWPAN Bootstrapping: Secured PAN

29

should be taken by a joining device in order to join an operational PAN. These steps are

presented and discussed below.

Figure 4-5: ZIP Bootstrapping

1. Network Discovery and Selection: This is a phase where a joining device scans for available

ZIP networks and chooses which ZIP to join. It has two sub-phases in it.

(a) Network Discovery: the joining device broadcasts a beacon request and collects all

beacon frames sent by ZIP routers or coordinators.

(b) Network Selection: when there is more than one ZIP network or even other IEEE

802.15.4 based networks, the joining device should choose which network it joins.

This basically can be done in application specific means, varying on the implemen-

tation. One way of implementing a selection mechanism is by preconfiguring the

desired ZIP parameters to the joining device. When a joining device receives a

beacon frame, it only selects the originating network only if the information in the

beacon checks out with its preconfigured parameters.

2. Parent Node Selection: Once the desired ZIP network is chosen, the next step is choosing

the appropriate parent to use for bootstrapping. This is done by selecting a Node with

the best Link Quality Indicator (LQI) and ability to accept a child Node.

3. Configuring PAN Identifier: The joining Node configures its 802.15.4 MAC PAN identifier

30

to that of the selected target network.

4. Configuring Link Local Address (LLA64): The Node configures an IPv6 link local address

for its 802.15.4 interface using the LL64 address format.

5. Configuring MAC Polling (Optional): If the joining Node is a sleepy Node, it must use

Mesh Link Establishment (MLE) protocol exchange. This is to inform the parent router

that it is indeed a sleepy Node and uses the MAC Polling feature for Layer-2 packet

transmissions. If the parent could not accept a sleeping Node, then the joining Node

should select another parent (step B.)

6. Authentication: As security is a big aspect of bootstrapping, the joining Node is authen-

ticated using PANA1 [3].

7. Synchronize Packet Counter: The joining Node performs a 3-way secured MLE handshake

to synchronize frame counters with the parent router.

8. IPv6 Router Discovery: At this phase, the joining Node is authenticated and its packet

counter is synchronized with that of the parent router. The next step is finding an IPv6

router for packet routing to and from the coordinator. At this phase, the Node also

receives the network prefix of the ZIP network. This is done by using the IPv6 Router

discovery protocol as it is described in RFC 6775 [18].

9. Short Address Generation: The joining Node generates its own 16-bit short address. The

generated addresses must not be one of the reserved values (e.g., 0xfffe.)

10. Duplicate Address Detection (DAD): As the joining Node generates its own 16-bit short

address, it runs DAD to guarantee that the generated value has not already been taken

by another Node. DAD is performed as it is described in RFC 6775.

11. Short Address Exchange: The joining Node and its parent exchanges their 16-bit short

addresses using a 3-way MLE [8] handshake.

12. Join DODAG: The joining Node now is a part of the ZIP network. It can join the

DODAG. If it is a host, then its parent must send the RPL DAO message to the DODAG

root. This creates a downward root. (RPL is discussed in Section 6.1.4)

1Protocol for Carrying Authentication for Network Access

31

4.2.3 ZigBee association procedure

The ZigBee [12] association procedure describes a mechanism where a new device joins a ZigBee

network. In order to join a pre-existing network, a joining device passes through the following

phases:

1. Network Scanning: The joining Node performs an active/passive scan.

2. Beacon broadcast by router/coordinator: The coordinator broadcasts a beacon frame

both periodically and by request from a joining device. The beacon frame includes infor-

mation about PANID, Address of coordinator, extended PANID (optional), Allow Join,

Router- Capacity, Host-Capacity, and Device Depth.

3. Association Request: Following the receipt of a beacon frame, the joining Node sends

an association request command to a specific PANID or to any PAN by setting PANID

Value 0x FFFF. This is followed by acknowledgment from the parent.

4. Association response: If the association request is accepted (if the Node is validated to

be authentic.) then parent includes a 16-bit short address for the joining Node. This

message is also followed by an acknowledgment.

4.3 Summary

When a Node joins a wireless sensor network, it passes through a series of steps before it is

functional in the network.The seven selected procedures presented in sections 4.2.1-4.2.3 depicts

a framework template for the Bootstrapping process. The process starts with discovering

available wireless networks and ends with final stage of registration and becoming a part of the

routing tree. These steps are:

1. Pre-deployment Configuration: Pre-installation and deployment configuration that en-

ables the joining Node to have initial parameters. Example methods include factory

configuration where initial parameters are burned into the Node during manufacturing,

or administrative configuration, where those parameters are injected before installation.

2. Network Discovery: Detecting available wireless networks that are in a radio frequency

range. It can be carried out by using a beacon broadcast from network coordinators and

routers.

32

3. Network Selection: From the available wireless network discovered in the previous step,

a Node has to select one as a desired one. If a beacon broadcast is used in earlier steps,

the information contained in the beacon may be used to select the desired network.

4. Agent Selection:This step is to select a viable bootstrapping agent. When a Node is

more than one hop away from a Gateway Node, It selects a bootstrapping agent that can

facilitate the process. The Link Quality index and the depth of the candidate in routing

tree are some of the parameters that may play a role in selecting a bootstrapping agent.

5. Authentication: As security is an enormous concern in a wireless network, a joining Node

must be authenticated by a legitimate entity and receive security credentials. DTLS

handshake and PANA relay are some of the protocols widely used for this purpose.

6. Acquiring Network Parameters: Assuming the authentication process is successful, the

next step is to receive network parameters. The entity which is pushing those parameters

and the type of parameters to be pushed vary among protocols. The parameters are

stored and initialized.

7. Forming routing path: Finally a joining Node should be a part of routing tree for an

end-to-end communication with other Nodes and a Back-end server.

Table 4.2 depicts a summary of the mechanisms used by the selected seven bootstrapping

procedures.

4.3.1 Comparison of selected bootstrapping procedures

I also made a comparison of bootstrapping protocols based on criteria that are desirable to the

development of POLAR architecture. These criteria are.

• Support for mesh bootstrapping: bootstrapping via gateway and routers.

• Support for third party AAA server : support for Third party authentication servers that

may or may not be in the same location as the Back-end.

• Support for DTLS: DTLS being the preferred authentication mechanism, does the pro-

cedure have open architecture for DTLS?

• Distinction between phases: is there a clear distinction between phases of bootstrapping?

This might be useful to combine different phases from different procedures.

33

• Agility:

1. Re-association: the ability of an already joined Node to re-associate when needed

(example, link broken, re-authentication is needed.)

2. Changing gateway: what happens when a gateway (coordinator) is changed?

• Plug and play after pre-installation configuration: does it provide PnP after pre-installation

configuration. (No human interaction during deployment)

• Security: Does it describe different levels of security (L2, upper layer)?

• Availability of implementation: Is there available implementation? Open or closed source?

Full or partial?

• State of Standardization: is the protocol standardized

Table 4.1 illustrates the comparison of selected bootstrapping protocols based on the criteria

mentioned above. Color codes are used for comparison. Green, Orange, and Red refers to fully

supported, partially supported or expected, and not supported respectively. For the sake of

the size of the table, letters from A-G are used to represent the bootstrapping procedures in

Sections 4.2.1-4.2.3 in an orderly manner. Descriptions about the comparison are not included

in the table.

