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Abstract 

The Center for Remote Sensing of Ice Sheets (CReSIS) at The University of Kansas has 

collected approximately 700 TB of radar depth sounding data over the Arctic and Antarctic ice 

sheets since 1993 in an effort to map the thickness of the ice sheets and ultimately understand 

the impacts of climate change and sea level rise. In addition to data collection, the storage, 

management, and public distribution of the dataset are also one of the primary roles of CReSIS. 

The OpenPolarServer (OPS) project developed a free and open source spatial data 

infrastructure (SDI) to store, manage, analyze, and distribute the data collected by CReSIS in 

an effort to replace its current data storage and distribution approach.  The OPS SDI includes a 

spatial database management system (DBMS), map and web server, JavaScript geoportal, and 

application programming interface (API) for the inclusion of data created by the cryosphere 

community. Open source software including GeoServer, PostgreSQL, PostGIS, OpenLayers, 

ExtJS, GeoEXT and others are used to build a system that modernizes the CReSIS SDI for the 

entire cryosphere community and creates a flexible platform for future development.
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1 Introduction 

“The Center for Remote Sensing of Ice Sheets (CReSIS) is a Science and Technology 

Center established by the National Science Foundation (NSF) in 2005, with the mission of 

developing new technologies and computer models to measure and predict the response of sea 

level change to the mass balance of ice sheets in Greenland and Antarctica.  The NSF’s 

Science and Technology Center (STC) program combines the efforts of scientists and 

engineers to respond to problems of global significance, supporting the intense, sustained, 

collaborative work that is required to achieve progress in these areas.  CReSIS provides 

students and faculty with opportunities to pursue exciting research in a variety of disciplines; 

to collaborate with world- class scientists and engineers in the US and abroad; and to make 

meaningful contributions to the ongoing, urgent work of addressing the impact of climate 

change [1].” Since 1993 CReSIS, or precursor groups to CReSIS, have collected over 700 TB 

of data in the Arctic and Antarctic using a suite of radars developed at the center [2]. The 

distribution of this dataset is one of the core duties of CReSIS. As a distributor of such an 

important dataset to the cryosphere community, and to the broader field of climate research, 

simplifying the process of data retrieval for data users and streamlining the process of data 

creation for the scientists and staff at CReSIS are two important and unresolved goals. In this 

work I present a new system, OpenPolarServer (OPS), which presents a resolution to these 

goals. 

The primary goal of this work is to develop a free and open source SDI capable of 

storing, managing, creating, analyzing, and distributing the dataset collected by CReSIS in a 

way that provides ideal conditions for data users and primary producers of polar remote 

sensing data. In addition to the primary goal, a secondary goal is to design the proposed OPS in 
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a way that allows the entire cryosphere community to provide new datasets for inclusion in the 

system. To achieve the secondary goal special attention was paid to generalize all of the OPS 

components.  In the following sections I will introduce the current SDI at CReSIS and two 

projects that predate this work. I will then review the literature of SDI, geoportals, cryosphere 

data, and free and open source software. Finally I will present the OPS in its entirety. 

2 Data 

2.1 CReSIS Data 

CReSIS is the primary data contributor to the OPS [3]. Since 1993 CReSIS, or 

precursor groups to CReSIS, have collected over 700 TB of data in the Arctic and Antarctic 

using a suite of radars developed by the center [2]. Most of this data is in the form of radar 

echograms showing cross-sections of the Arctic and Antarctic ice sheets. These radar 

echograms are designated as Level 1B (L1B) data defined by NASA as “data that have been 

processed to sensor units [4].” Fig. 1 shows a radar echogram with major features labeled and 

a map indicating the location of the radar echogram. The radar echogram offers a raw data 

product from which usable information must be extracted. For CReSIS the ice surface layer 

and ice bottom layer are the target information for extraction. The extraction process is 

carried out using the Data Picker, a custom MATLAB software developed at CReSIS. It is a 

tool which allows for manual digitization (with some automation) of the ice surface and ice 

bottom layers resulting in a point based dataset with the primary attribute of layer elevation. 

The digitization process results in a 

dataset of points, each with a set of attributes that will be discussed later. These points are 

designated as Level 2 (L2) data defined by NASA as “derived geophysical variables at the 

same resolution and location as Level 1 source data [4].” Fig. 2 shows the radar echogram in 
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Fig. 1 with the digitized ice surface and bottom layers and an inset that shows the digitized 

point objects. This digitized ice surface and ice bottom is the primary data product stored in 

the OPS database. 

 

 

 

Fig. 1: A CReSIS L1B echogram (left) with its location (green line) identified via a 

map of Greenland (right). Major features are labeled on the radar echogram. 
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Fig. 2: A CReSIS L1B radar echogram (Fig. 1) with digitized (picker) layers (blue) 

 

2.2 Community Data 

In addition to the primary data product, described in section 2.1, there are additional 

layers that can be extracted from the radar echograms by manual and automated digitization 

methods. There is a community of cryosphere scientists that are developing methods for 

digitizing the internal ice layers present in the CReSIS L1B dataset. As stated in the 

introduction it is a primary goal of the OPS to support not only the CReSIS dataset but also a 

broader selection of polar remote sensing data. The digitized point data representing internal 

ice layers is one of these non-CReSIS generated datasets. A current venture is underway at 

The University of Texas to automatically extract the entire radio stratigraphy (internal ice 
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layers) of the complete CReSIS L1B dataset [5]. Fig. 3 shows preliminary results of the 

automated radio stratigraphy derived from an L1B radar echogram from the 2011 Greenland 

P3 CReSIS dataset. 

 

 Fig. 3: Automatically digitized internal ice layers (blue) and CReSIS digitized ice surface and 

ice bottom (red). 

 

In addition to non-CReSIS data generated from the L1B radar echograms, another 

source of data for the OPS is two LiDAR instruments, the NASA Airborne Topographic 

Mapper (ATM) [6] and Land, Vegetation, and Ice Sensor (LVIS) [7], which collect data on the 

same aircraft as CReSIS radars during various field data collection campaigns. These lidar 

sensors provide a high precision measurement of ice surface elevation that can be stored in the 

OPS database and displayed on CReSIS radar echograms. Fig. 4 shows a CReSIS radar 

echogram with a manually digitized ice surface layer and the ice surface measurement from the 
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ATM lidar as a secondary layer. These examples of non-CReSIS layers are just a sample of the 

potential community inputs to the OPS. There are other research groups collecting related 

datasets that could benefit from the features the OPS SDI provides. It is the author’s hope that 

with the OPS implementation described in this thesis the community can finally come together 

and grow within a single framework. 

2.3 Reference Data 

In addition to the datasets discussed in sections 2.1, and 2.2, the OPS is reliant on a 

collection of reference data, primarily in the form of raster imagery and vector geographic 

boundaries. Fig. 5 shows a few examples of the datasets that serve as reference data for the 

OPS. In general the reference datasets include satellite imagery [8][9], raster velocity data 

[10], bedrock digital elevation models [11][12], and vector coastline data [13]. A complete 

listing of reference datasets is included in the OPS software. 

 

 

 

Fig. 4: CReSIS digitized ice surface (blue) and ATM collected LiDAR ice surface data (red).
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Fig. 5: A sample of reference data included with the OPS. Shown from left to right is 

Natural Earth Imagery, Bamber V3 Bedrock Elevation, Landsat-7 Imagery, and Joughin 

Ice Surface Velocity. 

 

3 Pre-OPS Spatial Data Infrastructure 

This chapter provides a review of data distribution at CReSIS prior to the integration 

of the OPS. I first introduce the data storage formats for each of the primary CReSIS datasets 

(L1B radio echograms, L2 ice surface and bottom layers), as well as the formats for the 

CReSIS derived internal ice layers. Then, I present the chosen methods of distribution for the 

primary CReSIS datasets and finally discuss data access methods, including two projects that 

predate the creation of the OPS. 

3.1 Data Storage Formats 

The primary data storage format for CReSIS L1B and L2 datasets is the MATLAB 

binary file format (.mat) commonly referred to as a MAT file [14]. The MAT file format is a 
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proprietary binary file format used by the high-level scripting language and interactive 

environment for numerical computation, MATLAB. CReSIS chose this format as its primary 

data storage container because all of the data processing, digitization (picking), and analysis is 

performed using MATLAB. CReSIS designates two primary types of MAT files called data 

files and layerData files. The data files store the L1B radar echogram values and the layerData 

files store the L2 ice surface and bottom values. CReSIS data is divided by day and then each 

day is  divided into segments. Each segment is further divided into frames. There is a single 

layerData file per frame. There is a minimum of one data file per frame but there can be more 

if additional radar echogram processing types are included. In addition to the two primary files 

(data, and layerData) CReSIS also stores additional information about the data collection path 

geometries  in the MAT file format. The data collection paths or tracks are referred to as 

flightlines and are stored in MAT files called gps, records, and frames files. There is a single 

GPS file per day, a single records file and a single frames file per segment. GPS files store time 

and position data from the onboard GPS instruments. Records files store processed time and 

position data. Frames files store the integer indices of data in records files marking the 

subdivision of segments into frames. Fig. 6 shows a graphical representation of the gps, 

records, frames, data, and layerData files for a single segment of data. 

 

While the MAT file format is convenient for users of MATLAB there are many other 

common data formats that CReSIS must provide to end users including (but not limited too) 

comma-separated values (CSV), keyhole markup language (KML), and joint photographic 

experts group (JPEG). To create these formats CReSIS has created a collection of tools called 

the CReSIS toolbox. This toolbox contains many functions and scripts written in MATLAB 

that convert from the MAT file format to outputs such as CSV, KML, JPEG and more. Once 
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this collection of output files is created it is made available to users through two primary 

services: the CReSIS FTP [15] and the National Snow and Ice Data Center (NSIDC) data 

archive [16]. 

