80 research outputs found

    Mechanical and Tribological Aspects of Microelectronic Wire Bonding

    Get PDF
    The goal of this thesis is on improving the understanding of mechanical and tribological mechanisms in microelectronic wire bonding. In particular, it focusses on the development and application of quantitative models of ultrasonic (US) friction and interfacial wear in wire bonding. Another objective of the thesis is to develop a low-stress Cu ball bonding process that minimizes damage to the microchip. These are accomplished through experimental measurements of in situ US tangential force by piezoresistive microsensors integrated next to the bonding zone using standard complementary metal oxide semiconductor (CMOS) technology. The processes investigated are thermosonic (TS) Au ball bonding on Al pads (Au-Al process), TS Cu ball bonding on Al pads (Cu-Al process), and US Al wedge-wedge bonding on Al pads (Al-Al process). TS ball bonding processes are optimized with one Au and two Cu wire types, obtaining average shear strength (SS) of more than 120 MPa. Ball bonds made with Cu wire show at least 15% higher SS than those made with Au wire. However, 30% higher US force induced to the bonding pad is measured for the Cu process using the microsensor, which increases the risk of underpad damage. The US force can be reduced by: (i) using a Cu wire type that produces softer deformed ball results in a measured US force reduction of 5%; and (ii) reducing the US level to 0.9 times the conventionally optimized level, the US force can be reduced by 9%. It is shown that using a softer Cu deformed ball and a reduced US level reduces the extra stress observed with Cu wire compared to Au wire by 42%. To study the combined effect of bond force (BF) and US in Cu ball bonding, the US parameter is optimized for eight levels of BF. For ball bonds made with conventionally optimized BF and US settings, the SS is ≈ 140 MPa. The amount of Al pad splash extruding out of bonded ball interface (for conventionally optimized BF and US settings) is between 10–12 µm. It can be reduced to 3–7 µm if accepting a SS reduction to 50–70 MPa. For excessive US settings, elliptical shaped Cu bonded balls are observed, with the major axis perpendicular to the US direction. By using a lower value of BF combined with a reduced US level, the US force can be reduced by 30% while achieving an average SS of at least 120 MPa. These process settings also aid in reducing the amount of splash by 4.3 µm. The US force measurement is like a signature of the bond as it allows for detailed insight into the tribological mechanisms during the bonding process. The relative amount of the third harmonic of US force in the Cu-Al process is found to be five times smaller than in the Au-Al process. In contrast, in the Al-Al process, a large second harmonic content is observed, describing a non-symmetric deviation of the force signal waveform from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. The analysis of harmonics of the US force indicates that although slightly different from each other, stick-slip friction is an important mechanism in all these wire bonding variants. A friction power theory is used to derive the US friction power during Au-Al, Cu-Al, and Al-Al processes. Auxiliary measurements include the current delivered to the US transducer, the vibration amplitude of the bonding tool tip in free-air, and the US tangential force acting on the bonding pad. For bonds made with typical process parameters, several characteristic values used in the friction power model such as the ultrasonic compliance of the bonding system and the profile of the relative interfacial sliding amplitude are determined. The maximum interfacial friction power during Al-Al process is at least 11.5 mW (3.9 W/mm²), which is only about 4.8% of the total electrical power delivered to the US transducer. The total sliding friction energy delivered to the Al-Al wedge bond is 60.4 mJ (20.4 J/mm²). For the Au-Al and Cu-Al processes, the US friction power is derived with an improved, more accurate method to derive the US compliance. The method uses a multi-step bonding process. In the first two steps, the US current is set to levels that are low enough to prevent sliding. Sliding and bonding take place during the third step, when the current is ramped up to the optimum value. The US compliance values are derived from the first two steps. The average maximum interfacial friction power is 10.3 mW (10.8 W/mm²) and 16.9 mW (18.7 W/mm²) for the Au-Al and Cu-Al processes, respectively. The total sliding friction energy delivered to the bond is 48.5 mJ (50.3 J/mm²) and 49.4 mJ (54.8 J/mm²) for the Au-Al and Cu-Al processes, respectively. Finally, the sliding wear theory is used to derive the amount of interfacial wear during Au-Al and Cu-Al processes. The method uses the US force and the derived interfacial sliding amplitude as the main inputs. The estimated total average depth of interfacial wear in Au-Al and Cu-Al processes is 416 nm and 895 nm, respectively. However, the error of estimation of wear in both the Au-Al and the Cu-Al processes is ≈ 50%, making this method less accurate than the friction power and energy results. Given the error in the determination of compliance in the Al-Al process, the error in the estimation of wear in the Al-Al process might have been even larger; hence the wear results pertaining to the Al-Al process are not discussed in this study