Table 4.2: Comparision of bootstrapping protocols

Criteria Preference A B C
Support for mesh bootstrapping Mandatory
Support for third party AAA server Preferred
Support for DTLS Encouraged
Distinction between phases Nice to have
Re- Association Preferred
Changing Gateway Mandatory
PnP after pre-installation configuration Mandatory
Security Mandatory
Availability of implementation Encouraged
Standardization Nice to have
Fully Supported Partially Supported or Expected Not Supported

34

4.3.2 Conclusion

Our summery concludes by pointing out the following observational facts:

• The POLAR bootstrapping procedure supports the least amount of criteria. This indi-

cates the need for re-designing the procedure for future (POLAR) Architecture.

• Zigbee IP provide support for most of the mandatory criteria.

• Zigbee IP are considered a better bootstrapping procedure due to the fact that they

provides support for eight of the eleven criteria. Zigbee follows with seven.

Table 4.3: Summary of bootstrapping protocols

Step Commissioning in
6LoWPAN

ZIP Zigbee

Pre-deployment Con-
figuration

Unspecified Administrative config-
uration

Administrative config-
uration

Network Discovery Beaconing Beaconing Beaconing
Network Selection Unspecified Application specific

means
Application specific
means

Agent Selection LBS first otherwise
LBA

LQI Device depth

Authentication EAP PANA Trust center
Acquiring Network
Parameters

LBP message IPv6 RD Unspecified

Configuration Unspecified IPv6 RD Unspecified
Forming Routing Path RPL RPL Unspecified

35

36

Chapter 5

Requirements Analysis

5.1 Customer objectives

This section discusses the project goals and customer’s expectation towards the project achieve-

ment. Six fundamental customer objectives are identified and discussed. They are also used to

determine requirements of the proposed design. Customer objectives are stated below.

• Low-Cost Network: The research team wants to develop an alternative low-cost network

to the POLAR network setup.

• Rich Functionality: Even though the proposed network is a low-cost alternative, it should

support fundamental networking functionalities and features that are required in outdoor

lighting connectivity.

• Ease of Setup: The network is required to be easy-to-setup with minimal configuration

effort.

• Ease of Integration and Deployment:

– Integration with existing infrastructure: as Philips owns a wide range of network

infrastructure and services, the proposed network is anticipated to be integrated

with the existing network infrastructure and services.

– Integration with existing demo: the POLAR network setup is currently implemented

as a proof of concept; the demonstrator for the proposed network is foreseen to be

able to integrate with the existing implementation.

• Sustainability: Outdoor lighting connectivity is exposed to a wide variety of failures,

dynamically changing deployment environment, and high chances of upgradability. The

37

proposed network is expected to handle these failures, changes, and upgrades with mini-

mal human interaction.

• Security: The proposed network is expected to only sustain an authorized, authenticated,

and accounted communication.

Clusters of requirements and design choices are generated from the above mentioned cus-

tomer objectives. Figure 5-1 demonstrates how fundamental requirements of the proposed

network are derived from customer objectives.

Figure 5-1: Customer Objectives and Requirements

38

5.2 Requirements

As discussed in the previous section, clusters of requirements are identified. These requirements

guide the design goal of the POLAR architecture. Not all of these requirements are necessarily

related to the bootstrapping module. They are obtained from POLAR team requirement list

and discussed here to give a thorough understanding of the POLAR network objective.

Figure 5-2: Requirement Overview

The requirements are :

• Architectural requirements Requirements that mainly specify the ability of hardware in

the network and their execution environment.

• Bootstrapping requirements Requirements that state the necessities of a Node to be able

to join a network.

39

• Communication requirements Requirements that guide the type of communication tech-

nologies that the network needs.

• Compliance requirements Requirements that suggest what kind of legal and technical

compliance the network should follow.

• Installation and configuration requirements Requirements that set list of features that

the network should have to start up.

• Reliability requirements Requirements that determine the robustness of the network.

• Security requirements Requirements that are revealing the security needs of the network.

This includes the specific type of authentication mechanism and which communication

should be secured.

• Upgradability requirements Requirements that describe the scalable nature of the net-

work.The scalablity does not only refer to the growth in number but also the expansion

in technology use (hardware and software).

The above list presents requirements for the entire POLAR domain. However, specific

requirements of this project are those which describes conditions for commissioning and boot-

strapping of Nodes. figure 5-3 demonstrates sets of requirements that are relevant in the design

of bootstrapping mechanism for POLAR. As security generally is an optional concern for this

project, the figure presents two requirement sets, namely bootstrapping requirements and se-

cured bootstrapping requirements. The dotted arrows shows the dependency and the dotted

triangular arrows represents the realization.

40

Figure 5-3: Bootstrapping Requirements

5.3 Usecases

As observed in the survey, a bootstrapping process is a collection of interdependent sets of

message exchanges and configurations between a joining device and (set of) devices that are

used for authenticating and supplying a network parameter. Although, bootstrapping can be

regarded as a single usecase that describes an interaction of devices to allow/reject joining of a

new device, the procedure slightly differs depending on the joining node’s position with respect

to the Gateway Node.That is, if a Gateway Node is one-hop reachable from a joining Node, then

the bootstrapping procedure does not require a relay or proxy mechanism for requesting and

receiving desired parameters. In contrast, when the joining Node is more than one-hop away

from the Gateway Node, there must be a mechanism to transport the request and response to

41

and from the Gateway Node. Tables 5.1 and 5.2 depicts the above two scenarios.

Table 5.1: Single-hop bootstrapping

Usecase ID 001
Usecase Name Single-hop Bootstrap
Created By: Surafel Last Updated By Surafel

Date Created January 23, 2014 Date Last Updated May 5, 2014
Actor: Node As JN, Node as Gateway Node

Description A Node joins an already existing PAN
Precondition: Gateway router is located in the Radio range of JN

JN is a 6LoWPAN enabled device, Gateway is a 6LoWPAN FFD
JN have all the required credentials and configurations to bootstrap

Post Conditions: JN is a part of the PAN. It can send IP packets to other Nodes
and receive the once addressed to it.

Course of Events: 1. Node: Discovers the desired PAN and its Gateway
2. Node: Request network parameters
3. Gateway: Sends network parameters
4. JN: Recieve parameter and configure itself
5. JN: Join a routing tree

Alternative flow Security
2a. Node request security credentials
2b. Gateway Authenticates JN (with BE or Locally)
2c. Gateway sends security and network parameters
Gateway dose not accept new Node
2a. Gateway: reply with not accepted message
2b: JN: Go to step 1 and select another PAN or giveup after some time

Exception The flow of events does not apply when a Gateway Node bootstraps
Special Requirements 6LoWPAN ND, RPL, CoAP and other protocols may be used

Notes and Issues This usecase is performed every time a new Node is joining the PAN

Figure 5-4: Single-hop Bootstrap

42

Table 5.2: Multi-hop bootstrapping

Usecase ID 002
Usecase Name Multi-hop Bootstrap
Created By: Surafel Last Updated By Surafel

Date Created January 23, 2014 Date Last Updated May 5, 2014
Actor: Node As JN, Node as Gateway Node, Node as BA

Description A Node Joins an already existing PAN
Precondition: Gateway router is not located in the Radio range of JN

JN is a 6LoWPAN enabled device, Gateway is a 6LoWPAN FFD
BA is a 6LoWPAN FFD
BA is located in the Radio range of JN
JN have all the required credentials and configurations to bootstrap

Post Conditions: JN is a part of the PAN. It can send IP packets to other Nodes
and receive the once addressed to it.