 

 

Fig. 6: An example set of CReSIS data for a single data collection segment. 3 files (1 GPS, 

1 RECORDS, 1 FRAMES) store the flight path data, 3 files (1 layerData per frame) store 

the digitized layers, and a minimum of 3 (1 per frame per processing type) store radar 

echograms. 
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3.2 Data Distribution Methods 

File Transfer Protocol (FTP) is one of the standard methods for transferring files over 

the internet from one computer to another. CReSIS implements a standard FTP server which 

exposes an organized directory of files to the web. This allows users to connect to and transfer 

any files from the FTP server to their own computer. This is a simple and fast method of data 

transfer. The CReSIS FTP was the primary method of data distribution prior to the integration 

of the OPS. All of the files discussed in the previous section (gps, records, frames, data, and 

layerData) as well as the output file formats (CSV, KML, JPEG …) are served through the 

CReSIS FTP. Fig. 7 shows a standard season directory on the CReSIS FTP. The NSIDC data 

archive is a hub for the archival of all cryosphere data. In the background, the NSIDC website 

is essentially just an FTP. However NSIDC implements a data portal with a more organized 

approach of navigating and selecting datasets for download. The NSIDC Operation Ice Bridge 

(OIB) data portal is discussed in section 3.3. 

 

 

Fig. 7: A standard season directory on the CReSIS FTP. The directories shown contain all of 

the various file types (MAT, CSV, KML ...) and are further organized in subdirectories not 

shown in this image. 
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3.3 Data Access Methods 

In addition to simply browsing the CReSIS or NSIC FTP for data there are additional 

tools that allow users to download the data. Of particular interest are three data access 

methods: Geographic Search GUI, PolarGrid, and the NSIDC Operation Ice Bridge (OIB) 

Data Portal. These three tools represent the most prominent data access methods available to 

the cryosphere community for retrieving CReSIS data. Fig. 8 shows a preview of the three 

tools. 

This NSIDC OIB Data Portal [17] exposes the NSIC FTP contents to a map interface 

and allows users to visualize what data is available on the NSIDC FTP. It offers some basic 

filtering capabilities such as the date of collection and the data source but does not offer data 

subsetting. The end product of this tool is still one or many files (in various formats) retrieved 

from an FTP. 

The PolarGrid Cloud GIS [18] was developed as part of the broader PolarGrid project 

at Indiana University [19]. This service was intended to mature into a fully functional 

geoportal which has not yet occurred. As of the time of this thesis there is no active support or 

development on the PolarGrid Cloud GIS and it can be considered EOL (end of life). The 

PolarGrid Cloud GIS service offered similar functionality to the NSIDC OIB Data Portal but 

was designed to interact with the CReSIS FTP. The PolarGrid Cloud GIS project was handed 

over to CReSIS and though most of the work was scrapped the idea became the OPS. 

Geographic Search and its successor Geographic Search GUI are MATLAB-based 

tools and offer an application programming interface (API) to the CReSIS FTP. Geographic 

Search offeres a simple scripting interface to the FTP allowing a user to manually enter a 

boundary of coordinates, a list of datasets, and an output format to retrieve a subset of data 
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from the FTP. The tools work by downloading all of the required data from the FTP and 

using MATLAB to subset and output the dataset. Geographic Search GUI [20] was developed 

as a enhancement to the Geographic Search tool. It added an interactive command line input, 

a larger range of filtering and output options, and a graphical user interface (GUI) to its 

predecessor. 

 

 

Fig. 8: Previews of various tools that give users access to CReSIS data. The PolarGrid 

Cloud GIS (A), MATLAB Geographic Search GUI (B), and the NSDIC OIB Data Portal 

(C) are shown.
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4 Problems and Objectives 

4.1 Data Distribution Issues 

The primary method of data distribution for CReSIS is currently the CRESIS FTP website 

discussed in section 3.3. Let us imagine the following common data use task: Using the 

CReSIS FTP site download all ice thickness data in some specified region. With this task in 

mind the user might follow the 

KML Search Method: 

1. Download and load all of the posted KML files from the ftp site. 

2. Use the KML metadata to determine the segment IDs for data in the region of interest. 

3. Navigate the ftp site and download each file matching the noted IDs individually. 

4. Merge, load, clip and finally use the downloaded 

files. or the JPEG Search Method: 

1. Navigate the ftp site and visually identify (using posted JPEG images) the data in 

the region of interest and note the segment IDs. 

2. Navigate the ftp site and download each file matching the noted IDs individually. 

3. Merge, load, clip and finally use the downloaded files. 

A third method, while not recommended, is that a data user downloads an entire local copy of 

the FTP site and uses their own custom tools for data extraction and processing. 

To strengthen the point that none of the above methods cater to usability, an example 

using more specific selection of data for download follows. If a user were to follow the KML 

Search Method to download CReSIS data from 1993-2013 in the Petermann glacier region they 

would first need to download the approximately 170 GB of posted KML files, then find 

approximately 360 unique segment IDs and would finally have to navigate to approximately 10 
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different directories on the ftp to download the 360 unique files in one of the provided formats 

(MAT, CSV, …). Following this download they would need to merge all of the downloaded 

data and subset the resulting dataset to their specific study boundary. 

The MATLAB Geographic Search GUI alleviated some of the issues faced by a FTP 

user. Geographic Search GUI presented as alternative solution to the use of the basic CReSIS 

FTP site. Unfortunately, there is no recorded user data to confirm or deny that Geographic 

Search GUI is being used; however the fact that CReSIS FTP usage has not declined 

significantly shows that the problems are not fully addressed by the tool [2]. Geographic 

Search GUI is hindered by its implementation as a MATLAB tool; however it is the only tool 

prior to the integration of the OPS that allowed for spatial subsetting of the output dataset. 

4.2 Data Storage Issues 

The primary method of data storage for CReSIS is the MATLAB binary files discussed 

in section 3.1. File-based storage has many disadvantages, some of which are: 

1. Additional libraries/code are required to load, process, and analyze each file format. 

2. Related data stored in separate files must be loaded to make comparisons. 

3. Files require additional software to manage data access and record data edits. 

4. One file cannot be used and modified by more than one user at a time. 

5. Most file formats do not support data indexing which can improve data access 

and analysis performance. 

A relational database management system (RDBMS) provides solutions to all of the 

disadvantages of file based storage. With data from many files stored in a database the power 

of the structured query language (SQL) can be used to simplify data access and analysis. 

Consider the following question a data user may ask, for CReSIS data frames 
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20091224_01_001 to 003 what is the average ice surface elevation? Let’s examine this task 

using file based storage and database storage. Using data stored in MAT files, the following 

steps outline the process required to complete the task: 

 

1. Search for files on the file system matching the frames in question 

2. Load the matching files 

3. Extract ice thickness from each file and combine the values 

4. Calculate the average of the combined values 

If the same data is stored in related tables in a database the task can be simplified into a 

single step: execute an SQL query to select and calculate the average ice thickness. Data in a 

database can take advantage of various indexing methods which allow SQL to quickly search 

for and find data resulting in a significant performance gain, even for this simple task. Code 

for both MATLAB (file based storage) and SQL (database storage) are shown in Fig. 9. The 

MATLAB method took 23.39 seconds to execute while the SQL method took only 0.25 

seconds. 
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Fig. 9: Code required to calculate the average ice thickness over a given set of CReSIS frames. 

MATLAB code for file based data (A) and SQL for database data (B) are shown
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4.3 Project Objectives 

It should now be clear what problems were faced by CReSIS prior to the integration 

of the OPS. Given that current methods readily available to CReSIS for data storage and 

distribution are inadequate, the primary goal of the OPS project is to develop a free and 

open source SDI capable of storing, managing, creating, analyzing, and distributing the 

dataset collected by CReSIS in a way that provides an improved experience for both end 

users and the primary producers of polar remote sensing data. From this goal a set of clear 

objectives can be constructed for the OPS project: 

1. Develop and deploy a database management system. 

2. Develop and deploy a web-based data retrieval system (geoportal). 

3. Develop and deploy an API for interaction between MATLAB and the new system. 

4. Deploy the new system to the public and include community-derived datasets. 

5. Share the source code following standard free and open source software 

(FOSS) guidelines. 

The following sections outline the specific solutions developed and implemented by 

the OPS to achieve these goals. 
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5 OpenPolarServer System Structure and Components 

5.1 Spatial Data Infrastructures 

Before exploring the conceptual structure and detailed design of the OPS an overview 

of some definitions of spatial data infrastructures (SDI) is required. A SDI provides data users 

access to spatial data stored on remote servers [21]. In addition, a SDI allows for a single hub 

of data management for many data sources resulting in a reduction of the overall effort 

required to create and manage data [22][23]. “A SDI should enable the discovery and delivery 

of spatial data from a data repository, ideally via one or more web services. Additionally, it is 

often desirable that the data provider is able to (remotely) create and update spatial data stored 

in a repository. Hence, the basic software components of a SDI consist of: (i) a software client 

that can display, query, and analyze spatial data; (ii) a catalogue service for the discovery, 

browsing, and querying of metadata or spatial services, spatial datasets and other resources; 

(iii) a spatial data service that enables the delivery of the data via the Internet, and/or 

processing services such as datum and projection transformations; (iv) a (spatial) data 

repository, and (v) GIS software (client or desktop) that permits the creation and maintenance 

of data.” [24] 

The OPS SDI is a collection of software and custom code used to store, update, analyze, 

manage, and distribute data. A simplified SDI definition can be proposed: An SDI is the 

collection of software, hardware, and code needed to provide basic data services such as 

storage, management, analysis, and distribution to both data users and data producers. What 

software, hardware, and code is needed will vary based on the data, management, and 

distribution requirements. A conceptual outline of the components required for the OPS SDI 
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follows. 

