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ABSTRACT

Upreti, Kritika. Ph.D., Purdue University, December 2014. Algebraic Level Sets for
CAD/CAE Integration and Moving Boundary Problems. Major Professor: Ganesh
Subbarayan, School of Mechanical Engineering.

Boundary representation (B-rep) of CAD models obtained from solid modeling

kernels are commonly used in design, and analysis applications outside the CAD

systems. Boolean operations between interacting B-rep CAD models as well as anal-

ysis of such multi-body systems are fundamental operations on B-rep geometries in

CAD/CAE applications. However, the boundary representation of B-rep solids is, in

general, not a suitable representation for analysis operations which lead to CAD/CAE

integration challenges due to the need for conversion from B-rep to volumetric approx-

imations. The major challenges include intermediate mesh generation step, captur-

ing CAD features and associated behavior exactly and recurring point containment

queries for point classification as inside/outside the solid. Thus, an ideal analysis

technique for CAD/CAE integration that can enable direct analysis operations on

B-rep CAD models while overcoming the associated challenges is desirable.

Further, numerical surface intersection operations are typically necessary for boolean

operations on B-rep geometries during the CAD and CAE phases. However, for non-

linear geometries, surface intersection operations are non-trivial and face the challenge

of simultaneously satisfying the three goals of accuracy, e�ciency and robustness. In

the class of problems involving multi-body interactions, often an implicit knowledge

of the boolean operation is su�cient and explicit intersection computation may not

be needed. Such implicit boolean operations can be performed by point containment

queries on B-rep CAD models. However, for complex non-linear B-rep geometries,

the point containment queries may involve numerical iterative point projection op-
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erations which are expensive. Thus, there is a need for inexpensive, non-iterative

techniques to enable such implicit boolean operations on B-rep geometries.

Moreover, in analysis problems with evolving boundaries (or moving boundary

problems), interfaces or cracks, blending functions are used to enrich the underlying

domain with the known behavior on the enriching entity. The blending functions are

typically dependent on the distance from the evolving boundaries. For boundaries

defined by free form curves or surfaces, the distance fields have to be constructed

numerically. This may require either a polytope approximation to the boundary

and/or an iterative solution to determine the exact distance to the boundary.

In this work a purely algebraic, and computationally e�cient technique is de-

scribed for constructing signed distance measures from Non-Uniform Rational B-

Splines (NURBS) boundaries that retain the geometric exactness of the boundaries

while eliminating the need for iterative and non-robust distance calculation. The

proposed technique exploits the NURBS geometry and algebraic tools of implicitiza-

tion. Such a signed distance measure, also referred to as the Algebraic Level Sets,

gives a volumetric representation of the B-rep geometry constructed by purely non-

iterative algebraic operations on the geometry. This in turn enables both the implicit

boolean operations and analysis operations on B-rep geometries in CAD/CAE appli-

cations. Algebraic level sets ensure exactness of geometry while eliminating iterative

numerical computations. Further, a geometry-based analysis technique that relies on

hierarchical partition of unity field compositions (HPFC) theory [1] and its extension

to enriched field modeling [2] is presented. The proposed technique enables direct

analysis of complex physical problems without meshing, thus, integrating CAD and

CAE. The developed techniques are demonstrated by constructing algebraic level sets

for complex geometries, geometry-based analysis of B-rep CAD models and a variety

of fracture examples culminating in the analysis of steady state heat conduction in a

solid with arbitrary shaped three-dimensional cracks.

The proposed techniques are lastly applied to investigate the risk of fracture in the

ultra low-k (ULK) dies due to copper (Cu) wirebonding process. Maximum damage
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induced in the interlayer dielectric (ILD) stack during the process steps is proposed

as an indicator of the reliability risk. Numerical techniques based on enriched iso-

geometric approximations are adopted to model damage in the ULK stacks using a

cohesive damage description. A damage analysis procedure is proposed to conduct

damage accumulation studies during Cu wirebonding process. Analysis is carried out

to identify weak interfaces and potential sites for crack nucleation as well as damage

nucleation patterns. Further, the critical process condition is identified by analyzing

the damage induced during the impact and ultrasonic excitation stages. Also, rep-

resentative ILD stack designs with varying Cu percentage are compared for risk of

fracture.
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1. INTRODUCTION

Computer Aided Design (CAD) and Computer Aided Engineering (CAE) are two

integral phases of Product Design. CAD systems enable design synthesis, which

includes a model of the geometrical shape and its visualization in a computer based

environment. CAE systems on the other hand analyze the synthesized design to check

if it satisfies the design requirements. This is achieved by solving boundary/initial

value problems defined over the geometric domain represented by the CAD model.

Hence, both CAD and CAE phases are executed in a sequence multiple times to

iteratively improve the design. For such an execution to be e�cient, it is important

to integrate the CAD and CAE phases seamlessly.

In the basic design-analysis sequence, the product geometry is first generated

using CAD tools and then, the physical behavior of the product is predicted using

the analysis tools. A number of integration challenges arise in this basic sequence.

Firstly, the developed CAD models are complex with detailed geometric features (Fig.

1.1(a)) and may be unsuitable for analysis using the current commercial tools (Finite

Element Analysis, FEA, being the most popular choice). Since, the mathematical

representations of geometry in CAD and CAE systems are often distinct, the ability

to integrate CAD and CAE is greatly aided by a common mathematical representation

as well as construction procedures that mirror each other.

The simplification or defeaturing of the CAD models (Fig. 1.1(b)) to make them

suitable for analysis is a tricky problem. An important goal of the design-analysis

sequence is to capture the behavior of the product correctly in addition to document-

ing the geometrical state of design. The physical model may depend on known or

specified behavior such as boundaries with specified boundary conditions (essential or

natural), crack surfaces, multi-material interfaces or singular points. Both the geom-

etry of the boundaries and known behavior need to be accurately captured. But, at
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(a) (b)

Figure 1.1. Geometric models in CAD and CAE systems. (a) Detailed design model

from CAD systems, (b) Abstracted analysis model (adapted from [3]).

the same time the computational expense increases with increase in the complexity of

the analysis model. Hence, a number of factors determine the e�ciency of CAD and

CAE integration such as the scale, scope and purpose of the CAE analysis, the nature

and dimensionality of the CAD model, and the amount of detail required for the CAE

application [3]. These challenges are further aggravated by the iterative nature of the

design problem such as in shape/topology optimization problems or physics driven

moving boundary problems such as crack propagation and void evolution (Fig. 1.2).