    Untersuchungen zu den Mechanismen des Ultraschall-Drahtbondens

    Get PDF
    Ultrasonic (US) wire bonding is a predominating interconnection technique in the microelectronic packaging industry. Despite its long-term usage and wide applications, the mechanisms, especially those of the friction and softening phases, are still unclear more than half a century after its invention. Targeting on reducing the big gap to a good understanding of the mechanisms, this dissertation focuses on the relative motions at the wire/substrate and wire/tool interfaces, and the oxide removal process. In addition, an energy flow model from the electrical input energy to the different energies involved in the mechanisms is developed and quantified. The relative motions at the two interfaces were investigated by a real-time observation system with which the micrometer-motions of the tool and the wire were captured. The motions were then tracked and quantified. In addition, the influences of the process parameters including the normal force, US power and process time were analyzed and the combined effect of the normal force and US power was emphasized. By a further investigation on the changes of the surface topography and elements distribution, it was proved that the relative displacement amplitudes at different locations of the wire/tool interface differ. With the substitution of the metal substrate by a transparent glass, the bonding process was visualized and different areas including the contact, friction, stick, microwelds and oxides areas were detected. The oxide removal process was studied with artificial coatings on either the wire or the substrate. A complete removal process including cracks, detachment, milling and transportation was studied. The transportation further includes penetration, oxide flow, pushing and metal splash. The quantification of energy flows shows that most US energy flows to the vibration induced friction at the two interfaces and the vibration induced formation, deformation and breakage of microwelds. Based on the energy flow to the wire/substrate interface and to the formation of microwelds, the optimal combination of the normal force and the ultrasonic power is determined

    Statistical Techniques and Non-Destructive Testing Methods for Copper Wire Bond Reliability Investigation

    Get PDF
    Microelectronic devices require packaging for mechanical protection and electrical interconnections. Reliability challenges in microelectronics packaging are becoming more severe, as applications demand smaller package sizes and operation in harsher environments, such as in automotive applications. At the same time, manufacturers are seeking to reduce production costs by using new materials, for example in wire bonding by replacing costly gold wire with more economical copper. Because microelectronic devices are expected to function reliably for years or even decades, depending on the application, reliability testing is commonly accelerated, e.g. by using elevated temperature and/or humidity. Even so, testing is often time consuming, requiring weeks or months for product qualification. Furthermore, although standard test conditions exist, little guidance is available in the literature to indicate how long products passing these tests will survive in operation. Non-destructive testing methods provide a great deal of information regarding product degradation and reliability. With proper statistical analysis, strong conclusions can be made about device reliability with relatively short test durations, since testing need not continue until all samples fail. However, data analysis techniques used in the electronics packaging literature are often limited, with statistical analyses and confidence bounds rarely presented. Analysis of incomplete or censored data requires specialized techniques from the field of survival analysis. The contributions of this thesis can be divided in two topics. The first topic is the equipment and techniques used to obtain new reliability results, including a method for temperature calibration of the miniature ovens used, a modification of those ovens for use as environmental chambers with humidity control, and procedures for optimization of wire bonding processes. Second, statistical techniques for analysis of reliability data are demonstrated, using accelerated failure time models to analyze resistance data from copper wire bonds in high temperature storage testing. In doing so, new information was provided to answer an important open question in the field of copper wire bonding, namely, the maximum temperature at which one can expect copper wire bonds on aluminum metallization to perform reliably. In particular, ball bonds made from 25 µm diameter palladium-coated copper wire are estimated to be highly reliable up to at least 167 °C in a clean environment without encapsulation, with failure rate of only 1 ppm after 12000 h. PCC wires were more reliable than bare Cu wires when unencapsulated or when encapsulated in silicone. Conversely, bare Cu was more reliable than PCC when encapsulated in epoxy. The best-performing encapsulated bonds tested were bare Cu wire with a highly heat tolerant epoxy, which are estimated to survive 12000 h with 1 ppm failure probability at 159 °C. Effects of several other factors on bond reliability were also investigated, namely the cleaning process, Al bond pad thickness, and the bonded ball size. Sample and environmental cleanliness were found to be critical to good reliability. Bond pad thickness and bonded ball size had only minor effects on reliability, suggesting that these factors can be safely chosen to satisfy other requirements such as bond pad pitch or current-carrying requirements