5.2 OpenPolarServer System Structure 

Fig. 10 shows the conceptual structure of the OPS SDI. The SDI is composed of 7 basic 

components, outlined in sections 5.2.1 through 5.2.7. Each section outlines the basic function 

of the component and how it interacts with the rest of the SDI. Chapter 6 presents the actual 

software chosen to fill the roles of the components presented in this chapter. 

 

 

Fig. 10: Conceptual diagram of the OPS SDI components. 
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5.2.1 Virtual Machine (VM) and Operating System (OS) 

The first component is the OS of the SDI. The OS (Windows, Linux, OSX, etc…) 

serves as the platform to install and execute other SDI components on the server. Often server 

OSs are installed on a VM. A VM is a software implementation of a computer. Using a VM 

allows a single set of physical server hardware (hard drive, random access memory, 

processors) to be shared by many separate VMs, each allocated a certain portion of the real 

hardware. The VM is shown by the tan colored area in Fig. 10. Note that all of the SDI 

components are within the VM installed on the OS of the SDI. 

 

5.2.2 Relational Database Management System (RDBMS) 

A SDI by definition does not require a RDBMS, but most SDIs include some form of 

database. A database is an organized collection of data [25]. This means that while data is 

stored ultimately on the hard drive the data is organized and managed as a collection of 

related tables by the RDBMS. A RDBMS has many advantages over hard drive only-storage 

including data management (access restrictions, data constraints), concurrency (multi-user 

data access), and indexing (efficient data access). A RDBMS supports the management of 

spatial data and is often the primary storage mechanism of SDIs. 

 

5.2.3 Web Server 

A key component in any SDI is a web server. A web server allows and controls the 

flow of data from anyone connecting to the server via the Internet. To access any of the other 

components of a SDI (application server, mapping server, database, web framework, etc…) a 

request must be sent to a web server by a client. The web server will process the request, and 
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pass it on to the appropriate SDI components for additional processing. On completion of a 

certain task a response will be returned from the SDI component to the web server which will 

then present the response to the client. 

5.2.4 Web Application Server 

A Web Application Server (WAS) is a special type of web server. Often applications 

running on the server (web applications) must be exposed to the web in order to make them 

accessible to users. A standard web server has no way of managing those server applications. 

The WAS stores and manages one or more server applications and exposes the applications 

functionality to clients by telling the standard web server that a web application is available. 

A client can then make requests to the web server which passes the request to the application 

hosted by the WAS. The web application will process the request (generating some result) and 

that result will be returned by the WAS to the web server and then returned to the client. The 

web server only handles the request/response objects and allows the WAS (and web 

applications) to handle the logic of the requests and generation of the responses. 

5.2.5 Mapping Server 

A Mapping Server is one of the web applications managed by a WAS. The mapping 

server is designed to generate a variety of georeferenced spatial data formats for return via 

standard web services. The mapping server serves spatial data from both the hard drive and 

database to the internet (via the WAS) through standard services such as web map service 

(WMS) [26], web feature service (WFS) [27], web map tile service (WMTS) [28], and others. 

The OPS primarily uses the WMS service, which is a protocol that defines request and 

response structures. A WMS response is a georeferenced image in a format such as JPEG or 

PNG. A quality open source mapping server typically implements open geospatial consortium 
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(OGC) [29] compliant services because most web clients will expect a response formatted in 

the OGC standard. 

5.2.6 Web Framework 

It is often desirable for a SDI to provide some custom data input/output and analysis 

services to clients. Those services can be created as custom web applications managed by the 

WAS as is the case of the mapping server. Another approach is to use a web framework. A 

web framework typically connects server-side code to the Internet via the web server. Often 

web frameworks also provide code libraries for accessing data in a database and generally 

provide code used to decode/encode request/response objects to and from the web server. 

Most complete web frameworks provide the scaffolding (basic functionality) and the 

developer then writes the code required for the data specific input, output, and analysis. It is 

due to the provided scaffolding that it is often desirable to use a web framework instead of 

creating a custom web application from scratch. 

5.2.7 Application Programming Interface (API) 

The custom code written with the web framework is generally referred to as the server 

side application programming interface (API). The API can be thought of as the brain (logic) 

of the OPS SDI where specific data input, output, and analysis functions are carried out on the 

server. Without APIs or web applications a web server can do nothing but serve files. 

5.2.8 OPS Client Communications 

The OPS SDI supports a wide variety of clients and request types. A client is simply 

any software or service that makes a request to the OPS web server. Some examples include a 

web browser, desktop application, or custom script in a language that supports web requests. 

The primary OPS clients include a web GeoPortal and a MATLAB application which are 
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discussed in the next chapter. Clients can make a variety of requests to the OPS SDI; the most 

common requests are shown in Fig. 11. A standard request (A) is best described by the 

process of visiting a webpage on the server: 

1. A user enters a URL in a web browser, the browser sends a request to the web server. 

2. The web server processes the request, finds the HTTP file and returns it. 

3. The browser receives the response and renders the HTTP file. 

An API request (B) is a process in which a user wants to receive the result of some process 

(code) defined on the server based on their inputs. This request is typically generated 

automatically by a client based on user inputs to a GUI but can also be generated by a user 

created script. The typical process of this kind of request follows: 

1. A user (via a custom script or a GUI element) submits a request including some 

input data. 

2. The client (which the user is interacting with) generates a JSON/XML string from 

the user's input and sends a request to the web server. 

3. The web server processes the request, and passes on the input to the web framework. 

4. The web framework executes some code (based on the user input) and 

generates a JSON/XML string and returns a response to the web server. 

5. The web server returns a response to the client which handles the returned data 

and presents it to the user. 

 

A map request (C) is the final type of request made by clients to the OPS SDI. The 

structure of this request is very similar to the API request (B). The typical process of this 

kind of request follows: 
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1. A user (almost always via a GUI element in a client) submits a WMS/WFS request to 

the web server. 

2. The web server passes this request to the web application server, which passes the 

request 

to the web application (mapping server). 

3. The mapping server processes the request and generates an image (JPEG/PNG) or 

data (XML/GML) and returns it to the web application server. 

4. The web application server returns the response to the web server. 

5. The web server returns the response to the client which handles the returned data 

and presents it to the user. 

 

 

 

Fig. 11: Common web requests made by clients to the OPS server: a basic request (A), 

API request (B), and Map request (C). 
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6 OpenPolarServer SDI Implementation 

The implementation of the OPS SDI follows the conceptual structure of the previous 

chapter exactly. This chapter presents, for each conceptual component, the actual software 

selected and its implementation on the OPS (Fig. 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 12: A modified version of Fig. 10 showing the software selected to fill each SDI 

component role. 
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6.1 Free and Open Source Software (FOSS) 

For all categories of GIS software required for the implementation of the OPS SDI, a 

free and open product is available [24]. In addition, a requirement of the OPS is that it can be 

constructed using only FOSS because of a limited software budget. Steiniger and Hunter [23] 

presented a five-step guide to selecting FOSS for a research project, which includes: (i) 

develop software use cases for your own context; (ii) establish a set of evaluation criteria 

based on the use cases; (iii) perform the software evaluation with respect to the established 

criteria; (iv) develop a weighting criteria according to application context; and (v) select 

software based on the results of the evaluation and weighting scheme. An attempt was made 

to follow this guide, but it often became clear that the specific FOSS software packages were 

the obvious (and sometimes only) choice in their categories. 

6.2 CentOS Linux 

The CentOS Linux [30] distribution is a stable, predictable, manageable and 

reproducible platform derived from the sources of Red Hat Enterprise Linux (RHEL) [31]. 

The CentOS Project is a community-driven free software effort focused around the goal of 

providing a rich base platform for open source communities to build upon [30]. This Linux 

distribution was selected because it is open source and based on the commonly used RHEL. 

CentOS Linux also has support for all of the required software and tools that were chosen and 

described in the following sections. Software can be installed on the CentOS Linux OS using 

the YUM package manager [32] and the RedHat Package Manager (RPM) [33]. 

6.3 PostgreSQL and PostGIS 

One of the major contributions of the OPS SDI to CReSIS is the use of a relational 

database management system (RDBMS) for the storage of previous standard data files. The 
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RDBMS chosen is PostgreSQL,  a powerful, open source object-relational database system 

[34]. PostGIS was chosen as the spatial database extender for PostgreSQL and adds support for 

spatial queries in SQL [35]. In addition, the psycopg2 Python module is installed and used to 

communicate with the database (PostgreSQL/PostGIS) through Python. 

 

 

 

 

Fig. 13: Installation of PostgreSQL, PostGIS, and Psycopg2 on CentOS Linux. 

 

This software is installed using YUM and the PostgreSQL PDGD RPM repository. 

Lines 1-7 in Fig. 13 show the inclusion of the PDGD RPM (not included by default with 

CentOS) and the exclusion of the CentOS standard PostgreSQL package. An RPM repository 

is simply a directory of software packages hosted and managed on the web. Including an 

RPM repository in Linux allows the YUM package manager to access and install software 

from the RPM directory. Using the PDGD RPM ensures the most recent PostgreSQL and 

PostGIS software updates. Line 10 shows the YUM installation of PostgreSQL 9.3 and 

PostGIS2. Finally lines 13-14 show the installation of the psycopg2 Python to PostgreSQL 

http://postgresql.org/
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adapter. 