The problem of automatically converting the B-rep CAD model into a finite ele-

ment mesh is a widely studied research area [6,7]. Even if such an integration may be

automated (i.e., even if complex part geometry is automatically meshed), the analy-

sis model as represented by the mesh does not preserve the original geometry, which

is critical in physical problems where computable normals and tangents are critical.

Further, the mesh needs to be reconstructed when geometry is evolved for any reason.

Another important challenge to CAD/CAE integration is posed by the geometric

operation of Surface-Surface Intersection. Although often not recognized as such,
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(a)

!
(b)

Figure 1.2. Moving boundary problems. (a) Cracks in semiconductor chip dielectric

stacks (adapted from [4]), (b) Electromigration driven void growth (adapted from [5]).

surface intersection is a fundamental and recurring operation during CAD as well

as CAE phases beginning with geometric modeling, followed by mesh generation

and, finally, during the analysis process (see Fig. 1.3). A good surface intersection

algorithm should satisfy the three goals of accuracy, robustness and e�ciency [8–11].

However, this problem has been an area of research for more than three decades and

yet simultaneous advancement of all the three goals remains a challenge [8].

A combined CAD/CAE modeling strategy which is able to overcome these chal-

lenges will enable tighter integration in the design process.

1.1 Survey of Computational Techniques for CAD/CAE Integration

A survey of computational techniques that attempt to integrate design and anal-

ysis is presented and the associated challenges are discussed. The computational

schemes for design and analysis can be compared on the basis of multiple criteria.

A comparison of known mesh-based and mesh-free approaches to CAD/CAE inte-

gration, focusing on basic computational tasks that support complete CAD-CAE

integration can be found in [12]. Further, a compilation of geometry-based isopara-
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i-j 

Primitive i  Primitive j  

Boolean operation 

(a)

B-rep Primitive i  

B-rep Primitive j  

(b)

Figure 1.3. Surface-surface intersection operations in CAD/CAE. (a) Boolean opera-

tions in CAD geometry construction, (b) Interference detection between interacting

primitives in contact problem.

metric approaches towards CAD/CAE integration is presented in [13]. In this section,

the existing computational modeling schemes are compared with respect to the chal-

lenges identified in the previous section. In the following discussion, the techniques

are classified based on the CAD geometric representations (see Fig. 1.4) and the

corresponding approximation spaces in the analysis domain. The classification is

summarized in Fig. 1.5.

1.1.1 Boundary Representation

In this approach solid objects are modeled using their boundaries comprising of

faces, edges and vertices. The geometries obtained from commercial CAD systems
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(a) (b)

Figure 1.4. Representation of CAD geometry constructed in Fig. 1.3(a). (a) Boundary

representation, (b) Volumetric representation.
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Figure 1.5. Classification of computational techniques for CAD/CAE integration.
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are in general boundary representations. This representation does not parameterize

the interior of the solid, hence no volumetric information is associated with it.

Volumetric Approximations

In this class of methods, volumetric approximations of solid objects are built from

their B-rep CAD models for analysis applications. The volumetric approximations

are further classified based on their construction (see Fig. 1.6).

(a) (b)

Figure 1.6. Volumetric approximations. (a) Approximations conforming to geometry,

(b) Non-conforming approximations.

Approximations Conforming to Geometry In this class of methods, the approxima-

tion space of analysis domain need to conform to the geometry of CAD model. The

construction of such geometry conforming approximation is achieved by an interme-

diate mesh generation step.

Traditional Finite Element Mesh. The Finite Element Method (FEM) is the

most popular technique among the ones which use volumetric approximations for

analysis. A finite element mesh approximates the volumetric domain of the CAD

model by approximately conforming to its boundary [14,15]. The e�ciency of design-

analysis integration in this case depends on the e�ciency of the automated mesh
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generation schemes. While the problem of automated mesh generation has seen great

advances [7,16], there are still a number of unsolved issues related to robustness [17].

Analysis of complicated geometries and detailed features lead to a large number of

degrees of freedom since FE approximation to CAD model is accurate only in the

limit of mesh refinement. Also, the analysis model, which is only an approximation

to the CAD model, may lose important geometric features influencing the behavior

of the design. Further, remeshing at every step of geometric evolution is a challenge

with FEM. These challenges motivate the research for alternate modeling techniques.

Isoparameteric NURBS Representation. Ideally, design-analysis integration should

be done at the level of mathematical representation of geometry and analysis. This

implies that the functions that represent geometry of the CAD model should also rep-

resent the analysis geometry and field approximations. The CAD geometry may be

represented by parametric representations such as Bezier, B-spline and NURBS. Ka-

gan [18] developed a B-spline based finite element scheme. Another such development

was the B-spline finite element method by Sabin [19]. Renken and Subbarayan [20]

used NURBS to represent the shape of droplets as well as to calculate the solid-liquid

and liquid-vapor interaction energies at the surfaces. Recently, NURBS based design

and analysis is termed as Isogeometric analysis [21] and has become a growing re-

search area. However, the isogeometric approximations are volumetric in nature and

require construction of meshes from the boundary representations of geometry. The

isogeometric “meshes” have the advantage of eliminating all geometric representation

errors. However, conversion from the boundary representation to a volumetric repre-

sentation is still a mesh generation problem and will su↵er from similar limitations.