Course of Events: 1. Node: Discovers the desired PAN and list of potential BAs
2. selects a BA from the list
3. Node: Request network parameters
4. BA: Forwards the request to Gateway
5. Gateway: Sends network parameters to BA
6. BA: Receives network parameters and forwards it to JN
7. JN: Receive parameter and configure itself
8. JN: Join a routing tree

Alternative flow Security
3a. Node request security credentials
3b. Gateway Authenticates JN (with BE or Locally)
3c. Gateway sends security and network parameters via BA
Gateway dose not accept new Node
3a. Gateway: Reply with not accepted message
3b: JN: Go to step 1 and select another PAN or give up after some time
BA does not accept new device
3a. BA: Reply not accepted message
3b. JN: Go to step 2 and select another BA or give up after sometime

Exception The flow of events does not apply when a Gateway Node bootstraps
Special Requirements 6LoWPAN ND, RPL, CoAP and other protocols may be used

Notes and Issues This usecase is performed every time a new Node is joining the PAN

43

Figure 5-5: Multi-hop Bootstrap

Figures 5-4 and 5-5 diagrammatically represents the two use case scenarios discussed in the

Tables 5.1 and 5.2.

44

Chapter 6

Design

6.1 Overview

A bootstrapping protocol for POLAR follows the same design principles of the bootstrapping

protocols discussed in Chapter 4. Furthermore, the POLAR imposes certain specific guidelines

that govern the design procedure. These specific guidelines are directly inherited from require-

ments of the system and preference of Philips Research. Basically, POLAR is a 6LoWPAN

with a Back-end system controlling the operation and configuration of the network. Therefore,

the bootstrapping procedure of the system is a custom-designed join procedure for an outdoor

lighting connectivity network of 6LoWPAN.

6.2 Design Options

Bootstrapping can be described as obtaining network and security resources to successfully

become a part of a functional PAN. An already bootstrapped Node can send and receive

packets addressed to it or to the group it belongs to, successfully decode them, and interpret

the content of the packet that it received and correctly encode messages before sending so that

receiver(s) with the right security resources can unravel the content. Additionally, depending

on the Node’s role in the PAN, it may route packets.

Although bootstrapping is a single usecase in a wireless PAN, as discussed in Section 4.2

there are sequence of events and message exchanges between a JN and other Nodes which

have already joined the PAN. In almost all of the existing bootstrapping protocols, these mes-

sage exchanges are designed in a modular /step-by-step manner. This is particularly handy to

construct a newer protocol by using some of the existing steps. The design of POLAR boot-

45

strapping protocol covers all the necessary steps for a new Node to join an existing wireless

PAN. Thus, the design specifies the technology choices, message exchanges, and its contents

for all steps except the authentication procedure.

Generally, a new Node passes through states that enables it to choose an active and desired

PAN in a designated radio channel, select a bootstrapping agent, optionally authenticate itself

to a security server, collect necessary resources, and join a routing graph (DODAG). In this

project, we search and compare efficient technologies available for each step and chose the

methodologies that are thorough and provide maximum flexibility for redesign. The chosen

technologies are further explained in the following sections and customized to best fit the

overall POLAR architecture and requirements.

6.2.1 Pre-deployment configuration

This is the first step where all parameters that describe the identity of the JN are configured

to the Node. Initial values for pre-bootstrapping parameters such as join key and MAC ad-

dress can sometimes be provided by a manufacturer or it is also possible to configure them

administratively on/off site before deployment. The life path of an IEEE 802.15.4 is depicted

in Figure 6.1. Administrative configuration refers to any configuration of nodes after leaving

the manufacturer to the point it is deployed. Table 6.1 demonstrates the three options for the

pre-deployment configuration phase. One can clearly see that a mixed method has a better

potential than the other two. This is because it gives designers a better flexibility to choose

which of the parameters should be configured locally at Philips and which should come config-

ured from a manufacturer. Furthermore it does not require a special order from manufacturer

(e.g. all 802.15.4 RF chips have a pre-configured unique MAC address)

Figure 6-1: Life Path of POLAR Node

46

Table 6.1: Pre-deployment configuration options

Method Pro Con

Factory Configuration

Less/no configuration at Philips. Not flexible, Philips may want
to configure some parameters
locally.

Well-constructed parameters are
already pre-configured upon re-
ceiving the Node from manufac-
turer.

Manufacturer may not configure
all the necessary parameters.

Presumably globally unique MAC
address is constructed from EUI-
64

May cost extra to order custom
configured Nodes.

Administrative configuration Flexible, Philips or an installer
can configure localized parame-
ters and keys.

Extra work for generation and
configuration of pre-deployment
parameters.
Uniqueness of parameters can
only be guaranteed locally, i.e., in
Philips owned devices.

Mixed Philips can take advantage of al-
ready pre-configured parameters
without extra cost and configure
other local parameters on/off site.
Additionally, all the pros from the
first two methods apply in this
method.

Extra work for generation and
configuration of local parameters.

6.2.2 Network discovery

The network discovery phase is a period at which the JN scans through channels looking for

transmitted packets to discover available PANs. The prioritized list of channels can be config-

ured to the JN at an earlier phase. The IEEE 802.15.4 MAC specification already describes

mechanisms for network discovery. The network discovery is mainly based on beacon frames

broadcasted by routers and a PAN coordinator. However, there are various kinds of beacon

broadcasts depending on how and when these frames are broadcasted. In triggered beacon

mode, beacon frames are only broadcasted by routing devices following a command from the

PAN coordinator. The other variation is a beacon frame is broadcasted periodically and on

request . Thus, the JN can receive this frame by passively listening to or actively asking for

it. In some cases, the JN can also be pre-configured with the initial information of the desired

network. Thus, the IEEE 802.15.4 network discovery mechanism is only mandatory if JN does

not have a prior knowledge of the available or desired network. Table 6.2 compares the different

47

network discovery mechanisms. In practice, Passive scan is mostly enabled because it is also a

means for Nodes to get information about the PAN throughout the lifetime. Accordingly, by

combining a passive then an active scan, a better performance can be achieved. This means

a Node first passively listens for beacon frames for certain amount of time then when time

expires it can start actively requesting. As Figure 6.2 depicts, the IEEE 802.15.4 specification

defines a MAC beacon frame that can be used in network discovery. The beacon payload may

be designed to accommodate all the necessary information needed for network discovery.

Figure 6-2: IEEE 802.15.4 MAC Beacon Frame
k,m,n = variable length

Table 6.2: Network discovery options

Method Pro con
Active beacon scan No unnecessary beacon broadcasts.

BA only responds to beacon solicitation.
No broadcast is needed.
Avoids periodic Advertisement.

Might create congestion, when a
large number of Nodes are trying
to join the PAN at the same time.

Passive beacon scan Passive scan is always enabled to get
information about the network.
Less network trafic, speciially if there
are large number of Nodes trying to join
the PAN.

A Node may wait for a long time
depending of the MAC super-
frame structure, before getting a
beacon from desired network.

Triggered Beacon
Mode

Very few beacon broadcasts.
BA only broadcasts when it is triggered
from Back-end

Human administration (or sched-
ule) is needed to trigger on and
off

Administrative Con-
figuration

No need of beacon solicitation and ad-
vertisement.
Avoids periodic advertisement.

Desired network must be known
at first.
Re-configuration is needed for
different deployment in different
network.

Passive-Active scan. Takes advantage of the periodic beacon
advertisement as well as active beacon
scan
Node does not have to wait for long pe-
riod of time to receive beacon frames
since it can request based on its own
timer.

JN spends certain amount of time
before actively requesting beacon
frames.