    Experimental and Numerical Study of the Mechanical Aspects of the Stitch Bonding Process in Microelectronic Wire Bonding

    Get PDF
    The goal of this thesis is to improve the understanding of the stitch bonding process in microelectronic wire bonding. In particular, it focuses on investigating the effect of the process parameters bonding force, scrub amplitude, and skid on experimental bond quality responses, including qualitative (non-sticking, sticking, and tail-lifting) and quantitative (stitch pull force, tail pull force). In addition to the experimental work, a finite element (FE) model is developed for the stitch bonding process using ABAQUS software, and compared with the experimental observations. For the first set of experiments, the stitch bonding is performed with a 18 μm diameter Pd coated Cu (PCC) wire on a “low bondability” Au/Ni/Pd plated quad-flat non-lead (QFN) substrate. Results showed that a high bonding force, a high scrub amplitude, and a positive skid provoke the sticking of the stitch bond and reducing the chance of non-sticking observation. However, such parameters also increase the chance of tail-lifting. As a trade-off for a low bondability substrate, a process parameter combination containing a high bonding force and a high scrub amplitude and a negative skid could ensure a strong enough stitch bonding process with low chance of tail-lifting. For the second set of experiments, the stitch bonding is performed with a 18 μm diameter uncoated Cu wire on a “high bondability” Ag plated QFN substrate. Statistical analysis of stitch and tail pull force showed that the skid and scrub parameters have a more significant influence than bonding force. A positive skid can degrade the stitch pull force, while enhancing the tail pull force. A high scrub amplitude is found to degrade both the stitch and the tail pull forces. The bonding force is shown to improve the stitch and tail pull forces slightly. Performing an optimization, process parameters of 70 gf (687 mN) bonding force, 3 μm scrub amplitude, and zero skid result in acceptable stitch and tail pull forces, along with a reliable stitch bond appearance (low peeling and shallow capillary tool impression). The influence of the process parameters is significantly different depending on if bonding on low or high bondability substrates. For example, a positive skid increases the chances of sticking and tail-lifting on low bondability substrate, but it decreases the tail pull force and increases the tail pull force for high bondability substrate. This indicates that finding a general experimental rule for understanding the effect of process parameters on the stitch bond quality is difficult if not impossible. In other words, instead of general rule, it is more likely to find individual rules for specific individual applications. To improve the understanding of stitch bonding a three dimensional (3D) dynamic explicit FE model is developed in ABAQUS. The model components and boundary conditions are constructed and applied to reflect the experimental conditions. The bonding force, scrub, and skid are successfully implemented into the model. Mass scaling is applied carefully to save calculation time while ensuring there are no artificial effects of inertia. The model is able to render the conventional responses reported in the past including stress and strain distributions. However, these conventional outputs were not sufficient to provide a correlation between model and experiment. Therefore, new candidate responses were developed and extracted from the numerical results. The new responses are based on accepted welding mechanisms. One of the mechanisms is interfacial cleaning by frictional energy which is beneficial for bonding. Thus the friction energy accumulated during the simulated bond duration is extracted as a candidate response. For classical cold welding processes, the interfacial surface expansion is a key mechanism, as it opens up cracks in the surface contamination and oxide layers and thereby generates paths to bring the fresh metals together under pressure. Therefore, candidate responses related to surface expansion at the contact interface are extracted from the model. The complete set of new responses extracted from the numerical model includes contact areas, surface expansion per areas, frictional energy, and combination of frictional energy combined with surface expansions per areas. In addition the bond interface is divided into “wedge” and “tail” regions. The model is run for the same DOE cells as used in the first set of experiments and candidate responses are extracted and compared with the experimental observations. By ranking the correlation coefficients of each individual candidate responses, for the first time correlations that are relatively strong are found between a numerical response and experimental observations of stitch bonding. Responses that have correlation coefficients of 0.79 and 0.85 were found for wedge sticking and tail-lifting, respectively. Such relatively strong correlation indicates that the friction enhanced cleaning and the surface expansion mechanisms are proper theories for the current stitch bonding system. These theories can be used for developing similar models for other types of the solid-state bonding processes. Based on the best candidate responses, a procedure to determine numerical process windows is demonstrated for a specific application. Such a window defines the parameter ranges which result in an acceptable stitch bonding process and is an excellent indication of how suitable a process is for mass production. Depending on the application, materials, geometries, and tools, the FE model and process window procedure allow a variety of numerical process windows to be produced and compared.1 yea