After PostgreSQL and PostGIS are installed there is some initial configuration that 

must be completed before using the database management system. The configuration consist 

of the initiation of a database server, creation of an admin user, creation of a PostGIS template 

database and finally the creation of the actual OPS database. All of these steps are completed 

using the PL/pgSQL SQL procedural language and pgsql interactive terminal. At the 

completion of the code (Fig. 14) the OPS has a running PostgreSQL server with an empty 

database created and stored on the CReSIS networked hard drives. Placing the database on 

network drives allows the OPS system to leverage the existing CReSIS incremental backup 

system. As data is updated in the OPS database, the CReSIS network drives are backed up to 

tape or discs. While PostgreSQL does offer many backup and replication services, natively 

leveraging the existing CReSIS backup infrastructure saved time and provides the same 

essential function as the native PostgreSQL backup services. 
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Fig. 14: Configuration of PostgreSQL and PostGIS on CentOS Linux 

 

 

 

The complete OPS database schema is shown in the form of an entity-relationship 

(ER) diagram (Fig. 15). To create this schema a standard process of database design was 

followed, which includes 8 steps: (1) Determine the purpose of the database, (2) Find and 

organize the information required, (3) Divide the information into tables, (4) Turn 

information items into columns, (5) Specify primary keys, (6) Set up the table relationships, 

(7) Refine the design, and (8) Apply the normalization rules [36]. This is an iterative process 

and steps 7 and 8 were repeated many times to fine-tune the database design. The major goal 

of the database design process is to improve query efficiency while minimizing data 

redundancy in the database. More about the actual creation of the schema in the PostgreSQL 
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software will be discussed in section 6.6.3. 

 

 

Fig. 15: The OPS Database ER (Entity-Relationship) diagram. 

 

6.4 Apache HTTP and Apache Tomcat 

To allow external users, software, and APIs to access the components on the OPS 

SDI, a web and web application server are necessary. The Apache Software Foundation [37] 

products HTTP and Tomcat were chosen as the web and web application server, 

respectively. The Apache Software Foundation has been the go-to source for open source 

web servers and more since their creation in 1999. Because the HTTP server and Tomcat 

server are both open source and industry accepted they were chosen for the OPS. The 

Apache HTTP web server and Tomcat web application server are installed on CentOS Linux 
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using the YUM package manager and the command yum install httpd tomcat6. 

 

 

 

Fig. 16: Apache HTTPD primary server configuration file. 

 

The primary configuration file of the Apache HTTP web server (httpd) is shown in Fig. 

16. The entire server is running as a virtual host on port 80 (see lines 1 and 34), port 80 is the 

standard HTTP web port. On the CReSIS hosted OPS this is changed to port 443, the standard 

HTTPS (secure HTTP) web port. Lines 3-5 set up some basic parameters of the web server 

including the server administrator (an email), document root (the default web directory on the 

server hard drive), and the server name (an IP address or web domain name). Lines 7-9 set up 
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error logging and access logging for the server and enable case insensitive file searching. For 

example if there is an HTML file called about.html but the client (user) enters About.html the 

Apache web server will find the actual file instead of returning a 404 (not found) error. Lines 

11- 14 configure a CGI Proxy that is used by the OpenLayers JavaScript library to make 

XMLHttpRequests by avoiding security restrictions in native JavaScript [38]. Lines 16-24 

configure a directory for serving data files generated by the server side API. The configuration 

in these lines force files in the server data directory $webDataDir, mapped to the URL */data, 

to auto-download when requested. Finally lines 26-32 configure another web accessible 

download directory mapping the server directory /var/profile_logs/txt to the URL */profile-

logs which stores txt files generated during automated code profiling (code performance 

monitoring). Generally the role of <directory> tags is to configure access to a server directory 

(such as 

/var/profile_logs/txt) to be accessible at a web directory such as http://[ServerName]/profile- 

logs. 

 

6.5 Geoserver 

One of the requirements of the OPS SDI is that it be able to distribute geographic data 

in the form of georeferenced map images to the clients discussed in section 6.7. To achieve this 

the GeoServer web application was selected. GeoServer is an open source software server 

(web application) that shares geospatial data using open standards [39]. GeoServer was chosen 

for the OPS because it is free and open source and is the reference implementation for the 

OGC web services standards. The role of GeoServer on the OPS SDI is to take spatial data 

from the server hard drive and database and generate georeferenced map images. 
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GeoServer can be installed in many different ways, including as its own complete 

standalone web/application server. Because the OPS SDI already has a web server for other 

purposes the GeoServer WAR (web archive) installation method was selected. Using the WAR 

method means that GeoServer is deployed as a JAVA web application managed by the Apache 

Tomcat web application server. Deploying an application in WAR format on Apache Tomcat 

is a very simple process. A file geoserver.war is downloaded and placed in the Tomcat web 

application directory. On CentOS Linux this directory is /var/lib/tomcat6/webapps/. With a 

WAR file (just a standard zip file with a .war extension instead of .zip) placed in the web 

application directory the first time the Tomcat server is started the WAR file will be unpacked 

(unzipped) into a data directory. The data directory (at least for the GeoServer web 

application) contains all of the configuration files for data, security, formats, and styles. 

 

Often a static external data directory is used to make upgrading the GeoServer WAR 

application simple. Fig. 17 shows the installation of the geoserver.war and the configuration 

of an external GeoServer data directory. Keeping a data directory (which contains all of the 

OPS GeoServer configuration) external to the GeoServer WAR allows a developer to simply 

place a new geoserver.war file in the Tomcat web application directory each time there is a 

software upgrade. A Linux environment variable GEOSERVER_DATA_DIR is set (Fig. 17 

line 2-3) that tells the GeoServer web application (installed on line 6) where to look for the 

data directory. Ownership and permissions are set for the data directory on lines 9-10 and 

finally the Tomcat web application server is started (deploying geoserver.war automatically) 

on line 13. 

The final step in the installation of GeoServer is to set up a proxy that tells the Apache 

HTTP web server that the web application is available from Apache Tomcat. The standard web 
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Fig. 17: GeoServer installation as a Tomcat6 web application on CentOS Linux. 

 

application port for Apache Tomcat is 8080. Lines 9-10 in Fig. 18 tell Apache HTTP to proxy 

(or forward) request of the URL http://[SomeServer]/geoserver to the geoserver application 

running at http://localhost:8080/geoserver. 

 

 

 

 

 

Fig. 18: Proxy configuration telling HTTP that GeoServer is available from Tomcat. 
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Once the geoserver.war is installed and the proxy in place the OPS clients will be able 

to access all of the features of the GeoServer web application by making requests to 

http://[SomeServer]/geoserver. However, without some additional configuration specific to 

the OPS data there will be nothing for them to request. GeoServer configuration is done using 

a built-in web administration interface (Fig. 19). The configurations shown in the interface are 

stored in XML files in the GeoServer data directory. Again, the use of an external OPS 

GeoServer data directory means that configuration will stay in place each time the application 

is upgraded. The first time GeoServer is set up some initial configuration must be done 

including the creation of users, passwords, security settings, and more. Details on these 

configurations are available in the GeoServer online documentation. 

 

Data in GeoServer is organized into workspaces, stores, and layers (Fig. 20). A 

workspace is simply a group of related stores. There is no requirement for the type of 

grouping a workspace represents. The OPS GeoServer contains two workspaces arctic and 

antarctic. Again, workspaces do not needed to be organized in any particular way and the 

location-based organization is just what worked best for the data included in the OPS 

GeoServer. Each workspace contains stores, which are containers of data, some examples 

being a shapefile, GeoTIFF, directory of shapefiles, or PostGIS database. Finally each store 

contains one or many layers. A shapefile or GeoTIFF store will contain a single layer (since it 

is a single file) but stores such as a PostGIS database or directory of shapefiles can contain 

many layers. Configuration such as projection, styling, and bounding boxes are set at the 

layer level. 
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Fig. 19: GeoServer Web Administration Interface 

 

 

 

 

Fig. 20: Conceptual relationship between GeoServer workspaces, stores, and layers.
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Once a layer is configured and published by GeoServer (meaning at least one store and 

workspace have also been created and published) the data is available for preview using the 

GeoServer built-in layer preview tools. Using these tools you can preview the published layer 

in any of the GeoServer output format types [40]. Fig. 21 shows a GeoServer layer preview in 

the OpenLayers output format (a WMS format) of Natural Earth GeoTIFF data. The URL 

(split onto multiple lines for clarity) used to generate the preview is also shown. 
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Fig. 21: GeoServer layer preview (OpenLayers format) of Natural Earth data (B) and the 

request URL used to generate the preview (A). 

 

The GeoServer PostGIS data store offers a layer type which is used by the OPS called 

an SQL view. This layer type allows you to write SQL which is executed each time the layer 

is requested returning a geometry object from a PostGIS database. The SQL view layer type 

(and PostGIS store type) are used to distribute CReSIS L2 flight path data stored in the 
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PostgreSQL/ PostGIS database as map images. A useful feature of the SQL view is that it can 

be parameterized. This means that custom input variables can be added to the request URL 

which are input into the SQL that is executed when the layer is requested. This makes the 

layer dynamic in the sense that an image showing different data can be requested each time 

(unlike a static GeoTIFF layer. 

 

 

 

 

Fig. 22: Configuration for a GeoServer SQL view layer. A layer preview (OpenLayers 

format) (A), and SQL code for the view (B), and SQL view parameters (C) are 

shown. 

 

Configuration for the CReSIS radar depth sounder L2 flightlines SQL view and a 

preview over Greenland are shown in Fig. 22. Note that default values are set for all of the 

SQL view parameters (C) so if a client does not include any input values all of the defaults are 
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used. The request URL (Fig. 23) for the SQL view layer is very similar to the request for the 

GeoTIFF layer (Fig. 21). In fact if you exclude line 11 it is an identically formatted request. 

Line 11 adds a tag called viewparams and specifies two parameters start_seg=’2010101_00’ 

and stop_seg=’20121231_99’. The viewparams tag is used to pass named inputs into an SQL 

view. The named inputs must be defined SQL view parameters in the SQL view configuration. 

This example will limit the result to CReSIS data segments that fall in between 20100101_01 

and 20121213_99. Note that the viewparams tag can be completely excluded (to accept all the 

default values) or can be included with any number of the configured SQL view parameters 

accepting defaults for the any that are excluded. 