Non-Conforming Approximations In this class of methods, the approximation space

of analysis domain need not conform to the geometry of CAD model. The approxi-

mations can be constructed on a background uniform grid or in other similar manner

while the geometric model is implicitly used to evaluate the queries needed for anal-

ysis, for example, point containment and distance calculation. This eliminates the
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problems associated with conforming meshes to geometry or remeshing during itera-

tions.

Meshless Methods. Smooth particle hydrodynamics (SPH) [22, 23], the hp-cloud

method [24] and many others, construct approximations such that they cover the

domain by supports of radial basis functions which decay inversely to the distance

from center of the support. A detailed review of such techniques is presented in [25].

These methods eliminate the problems associated with mesh based techniques, but

complicate the enforcement of boundary conditions and volumetric integration.

Kantarovich Method. Another class of methods in this category construct approxi-

mations on uniform grids. These methods use basis functions which satisfy prescribed

boundary conditions and are also easy to integrate over the volumetric domain. Kan-

tarovich [26] proposed the construction of such basis functions from any other basis

function by using a su�ciently smooth function that vanishes at the dirichlet bound-

ary. Rvachev [27] generalized Kantarovich’s idea of applying homogeneous boundary

conditions to any and all types of boundary value problems using the concept of

R-function method (RFM) solution structure. Other extensions to this method are

presented in [28–30]. Höllig proposed the method of weighted extended B-splines

(WEB-splines) to construct approximations on the uniform grid in order to improve

stability and convergence of the method [31]. Recently, authors in [32] have pro-

posed a query-based approach towards CAD and CAE integration. While this class

of methods looks promising when compared to the other techniques, it is important

to note that the B-rep geometry is implicitly modeled in the analysis domain. Hence,

exactness of geometry during analysis of behavior is not ensured.

Boundary Approximations

In this class of methods, boundary approximations of solid objects are built from

their B-rep CAD models for analysis applications.
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Boundary Element Method In the boundary element method (BEM) [33], approx-

imations are built only over the boundary of the domain. Hence, this method has

considerable advantage over the traditional FEM with respect to the number of de-

grees of freedom.

However, BEM su↵ers from certain intrinsic limitations. It produces fully popu-

lated matrices which makes the method computationally expensive and has compu-

tational advantage over FEM only in the problems with small surface/volume ratio.

Non-linearities can only be handled by volume integrals, hence BEM is ine�cient in

such problems. BEM is applicable to problems for which Green’s functions can be

calculated. This places considerable restrictions on the generality of its applications.

Isoparameteric Boundary Element Method Isoparametric boundary approximations

lead to design-analysis integration at the level of mathematical representation of ge-

ometry and analysis in the true sense. Casale [34, 35] proposed the integration of

geometric modeling and structural analysis by using BEM on trimmed patches on

the boundary. Developments in this area followed after advent of isogeometric anal-

ysis [36, 37].

The isoparameteric boundary approximations overcome the challenge of mesh gen-

eration associated with isoparametric volumetric approximations and analysis is done

directly on the geometry. However, it still su↵ers from the limitations of BEM dis-

cussed in previous section resulting in limited applications of the technique.

1.1.2 Volumetric Representation

With the integration at mathematical level, the class of methods using isoparamet-

ric approximations to geometry theoretically overcome the issues of mesh generation

and regeneration as analysis is performed directly on the geometry. The challenge

however is that most of the CAD models are boundary representations while isoge-

ometric analysis requires volumetric NURBS approximations. Thus, there is a need

to develop volumetric representations for CAD models that parameterize the bound-
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ary as well as interior domain of solids. It is proposed that new ab-initio design

methods that support analysis aware representations for CAD models need to be

developed [38]. Hence, there is an increasing interest in trivariate solid construction

motivated by isogeometric analysis that is exemplified by references [39–41]. However,

the research in this area is still at a nascent stage and the most important challenge is

that current B-rep CAD modeling systems need to be completely replaced with new

CAD modeling kernels that enable trivariate CAD geometry construction.

Isoparametric Volumetric Approximations

The isoparametric volumetric approximation is same as the isoparameteric NURBS

representation described in the previous sections. The basic di↵erence in this is that

a volumetric representation of geometry such as trivariate B-spline or NURBS pa-

rameterization is assumed. Hence, in this case, there is no need for conversion of

boundary representation to volumetric representation. This class of methods achieves

CAD/CAE integration at the mathematical representation level in the true sense.

Further, the intrinsic challenges associated with BEM are also overcome due to the

volumetric nature of this approximation.

Compositional Analysis A further step towards CAD/CAE integration was pro-

posed by authors in [42]. They proposed CAD/CAE integration both at mathemat-

ical as well as procedural level by mirroring the constructive solid geometry (CSG)

procedure for defining the analysis problem as well as using NURBS to represent

both geometry and analysis functions. This technique was further extended to de-

velop the HPFC theory [1]. The compositional procedure mirroring CSG procedure

is illustrated in Fig. 1.7.
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i-j 

Primitive i  Primitive j  

Figure 1.7. Compositional isoparametric approximations mirroring CSG procedure.

1.2 Core Challenges to CAD/CAE Integration

The core challenges to the computational techniques for CAD/CAE integration are

summarized in this section. The computational techniques discussed in the previous

section address one or more of these challenges but not all.

1.2.1 Mesh Generation Problem

There are two main factors that drive the need for an intermediate mesh generation

step between the design and analysis processes.

Need for Volumetric Information. In general, all analysis techniques except for

the boundary element method are volumetric in nature and need conversion of B-

rep CAD model into an analysis amenable volumetric representation through mesh

generation.
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Di↵erence in the Mathematical Representation. This is applicable to all approxi-

mations (volumetric or boundary) that are non-isoparametric in nature to the CAD

geometry.

The mesh generation problem is theoretically eliminated by the analysis approxi-

mations non-conforming to the geometry and the isogeometric approximations.

