28,209 research outputs found

    Intelligent energy buildings based on RES and Nanotechnology

    Get PDF
    The paper presents the design features, the energy modelling and optical performance details of two pilot Intelligent Energy Buildings, (IEB). Both are evolution of the Zero Energy Building (ZEB) concept. RES innovations backed up by signal processing, simulation models and ICT tools were embedded into the building structures in order to implement a new predictive energy management concept. In addition, nano-coatings, produced by TiO2 and ITO nano-particles, were deposited on the IEB structural elements and especially on the window panes and the PV glass covers. They exhibited promising SSP values which lowered the cooling loads and increased the PV modules yield. Both pilot IEB units were equipped with an on-line dynamic hourly solar radiation prediction model, implemented by sensors and the related software to manage effectively the energy source, the loads and the storage or the backup system. The IEB energy sources covered the thermal loads via a south façade embedded in the wall and a solar roof which consists of a specially designed solar collector type, while a PV generator is part of the solar roof, like a compact BIPV in hybrid configuration to a small wind turbine

    Reconstrucción digital de estructuras de tejados históricos: desarrollo de un flujo de trabajo de análisis altamente automatizado

    Get PDF
    [EN] Planning on adaptive reuse, maintenance and restoration of historic timber structuresrequiresextensive architectural and structural analysis of the actual condition. Current methods for a modellingof roof constructions consist of several manual steps including the time-consuming dimensional modelling. The continuous development of terrestrial laser scanners increases the accuracy, comfort and speed of the surveying work inroof constructions. Resultingpoint clouds enabledetailed visualisation of theconstructionsrepresented by single points or polygonal meshes, but in fact donot containinformation about the structural system and the beam elements. The developed workflow containsseveral processing steps on the point cloud dataset. The most important among them arethenormal vector computation, the segmentation of points to extract planarfaces, a classification of planarsegmentsto detect the beam side facesand finally theparametric modelling of the beams on the basis of classified segments. Thisenablesa highly automated transitionfrom raw point cloud data to a geometric model containing beams of the structural system. The geometric model,as well as additional information about the structural properties of involved wooden beams and their joints,is necessaryinput for a furtherstructural modellingof timber constructions. The results of the workflow confirm that the proposed methods work well for beams with a rectangularcross-section and minor deformations. Scan shadows and occlusionof beamsby additional installationsor interlockingbeamsdecreases the modelling performance, but in generala high level ofaccuracy and completeness isachieved ata high degree of automation.[ES] Las estructuras históricas de madera requieren un análisis arquitectónico y estructural exhaustivo de su condición real en aras de planificar la reutilización flexible, el mantenimiento y la restauración. Los métodos actuales que modelan las construcciones de cubiertas pasan por aplicar varias etapas en modo manual, que incluye el lento modelado dimensional. El desarrollo continuo de escáneres láser terrestres aumenta la exactitud, la comodidad y la velocidad del trabajo topográfico en construcciones de tejados. Las nubes de puntos resultantes permiten la visualización detallada de las construcciones representadas por puntos o mallas poligonales, pero de hecho no contienen información sobre el sistema estructural y los elementos del travesaño. El flujo de trabajo desarrollado contiene varias etapas de procesamiento en el conjunto de datos de la nube de puntos. Los más importantes son el cálculo del vector normal, la segmentación de puntos que extraen caras planas, la clasificación de segmentos planos que detectan las caras laterales del travesaño y, finalmente, el modelado paramétrico de los travesaños en función de los segmentos clasificados. Esto permite una transición altamente automatizada de los datos de la nube de puntos brutos a un modelo geométrico que contiene los travesaños del sistema estructural. El modelo geométrico, así como la información adicional sobre las propiedades estructurales de las vigas de madera involucradas y de sus juntas, es información necesaria de entrada para el modelado estructural eventual de las construcciones de madera. Los resultados del flujo de trabajo confirman que los métodos propuestos funcionan bien en travesaños que presentan secciones transversales rectangulares y deformaciones menores. Las sombras en los escaneados y las oclusiones de los travesaños a partir de instalaciones adicionales o vigas entrelazados disminuye el rendimiento del modelado, pero en general se logra un nivel de exactitud e integridad elevado con un alto grado de automatización.Pöchtrager, M.; Styhler-Aydın, G.; Döring-Williams, M.; Pfeifer, N. (2018). Digital reconstruction of historic roof structures: developing a workflow for a highly automated analysis. Virtual Archaeology Review. 9(19):21-33. doi:10.4995/var.2018.8855SWORD2133919Attene, M., & Spagnuolo, M. (2000). Automatic surface reconstruction from point sets in space. Computer Graphics Forum, 19(3), 457-465. doi:10.1111/1467-8659.00438Baik, A., Yaagoubi, R., & Boehm, J. (2015). Integration of Jeddah historical BIM and 3D GIS for documentation and restoration of historical monument. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W7, 29-34. doi:10.5194/isprsarchives-XL-5-W7-29-2015Bassier, M., Hadjidemetriou, G., Vergauwen, M., Van Roy, N., & Verstrynge, E. (2016). Implementation of Scan-to-BIM and FEM for the Documentation and Analysis of Heritage Timber Roof Structures. In M. Ioannides, E. Fink, A. Moropoulou, M. Hagedorn-Saupe, A. Fresa, G. Liestøl, . . . P. Grussenmeyer (Ed.), Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. EuroMed 2016 (pp. 79-90). Springer, Cham. doi:10.1007/978-3-319-48496-9_7Besl, P., & McKay, N. (1992). A method for registration of 3D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239-254. doi:10.1109/34.121791Chida, A., & Masuda, H. (2016). Reconstruction of polygonal prisms from point-clouds of engineering facilities. Journal of Computational Design and Engineering, 3(4), 322-329. doi:10.1016/j.jcde.2016.05.003Dore, C., & Murphy, M. (2017). Current state of the art historic building information modelling. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 185-192. doi:10.5194/isprsarchives-XLII-2-W5-185-2017Dorninger, P., Nothegger, C., & Rasztovits, S. (2013). Efficient 3-D documentation of Neptune fountain in the park of Schönbrunn palace at millimeter scale. Proceedings XXIV International CIPA Symposium, ISPRS Annals, II, 5/W1, 103-108. doi:10.5194/isprsannals-II-5-W1-103-2013Eßer, G., Styhler-Aydın, G., & Hochreiner, G. (2016a). Construction history and structural assessment of historic roofs - An interdisciplinary approach. In K. Van Balen, & E. Verstrynge (Eds.), Structural analysis of historical constructions. Anamnesis, diagnosis, therapy, controls (pp. 790-795). London, GB.Eßer, G., Styhler-Aydın, G., & Hochreiner, G. (2016b). The historic roof structures of the Vienna Hofburg: An innovative interdisciplinary approach in architectural sciences laying ground for structural modeling. In J. Eberhardsteiner, W. Winter, A. Fadai, & M. Pöll (Eds.), WCTE 2016. World conference on timber engineering (pp. 3039-3047). Wien, Austria.Fischler, M., & Bolles, R. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381-395. doi:10.1145/358669.358692Glira, P., Pfeifer, N., Briese, C., & Ressl, C. (2015). A Correspondence Framework for ALS Strip Adjustments based on Variants of the ICP Algorithm. Photogrammetrie, Fernerkundung, Geoinformation, 4, 275-289. doi:10.1127/pfg/2015/0270Hochreiner, G., Eßer, G., & Styhler-Aydın, G. (2016). Modern timber engineering methods in the context of historical timber structures. In J. Eberhardsteiner, W. Winter, A. Fadai, & M. Pöll (Eds.), WCTE 2016. World conference on timber engineering (pp. 4830-4838). Wien, Austria.Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1992). Surface reconstruction from unorganized points. SIGGRAPH '92 Proceedings of the 19th annual conference on Computer graphics and interactive techniques. ACM SIGGRAPH Computer Graphics, 26(2), 71-78. doi:10.1145/142920.134011International Organization for Standardization. (2016). Industrial automation systems and integration -- Product data representation and exchange -- Part 21: Implementation methods: Clear text encoding of the exchange Structure. ISO/DIS Standard No. 10303-21. Retrieved from https://www.iso.org/standard/63141.html.Jung, J., Hong, S., Jeong, S., Kim, S., Cho, H., Hong, S., & Heo, J. (2014). Productive modeling for development of asbuilt BIM of existing indoor structures. Automation in Construction, 42, 68-77. doi:10.1016/j.autcon.2014.02.021Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. Symposium on Geometry Processing (pp. 61-70). The Eurographics Association. doi:10.2312/SGP/SGP06/061-070Lee, J., Son, H., Kim, C., & Kim, C. (2013). Skeleton-based 3-D reconstruction of as-built pipelines from laser-scan data. Automation in Reconstruction, 35, 199-207. doi:10.1061/9780784412343.0031Li, W., Goodchild, M., & Church, R. (2013). An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. International Journal of Geographical Information Science, 1227-1250. doi:10.1080/13658816.2012.752093Nothegger, C., & Dorninger, P. (2009). 3D filtering of high-resolution terrestrial laser scanner point clouds for cultural heritage documentation. Photogrammetrie, Fernerkundung, Geoinformation, 1, 53-63. doi:10.1127/0935-1221/2009/0006Pfeifer, N., & Winterhalder, D. (2004). Modelling of tree cross sections from terrestrial laser scanning data with free-form curves. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8/W2), 76-81.Pfeifer, N., Mandlburger, G., Otepka, J., & Karel, W. (2014). OPALS - A framework for Airborne Laser Scanning data analysis. Computers, Environment and Urban Systems, 45, 125-136. doi:10.1016/j.compenvurbsys.2013.11.002Pöchtrager, M., Styhler-Aydın, G., Döring-Williams, M., & Pfeifer, N. (2017). Automated Reconstruction of Historic Roof Structures from Point Clouds - Development and Examples. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2-W2, 195-202. doi:10.5194/isprs-annals-IV-2-W2-195-2017Rabbani, T., Dijkman, S., Van den Heuvel, F., & Vosselman, G. (2007). An integrated approach for modelling and global registration of point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 61(6), 355-370. doi:10.1016/j.isprsjprs.2006.09.006Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta, M., . . . Lewis, P. (2013). Fast automatic precision tree models from terrestrial laser scanner data. Remote Sensing, 5(2), 491-520. doi:10.3390/rs5020491Stylianidis, E., & Remondino, F. (2016). 3D Recording, Documentation and Management of Cultural Heritage. Caithness, UK: Whittles Publishing.Thies, M., Pfeifer, N., Winterhalder, D., & Gorte, B. (2004). Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees. Scandinavian Journal of Forest Research, 19(6), 571-581. doi:10.1080/02827580410019562Thomson, C., & Boehm, J. (2015). Automatic geometry generation from point clouds for BIM. Remote Sensing, 7(9), 11753-11775. doi:10.3390/rs70911753Vosselman, G., & Maas, H.-G. (2010). Airborne and Terrestrial Laser Scanning. Caithness, UK: Whittles Publishing.Wang, D., Hollaus, M., Puttonen, E., & Pfeifer, N. (2016). Automatic and self-adaptive stem reconstruction in landslide-affected forests. Remote Sensing, 8(12), p. 974. doi:10.3390/rs8120974Wang, D., Kankare, V., Puttonen, E., Hollaus, M., & Pfeifer, N. (2016). Reconstructing stem cross section shapes from terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 14(2), 272-276. doi:10.1109/LGRS.2016.2638738Xiong, X., Adan, A., Akinci, B., & Huber, D. (2013). Automatic creation of semantically rich 3D building models from laser scanner data. Automation in Construction, 31, S. 325-337. doi:10.1016/j.autcon.2012.10.006Yang, X., Koehl, M., & Grussenmeyer, P. (2017). Parametric modelling of as-built beam framed structure in BIM environment. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W3, 651-657. doi:10.5194/isprs-archives-XLII-2-W3-651-2017Zhang, R., & Zakhor, A. (2014). Automatic identification of window regions on indoor point clouds using LiDAR and cameras. Applications of Computer Vision (WACV), 2014 IEEE Winter Conference, 107-114. doi:10.1109/WACV.2014.683611