48

6.2.3 Network selection

Once a Node discover a set of PANs, it has to make a selection. The selected PAN becomes

the network on which the JN bootstraps to. Assuming that there could be a number of PANs

available in the personal operating space (POS) of JN, the selection should filter out all the

PANs that are not desired. Basically network selection is done by using the information collected

in the previous phases. This information is found in the payload of a beacon frame that has

been collected in the network discovery phase or a pre-configured (predefined selection) by

using a PAN ID of the desired network which is flushed into the JN during pre-deployment

configuration. Table 6.3 lists and compares the selection mechanisms. Automatic selection is a

method where a JN makes a decision based on the beacon payload. The content of the payload

is described in the detailed design. User selection is a means where a human operator manually

makes a decision after discovering the entire available network. In some cases, the owner of the

PAN may want to include proprietary tokens in the beacon payload to mark the Identity of

PAN. In such cases a selection mechanism could use the presence of those tokens to choose the

desired PAN.

Table 6.3: Network selection options

Method Pro Con
Predefined selection Simple. Prior knowledge of network is

needed.
Nodes must be reconfigured to be
deployed in different network.

Automatic selection
based on beacon
payload

No further information is needed.
Selection is made on the spot. Thus,
no static configuration on the Node.
No human or other commissioning de-
vice interaction except for the JN itself.

Malicious devices may broadcast
forged beacon payload, hence JN
could be tricked. Extra security
is needed for a better confidence.

User selection Better level of confidence since an op-
erator is making the choice.
No extra information in the beacon
frame.
No prior knowledge is needed by the
joining Node.

Needs human supervision.
Malicious devices may trick the
human operator.

Automatic selection
base on Proprietary
tokens

Improved confidence becasue of the
proprietary tokens that can be checked
by JN.
Can be used in combination with other
information in the beacon payload.

Could increase the size of the bea-
con frame.
Cryptographic algorithm is
needed for generation and
verification of tokens.

49

6.2.4 Parent selection

In multi-hop bootstrapping, selecting the PAN is not the only selection a JN has to make. It

has to also select an FFD device (Full Functioning Device, a Node with routing ability), which

can serve as a bootstrapping agent. During the network discovery and selection phases, a JN

has gathered information about each routing device that are one-hop reachable. JN must select

one of these devices as a bootstrapping agent. The rank or the link quality can be used to

make a selection. Table 6.5 shows which parameters should be considered for this selection.

Table 6.4: Parent selection options

Method Pro Con
LQI Gives a parent with the best link qual-

ity.
A parent may have the best link quality
but might be far from Gateway.

Rank Gives the parent that is close to the
Gateway.
RPL Ranks can be encapsulated on
beacon payload. Therefore, no further
calculation is needed.

Multiple parents with the same rank
could exist.
A parent could have a high rank but
with broken or very low strength link.

Predefined Simple As it is predefined, it does not have the
capacity to select the best parent dy-
namically.
The pre-configured parent might have a
broken link or be dysfunctional by the
time JN wants to bootstrap.

Combined Better confidence in finding a “bet-
ter”parent. This is because it considers
both link quality and rank.
It can be tunned in different ways (one
can set minimum acceptable link qual-
ity or maximum rank).

Might cause a process overhead since it
has to compare rank and link quality
for all available routers.

6.2.5 Authentication

Authentication mechanism is a topic that is being investigated and designed by security experts

of the POLAR team. Hence, this document only lists the options in consideration. The options

are: EAP [1], PANA [3], and DTLS [11, 13, 14]

6.2.6 Bootstrapping request

At this phase a JN Node is authenticated and has acquired all the security credentials needed.

Therefore, it can now request network credentials from a coordinator. In all of the POLAR

variations, these credentials arise from a cloud-based Back-end system. By definition, acquiring

50

these network resources enables the JN to become a part of the PAN. These parameters are

listed in Table 6.5. The methods available for this phase are listed as follows:

Table 6.5: Bootstrapping parameters

Parameter Meaning
isParent: bool A boolean value indicating if the JN acts as a Router Node
serverAdress IPv6 address of the Back-end server
serverPort: Port number of the Back-end server

maxWaitTime The amount of time in millisecond to wait before retransmission
in case of failure.

maxRetries The number of tries before giving up
updateInterval The time interval Nodes should wait before asking for network informa-

tion updates from
Back-end server

IPv6 Address A gloabally routable IPv6 address for the JN
dodagID The Identifier of the routing tree to which the JN will should join to

RPLparentID The Node Identifier of routing tree root Node
blackList List of IP addresses that are blacklisted

Link-Local UDP request to a Gateway router: This is a simple and straightforward

mechanism to collect bootstrapping information. A JN can easily obtain its link local IPv6

address by combining its EUI-64 to IPv6 Link-Local Prefix (fe80). Subsequently, JN requests

parameters to the gateway Node (using gateway Node’s Link Local Address as destination),

which is in the same PAN as JN. However, this requires multi-hop unicast/multicast forwarding

when the gateway router is out of the POS of the JN.

MLE for parameter dissemination: In most cases MLE is used for network wide pa-

rameter changes; Yet a JN can send a unicast update request to a neighbor. The neighbor

responds by sending an update message containing the current values of the parameters. Since

POLAR bootstrapping parameters originate from Back-end server, a modification to MLE is

needed to supply these information from a Back-end to a neighbor of JN so that it will supply

it to JN using a MLE parameter update message.

CoAP relay: A CoAP relay may also be used to request and receive bootstrapping pa-

rameters. In this method a JN requests parameters from its already joined one-hop neighbor

(bootstrapping agent) using CoAP request. Since the bootstrapping agent already has a glob-

ally routable IPv6 address, it relays the CoAP request to a Back-end server via a multi-hop

CoAP request. The neighbor also relays the response from the Back-end server to JN. This

method can be implemented easily and can have larger packet size. In addition, the path from

the neighboring device to Back-end is already secured.

DHCPv6: A DHCPv6 may also be configured to dynamically provide parameters to JN. In

51

this case, Custom DHCPv6 options need to be defined to accommodate the parameters listed in

Table 6-5. This approach does not work together with the POLAR architecture. As discussed

earlier parameters originate from a Back-end Server rather than being assigned dynamically by

a DHCPv6 server. Another drawback is that most 6LoWPAN stacks do not natively implement

this method.

6LoWPAN neighbor discovery: In this method, The joining Node interacts with the

one-hop reachable router to get the network prefix of the PAN and generates its own IPv6

address by combining it with its EUI-64. This method only supplies the mesh interface IPv6

parameter of the bootstrapping configuration. Thus, JN must perform another request with

another protocol (e.g. CoAP) to a Back-end server using its newly generated IPv6 Address to

collect the full list of parameters.

6.2.7 Data representation

Table 6.6 lists the parameters that need to be transported to a JN for bootstrapping. De-

pending on the type of method we use for making the parameter request, a designer faces a

number of options to represent those parameters. The parameters are partly static flags (e.g.,

isBorderRouter, isParent) and partly a structured data such as IPv6 address. Table 6.6 shows

available data representation mechanisms to transport bootstrapping parameters. The selec-

tion is highly influenced by the development language, the platform of the client program, as

well as the data representation chosen when developing the Back-end server.

Figure 6.2 demonstrate an exemplary (Json, XML, TLV 1, and ASN.12) representation of

initial parameters that are stated in Table 6-5.

6.2.8 Joining routing tree

This is the last phase of the bootstrapping process. At this stage, a JN has found and selected

a PAN, authenticated itself to a Back-end system, and acquired all the necessary security and

network credentials. Therefore, the next and the last thing is to be a part of routing tree. RPL

as discussed in Section 6.1.4 creates a DODAG that a JN can join. Based on the parameters

in the bootstrapping request phase, a JN undergoes to RPL message exchange as described in

RFC 6550 [18].