 

 

 Fig. 23: Request URL for the arctic radar depth sounder CReSIS L2 flightlines GeoServer 

SQL view.
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A final step in GeoServer configuration is the specification of styles using the styled 

layer descriptor (SLD) syntax which is just simple XML. Fig. 24 shows the SLD for a simple 

black 2 pixel wide line. There are many SLD styles included with GeoServer so the creation of 

custom styles is optional. More information on SLD is available in the GeoServer 

documentation [41]. 

 

 

 

Fig. 24: SLD (Styled Layer Descriptor) for a simple black line.
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6.6 Django 

Django [42] is a Python Web framework that offers a complete Python library used to 

connect clients to the OPS server side database and custom server-side code. Django follows 

the “don’t repeat yourself (DRY)” philosophy, which the OPS tries to follow as well. Using 

Django features, such as the Object-Relational mapper, URL dispatcher, Database-Access 

API, and more, the OPS system is able to leverage an existing and tested library to complete 

many of the commonly required tasks of a SDI. The following sections discuss Django and the 

OPS implementations of many of the Django features. 

 

6.6.1 Installation and Configuration 

Installing the Django web framework on CentOS Linux is very simple. The YUM 

package manager can be used to install the Python PIP (python indexing project) package 

manager which allows the installation of any Python module (including Django) with a 

command of the form pip install [module name] . This is the standard process for installing 

Python modules on CentOS. Fig. 25 shows the installation and configuration of both the 

Django Python module and the OPS Django project. Lines 2 and 5 install pip (using the YUM 

package manager) and Django (using the pip package manager). Lines 8-9 copy an existing 

Django project (the OPS Django project) into the standard Django directory on the server. 
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Fig. 25: CentOS Linux installation of the Django Python module and OPS Django project. 

 

A Django project contains all of the configuration, data models, and custom code 

required for the Django module to operate. The Django Python module offers all of the 

functionality but the files inside of the Django project define the actual operation of Django 

for the OPS server. Django offers a management tool manage.py which allows a developer to 

create a recommended scaffolding (empty directory structure and files) for a Django project. 

This was completed during the initial development of the OPS. A slightly modified Django 

project structure (Fig. 26) was selected to best serve the needs of the OPS SDI. The biggest 

change is that in the default Django project structure each application (a sub directory of a 

project) has its own views file. This file contains the custom code that can be executed by 

requests to the server. In the OPS Django project the views code is common to all applications 

and therefore is stored at the project level. Some unused files and directories were excluded 

and some new files utility, authip, and monitor were added to support various features needed 
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by the OPS SDI. The function of these files will be discussed in the following sections. 

 

 

 

 

 

Fig. 26: An example of the default layout of a Django project (A) and the actual OPS Django 

project layout (B).
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6.6.2 Model-View-Controller (MVC) 

The Django project is implemented using the MVC concept. MVC is a pattern for 

organizing software into three related parts: models (M), views (V), and controllers (C). In 

the typical definition of MVC a model contains definitions of data, rules, logic, and 

functions, a view is the definition of an output or representation of data (such as a chart, 

diagram, or page), and a controller takes input from a user and passes it to a model [43]. The 

use of MVC in a web application context will be discussed in section 6.7.2. Django has a 

slightly different perspective on the MVC concept [44]. Django defines the models as 

Python classes which represent the schema of a database, views as custom callbacks (for 

rendering of any output type), and defines the controller as the framework itself. The 

framework provides methods for getting input from a user (generally from a web server) and 

passing that input to views. It also provides methods inside of views for accessing data in 

models and creating results from that data. Fig. 27 shows how the Django MVC is used to 

handle a standard web request. Each of the Django MVC components are discussed in detail 

in the following sections. 
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Fig. 27: A simplified diagram of the conceptual layout of the Django MVC framework in the 

context of a web request. 
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6.6.3 Database Models 

 

In section 6.6.2 it was stated that Django defined the M (models) of MVC as Python 

classes which represent the schema of a database. These models are the primary objects which 

Django uses to perform callback functions created by developers (more on this in section 

6.6.5). Each model (class) defines the name, fields, data types, and relationships of a single 

table in a database. The complete set of models, stored at the Django app level (Fig. 26) in the 

models.py file, define the entire schema of a database. These classes do not simply correspond 

to an already created database schema, they are in fact used by Django to generate the SQL 

required to create the schema in a database. Django offers support for many DBMS including 

PostgreSQL, MySQL, SQLite, and the Oracle Database Server. The Django file settings.py 

defines the database backend (PostgreSQL and PostGIS for the OPS) which Django uses to 

generate database specific SQL from the models. This means that the same models can be 

used to create a working database schema on any of the supported DBMS. 

Fig. 28 shows two examples of Django models for the OPS database, the segments and 

frames models. The class definition defines the name of the table which will become [app 

name]_ [class name] in the database. For example these models are part of the rds (radar depth 

sounder) Django app so the first model (lines A1-A10) will become a table called rds_segments 

in the OPS database. The creation of this table is shown in lines B1-B8. Part B is the Django 

generated SQL which creates the database schema defined by Django models on the 

PostgreSQL database. After a complete schema is created in models.py the Django file 

manage.py and the command syncdb can be used to generate the SQL (Fig. 28 B) for all of the 

project models and execute it on the database defined in settings.py. 
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Fig. 28: Django models (A) and the dynamically generated SQL for creating the models 

schema in a PostgreSQL database (B) for the segments and frames tables of the OPS 

database. 
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6.6.4 Database-Access API 

Django includes an API (library of Python functions) for executing abstracted SQL on 

any database generated using the Django models. When a Django model is created it inherits 

the Django models class Models.model which includes all of the Django database-access class 

methods. These class methods allow a developer to do database CRUD (create, read, update, 

and delete) tasks. Behind the scenes the class methods dynamically generate SQL statements 

that are executed (using Psycopg2 for PostgreSQL) on the database. The database-access API 

also handles the opening and closing of database connections eliminating the need to write 

verbose and repetitive code to perform database CRUD tasks. The return from the SQL 

statement is encoded into a Python object called a Django QuerySet. 

 

 

 

Fig. 29: A database query made using the Django database-access API (A) and the actual 

SQL executed by the API in raw SQL form (B). 
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Fig. 29 shows a query on the segments table (defined by the segments model). Part A 

shows how the Django database-access API is used to perform SQL queries. The segments 

model models.segments.objects class is used to interact with the segments table in the 

database. The Django provided class method .filter() (inherited from Models.model) is used to 

perform an SQL SELECT query. The arguments passed to .filter() are table field names and 

the double- underscore is a special Django constructor which allows SQL methods such as 

IN, LIKE, and CONTAINS to be used. Note that the result from .filter() is a Django QuerySet 

which can be accessed like any standard Python object using the dot operator. However it is 

often desirable to request only a few values in an SQL query and store the results directly in a 

Python list. The Django method .values_list() forces the returned QuerySet object to be 

converted into Python lists. For the segments query example the result would be a list of the 

format [[name1, …, nameN] ,[geom1, …, geomN]] as the two requested output variables are 

the name and geom fields of the table. For all types of SQL queries there are Django methods 

that emulate there functionality including but not limited to .get_or_create() (select if exists 

else insert), .delete() (delete from), .update() (modify existing data). 

The segments query example, when executed, automatically creates a database 

connection, generates the required SQL, executes the query, and encodes the response in 

Python all behind the scenes. This type of Django query is the basic logical element of a 

Django View. 
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6.6.5 Python Views API 

A view in Django is simply a Python callback that takes some input, performs some 

logic (usually using the database-access API), and returns a formatted response object. The 

Python Views API is the brain of the OPS server. All of the CRUD tasks for CReSIS data are 

written as callbacks (views) in the Python Views API. In addition to the Django framework the 

views have access to any Python library installed on the system. Fig. 30 shows a complete list 

of the views created for the OPS. Since the complete OPS views API contains over 2000 lines 

of code it cannot all be included and explained here. All of the views follow the same basic 

pattern and only the internal logic of each callback is unique. 
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Fig. 30: A complete list of the OPS Python Views and a brief description of each.
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In order to describe the implementation of a Django view the getFrameClosest view 

which finds the closest geometry (frame) from the frames table to an input point geometry will 

be detailed in full. Fig. 31 shows the function definition and python docstring. Note that the 

input to the function is a request. This request is an HTTP request object which was passed to 

the Apache HTTP web server by a user (client) and routed to this function by methods 

described in section 6.6.7. 

 

 

 

 

 

Fig. 31: The function definition and docstring for the getFrameClosest Django view. 
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The request object contains a JSON string (see section 6.6.6) which contains the 

input data to the function provided by the user. Fig. 32 shows the first logical section of the 

function. 

 

 

 

Fig. 32: Getting function inputs and parsing the inputs for required data. 

 

Here a utility function getInput() is called which returns the database models for the requested 

application, a Python object containing the decoded input values, and a string containing the 

application requested. Fig. 33 details the getInput() function and its depended functions. 
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Fig. 33: Utility Python functions used by getFrameClosest to parse the input and get the 

Django models. These functions are used in every OPS Django view. 

 

After getInput() is executed the data object must be further parsed into single variables. Lines 

33- 35 (Fig. 32) show the parsing of the three required inputs to the function. Optional inputs 
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are created in the same way except default values are set if the input is not found. Note that all 

of the logic in the Django views is wrapped in python try catch blocks. This allows the server 

to return an appropriate error in case of failure instead of just failing and never returning a 

response to the client. 

 

 

 

 

Fig. 34: Logic section of the getFrameClosest Django view. 

 

 

 



57  

After the input is parsed (Fig. 32) the actual logic of the function is executed (Fig. 34). 