    Stitch Bond Process of Pd-Coated Cu Wire: Experimental and Numerical Studies of Process Parameters and Materials

    Get PDF
    Cost reduction is the main driver in the recent transition to Cu wire bonding from predominate Au wire bonding. Other cost reduction in packaging comes from new developments in substrates and lead frames, for example, Pre-Plated Frames (PPF) and uPPF for QFP and QFN reduce the plating and material cost. However, 2nd bonds (stitch bonds) can be more challenging on some of the new leadframe types due to the rough surface finish and thin plating thickness. Pd-coated Cu (PCC) wire has been recently introduced to improve the wire bonding process with bare CU wire, mainly to improve reliability and enhance the stitch bond process. More fundamental studies are required to understand the influences of bonding parameters and bonding tools to improve stitch bondability. The stitch bond process of 0.7 mil diameter PCC wire on Au/Ni/Pd-plated quad flat-no lead (QFN) PPF substrate is investigated in this study. Two capillaries with the same geometry but different surface finishes are used to investigate the effect of capillary surface finish on the stitch bond process. The two capillary types are a polished finish type which is commonly used for Au wire bonding, and a granular finish capillary that has a much rougher surface finish. Process window between no stick on lead (NSOL) and short tail is compared. The effect of process parameters including bond force and table scrub amplitude is studied. The process window test results revealed that the granular capillary has larger process window and a lower chance of short tail occurrence. It has been shown that a higher scrub amplitude increases the chance of successful stitch bond formation. To further compare the capillary surface finishes, 3 sets of parameter settings with different bond force and scrub amplitude are tested. For all three parameter sets tested, the granular capillary showed better quality in bond strength. The granular capillary resulted in higher stitch pull strength compared to the polished type. A finite element model (FEM) of the process was developed to better understand the experimental observations. The amount of surface expansion (plastic deformation) of the wire at the wire and substrate interface was extracted from the model and attributed to the degree of adhesion (bonding). The model was used to confirm the experimental observation of adhesion (bonding) with different surface finish

    Material Characterization of Intermetallic Compound Formation with Respect to Thermosonic Bonding Duration

    Get PDF
    Intermetallic Metallic Compounds (IMCs) formation is a common cause for wire bond failures. This research studied the effect of US vibration duration on IMC formation and growth in Copper-Aluminum (Cu-Al) wire bonded samples. Wire bonded samples, using 2.5 mil (63.5 μm) thick Palladium coated Copper wire, is ultrasonically bonded on a 2 cm thick Aluminum (1”x1”) coupon. Segmented bonding technique using 200 gf force and 220 gf force are applied during segment 1 and segment 2 of the bonding respectively. Ultrasonic (US) vibration frequency of 115-117 khz and a bonding temperature of 175°C is used. A pair of 5 samples with bonding duration: 20 milliseconds (ms), 40ms, 60ms, 80ms, 100ms is created. Keeping the temperature constant at 250 °C, a tube furnace is used to annealing one set for 2 hours and the other set for 4 hours. Backscattered Electrons (BSE) images were used to detect IMC growth. Backscattered images revealed formation of IMC at the Cu-Al bond interface, mostly around the center of and bond periphery. Using BSE images to identify location of IMC, Energy Dispersive Spectroscopy (EDS) linescans were then performed. Only EDS analysis was taken into account for final results assuming it was more accurate than visual inspection of BSE images. EDS linescan analysis for 2 hour heat treated samples showed IMC thickness growing from 0.6 μm to 1 μm as bond duration increased from 20ms to 100ms. Linescan results for 4 hour samples had IMC thickness ranging from 0.8μm to 1.5 μm, and hence showed an increase xiv with bond duration from 20ms to 100 ms. Using micro indentations, hardness of both Cu ball and Al was measured. Change in hardness for Cu and Al was compared with bond duration and annealing time. Cu hardness decreased from 20ms to 60ms bond time and then increased in value from 80ms to 100ms bond time. When compared to anneal time, overall hardness in Cu increased with increase in annealing time. Overall hardness in Aluminum increased with increasing bond duration but decreased with increase in anneal time, such behavior is related to the concurrent effect of annealing and IMC growth