1Type-Length-Value.
2Abstract Syntax Notation

52

Table 6.6: Parameter representation options

Method Pro Con Supported in
Byte Array Smaller in size

Can represent any data type
Harder to parse
Not human readable

All

JSON Easy to parse
Available libraries in many
languages
Medium size
Human readable

Medium size
Does not have support
for all data types such
as byte sequence

CoAP Relay
Link-Local UDP
MLE

XML Easy to parse
Available libraries in many
languages
Human readable
Support for huge number of
data types

Big size
Large parser

CoAP Relay
Link-Local UDP
MLE

YAML Medium size
Human readable
Support for binary data
type
Available libraries

Large specification CoAP Relay
Link-Local UDP
MLE

TLV Faster to parse
Smaller size
Support for any data type

Not human readable All

ASN.1 Faster to parse
Support for any data type

Not human readable All

Figure 6-3: Example Parameter Representations

53

6.2.9 Summary

In the previous sections we discussed available technologies and methods for designing a boot-

strapping protocol for POLAR outdoor lighting system. The comparisons stated in Section 6.2

are vital in picking and redesigning phases of the usecases. In this section we summarize and

modularly present the available technologies. This guides my design choices and redesigning

principles in the next section. Figure 6-4 diagrammatically shows the design choices discussed

in the previous section.

Figure 6-4: Design Options

54

6.3 Design details

In this section, we explain the design choices made for the design of the bootstrapping protocol

for POLAR. The choices are further customized to fit the overall architecture of the entire sys-

tem. As Figure 6-5 depicts, a technology (method) is chosen for each phase in the bootstrapping

process.

Figure 6-5: Summary of Design Choices

As discussed earlier, the bootstrapping process starts by flushing the Node with a pre-

deployment configuration. The configured parameters are listed in Table 6.7.

Pre-deployment configuration: The Node is partly configured by the manufacturer and

partly by Philips. This enables us to take advantage of globally unique parameters such as

EUI-64 as well as flexibly configure Nodes with local parameters such as NodeID. Figure 6-6

shows the parameter configuration.

Table 6.7: Predeployment configuration parameters (partial)

Parameter Meaning
NodeID Unique Identifier of a Node (unique with in the PAN)

Ordered list of channel Prioritized list of channels to scan through
Operating frequency band the frequency band at which the PAN is operating

MAC address* Layer two address of the Node (May be given by manufacturer)
EUI-64* a 64 bit Extended Unique Identifier

Join key* A one time join key for securing requests
Token identification program a program that can recognize proprietary tokens

(*)Parametters that can be configured by a Node manufacturer

55

Figure 6-6: Pre-deployment Configuration

Network discovery: Once the Node is configured and deployed, it has to scan through the

list of channels in the frequency band it is configured to operate. The scanning is optionally done

in passive manner, i.e., listening to any packet activity on the channel. Because a passive scan

is limited to looking at existing traffic, it does not show the complete and accurate information

about the existence of routers. Thus, it should only run for a short period of time which is less

than or equal to the super frame structure of the MAC layer. If a passive scan fails to collect

beacon frames, an active scan should run, i.e., broadcasting a beacon request MAC message

to all one-hop reachable Nodes and receive 802.15.4 MAC frame from all one-hop reachable

routers. An IEEE 802.15.4 MAC command frame and MAC beacon frame is used to solicit and

deliver beacon frames respectively. This task is diagrammatically represented in Figure 6.7.

The frame structures shown in Figure 6-8 is an IEEE 802.15.4 MAC Command frame that is

used for soliciting beacon frames from neighboring routers. A MAC frame is at most 127 byte

long. The size of the header (including addressing fields) as shown in the figure, is a maximum

of 16 byte. That means we can accommodate a command which is 111 byte long.

Figure 6-9 demonstrates the contents of the beacon frame. The contents are explained in Table

6.8.

Network selection: As mentioned at the beginning of this section, network discovery is

based on the content of the beacon payload. That means, a Node chooses the PAN it wants to

join based on CID, CPI and BS control options (optionally proprietary token, if it is available).

56

Figure 6-7: Network Discovery

Figure 6-8: 802.15.4 MAC Command Frame

Table 6.8: Specification of beacon payload

Data Meaning Type

CID A Human readable company identifier text string

CPI Company Protocol Identifier, the identifier of

the protocol in the company

hexadecimal number

Rank Value that tells the position of the Node with

respect to the Gateway

integer

BS Control Bootstrapping control information

Allow Join A flag that tells if the Node is allowing other

Nodes to join

boolean

Allow Router A flag that tells if the Node is allowing other

routers to join

boolean

Allow Host A flag that tells if the Node is allowing other

host Nodes to join

boolean

Optional An optional space in the beacon payload (can

be used to store proprietary tokens)57

Figure 6-9: 802.15.4 Beacon Frame and Payload

Parent selection: Since there could be more than one router from the chosen PAN, a

JN has to select one router to serve as a bootstrapping agent. This selection is also done by

comparing the beacon frames received from the routers. Specifically, the Rank value in the BS

control and the LQI from MLE (MLE is used at this stage to establish and secure links between

JN and neighboring Nodes) are used to compute the best parent. The rank value only shows

how close a router is from Gateway and the LQI only indicates how strong the link is between

the router and the joining Node. Choosing a parent based on one of these value compromises

the other. For example if we choose a parent with the best rank and that parent has a bad link

quality, the success of message exchange with this Node is very low due to the weak signal. On

the other hand if we choose a parent with best link quality, we do not know anything about its

position in the mesh, i.e., it may have a very bad rank so that messages to Gateway has to be

routed in a large number of hops; thus, the probability of packet loss is high. An efficient way

of selecting a parent is a selection based on both parameters, for example selecting the best

rank which has at least a minimum acceptable link quality (LQImin.)

Assume there are x one-hop reachable router Nodes in the selected PAN that broadcast a

beacon frame during network discovery, i.e., N = {N1, N2......Nx} where N is a set of one-hop

reachable router Nodes. Every Node has a rank and link quality attribute that tells about its

position in the mesh and its link quality respectively, i.e., ∀N, N.rank ∈[0, 216] and N.lqi ∈[0, 1].

Note that rank attribute has a 2 octet space, meaning the maximum rank that a Node can have

is 216 where a Node with a rank 0 is a Gateway Node. Link quality is a number between 0 to

1 where 0 is no link and 1 is a link with no packet loss. The idea is to check every Node in N

starting from minimum (best) rank to the maximum (worst) rank incrementally to determine

if it has at least a minimum acceptable link quality LQImin. To do so we first set LQImin=1,

i.e., the minimum acceptable link quality is a link with no packet loss. Since this is mostly not

58

true, we decrement the value of LQImin by some value 0 <D <1 after checking every Node in

N.

Algorithm 1 Parent Selection
1: procedure selectBestParent(N,D) . take set of Nodes and decrement
2: LQImin ← 1 . initialize LQImin

3: N ′ ← sortByRank(N) . N’ is a set of Nodes sorted by Rank
4: while LQImin >= 0 do
5: for (KinN ′) do . for every Node in the sorted set
6: if K.lqi >= LQImin then . K has a minimum acceptable LQI ?
7: return K . if so select the Node as a best parent
8: end if
9: end for

10: LQImin ← LQImin −D . Decrement the minimum acceptable LQI
11: end while
12: return null . No Parent is available

Authentication: Authentication of JN to the PAN aswell as to the back-end server is

achieved by DTLS relay. It is used by the joining device to establish a secure DTLS connection

with a DTLS server that may or may not be located in the PAN. The details of DTLS relay is

discussed in section 6.3.1 of this document.