Lines 61-63 handle optional input be retrieving a list of all seasons in the database if a list of 

seasons was not given by the user. Lines 65-66 create a GEOSGeometry object from the input X 

and Y values using the EPSG code (projection code) for the input location. The Django query 

on line 69 finds the closest frame to the GEOSGeometry point object using table relationships in 

the point_paths table. The important part of this query is the chained filter options 

.transform(epsg).distance(inPoint).order_by('distance').values_list('frame_id','distance')[0] [0] 

which transforms the frame geometries selected, calculates the distance of each frame 

geometry to the point geometry, orders the results by the distance, creates a list of the outputs 

and finally returns only the first element (the closest frame) and the frame_id. Lines 72-79 

perform an additional query to retrieve the geometry and other required output information for 

the previously found closest frame. Finally line 82 wraps the output in a Python dictionary and uses 

the utility function response() which simply encodes the dictionary to a JSON string and returns an 

HTTP response object to the web server for return to the client. With the return of data to the client 

the getFrameClosest view is complete. Again, all views follow this pattern and only there internal 

logic differs. 

 

6.6.6 JavaScript Object Notation 

For a client to include data in an HTTP request for use in a view the JSON format is 

used to encode variables in a structured string object. JSON is a standard notation and has 

libraries in most programming languages for encoding and decoding. Python, JavaScript, and 

MATLAB all support the JSON format which covers all of the languages used in the OPS 

SDI. For example the decoding of input to the getFrameClosest (Fig. 31) view (an X value, Y 

value, and optionally list of season names) can be examined (Fig. 35). The JSON string is 
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included in the body of the HTTP request and is extracted by Django (Fig. 33) and then 

decoded and parsed by Python using either the json or ujson modules. In this example the 

JSON string is shown as a hard coded string, normally it would come as an input from the 

HTTP request. JSON handling in MATLAB and JavaScript will be discussed in sections 6.7.1 

and 6.7.2. 

 

 

Fig. 35: An example JSON string being decoded and parsed in Python. 

 

6.6.7 URL Dispatcher and WSGI 

With the Django Views API defined on the server the Django web framework needs a 

way to tell the web server how to access each callback function (view). To do this Django 

leverages a web socket gateway interface (WSGI) to link Apache HTTP and the Django views 

API. WSGI allows Apache to take a HTTP request in the form of a URL, pass it to Django, 

wait for a response from Django (generated by each view), and then render that HTTP 

response back to the client. 
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Fig. 36: A subset of the file urls.py which maps Django views to web URLS using the 

Django URL Dispatcher. 

 

When Apache HTTP sends an HTTP request to Django the Django URL Dispatcher is 

used to figure out which view to execute. Fig. 36 shows a subset of the configuration file 

urls.py which maps Django views to specific URLs for the Django URL Dispatcher. Line 34 

maps the getFrameClosest view to the URL http://ops.cresis.ku.edu/ops/get/frame/closest. 

When a client sends a request (with JSON data) to this URL it is passed by Apache HTTP to 

Django, and then to the getFrameClosest view where it is processed. The view generates an 

HTTP response and that response is returned by Django to Apache HTTP and then back to the 

client. 

With the URL Dispatcher configured the Django web framework, as used by the OPS 

is complete. Django offers a much more extensive library of functions not discussed here and 

a major part of the framework (dynamic templates) is completely unused. Please refer to the 

Django documentation [42] for more information and the appendices for a link to the 

complete OPS source code. 

 

 

 

http://ops.cresis.ku.edu/ops/get/frame/closest
http://ops.cresis.ku.edu/ops/get/frame/closest
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6.7 Clients 

 

6.7.1 MATLAB 

MATLAB is the primary programming language used by CReSIS for data processing, 

data management, and creation of data products for distribution therefore the OPS project has 

developed an API for MATLAB which allows communication between the Django API on 

the server and any local MATLAB client. The MATLAB API and Data Picker are discussed 

in the following sections. 

 

6.7.1.1 API 

The MATLAB API is a collection of MATLAB scripts that allow communication 

between the OPS Django API and the MATLAB programming language. The primary role of 

the MATLAB API is to facilitate communication between the MATLAB Data Picker (section 

6.7.1.2) and the OPS but it also allows for the execution of OPS CRUD tasks from 

MATLAB. The MATLAB API is developed as a separate library and is used as a plugin to 

the MATLAB cresis-toolbox. This means that a directory of organized code (OPS MATLAB 

API) is stored in another organized directory of code (cresis-toolbox) which is added to the 

MATLAB execution path and used like any other MATLAB functions. 
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Fig. 37: The Django view (A) and MATLAB API function (B) for getFrameClosest. 

 

Each Django view (Fig. 30) has a corresponding MATLAB function in the 

MATLAB API. The role of the MATLAB function is to take MATLAB input (a structure), 

convert it to a JSON string, send it as an HTTP request to the Apache HTTP web server, 

wait to the HTTP response, and finally decode the response back into a MATLAB 

structure. Fig. 37 shows the docstrings for the corresponding Django view (A) and 

MATLAB API function (B) getFrameClosest. 
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Fig. 38: Body of the MATLAB API function opsGetFrameClosest. 

 

The MATLAB API functions do not perform any of the logic of the task they 

represent. All of the logic is handled by the Django views on the server. Each MATLAB 

function simply allows a user to call a MATLAB function using MATLAB variables which 

are passed to the web server and processed by the corresponding Django view. Fig. 38 shows 

the MATLAB API function opsGetFrameClosest which corresponds to the OPS view 
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getFrameClosest. Lines 1-10 take a MATLAB structure and convert it to a JSON string for 

packaging in an HTTP request. A MATLAB MEX [45] function (tojson, fromjson) based on 

the cJSON library is used to encode the MATLAB structure to JSON [46]. If for any reason 

the MEX functions fail a backup library JSONLab [47] (savejson, loadjson) is used. The C++ 

based MEX functions are much faster than the MATLAB native JSONLab library so they are 

used as the primary conversion tool. Lines 13- 20 generate and submit the HTTP request to the 

OPS Apache web server and wait for a response. During this time the process discussed in 

section 6.6 (Django processing) occurs. Once a response is received by MATLAB lines 23-34 

decode the HTTP response (and the JSON it contains) and return a MATLAB structure from 

the MATLAB API function. 

 

 

Fig. 39: An example JSON string being encoded in MATLAB. 

 

In section 6.6.6, Fig. 35 showed the basic process of decoding and parsing a JSON 

string in Python. Fig. 39 shows the same data being encoded into a JSON string by MATLAB. 

The result variable jsonStr will contain the identical string shown as the input variable jsonStr 

in Fig. 35. 
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6.7.1.2 Data Picker 

While the MATLAB API can be used as a standalone library and its functions included 

in any MATLAB script the primary role of the API is to facilitate the operation of the custom 

MATLAB Data Picker developed by CReSIS. The Data Picker is a MATLAB tool developed 

at CReSIS for the manual and automated digitization of ice layers. The Data Picker existed 

prior the development of the OPS but was built to handle only CReSIS ice surface and ice 

bottom layers loaded directly from MATLAB layerData files on a local network. The version 

presented here is a major redesign of the tool which allows the inclusion of any layers and 

reads and writes OPS server data via the OPS MATLAB API. The Data Picker is one of the 

two primary clients of the OPS. Although the design of the Data Picker itself is not a direct 

part of this project, the development of the OPS and the new Data Picker were synchronous 

and the Data Picker would not function without the OPS MATLAB API and the backend data 

storage the OPS database provides. 
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Fig. 40: The CReSIS MATLAB Data Picker user interface. 

 

Fig. 40 shows the user interface (GUI) of the MATLA Data Picker. The GUI consists 

of three primary windows, the preference window (top left), the map window (bottom left), 

and the pick window (right). Each of these windows gets data from the OPS server. The 

preference window is filled with options describing what data is available for viewing in the 

tool. All of this data comes from the getSystemInfo view and includes the available radar 

systems, seasons, and their respective locations. The preference window also contacts the 

GeoServer using the MATLAB mapping toolbox to get a list of available WMS images for 

viewing in the region selected. After making a selection in the preference window the map 

window is launched. Data in the map window is completely driven by the OPS GeoServer 

accesed via the WMS request tool in the MATLAB mapping toolbox. The tool is included in 

MATLAB and not a custom part of the OPS MATLAB API. A line is selected on the map 
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window by clicking which calls the OPS view getFrameClosest. When a selection is made in 

the map window the pick window is loaded. The radar echogram is loaded from a local file 

system, but all of the layer points, their layer information, and the list of frames in the 

segment are pulled from the OPS server using the MATLAB API. Radar echogram data is 

not stored on the OPS because of its data volume and raster data type. At the current time a 

solution for storing large volumes of raster data that need to be loaded dynamically (not just 

as a PNG/JPEG image) has not been identified which offers superior performance to a 

standard file system. Due to this the CReSIS radar echograms are stored outside of the OPS 

SDI on the local CReSIS file system. A future task and goal of the OPS development will be 

to address this issue. 
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6.7.2 OPS GeoPortal 

The OPS GeoPortal is a JavaScript web application that is designed with the discovery 

and download of geographic content (OPS data) as the primary function. The discovery of 

geographic content is the primary role of a GeoPortal [48]. The OPS GeoPortal is a complete 

MVC application developed using the Sencha ExtJS application framework which is an 

application development platform with cross-browser compatibility, advanced MVC 

architecture, and a sleek modern UI [49]. ExtJS is distributed freely for web applications that 

are FOSS which means commercial developers must purchase ExtJS but open source 

developers can use if free of charge. The expanse suite of tools and methods offered by ExtJS 

will allow the OPS GeoPortal to continue to develop and change with the needs of the 

cryosphere community. 

 

The model-view-controller (MVC) application concept was introduced in section 6.6.2 

because the Django web framework also follows the MVC pattern. ExtJS follows the same 

MVC pattern by separating data management, logic, and interface elements within the 

framework. Data management (M) is handled using ExtJS models and stores. These objects 

define what type and format background data (models) should be stored as and how and where 

to retrieve and store the data (stores). The layout (V) or view of the web application is handled 

using views, which define what user interface (UI) components are shown on the screen and 

how they are laid out. The logic (C) of the web framework is handled using controllers. 