1.2.2 Exactness of Geometry

The CAD geometry may have certain geometric features which have associated be-

havior that is important for the analysis problem. For example, boundaries with spec-

ified field values, singular points or crack surfaces, multi-material interfaces. These ge-

ometric features must be captured exactly to model its behavior accurately. However,

in mesh generation schemes, often the CAD geometries are simplified or defeatured,

leading to inaccurately capturing potentially important geometric features. Further,

in non-conforming approximations, the geometry is captured implicitly. Hence, the

behavior of such geometric features is captured only in the limit of refinement. The

exactness of geometric features with relevant behavior is solved only by isoparametric

boundary or volumetric approximations that explicitly capture the exact geometry.

1.2.3 Point Containment Problem

A fundamental problem associated with bounded solids is to determine if a query

point is contained within the approximation of the solid. This problem is trivial if

volumetric approximation of the solid is used for analysis since it has a parameteric

representation for the interior of the solid. However, for analysis approximations

distinct from the CAD geometry, only the boundary representation of the geometry

is available. Hence, numerical techniques that may involve point projection on to the

surface of the solid are needed to check for point containment.
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1.2.4 Surface Intersection Problem

Another fundamental problem in CAD/CAE integration is the boolean operations

occurring in multibody problems such as contact analysis and machining simulations.

In general, for both boundary as well as volumetric approximations of geometry,

boolean operations involve surface intersection computations. In existing CAD sys-

tems, B-rep CAD models are represented by a collection of trimmed spline patches

such as NURBS. Boolean operations on such a representation involves numerical

surface-surface intersection operation between the trimmed NURBS patches. The

problem of surface intersection between two parametric spline patches leads to an un-

derconstrained system of non-linear equations which is typically solved using numer-

ical methods. Surface intersection solution techniques are broadly classified into four

categories: algebraic [43, 44], subdivision [11, 45–48], lattice [49] and marching meth-

ods [50–52]. Hybrid methods have also been developed recently combining features of

the above methods. In general, in the surface intersection techniques, it is challeng-

ing to simultaneously achieve the goals of accuracy, robustness and e�ciency [8–11].

Greater accuracy in general is associated with greater data proliferation and com-

putational cost. Numerical inaccuracies may lead to detection of wrong topology of

solution. Further, the intersection techniques need to detect all curve branches, loops

and singularities to ensure robustness. However, robustness is dependent on heuristic

numerical parameter choices such as step size in marching methods or number of

subdivision steps. Most algorithms use conservative step size that makes them slow.

Hence, it is very di�cult to satisfy the conflicting goals of accuracy, robustness and

e�ciency simultaneously using the existing methods.

The problem of CAD/CAE integration faces the challenges of mesh generation

problem, capturing geometric features exactly, point containment problem and sur-

face intersection problem. The mesh generation problem is eliminated by building

non-conforming approximations. However, such approximations have di�culty in
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Table 1.1. Comparison of CAD/CAE integration techniques.

Geoemtric Rep-

resentation

Boundary Volumetric

Analysis Ap-

proximations

Boundary Volumetric Isoparametric

Volumetric

BEM Isoparame

-tric BEM

FEA/IGA

Mesh

Meshless IGA HPFC

Mesh Genera-

tion Problem

5 X 5 X X X

Exactness of

Geometry

5 X 5 5 X X

Point Contain-

ment Problem

X X X 5 X X

Surface Inter-

section Prob-

lem

5 5 5 5 5 5

capturing the geometric features exactly as well as the numerical challenge of point

containment. On the other hand, isogeometric approximations can theoretically re-

move the mesh generation problem as well as handle exactness of geometry and point

containment. But the major challenge with this class of analysis techniques is the

need for trivariate analysis ready CAD models. The existing CAD systems cannot

provide such a representation, hence, such geometries need to be constructed from

scratch and new CAD modeling tools need to be developed. Further, none of the

current techniques address the numerical challenge of surface intersection for implicit

boolean operations. These challenges are summarized in Table 1.1.
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1.3 Summary of Research Gaps

An ideal computational technique to overcome the CAD/CAE integration chal-

lenges will possess the following characteristics:

1. Enable direct analysis of complex physical problems without meshing

2. Utilize and ensure exactness of geometry

3. Eliminate surface intersection problem

4. Eliminate point containment problem

Towards this end, a purely algebraic solution to the problem of geometrical and

behavioral modeling is proposed here. The algebraic tools of implicitization will be

utilized to construct a signed distance measure, named as Algebraic Level Sets, for

the parametric geometry. In the proposed technique, there will be no numerical

computation of intersection curve and all boolean compositions in CAD and CAE

will be addressed algebraically using the algebraic level sets. This technique will

utilize the HPFC theory for direct analysis of geometric models [1] and isogeometric

enriched field approximations [2] for analysis of solids with enriching entities such as

cracks, voids, or inclusions.

1.4 Research Overview

The main goal of this work is to develop a CAD/CAE integration technique that

will (1) enable direct analysis of B-rep CAD models without meshing, (2) ensure ex-

actness of geometry to capture known behavior on boundaries, (3) address surface

intersection and point containment problems through algebraic non-iterative solu-

tion. To this end, Algebraic Level Sets, an algebraic measure of signed distance from

NURBS boundaries is proposed. The proposed technique exploits the NURBS geom-

etry and algebraic tools of implicitization to construct the signed distance measure
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for the NURBS solid. Such a signed distance measure gives a volumetric representa-

tion of the B-rep geometry constructed by purely non-iterative algebraic operations

on the geometry. Further, it also ensures exactness of the geometry in the analy-

sis procedure while eliminating iterative numerical computations. A geometry-based

analysis technique that relies on HPFC theory [1] and its extension to enriched field

modeling [2] is presented. The proposed technique enables direct analysis of complex

physical problems without meshing, thus, integrating CAD and CAE. In this tech-

nique approximations on underlying domain are composed with the approximations

on explicitly modeled B-rep CAD boundaries with known behavior. The blending

of the approximations on the B-rep geometry and underlying domain is achieved by

using weight functions that satisfy the partition of unity property [53]. These weight

functions are constructed using the proposed algebraic distance measure from bound-

aries. Further, all implicit boolean operations and point containment queries during

analysis are performed by querying the sign of the algebraic level set of B-rep solids.