Bootstrapping request: Having selected a BA and getting security credentials, a JN now

can request network resources from a Back-end Server. At this stage a JN does not have a

globally routable IPv6 address.Thus, the request has to be made by using its Link-Local IPv6

address. The request is made to the one-hop reachable BA and forwarded to Back-end Server

via a multi-hop route. To do so the BA has to provide a service that receives a bootstrapping

request from JN and relays it to the Back-end Server. This is done through DTLS relay [14]

(explained in detail in section 6.3.1).

Joining routing tree: As described in Design Options, RPL is used to form and maintain

the destination oriented directed acyclic routing graph (DODAG). MLE may run to secure and

configure links with the RPL parent. RPL control messages (DIS,DIO,DIO-Ack) are exchanged

between Nodes to allow joining of new Nodes as shown in Figures 6-10 - 6-12.

6.3.1 Parameter distribution using DTLS relay

Assuming a joining node has been authenticated using DTLS relay handshake protocol (i.e.,

key agreement and secured channel already established between a joining node and a back-

end server.), the DTLS record layer can be used to transport the application layer packets in

a relay manner. Since CoAP is the most preferred application layer protocol in constrained

59

Figure 6-10: Joining RPL DODAG

Figure 6-11: Destination Advertisement in Storing Mode

Figure 6-12: Destination Advertisement in Non-Storing Mode

60

environment, the solution can be described simply as the transmission of CoAP messages using

a DTLS relay for parameter distribution. The process starts with a DTLS relay handshake

as described by the DTLS relay draft with the DTLS server defined by the relay node. This

scenario is suitable for POLAR bootstrapping usecase because the joining node does not know

the address of the DTLS server. This may be done in either a stateless or stateful fashion.

Parameter request/response (Stateful)

The DTLS authenticated joining node makes a DTLS secured CoAP request to the relay device.

(This is because the joining device does not know the IP address of the back-end server) the

DTLS payload is encrypted using a pairwise symmetric key agreed between joining node and

back-end server during the DTLS relay handshake phase. Thus, the relay device can neither

decrypt the secured request nor does it have the service to accept the parameter request and

respond. Therefore, it relays the request to a back-end server by changing the address and port

of the Joining node to its own IPv6 address and a randomly generated port. Additionally, the

relay device keeps a tuple of the joining node’s link local address, the joining node’s port, its

randomly chosen port, and the IPv6 address of the back-end server to forward the response back

to a joining node. Normally, a server would decrypt the DTLS payload using the relay-server

key.Since this is a relayed message that originates from a joining node, it can only be decrypted

using the joining node-server key. For the server to successfully decrypt the request, it must

understand where the request originateds. Therefore, upon receiving the request, the server

uses the DTLS header to use the right key for decryption. This is followed by a corresponding

response to the relay. On receiving the response, the relay device consults its locally stored

tuple to select the node to which it should relay the response and forwards it accordingly.

The joining node receives the response and can decrypt the payload to configure its interface.

The main goal of these proposed solutions (stateless and stateful) is to apply the DTLS relay

concepts for parameter distribution including the joining node’s IPv6 address.

61

Name meaning

JN Joining node

R Relay device

LLJ Link local address of JN

LLR Link local address of R

PJ port of JN

PR1 Port of R for communication with JN

PR2 Randomly generated port number of R

for relay
IPR Globally routable IP address of R

IPS Globally routable IP address of S

PS Port of S

Figure 6-13: Parameter Distribution Using DTLS Relay(Stateful)

62

Table 6.9: Flow of events (Stateful)

Number Flow of event

1 Joining node: makes a DTLS secured CoAP request to a relay device

2 Relay device: receives DTLS secured CoAP request (relay device cannot

read the payload since it is encrypted for the server)

3 Relay device: stores a state consists of Joining node’s link local address,

joining node’s port, server’s IP address and a randomly generated port

number by which it will relay the request to the server
4 Relay device: relays the DTLS message to the server using its globally

routable IP address and the randomly generated port
5 Server: receives the relayed DTLS message

6 Server: consults the DTLS header and decrypts the message

7 CoAP server: processes the request and generate response accordingly

8 Server: encrypts the response for the joining node

9 Server: sends the DTLS encrypted CoAP response to the relay device

10 Relay Device: receives the DTLS encrypted CoAP response from server

11 Relay Device: consults the stored state and relays the message to joining

device by changing the IP address and port of the server to its link local

address and port
12 Joining node: receives the relayed message

13 Joining node: consults the DTLS header and decrypts the message to

configure its interface

Parameter request/response (Stateless)

When using the stateless mode of DTLS relay for parameter distribution, the request as well

as the response must be modified by a relay device to add an additional DTLS relay (DRY)

header. Yet, the DTLS payload is unreadable by the relay due to the fact that it is encrypted

using a joining node-server key. Thus, the relay device must add the following DRY header

to the original DTLS payload. Subsequently, the DRY message is the encapsulation of DRY

header and the original DTLS message from the joining node. DRY Message = DRY header

+ original DTLS message. Following this, the relay device relays the DRY message to the

server using its globally routable IP address and the randomly generated port. Up on receiving

the DRY message, the server decrypts the original DTLS message, processes the request, then

generates the corresponding response. To reply the response back to the joining node, the server

63

Table 6.10: DRY header

Number DRY header Size (bit)
1 Link local Address of joining node 64
2 Port of joining node 16

first appends the DRY header to DTLS message (response) and sends it to the relay device.

The relay device then uses the DRY header to relay the DTLS message to the joining node.

Finally the joining node receives the DTLS message, decrypts the payload, and configures its

interfaces.

Figure 6-14: Parameter Distribution Using DTLS Relay(Stateless)

64

Table 6.11: Flow of events (Stateless)

Number Flow of event

1 Joining node: makes a DTLS secured CoAP request to relay device

2 Relay device: receives DTLS secured CoAP request (relay device cannot

read the payload since it is encrypted for the server)

3 Relay device: appends DTLS relay header (DRY header) to the original

DTLS message
4 Relay device: relays the DRY message to the server using its IP address

and port
5 Server receives the relayed DRY message

6 Server consults the DTLS header and decrypts the DTLS payload (CoAP

request is now readable by server)
7 CoAP server: processes the request and generate response accordingly

8 Server: encrypts the response for the joining node

9 Server: appends the DRY header to the DTLS encrypted CoAP response

and sends it to the relay device
10 Relay Device: receives the DRY message from server

11 Relay Device: consults DRY header and relays the message to joining

device by changing the IP address and port of the server to its link local

address and port
12 Joining node: receives the relayed message

13 Joining node: consults the DTLS header and decrypts the message to

configure its interface

Packet size consideration

Like any OSI model, the packet is constructed by appending lower layer protocol headers and a

payload. Therefore, for a CoAP request and response using DTLS security the packet contains

the following headers.In stateless mode of operation, since there is no state kept in the relay

device, an additional DRY header is needed to transport the joining node’s link local address

and port. This leads to 10 octets extra per packet.In contrast stateful mode of operation, a

state has to be saved at the relay device. This state consists of

• JN’s link local address : 8 octet

• JN’s Port: 2 octet

65

• IPv6 saddress of DTLS server: 16 octet

• Randomly generated Port of Relay device: 2 octet

• Total : 28 octet per Joining node

Although DTLS relay have two modes of operation, namely, stateless and stateful. The

stateful mode of operation is chosen to demonstrate due to the fact that it does not modify the

DTLS payload being transmitted. Thus, it makes it possible to use an ordinary DTLS server.