Controllers do things like define what happens when you click a button or click on a map. The 

individual pieces, or components, of an MVC application normally are stored in separate files 
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in some pre-defined directory structure. ExtJS follows this standard practice and even offers a 

desktop tool called Sencha Cmd [50] that automatically creates a template directory and 

contains tools for creating new empty components within the template. Using the Sencha Cmd 

tool and following the MVC architecture laid out with ExtJS guarantees that the OPS 

GeoPortal will be a fully MVC compliant web application. 

 

While the ExtJS library contains a vast number of tools and methods it does not 

contain a native solution for map based content. An additional open source library GeoExt is 

used to add this functionality to ExtJS [51]. GeoExt is a JavaScript framework which extends 

the base classes of the ExtJS framework using the OpenLayers (OL) [52] JavaScript mapping 

library. Because GeoExt extends the existing class structure of ExtJS it blends seamlessly 

with ExtJS. This means that all of the Sencha Cmd tools and ExtJS functionality operate as 

normal on the GeoExt extended ExtJS framework. OL is an actively developed and popular 

open source mapping library. At the time of this thesis the OL community is currently 

working on a new major release called OpenLayers 3 or OL3 [52]. This release will update 

OL to use a class like structure similar to ExtJS and GeoEXT and will add new functionality 

like 3D map interfaces using WebGL (Web Graphics Library). This addition of a 3D based 

map interface (such as Google Earth) will allow the OPS to eventually simplify its 

architecture by using a single cylindrical projection displayed on a 3D globe allowing 

locations like Greenland and Antarctica to be configured using a single map definition instead 

of two separate maps projected in local polar stereographic projections. 
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Fig. 41: The OPS GeoPortal user interface. 

 

Combining the functionality of ExtJS, GeoExt, and OpenLayers allowed for the 

development of the OPS GeoPortal (Fig. 41). The GeoPortal GUI can be broken down into 

several graphical elements. These elements are separated in the MVC framework meaning 

that they each have their own view (how the element is shown), model (what data is used by 

the element), and controller (what the element does). Fig. 42 shows the GeoPortal divided 

into its two major elements: the menu panel and the tabs panel. The menu panel contains 

elements such as the spatial and temporal data filtering options, download output options, and 
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buttons required to submit various requests. The tabs panel contains a tabbed set of pages 

(much like tabs in a web browser). Some of the tabs (called maptabs) represent the different 

geographic locations of data (Arctic, Antarctic) included in the GeoPortal. Other tabs include 

an About page, the CReSIS FTP data site (shown as an external webpage from within the OPS 

GeoPortal), and a Downloads tab which shows submitted download requests, their status, and 

a link to completed data for download. Each of the two maptabs (Arctic, Antarctic) contain 

additional separate elements including a layer selection tree, map interface, and echogram 

browsing panel. These are shown in the bottom image of Fig. 42. In ExtJS panels are nested 

which means the Arctic:Map panel is a completely separate element from the Antarctic:Map 

panel. This provides the ability to separate different logic into different files which is the basic 

idea behind MVC. All of the panels (Menu, Tabs (Echogram, Map, Layer)) are collapsible 

and some are resizable. This means that the actual layout of the GUI can be dynamically 

adjusted by the user or automatically adjusted by the developer for performing different tasks 

within the GeoPortal. 
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Fig. 42: The OPS GeoPortal GUI divided into its basic elements (top) and a map tab (bottom) 

divided into its basic elements.
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In addition to the discovery and download of OPS data a major feature of the OPS 

GeoPortal is the ability to spatially browse CReSIS L1B radar echograms. The bottom image 

in Fig. 42 shows the Arctic maptab in echogram browsing mode. This simply means that the 

echogram panel is expanded showing a radar echogram image. The expansion of the 

echogram panel is done automatically when a user starts echogram browsing mode by clicking 

to select a line in the map panel. The layers and menu panels are also automatically collapsed 

during this process to allocate the entire browser window to the map and echogram panels. In 

its current implementation the radar echograms are just JPEG images loaded and rendered 

from the CReSIS FTP site. In future development a live echogram browser will be launched 

that loads the raw CReSIS radar echogram data from the OPS server and allow for dynamic 

exploration of the image including image processing adjustments, axis adjustments, and a link 

between the map and image. This dynamic echogram browser will be loosely based on the 

work done by Christian Panton and his Python based HTML5 radar viewer [53]. 

 

While spatially browsing radar echograms is enough to make the GeoPortal useful to 

the cryosphere community the primary role of the GeoPortal is the discovery and download of 

data. Users are able to set both temporal (start/stop date, season names) and spatial data filters 

in the Menu panel. Spatial filters are set by allowing the user to either draw a polygon in the 

map panel or allowing them to enter a well-known text (WKT) polygon string and render it to 

the map panel. Once a user sets at least a spatial filter (all temporal filters can be left as 

defaults) they can select a download format (CSV, CSV-GOOD, KML, or MAT) and submit a 

request for data. When a user clicks the Download File button the Menu controller click event 

for the button is triggered. This event collects all of the possible inputs (start/stop dates, 

seasons, drawn/rendered boundary …) and encodes them all into a JSON string formatted as 
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input to the OPS Python Views API. Since JSON (JavaScript Object Notation) is based off of 

the native JavaScript object a simple call to an object method called stringify creates a JSON 

string from a JSON object. To submit an HTTP request to the Apache web server ExtJS uses 

the asynchronous JavaScript and XML (AJAX) protocol [54]. The process here is very similar 

to that of the MATLAB API. The GeoPortal takes user inputs (generated by ExtJS GUI 

elements) encodes them in a JSON string and sends an HTTP request to the Apache web 

server calling a corresponding Django view, waits for an HTTP response, and then decodes 

the response and presents the results to the user. Fig. 43 shows the GUI elements used in the 

download process. As downloads are completed their status and processing time are rendered 

to an ExtJS grid panel on the Downloads tab. Also included in the Downloads grid is a link to 

the data file on the OPS server ready for download. 
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Fig. 43: The OPS GeoPortal spatial filter selection (blue) after a polygon has been drawn on 

the map. Also the download menu (red) and a preview of the Downloads tab populated with 

completed downloads. 

 

Fig. 44 shows the AJAX request for the download of a CSV file in the GeoPortal. 

Lines 7-11 define what view will be requested (the URL of the view is given on line 8), and 

give the input JSON data (line 11). When this function is called AJAX submits an HTTP 

request and waits for a response in the background. This means that users can still interact 

(and even submit more downloads) from the GeoPortal GUI. When AJAX receives a 

response from Apache it enters the success block (line 13). This section (lines 22-27) parses 

the response data (a URL for a file on the server in this case) and writes the results to the 
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Downloads tab on the GUI. If a known error occurs (the view reports an error with status=0) 

lines 32-36 are executed which notifies the user of the error via a pop-up alert and writes the 

error status to the Downloads tab. 

Line 41 handles any other unknown errors that may occur. The same AJAX format is used to 

call any of the OPS Python views from the GeoPortal. 
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Fig. 44: OPS GeoPortal AJAX function for submitting a CSV format download to the OPS 

Python views API. 
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The OPS GeoPortal contains thousands of lines of code and therefore cannot be 

explained in full. To illustrate the basic interaction of MVC components of ExtJS in the 

GeoPortal the system and season selection menus will be detailed. Systems in the GeoPortal 

correspond to CReSIS radars: radar depth sounders (rds), accumulation radar (accum), snow 

radar (snow), and kuband radar (kuband). The Menu contains a drop-down box which allows 

for the selection of a single system. In order to populate this box with the systems stored in 

the OPS database an ExtJS model and store are used (Fig. 45). A model defines the structure 

of a data object. In this case the System model is an object with four fields (season, system, 

location, and public). A store can be defined in a variety of ways, using JSON for local fixed 

data, or in this case an AJAX request. The Systems store is an AJAX request which 

automatically sends an HTTP request to the OPS Python view getSystemInfo when the 

GeoPortal loads. This call will create a store which contains a complete list of seasons (and 

there corresponding system and location) from the OPS database. 

 

 

 

 

 

Fig. 45: The OPS GeoPortal ExtJS model (left) and store (right) for the CReSIS radar systems. 
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When the Systems store is loaded it contains a non-unique list of CReSIS radar 

systems because there are many seasons with the same radar system. The drop-down menu for 

systems only needs to present a list of unique systems for the user to select from. In order to 

do this the ExtJS controller for the Menu panel is used. When a user selects the arrow on the 

systems drop- down menu an event called focus is triggered. The Menu controller is 

configured to listen for this event (Fig. 46) and perform some logic when the event is 

triggered. In order to determine which systems should be displayed in the selection menu the 

focus event function first determines which location (tab) the user is currently viewing (lines 

3-4). Next the function retrieves all of the data in the ExtJS Systems store (line 6), clears any 

filters currently applied to the store (line 7), and uses the collect function to get a distinct list 

of the systems in the store (lines 8-12). Finally the function gets the drop-down menu object 

(line 14), creates a new store of the distinct systems (lines 16-19) and binds the store to the 

drop-down menu object (line 21) exposing the list of distinct systems to the user for selection 

in the menu. 
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Fig. 46: The ExtJS controller listener for the change event of the systems drop-down menu. 

 

Each time a user selects a new system from the drop-down menu another event called 

change is triggered. The GeoPortal uses this event to update another drop-down menu which 

lists the CReSIS data seasons available for the selected radar system. Again the Menu 

controller is configured to listen for this event (Fig. 47) and perform some logic when the 

event is triggered. First the change event function gets the system currently selected by the 

user (line 3). The function next loads the Systems store (line 5), clears any filters currently 

applied to the store  (line 6), and then uses the filter function to get a store which only contains 

seasons for the selected system, location, and that have a True value for the public field (lines 
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7-9) and creates a list of the distinct seasons (lines 10-14). Finally the function gets the drop-

down menu object (line 15), creates a new store of the distinct seasons (lines 17-20) and binds 

the store to the drop- down menu object (line 22) exposing the list of distinct seasons for the 

selected system to the user for selection in the menu. 