    INTERFACIAL DEGRADATION OF COPPER WIRE BONDS IN THERMAL AGING AND CYCLING CONDITION

    Get PDF
    Copper (Cu) wire bonds have become the dominant wire material used in microelectronic packages, having replaced gold (Au) in the majority of applications. Cost saving has been the key factor to drive this transition in wire bond material, although there are other advantages to Cu such as better electrical and thermal conductivity, reduced wire sweep during transfer molding and most importantly slower intermetallic compound (IMC) formation with Al (bond pad). Although IMC layers are much thinner than for Au-Al bonded joints, growth of second phase, Cu9Al4, due to exposure to high temperature leads to interfacial separation, which is exacerbated under thermal cycling condition ultimately leading to failure of the joint. Part I of this dissertation aims at addressing the effect of combined loading (thermal aging and cycling) on the reliability of Cu wire bonded devices using a unique long dwell thermal cycling profile that accelerates growth of different IMC phases (CuAl2 and Cu9Al4) and accelerates failure due to CTE mismatch between epoxy mold compound, die and Cu wire bond. Unlike many of the studies presented in literature, the test vehicle in this study are made of commercial off-the-shelf (COTS) parts, where a multitude of factors vary from one another, such as wire diameter, wire bond and bond pad characteristics, etc., the combination of which play a significant role in the life time of these devices and is not fully captured by first-principal models. Hence, a data-based life estimation method is developed, to aid in part selection based on initial bond characteristics. Critical parameters of wire bond that contribute to reliability are identified, the most significant of which is Al bond pad thickness, which controls the growth of IMC and influences time for Cu9Al4 IMC phase formation. Second part of this work is focused entirely on the Al bond pad thickness. Part II-A focuses on the qualitative comparison of pad thickness effect on the quality of initially formed bond through use of bond shear analysis and the effect of bond interface aging on bond shear analysis. Test vehicle consists of three pad thicknesses namely, 0.5 µm, 1 µm and 4 µm, over which Cu wirebonds with four different thermosonic bond recipes are made. Results from Part II-A provide guidelines for bond comparison using bond shear analysis. Part II-B focuses on the effect of bond pad thickness on the reliability of Cu wire bonds under isothermal aging at 175°C and 200°C for 1000 hours and 650 hours respectively. Test vehicle in this study consists of 0.675 µm and 3 µm pad thickness on silicon die in 20 leaded 5x5 QFN package. Wire bonds with one thermosonic bonding recipe are made on all the 90 packages used in the study. Electrical resistance and cross-sectional analysis are used to derive failure times, which is in turn used to build empirical relationship between pad thickness and time to failure. Result from this study shows longer time to failure for wire bonds on 3 µm pad compared to 0.675 µm pad due to delay in Cu9Al4 formation