66

Chapter 7

Implementation

7.1 Overview

As part of the POLAR project, a demonstrator has already been implemented to display the

wireless outdoor lighting connectivity features such as connected sensing. I investigated the

bootstrapping scenario of this demonstrator and created a design model using state machines.

Furthermore, I modified the bootstrapping procedure to include scenarios where the joining

Node does not have access to the back-end server (bootstrapping via agent). For parameter

distribution, I implemented a DTLS relay demonstration software that serves one or more

joining Nodes to request and receive initial parameters from a dedicated server.

7.2 Bootstrapping in the POLAR demonstrator

The POLAR demonstrator creates a wireless sensor network of Nodes. A single board computer

(SBC) is used for a Node with Redwire econotag platform as a radio interface. Architecturally,

the demonstrator follows a client-server approach, where the server runs a CoAP server com-

ponent to responds to bootstrapping requests and gather usage reports, a MYSQL database

to store bootstrapping and application informations, server applications and a web service.

Clients run one or more applications, a bootstrapping module to make an initial parameter re-

quest using CoAP Client, a message dispatcher to direct IPv6 packets to Ethernet or 802.15.4

interfaces, and different drivers. The econotags are connected to SBC via USB and slip radio

program from Contiki stack. RPL and mesh APIs of Contiki stack are also running on the

client machine. The demo architecture with sensor application is depicted in figure 7-1.

67

Figure 7-1: POLAR Demo Architecture

7.2.1 Modification

The POLAR demo setup only supports bootstrapping of Nodes by directly requesting param-

eters from the back-end server. However, the main goal of this project is to bring a mesh

bootstrapping feature to the POLAR architecture. To support this feature, I modified the

bootstrapping module according to the following guideline:

• A gateway Node bootstraps as discussed in section 7.2.1.

• Joining Node makes bootstrapping (parameter) request to the gateway Node using its

link local IPv6 address.

• The gateway Node have a CoAP server running with a local bootstrapping database.

• Mesh only Nodes do not have Ethernet interface (Only Mesh).

• Mesh only Nodes receives parameter from gateway node and configure their interfaces

accordingly.

• A joined Node stays connected with gateway Node since update also comes from it. Thus,

the modification supports only a one-hop (from the gateway Node)join.

68

Figure 7-2: Mesh bootstrapping-POLAR demo

The modification enables Nodes to make parameter request and receive parameters using their

mesh interface. Figure 7-2 demonstrates the bootstrapping sequence of gateway Node and

joining Nodes. Chronologically, the solid line (parameter request via Ethernet) always precedes

the dashed line (parameter request via 802.15.4)

7.3 DTLS relay demonstrator

The DTLS relay demonstrator is an implementation of the solution discussed in section 6.3.1.

The implementation supports one or more DTLS clients to perform DTLS handshake as well as

transmit/receive DTLS record protocol messages with a DTLS server via a relay device. The

client(s) does not necessarily have to know the address of the server to which they are commu-

nicating. This make it useful for POLAR nodes to collect initial parameters. As described in

Section 6.3.1. stateless mode of operation is chosen to demonstrate.

7.3.1 Setup and architecture

The demonstrator uses two SBCs running a DTLS client echo program, a windows machine

with JVM running DTLS relay program , and a virtual linux machine running a DTLS server

echo program as shown in Figure 7-3. I used a TinyDTLS library on both the client and server

side with a simple echo application to establish DTLS handshake and later the server prints

69

Figure 7-3: DTLS relay demo

out any text that is passed from the client.

The relay program listens to any UDP packet forwarded to it on a specific port. It then forwards

it to the predefined (hard coded)DTLS server by keeping state information locally about the

source of the packet and the port used to forward it to the server. It also receives UDP packets

from the server and uses the locally kept state information to forward it to the specific client.

Figure 7-4 shows the class design of the DTLS relay program. The relaying functionality

is implemented as an extension to a UDP relay program (from jCoAP library). It assigns a

separate datagram channels for client and server connections. The relay program also uses

a connection manager to keep track of clients who are connecting to the relay device. The

connection manager in turn make use of state information in order to forward packets to the

intended receivers.

70

Figure 7-4: DTLS relay class diagram

71

72

Chapter 8

Validation and Verification

8.1 Overview

In this chapter I discuss about the reasons why the design and implementation presented in

chapter six and seven of this document are considered a valid solution for the problems and

requirements listed in chapter three and five.

The set of solutions and concepts crafted in this project are not suitable for formal verification

methods. I.e there is no globally accepted technique to prove or disprove the solutions that they

are valid. Thus, I followed an informal approach to confirm the validity and applicability of

the I solutions proposed. This approach includes wide range of views to the solutions including

experts opinion from stakeholders, alignment with standards, proof of concept demonstrations

and packet sniffing to compare the contents of actual traffic from the intended one.

8.2 Design Verification

As discussed in chapter six, the design is a set of methods, protocols and procedures that are

necessary for a successful mesh bootstrapping in the POLAR domain. It is a sequence of eight

steps, each solving a particular problem. Thus, the verification can also be presented per step

as each of them are verified using different method(s). Table 8.1. depicts the steps and their

corresponding verification method and result.

73

Table 8.1: Design Verification

Steps Verification
Compliance Expert opinion Demonstrator

Pre-deployment configuration 802.15.4 specification
Zigbee-IP
Zigbee-NAN

Approved by POLAR POLAR
demonstrator

Network discovery 802.15.4 specification
Zigbee-IP
Zigbee-NAN

Approved by POLAR POLAR
demonstrator

Network selection 802.15.4 specification
Zigbee-IP

Approved by POLAR -

Parent selection MLE protocol
RPL

Approved by POLAR -

Authentication DTLS protocol
DTLS relay draft

Approved by POLAR DTLS relay
demonstrator

Bootstrapping request IPv6 standard
CoAP
DTLS relay draft

Approved by POLAR DTLS relay
demonstrator

Data representation TLV Approved by POLAR POLAR
demonstrator

Joining routing tree RPL Approved by POLAR POLAR
demonstra-
tor (Contiki
RPL)

8.3 Test result

To test the validity of the POLAR mesh bootstrapping I run the bootstrapping module while

observing its behavior from Wireshark packet sniffer and from the POLAR demo web applica-

tion.

8.3.1 POLAR demonstrator

To confirm the success of the bootstrapping module of the POLAR demonstrator, the joining

node must successfully connect to a gateway Node and transmit sensor information to back-

end server. The POLAR web application visualizes the bootstrapping of Nodes in web browser

as shown in figure 8-1 using solid lines. The figure visualizes a gateway Node(presented with

red circle) connected to a back-end server (presented with white cloud) and a joining Node

(presented in a green circle) successfully bootstrapped and connected to the gateway Node

using mesh bootstrapping. Wireshark packet sniffer makes it possible to display an already

joined Node reporting dummy sensor information to a back-end server via a gateway Node.

Figure 8-2 shows a real time snapshot of Wireshark when an alrady joined node (Address:

74

Figure 8-1: Mesh bootstrapping visualization

dddd:205:c2a:8cf7:e1d5) periodically reports sensor information using CoAP to a back-end

server (Address: bbbb::bbbb). In the meantime, the gateway Node (Link Local Address: fe80

205:c2a:8c4e:b630) broadcasts RPL DODAG Information Object (DIO) message.