There is no numerical computation of exact intersection curve, hence, eliminating

numerical surface intersection problem. The developed techniques are demonstrated

by constructing algebraic level sets for complex geometries, geometry-based analysis

of B-rep CAD models and a variety of fracture examples culminating in the analysis

of steady state heat conduction in a solid with arbitrary shaped three-dimensional

cracks. Finally, the proposed techniques are applied to a microelectronics packaging

problem to investigate the risk of fracture in the ULK dies due to Cu wirebonding

process.

1.5 Outline

In Chapter 2, the theoretical concepts essential for development of algebraic level

sets are presented. In Chapter 3, detailed algorithms for constructing unsigned alge-

braic distance measure for NURBS and Bezier geometries are discussed. The prop-

erties of the algebraic distance field are examined to determine the quality of its ap-
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proximation to exact distance in Chapter 4. In Chapter 5, algorithms for constructing

signed distance measures for bounded B-rep solids are discussed. The algebraic sign

calculation is a by-product of the algebraic distance field calculation technique. Next,

the algebraic sign calculation algorithms are applied to solve the problem of implicit

boolean operations in Chapter 6. Further, in Chapter 7, a computational technique

for CAD/CAE integration based on the HPFC theory and the enriched field model-

ing is presented. This technique enables direct analysis of complex physical problems

without meshing, thus, integrating CAD and CAE. In Chapter 8, the application

of algebraic distance field for modeling fracture, damage and crack propagation are

demonstrated using the geometrically explicit and behaviorally implicit enrichment

scheme [2]. Further, in Chapter 9, application of algebraic level sets is demonstrated

in a wirebonding problem encountered in the semiconductor industry. A compre-

hensive study of risk of fracture in ULK dies during the Cu wirebonding process is

presented using simulations of damage and fracture in layered ULK structures. Fi-

nally, in Chapter 10, the thesis is summarized listing the novel contributions and

proposed future work.
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2. ALGEBRAIC LEVEL SETS : THEORY

In general, in moving boundary problems, the motion of complex boundaries need

to be tracked within the domain. Examples of such problems arise in many fields,

including fluid mechanics, solid mechanics, optimal design, computer vision and im-

age processing. Commonly, an Eulerian framework in which the geometry of the

boundaries is inferred implicitly as the zero level set of an evolving field is used to

numerically solve these class of problems [54]. Since the level sets implicitize both

the geometry of the boundary as well as the distance from the boundary, in other

computational procedures for moving boundary problems, there is a common need

for explicitly calculated distance fields.

In general, in these problems, distance from the boundary or interface serves as

a measure of influence of the behavior on the boundary at a point in the under-

lying domain. Computational procedures relying on distance fields are many. For

example, the use of distance fields for image processing is well established [55]. In

fluid-structure interaction problems, signed distance functions have been used to rep-

resent fluid boundaries such as the fluid-structure interface or the free surface within

the computational domain [56, 57]. Distance fields are also useful in contact prob-

lems [58–60] for defining the gap function for contact detection. Recently, in the

Isogeometric Analysis (IGA, [20,21,42]) literature, an approximate distance field has

been used to enrich the base approximations with those on lower-dimensional geo-

metrical features, enabling application of boundary conditions as well as simulations

of crack propagation [2]. Mathematical representation of graded materials have also

used distance fields to describe the desired blended material distributions [61, 62].

Thus, while the use of distance field as a measure of influence of the boundaries

on the domain has enabled the numerical solution to complex problems, inexpensive

distance field calculations are essential for the analysis to be computationally e�cient.
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Since the notion of distance fields is fundamental to many computational solution

procedures, there exists a significant established literature aimed at improving the

techniques for calculating the distance field. Iterative methods such as the Newton-

Raphson technique are usually required for finding continuously varying distance

from spatial points to a parametric surface [63–66]. While the iterative schemes

make distance computations expensive, the calculated distance field is unfortunately

not su�ciently smooth for many engineering applications. This is since the distance

function is not di↵erentiable at points that are equidistant to two or more points on

the surface (cut locus of the surface).

Iterative distance calculation methods in general become necessary due to the

geometrical nonlinearity of the surface. Hence, piecewise planar approximations of

a parametric surface using, for instance, triangular mesh are popular in computer

graphics applications (see for instance [67]). The piecewise linearization of geometry

makes the distance calculation relatively straightforward, albeit by introducing a new

combinatorial problem – that of determining the nearest planar surface from among

the many possible ones at a spatial point. Therefore, the algorithms relating to piece-

wise planar approximations mainly deal with e�cient data structures to determine

the triangular face closest to the point of interest (see for instance, [68, 69]) or algo-

rithmically propagating distances from calculations closer to the surface [70,71]. The

disadvantage of the piecewise planar approximations is that the geometrical exactness

of the boundary is not preserved making the calculated distance accurate only in the

limit of refinement of the planar approximations. But, more critically, the calculated

distance field is non-smooth since a subset of the spatial points will project to an

edge or vertex of the triangular face. This in turn implies that one cannot rely on dis-

tance calculations on planar approximations to generate smooth, continuous distance

measures.

In general, distance measures may be thought of as extending approximations of

fields from the boundaries into the underlying domain. For constructing such a dis-

tance measure, the exact distance to the boundary is not as critical as a smooth and
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monotonically increasing function of distance that serves as a measure of influence of

the boundary on the underlying domain. Smoothness of such an approximate distance

measure would ensure robustness of any calculations based on the constructed field.

Hence, an approximate distance measure that is smooth is su�cient for these appli-

cations. Towards building such an approximate measure, Biswas and Shapiro [72]

described a method using piecewise planar geometric approximations of a parametric

curve. They constructed an approximate distance field for each linear segment and

combined the distance field of each linear segment using R-functions into a global ap-

proximate distance field. The advantage of this technique over the previous distance

calculation techniques is that this enables desired smoothness in the distance field.