 

 

 

Fig. 47: The ExtJS controller listener for the focus event of the systems drop-down menu. 

 

While AJAX is used by ExtJS to access the OPS Python API using the Django web 

framework the map images displayed in the GeoPortal must be generated by the OPS 

GeoServer. The OpenLayers JavaScript library handles this using built in WMS request object, 
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similar to how MATLAB uses the mapping toolbox to request GeoServer images in the Data 

Picker. OpenLayers handles all of the map interaction of the GeoPortal including navigation 

(zoom/pan), map click events, and drawing features on the map. 

 

A useful utility feature of the GeoPortal is the ability to measure distances and areas 

with OpenLayers measuring tools. The OpenLayers library comes with built-in measuring 

tools but for them to show live distances/areas as measurements are being made requires the 

development of additional code. An external OL class plugin developed by Xavier Mamano, 

OL- DynamicMeasure [55], already existed and offered many features non-existent in the OL 

default library. This plugin was chosen to avoid replication of already existing work, 

following the principle of DRY (don’t repeat yourself), or more fitting DRO (don’t repeat 

others). Fig. 48 shows completed distance and area measurements on the map.
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Fig. 48: Distance and Area measuring tools available in the OPS GeoPortal. 

 

While there is much more development required to build the OPS GeoPortal the 

above examples provides some insight into how the MVC architecture allows a user to 

perform the task of downloading data, browsing echograms, and measuring features. The 

OPS GeoPortal is the face of the OPS and therefore is extremely important to its success and 

acceptance in the cryosphere community. Developing the portal using open source software 

and following relevant best practices and standards for web application development ensures 

the system can easily be upgraded as technology advances and new needs within the 

cryosphere community are identified. 
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6.8 Vagrant and VirtualBox 

One of the requirements of the OPS SDI is that users be able to deploy the complete 

SDI on laptops for use during remote fieldwork. Without some additional development this 

means a developer would need to install and configure the entire SDI manually each time a 

user wanted to deploy the OPS in the field. This, for obvious reasons, is not feasible. The 

solution was to develop the OPS using a provisioning software called Vagrant [56] and 

create the complete SDI inside of a virtual machine [57] using Oracle VirtualBox [58]. A 

virtual machine (VM) is a software implementation of a computer. A VM allows a single set 

of physical hardware (Hard Drive, Random Access Memory, Processors) to be shared by 

many separate VMs each allocated a certain portion of the real hardware. Installing all of the 

OPS SDI software (Apache HTTP, Apache Tomcat, Django, etc…) inside of a VM on a 

field user's computer ensures that there will be no installation conflicts with software 

installed on the computers own operating system. The VM alone does not solve all the 

issues, without Vagrant, a developer would still need to manually install the VM and all of 

the OPS SDI software. Vagrant allows the definition of the installation of an entire operating 

system and any software in two simple text files, a Vagrantfile (Fig. 49) and Provisions file 

(Fig. 50). 
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Fig. 49: The OPS SDI Vagrantfile used by Vagrant to create the OPS VM.
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The Vagrantfile (Fig. 49) tells the Vagrant software which base box (a pre-configured 

operating system with no software installed) to use (lines 10-11), what network ports and IP to 

use (lines 14-17) and configures the VM by setting the VM name and hardware allocations 

(lines 20-32). Finally it defines a Provisions file which will be executed when the VM starts 

(line 35). 

 

The Vagrant Provisions file (Fig. 50) is a Linux shell script which contains all of the 

Linux terminal commands needed to install and configure all of the OPS SDI software. The 

provisions file is too long to detail completely but the installation of Python 2.7.6 in a virtual 

environment (lines 121-135) and Apache HTTP and WSGI (141-153) are shown in Fig. 50. 

The provisions file takes a fresh CentOS Linus OS (defined by the vagrant box in the 

Vagrantfile) and installs all software, custom files, and configurations resulting in a complete 

and fully functioning OPS SDI. All of the software discussed in sections 6.2 through 6.6 are 

installed during this provisioning process. 
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Fig. 50: A subset of the Vagrant provisions file which shows the installation of Python 

and Apache HTTP. 

 

While the CReSIS hosted VM is set up once and hosted on a high availability (HA) 

server at CReSIS any OPS users who wish to run their own complete local copy of the OPS 

SDI can do so by installing Vagrant, VirtualBox, and downloading the OPS GitHub 

repository [59]. They can then simple run the command vagrant up from the download OPS 

directory on a command line and the complete OPS SDI will be created and run locally on 

their own VM. 
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7 Usability Analysis 

In order to verify that the OPS has in fact achieved the goal of providing an improved 

experience for end users of polar remote sensing data a numerical comparison of the usability of 

each one of the four existing systems was completed. In the comparison, a single user 

completed the same task, “download CReSIS L2 data in the csv-good format over a NE 

Greenland outlet glacier (79N) including only data from 2010 and 2011”, on each system. 

 

 

Fig. 51: Results from a usability test of four systems. The processing time, number of 

keystrokes, and number of mouse clicks required to download the same dataset are shown 

for each system. 

 

The usability results show that the OPS has achieved the goal of providing an 

improved experience. Fig. 51 shows that the OPS had the fastest processing time, the 

smalles number of mouse clicks, and the second least number of keystrokes. Mouse clicks 

and keystrokes indicate the simplicity of the user interface of a system. A system which 
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requires the lowest number of each generally is simpler to use. Note that while the CReSIS 

FTP recorded the least number of keystrokes they were likely offset by mouse clicks which 

is the second highest number in that category. In fact when the number of clicks and 

keystrokes are combined the OPS recorded the lowest total indicating the OPS system is 

simpler to use than the other systems. 

 

It should be noted, however, that these results are from a single user performing one 

task and may not necessary represent an average situation over a set of users and tasks. These 

results also present the ideal case (i.e., perfect use of each system where end users are already 

familiar with the systems through tutorials and help documentation). The OPS does include 

interactive help documentation that should make it very easy for new users to familiarize 

themselves with the system quickly. 
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8 Conclusions 

In section 4.3 the tasks and goals of the OPS SDI project were outlined. This thesis 

presented the methods used to complete each of these goals. PostgreSQL, PostGIS, and 

Django were used to develop and deploy a database management system. ExtJS, GeoExt, and 

OpenLayers were used to develop and deploy a Geoportal. Custom MATLAB scripts and the 

Django Python web framework were used to deploy an API for the interaction between 

MATLAB and the OPS. The reduced effort (as shown by the usability analysis in chapter 7) 

needed to acquire and analyze data will allow and encourage new scientists to explore the data 

and potentially provide new scientific knowledge in an effort to understand the cryosphere, ice 

sheets, and future sea level rise. The achievement of these goals marks the completion of the 

development and distribution of the OPS SDI. It is the author’s hope that the cryosphere 

community accepts the system, uses it, and contributes to its future. During the development of 

the OPS many lessons were learned and there are still many to learn. Software development is 

an ever changing field and it is very likely that new developments in the near future will better 

serve various features of the OPS SDI. It is for this reason that continuous maintenance and 

upgrades to the project continue. 

 

The OPS has been developed using all FOSS and conforms to practical data and coding 

standards. The system is public at https://www.ops.cresis.ku.edu and many cryosphere 

community data providers have or are preparing to include their datasets in the OPS. The code 

is open source and provided free of charge or restriction on GitHub at 

https://github.com/CReSIS. As an open source project the OPS will only be successful if the 

community contributes to its growth. Some possibilities for future exploration of the OPS are: 

 

https://www.ops.cresis.ku.edu/
https://github.com/CReSIS
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1. Cloud-based hosting of the SDI on systems such as RACKSPACE [60] or Amazon 

EC2 [61]. 

2. An interactive (web based) data picking system build in JavaScript to replace 

the MATLAB data picker. 

3. An interactive JavaScript echogram browser that loads dynamic data instead of 

static images. 

4. A web based data loading system so community members can load their own data 

into a centrally hosted system without CReSIS intervention. 

 

In addition to those future development opportunities the maintenance and continuous 

software upgrade of the OPS is also a task that must be accounted for. CReSIS IT staff, with 

the aid of future graduate students, will continue to maintain and develop the system over its 

lifetime. The effort and care taken during the development, i.e., following data and coding 

standards as well as creating comprehensive technical documentation, will simplify future 

development and maintenance of the OPS. 
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10 Appendices 

10.1 Source Code 

The OPS source code is available for free (both in cost and application) on GitHub at 

https://github.com/CReSIS. There are multiple projects on GitHub described in the following 

table. 

Project Name Description Link 

OPS The primary source code repository. https://github.com/CReSIS/OPS 

OPS-GEOPORTAL The complete geoportal source code. 

Only a compiled version is included 

in the OPS repository. 

https://github.com/CReSIS/OPS- 

GEOPORTAL 

OPS-MATLAB The OPS MATLAB API source 

code. 

https://github.com/CReSIS/OPS- 

MATLAB 
 

10.2 Web Application Links 

The web applications used for pre-OPS data access can be viewed/used at the 

following URL’s. 

Project Name Description Link 

Geographic Search GUI MATLAB subsetting tool for the 

CReSIS FTP. 

ftp://data.cresis.ku.edu/data/geogr 

aphic_search 

PolarGrid Cloud GIS Non-Active reference page for 

the IU PolarGrid cloud GIS. 

http://www.polargrid.org/polargri 

d/cloud-gis-service 

NSIDC OIB Data Portal The operation NSIDC Operation 

Ice Bridge GeoPortal. 

http://nsidc.org/icebridge/portal/ 
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