8.3.2 DTLS relay demonstrator

Two test are conducted to examine the credibility of the demonstrator. The first one is setting

up the demonstrator as it is shown in Figure 7-5 with two clients (address : bbbb::2 and bbbb::4)

and observing the log output from the relay device which shows the messages being forwarded

and the state kept. The snapshot of result of this experiment can be shown in Figure 8-3.

The other experiment is conducted by running the DTLS relay demonstrator in three different

orders and observe the packet traffic if it behave as it was intended.

75

Figure 8-2: Packet traffic in POLAR demonstrator

Table 8.2: Testing order

Order 1
Node Task

bbbb::2 HS
bbbb::2 APP
bbbb::4 HS
bbbb::4 APP

Order 1
Node Task

bbbb::2 HS
bbbb::4 HS
bbbb::2 APP
bbbb::4 APP

Order 3
Node Task

bbbb::2 and bbbb::4 HS
bbbb::4 APP

HS: Handshake APP: Aplication data

Based on the orders of tasks shown in table 8.2, I performed a test by running the DTLS

relay program and observed the actual packet traffic shown in Figure 8-4 to 8-6. The order and

content of the actual traffic reflects the test order. Thus, we can claim that the Demonstrator

behaves as it is intended.

76

Figure 8-3: DTLS relay program output log

77

Figure 8-4: Packet traffic in order 1

78

Figure 8-5: Packet traffic in order 2

79

Figure 8-6: Packet traffic in order 3

80

Chapter 9

Conclusion

9.1 Overview

In this chapter, I present a condensed summary of the proposed design for a bootstrapping pro-

cedure in 6LoWPAN based outdoor lighting connectivity networks which is specifically adopted

to Philips’s City Touch architecture. The design is supported by a proof of concept demon-

stration which is expected to be integrated as a part of the prototype system of the POLAR

solution. I also discussed the delivered artifacts, the limitations and my recommendation for

future work.

9.2 Deliverables

The main deliverable of this project are:

• A survey of bootstrapping protocols with a comparison as well as analysis of their rele-

vance to the POLAR architecture.

• A set of design choices that are investigated to be efficient in the project context.

• A reference implementation that shows a secured parameter distribution using DTLS

technology.

In order to conclude that the deliverables have served the purpose of the project, I made a

check list of bootstrapping requirements(shown in Figure 5-3) and conform that they are met

at the end. Table 9.1 shows the list of bootstrapping requirements and how they are realized.

81

Table 9.1: Requirement checklist

Requirement Design
Demonstrator

Discussed in
POLAR Demo DTLS Demo

BOOT01 4 Sections 6.2.2, 6.2.3, 6.2.4

BOOT02 4 4 4 Sections 6.2.2, 6.2.3, 6.2.4

BOOT03 4 Section 6.2.3

IN-CON01 4 4 Sections 6.2.2, 6.2.3, 6.2.4

IN-CON02 4 4 Section 6.2.3

IN-CON03 4 4 4 Section 6.3

IN-CON04 4 Section 6.2.3

COM01 4 4 4 Section 6.2.8

COM03 4 Section 6.2.8

COM07 4 4 4 Section 6.3

RELI01 4 4 4 Section 6.2.6

RELI02 4 Section 6.2.6

RELI05 4 Section 6.2.3

ARCH02 4 4 Section 6.2.8

Optional

SECU01 4 4 Section 6.3.1

SECU03 4 4 Sections 6.2.5, 6.3.1

SECU04 4 4 Section 6.3.1

SECU07 4 Section 6.3.1

SECU08 4 4 Section 6.2.5, 6.3.1

9.3 Limitations

Due to the fact that the technologies required for a mesh bootstrapping in 6LoWPAN are rela-

tively new to the computing community, there are very few implementations of fully functional

82

IPv6 stacks available in the open source community. This makes it challenging for researchers

to freely access an already available stacks and develop their prototype. Furthermore, the com-

panies who are working in this domain does not always disclose their specification, product

details, and prototypes with out commitment (e.g. payment,partnership, e.t.c). This again

puts an obstacle for accessing already existing solutions.

9.4 Recomendation

After closely analyzing the problem domain and the available solutions in the market, I found

it clear that there is no one off-the-shelf solution that can fully address the problems listed in

this document. I believe that the survey, design, and implementation I presented here, will

give an extensive overview of the design space for the problem. However, it is my strongest

recommendation that Philips selects one of the already available stacks (summarized in table

4.2) and improve the coverage of supported features according to the design guidelines presented

in this document.

83

84

Bibliography

[1] Bernard Aboba, Larry Blunk, John Vollbrecht, James Carlson, Henrik Levkowetz, et al.
Extensible authentication protocol (eap). Technical report, 2004.

[2] ZigBee Alliance. Zigbee ip specification. ZigBee Public Document 13-002r00, 2013.

[3] Dan Forsberg, Yoshihiro Ohba, Basavaraj Patil, Hannes Tschofenig, and Alper Yegin.
Protocol for carrying authentication for network access (pana). RFC5191, 2008.

[4] Olivier Hersent, David Boswarthick, and Omar Elloumi. The Internet of things: Key
applications and protocols. John Wiley & Sons, 2011.

[5] IEEE. Wireless medium access control and physical layer specifications for low-rate wireless
personal area networks. IEEE standard, 2003.

[6] IEEE. Low-rate wireless personal area networks (lr-wpans). IEEE standard, 2011.

[7] IEEE. Low-rate wireless personal area networks (lr-wpans). amendment 3: Physical layer
(phy) specifications for low- data-rate, wireless, smart metering utility networks. IEEE
standard, 2012.

[8] R.K. Kelsey. Mesh link establishment protocol (mle), draft-ietf-core-coap-13. The Internet
Engineering Task Force–IETF, Feb, 2013.

[9] K Kim, S Yoo, S Daniel, J Lee, and G Mulligan. Commisioning in 6lowpan. draft-6Iowpan
commisioning-02, 2008.

[10] Nandakishore Kushalnagar, Gabriel Montenegro, C Schumacher, et al. Ipv6 over low-power
wireless personal area networks (6lowpans): overview, assumptions, problem statement,
and goals. RFC4919, August, 10, 2007.

[11] David McGrew and Eric Rescorla. Datagram transport layer security (dtls) extension to
establish keys for the secure real-time transport protocol (srtp). RFC4347, 2010.

[12] ZigBee Standards Organization. Zigbee specification. ZigBee Document 053474r17 Jan,
2008.

[13] Shahid Raza, Daniele Trabalza, and Thiemo Voigt. 6lowpan compressed dtls for coap. In
Distributed Computing in Sensor Systems (DCOSS), 2012 IEEE 8th International Con-
ference on, pages 287–289. IEEE, 2012.

[14] O. Garcia-Morchon S. Kumar, S. Keoh. Dtls relay for constrained environments. IETF
draft, April, 2014.

[15] Z Shelby, K Hartke, C Bormann, and B Frank. Constrained application protocol (coap),
draft-ietf-core-coap-13. Orlando: The Internet Engineering Task Force–IETF, Dec, 2012.

85

[16] Z Shelby, P Thubert, J Hui, S Chakrabarti, and E Nordmark. Neighbor discovery for
6lowpan. draft-ietf-6lowpan-nd-02 (work in progress). RFC6775, 2009.

[17] William Stallings. Ipv6: the new internet protocol. Communications Magazine, IEEE,
34(7):96–108, 1996.

[18] Tim Winter. Rpl: Ipv6 routing protocol for low-power and lossy networks. RFC6550,
2012.

86

	Cover Mamo
	TR Public Mamo.Surafel
	Back cover SAI reports