However, this technique relies on piecewise linearization of the geometry and hence,

compromises the exactness of the boundary.

In this work, a purely algebraic, and therefore computationally e�cient, tech-

nique for constructing an approximate distance function that avoids the iterative, and

therefore ine�cient, distance computations is developed. The technique preserves the

geometric exactness of low-degree (two or three) NURBS surfaces. Such purely alge-

braic distance computation procedures that preserve the geometric exactness do not

appear to exist in prior literature. The proposed technique overcomes the need for the

iterative exact distance computations at every quadrature point during analysis while

providing smoother, more robust distance field relative to the numerically computed

distance.

In this chapter, the theoretical concepts essential for development of the algebraic

distance field are presented. Rational Bezier and NURBS parametrizations are con-

sidered as they are most popular in Computer aided geometric design (CAGD) and

Isogeometric Analysis.
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2.1 Distance Field: Definition and Properties

Given a set S 2 Rn, for any point x 2 Rn a distance field d(x) of S is defined as

the minimum distance from the point x to an element p 2 S given by

dS(x) = inf
p2S

k x� p k (2.1)

The distance function d is continuous at all x 2 Rn and is di↵erentiable almost

everywhere in Rn. The points where the field is not di↵erentiable are those where

minimum distance corresponds to non-unique points p 2 S. An important property

associated with the gradient of the field d is

k rdS(x) k= 1 (2.2)

Thus, by definition, the distance field refers to exact distance to the given ge-

ometry. In this paper, the same terminology is followed, and any approximation to

the exact distance field is referred to as approximate distance field, distance measure,

algebraic level sets, or algebraic distance field depending on the context.

2.2 Requirements on Distance Field for Explicit Modeling of Evolving

Boundaries

As a motivation for identifying the requirements on distance measures so they

may be useful for analysis, various types of boundaries and interfaces that occur in

engineering design and analysis problems are summarized in Fig. 2.1. Ideally, the

distance measure would preserve the geometric exactness of the explicit boundary so

that the behavior on these complex boundaries is accurately captured by the analysis

scheme. Hence, a fundamental requirement that drives the current work is that the

distance field needs to be exact on and very near the boundaries. At the same time, it

is also required that the distance field is su�ciently smooth for modeling the analysis

problem. Thus, the following requirements on distance field are imposed in this study:

1. Exact on the boundary
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Ω 

Crack 

Interface 

Inclusion 

Γu 

Γt 

Hole 

Figure 2.1. Illustration of the di↵erent types of boundaries and interfaces encountered

during engineering analysis that may be modeled as enrichments on an underlying

field.

2. Montonic function of exact distance

3. Su�ciently smooth for engineering applications within the domain

4. E�ciently obtained through non-iterative calculations

2.3 Implicitization of Parametric Geometry using Elimination Theory

An implicit representation of a geometry is an equation of the form f(x1, ..., xn) =

0 in n-dimensional space. Given the implicit representation f(x1, ..., xn) = 0, a level

set of the function f is of the form L(f) = {(x1, ..., xn) | f(x1, ..., xn) = c}, that is

a set for which the function f takes on some constant value c. Such level sets of a

geometry give monotonic measure of distance from the geometry as shown in Fig.
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2.2. Hence, by obtaining an implicit representation of the parametric geometry, it is

possible to construct a utilizable distance measure from the geometry.

Figure 2.2. Level curves of an ellipse with implicit equation f(x, y) = x2+y2�xy�8.

Algebraic techniques based on elimination theory [73, 74] enable the conversion

of parametric geometry to its implicit representation f(x1, ..., xn) = 0. Elimination

theory investigates the conditions under which sets of polynomials have common

roots. For instance, a linear system of equations Ax = 0 will have a non-trivial

solution if and only if the determinant of the coe�cient matrix vanishes, i.e., |A| =

0. An expression of this form |A| involving the coe�cients of the polynomials is a

Resultant. The vanishing of this resultant is a necessary and su�cient condition for

the set of polynomials to have a common non-trivial root. Implicitization tools are

based on construction of such resultants.

2.3.1 Implicitization of Parametric Curves

Sederberg [73] discussed in detail the various resultants that may be used for im-

plicitization. In this work, Bezout’s resultant is used for implicitization of parametric

curves as it is e�cient to compute compared to the other resultants. We briefly il-

lustrate Bezout’s resultant with an example but, prior to that, we observe that for
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a rational parametric curve C(X(t), Y (t),W (t)) or C(x, y) with x = X(t)
W (t) , y = Y (t)

W (t) ,

two auxiliary polynomials may be formed as:

q1(x, t) = W (t)x�X(t) = 0

q2(y, t) = W (t)y � Y (t) = 0
(2.3)

The resultant of the above polynomials (treating x and y as constants) yields the

implicit curve corresponding to the parametric entity. Now, specifically, consider the

following two polynomials

q1(t) = a3t3 + a2t2 + a1t+ a0

q2(t) = b3t3 + b2t2 + b1t+ b0
(2.4)

where, from the form of Equation (2.3), it is clear that ai and bj are linear functions

of x and y respectively. By the following algebraic manipulations, three equations are

obtained in t2, t and 1.

a3q2 � b3q1 = (a3b2)t2 + (a3b1)t+ (a3b0) = 0

(a3t+ a2)q2 � (b3t+ b2)q1 = (a3b1)t2 + [(a3b0) + (a2b1)]t+ (a2b0) = 0

(a3t2 + a2t+ a1)q2 � (b3t2 + b2t+ b1)q1 = (a3b0)t2 + (a2b0)t+ (a1b0) = 0

(2.5)

In matrix form, this system of equations can be written as Ax̂ = 0, or
2

6

6

6

4

(a3b2) (a3b1) (a3b0)

(a3b1) (a3b0) + (a2b1) (a2b0)

(a3b0) (a2b0) (a1b0)

3

7

7

7

5

8

>

>

>

<

>

>

>

:

t2

t

1

9

>

>

>

=

>

>

>

;

= 0 (2.6)

Then, Bezout’s resultant of the two polynomials q1(t) and q2(t) is |A| by definition.