    Prior-knowledge assisted fast 3D map building of structured environments for steel bridge maintenance

    Full text link
    Practical application of a robot in a structured, yet unknown environment, such as in bridge maintenance, requires the robot to quickly generate an accurate map of the surfaces in the environment. A consistent and complete map is fundamental to achieving reliable and robust operation. In a real-world and field application, sensor noise and insufficient exploration oftentimes result in an incomplete map. This paper presents a robust environment mapping approach using prior knowledge in combination with a single depth camera mounted on the end-effector of a robotic manipulator. The approach has been successfully implemented in an industrial setting for the purpose of steel bridge maintenance. A prototype robot, which includes the presented map building approach in its software package, has recently been delivered to industry. © 2013 IEEE

    Evaluation of human response to structural vibrations induced by sonic booms

    Get PDF
    The topic is addressed of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. An attempt is made to reexamine some of the issues addressed previously and to offer fresh insight that may assist in reassessing the potential impact of sonic boom over populated areas. Human response to vibration is reviewed first and a new human vibration response criterion curve is developed as a function of frequency. The difference between response to steady state versus impulsive vibration is addressed and a 'vibration exposure' or 'vibration energy' descriptor is suggested as one possible way to evaluate duration effects on response to transient vibration from sonic booms. New data on the acoustic signature of rattling objects are presented along with a review of existing data on the occurrence of rattle. Structural response to sonic boom is reviewed and a new descriptor, 'Acceleration Exposure Level' is suggested which can be easily determined from the Fourier Spectrum of a sonic boom. A preliminary assessment of potential impact from sonic booms is provided in terms of human response to vibration and detection of rattle based on a synthesis of the preceding material
    corecore