    Algebraic level sets for CAD/CAE integration and moving boundary problems

    Get PDF
    Boundary representation (B-rep) of CAD models obtained from solid modeling kernels are commonly used in design, and analysis applications outside the CAD systems. Boolean operations between interacting B-rep CAD models as well as analysis of such multi-body systems are fundamental operations on B-rep geometries in CAD/CAE applications. However, the boundary representation of B-rep solids is, in general, not a suitable representation for analysis operations which lead to CAD/CAE integration challenges due to the need for conversion from B-rep to volumetric approximations. The major challenges include intermediate mesh generation step, capturing CAD features and associated behavior exactly and recurring point containment queries for point classification as inside/outside the solid. Thus, an ideal analysis technique for CAD/CAE integration that can enable direct analysis operations on B-rep CAD models while overcoming the associated challenges is desirable. ^ Further, numerical surface intersection operations are typically necessary for boolean operations on B-rep geometries during the CAD and CAE phases. However, for non-linear geometries, surface intersection operations are non-trivial and face the challenge of simultaneously satisfying the three goals of accuracy, efficiency and robustness. In the class of problems involving multi-body interactions, often an implicit knowledge of the boolean operation is sufficient and explicit intersection computation may not be needed. Such implicit boolean operations can be performed by point containment queries on B-rep CAD models. However, for complex non-linear B-rep geometries, the point containment queries may involve numerical iterative point projection operations which are expensive. Thus, there is a need for inexpensive, non-iterative techniques to enable such implicit boolean operations on B-rep geometries. ^ Moreover, in analysis problems with evolving boundaries (ormoving boundary problems), interfaces or cracks, blending functions are used to enrich the underlying domain with the known behavior on the enriching entity. The blending functions are typically dependent on the distance from the evolving boundaries. For boundaries defined by free form curves or surfaces, the distance fields have to be constructed numerically. This may require either a polytope approximation to the boundary and/or an iterative solution to determine the exact distance to the boundary. ^ In this work a purely algebraic, and computationally efficient technique is described for constructing signed distance measures from Non-Uniform Rational B-Splines (NURBS) boundaries that retain the geometric exactness of the boundaries while eliminating the need for iterative and non-robust distance calculation. The proposed technique exploits the NURBS geometry and algebraic tools of implicitization. Such a signed distance measure, also referred to as the Algebraic Level Sets, gives a volumetric representation of the B-rep geometry constructed by purely non-iterative algebraic operations on the geometry. This in turn enables both the implicit boolean operations and analysis operations on B-rep geometries in CAD/CAE applications. Algebraic level sets ensure exactness of geometry while eliminating iterative numerical computations. Further, a geometry-based analysis technique that relies on hierarchical partition of unity field compositions (HPFC) theory and its extension to enriched field modeling is presented. The proposed technique enables direct analysis of complex physical problems without meshing, thus, integrating CAD and CAE. The developed techniques are demonstrated by constructing algebraic level sets for complex geometries, geometry-based analysis of B-rep CAD models and a variety of fracture examples culminating in the analysis of steady state heat conduction in a solid with arbitrary shaped three-dimensional cracks. ^ The proposed techniques are lastly applied to investigate the risk of fracture in the ultra low-k (ULK) dies due to copper (Cu) wirebonding process. Maximum damage induced in the interlayer dielectric (ILD) stack during the process steps is proposed as an indicator of the reliability risk. Numerical techniques based on enriched isogeometric approximations are adopted to model damage in the ULK stacks using a cohesive damage description. A damage analysis procedure is proposed to conduct damage accumulation studies during Cu wirebonding process. Analysis is carried out to identify weak interfaces and potential sites for crack nucleation as well as damage nucleation patterns. Further, the critical process condition is identified by analyzing the damage induced during the impact and ultrasonic excitation stages. Also, representative ILD stack designs with varying Cu percentage are compared for risk of fracture

    Metallized coatings for corrosion control of Naval ship structures and components

    Get PDF
    In attempting to improve corrosion control, the U.S. Navy has undertaken a program of coating corrosion-susceptible shipboard components with thermally sprayed aluminum. In this report the program is reviewed in depth, including examination of processes, process controls, the nature and properties of the coatings, nondestructive examination, and possible hazards to personnel. The performance of alternative metallic coating materials is also discussed. It is concluded that thermally sprayed aluminum can provide effective long-term protection against corrosion, thereby obviating the need for chipping of rust and repainting by ship personnel. Such coatings are providing excellent protection to below-deck components such as steam valves, but improvements are needed to realize the full potential of coatings for above-deck service. Several recommendations are made regarding processes, materials, and research and development aimed at upgrading further the performance of these coatings
    corecore