In general, Bezout’s resultant of two degree r polynomials is determinant of a r⇥r

symmetric matrix:
2

6

6

6

4

(arbr�1) · · · (arb0)
...

...

(arb0) · · · (a1b0)

3

7

7

7

5

8

>

>

>

<

>

>

>

:

tr�1

...

1

9

>

>

>

=

>

>

>

;

= 0 (2.7)

where (aibj) = aibj � ajbi, a and b are linear functions of x and y respectively. For

the values of t for which q1(t) = 0 and q2(t) = 0, there exists points P (x, y) lying on
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the parametric curve C(X(t), Y (t),W (t)) such that f(x, y) = 0. This is the implicit

equation of the parametric curve C. Fig. 2.3 illustrates implicitized curves of di↵erent

degrees.

(a)$ (b)$ (c)$

Figure 2.3. Implicitization examples. (a) Degree 2 Bezier curve with homogeneous

control points (-3,-2,0,1), (0,2,0,1), (4,1,0,1), (b) Degree 3 Bezier curve with homoge-

neous control points (4,-3,0,1), (-1,2,0,4), (5,1,0,1.5), (2,6,0,2), (c) Degree 4 Bezier

curve with homogeneous control points (0,-3,0,1), (4,4,0,2), (-3,7,0,4), (5,4,0,1.5),

(2,6,0,2).

2.3.2 Implicitization of Parametric Surfaces

Implicitization of parametric surfaces is carried out using Dixon’s resultant [73].

Given a rational parametric surface S(X(u, v), Y (u, v), Z(u, v),W (u, v)) of degree r1⇥

r2, three auxiliary polynomials are formed as:

q1(x, u, v) = W (u, v)x�X(u, v) = 0

q2(y, u, v) = W (u, v)y � Y (u, v) = 0

q3(z, u, v) = W (u, v)z � Z(u, v) = 0

(2.8)
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As before, holding x, y and z to be constants, if some (u0, v0) simultaneously satisfy

q1 = q2 = q3 = 0, then for (u, v) = (u0, v0) and any (↵, �), the following determinant

always vanishes [74]:

Det(u, v,↵, �) =

�

�

�

�

�

�

�

�

�

q1(u, v) q2(u, v) q3(u, v)

q1(↵, v) q2(↵, v) q3(↵, v)

q1(↵, �) q2(↵, �) q3(↵, �)

�

�

�

�

�

�

�

�

�

(2.9)

Also, the determinant vanishes for u = ↵ or v = �. Hence, (u � ↵) and (v � �)

are factors of the determinant. Now, these factors may be eliminated to obtain the

following determinant:

�(u, v,↵, �) =
Det(u, v,↵, �)

(u� ↵)(v � �)
=

2r1�1
X

i=0

r2�1
X

j=0

Qi,j(u, v)↵
i�j (2.10)

The polynomial � is further expressed as a polynomial in ↵ and � whose coe�cients

Qi,j are polynomials in u and v. The polynomial � vanishes for (u, v) = (u0, v0) with

any choice of (↵, �), which is possible if and only if every Qi,j(u0, v0) = 0. This

generates 2r1r2 polynomials and gives rise to the following system of equations [73]:

↵0�0

...

↵i�j

· · ·

↵2r1�1�r2�1
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;
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(2.11)

where terms A(i, j, k, l) are linear functions of x, y and z. The determinant of the

above 2r1r2 ⇥ 2r1r2 matrix is Dixon’s resultant.

2.4 Challenges to Implicit Representation

The implicit equation obtained using Bezout’s resultant gives distance measure

(level sets) from the implicit representation. Fig. 2.4 shows the level curves of the

implicit representation of a parametric cubic curve. These level curves form an ap-

proximate distance field.



27

Figure 2.4. Level set as distance measure. Level curves of implicit representation of

a degree-3 Bezier curve.

However, the implicit representation of a parametric curve is global, meaning that

it extends beyond the parametric range of the original curve. The distance measure

formed by the level sets of the implicit representation essentially corresponds to the

shortest distance from the implicit curve. But the shortest distance to implicit curve

may not always be the shortest distance to the parametric curve. This is illustrated

in Fig. 2.5. The parametric curve is a segment of the circle and the implicit curve

is the circle (Fig. 2.5(a)). The implicitized distance function is plotted against exact

distance from the Bezier curve in Fig. 2.5(d). Implicit distance function is not

monotonic with respect to exact distance from the parametric curve. Hence, the

implicitized distance field does not qualify as a valid distance measure for the purposes

of analysis.

2.5 Boolean Operations using R-functions

In order to obtain a valid distance measure, it is essential to obtain an im-

plicit or function representation of the parametric geometry that is defined only
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Implicit representation  
 of Bezier curve
Bezier Curve

(a) (b)

d"

d=0"

d=1"

d=0.5"

(c) (d)

Figure 2.5. Implicitized distance function. (a) An example of a Bezier curve and the

corresponding implicit representation, (b) Level curves of implicit representation as

distance field, (c) Axis with markings of exact distance from the Bezier curve, (d)

Plot of implicitized distance field with respect to exact distance from Bezier curve.

within the parametric range of the geometry. For instance, given a rational curve

C(X(t), Y (t),W (t)) with the parametric range t 2 [t0, tn], the implicit representation

must be of the form F(X(t), Y (t)) = 0 8 t 2 [t0, tn]. The level curves of such an

implicit function (F(X(t), Y (t)) = c) will provide a valid distance measure for the

given parametric curve.

In this work, an algebraic distance measure is proposed based on the following

trimming procedure [75]. A convex trimming region � � 0 is defined such that its
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intersection with the implicit curve f = 0 is the parametric curve segment C(t) as

shown in Fig. 2.6. The algebraic representation of this trimmed parametric curve

segment C(t) is obtained by boolean operations on the fields of trimming region �

and implicit representation f . R-functions [75] are chosen here to enable boolean

operations on functional description of domains.

Φ≥0$

f=0$

C(t)$

Figure 2.6. Parametric curve C(t) as an intersection of region � � 0 and implicitized

curve f = 0.

The theory of R-functions [75] provides smooth functional equivalents of boolean

operations and is therefore appropriate in an algebraic procedure. Some basic R-

functions and their companion boolean operations are as follows

1. R-conjunction is the functional equivalent to boolean intersection operation.

The R-conjunction function value essentially corresponds to the minimum of

functions g1 and g2 such that the resulting function has desired smoothness.

g1 ^ g2 = g1 + g2 �
p

g21 + g22 (2.12)

2. R-disjunction is the functional equivalent to boolean union operation. The R-

disjunction function corresponds to the maximum of functions g1 and g2 with

desired smoothness.

g1 _ g2 = g1 + g2 +
p

g21 + g22 (2.13)
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In this work, the R-function for the trimming procedure is adopted from reference

[72]. This R-function as proposed by Rvachev [76] is of the form

g =
p

f 2
1 + f 2

2
(2.14)

where, f1 is a distance measure to the infinite curve and f2 is a distance measure to

the trimming region such that f2 is identically zero in the interior of the trimming

region. Then, the function g defines the distance measure from any point to the

trimmed curve.

Let f(x, y) be the implicit representation for the given parametric boundary and

� be the algebraic representation of the convex trimming region. Then, functions f1

and f2 in Equation (2.14) are constructed as follows.

f1 = f

f2 =
(|�|� �)

2

Substituting the functions f1 and f2 constructed from the function representa-

tion of implicit curve and trimming region respectively, a valid distance field g(d) is

constructed by the following R-function.

g =

r

f 2 +
(|�|� �)2

4
(2.15)

This trimming operation enables construction of a valid approximate distance field

g(x, y) for a parametric curve with implicit representation f(x, y) = 0. Inside region

�, the distance field corresponds to the implicit representation such that

g = f 8 x 2 � � 0 (2.16)

For points outside the trimming region �, distance field is obtained as a composi-

tion of the fields � and f .

g =
p

f 2 + �2 8 x 2 � < 0 (2.17)
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2.6 Normalization and Composition of Algebraic Distance Fields

The parametric representation of a spline geometry is a piecewise polynomial

representation. Hence, the algebraic distance measure of the spline is constructed

through union of the algebraic distance fields of the constituent parametric geome-

tries. However, boolean composition of algebraic distance fields may result in a non-

monotonic distance measure as illustrated in Fig. 2.7(a). This is because the gradient

of algebraic distance measure may not always satisfy the property, k rd k= 1. Hence,

the adjoining distance fields of piecewise polynomial curve may grow at di↵erent rates

and exhibit non-monotonic behavior when composed. Also, an algebraic function that

gives an approximate measure of distance from a boundary could be locally converted

into a proper distance function by scaling. For both of these reasons, normalization

is of importance when constructing distance fields. The normalization process is

described below.

Let d(x1, ..., xn) be an exact distance function from a boundary and s(x1, ..., xn)

be an approximate distance field to the boundary. Then, s is a function of the exact

distance d from the boundary. Let n be the variable in the normal direction at the

boundary. Taylor series expansion of s(d) with respect to d near the boundary can

be written as

s (d) = s (0) +
@s

@n
(0) d+

1

2!

@2s

@n2

(0) d2 +
1

3!

@3s

@n3

(0) d3 + ... (2.18)

Ignoring the higher order terms in the expansion, s(d) can be assumed to be a

linear approximation locally such that scaling the function by @s
@n

(0) gives a first order

normalized distance function.

ŝ (d) =
s (d)
@s
@n

(0)
(2.19)

Higher order normalization can be obtained by assuming a better approximation

of the function s(d) [19]. In general, the first order normalized distance fields possess

the properties that make them suitable for analysis [72]. Thus, normalization enables

the construction of smooth boolean compositions of the algebraic distance fields. The

extent of smooth blending depends on the order of normalization (Fig. 2.7(b)).
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R-function operations such as R-conjunction are used to compose the normalized

algebraic distance fields into a single algebraic distance measure. R-function oper-

ations preserve normalization of the constituent fields almost everywhere. Consider

two normalized functions ŝ1 and ŝ2 and let ŝ be obtained as an R-conjunction com-

position of ŝ1 and ŝ2. Then,

ŝ = ŝ1 + ŝ2 �
q

ŝ21 + ŝ22

@ŝ

@x
=
@ŝ1
@x

+
@ŝ2
@x

�
ŝ1

@ŝ1
@x

+ ŝ2
@ŝ2
@x

p

ŝ21 + ŝ22
,
@ŝ

@y
=
@ŝ1
@y

+
@ŝ2
@y

�
ŝ1

@ŝ1
@y

+ ŝ2
@ŝ2
@y

p

ŝ21 + ŝ22

It can be seen that when ŝ1 = 0 and ŝ2 6= 0, @ŝ
@x

= @ŝ1
@x

and @ŝ
@y

= @ŝ1
@y

. Thus,

|rŝ|2 = |rŝ1|2 = 1

Similarly, |rŝ|2 = 1 when ŝ1 6= 0 and ŝ2 = 0. Thus, R-conjunction preserves nor-

malization near the boundary except when ŝ1 = 0 and ŝ2 = 0. At such points, the

gradient is bounded and the bounds are derived in Section 4.2 as

| m� 1p
1 +m2

|  |rŝ|  |2� m+ 1p
1 +m2

| (2.20)

where

m = lim
ŝ1!0

ŝ2
ŝ1

The maximum value of the upper bound is 3 and the minimum value of lower

bound is 0 (Section 4.2).

Hence, once the constituent algebraic fields are normalized, the normalization is

carried forward in further boolean compositions except at points where the parametric

curves intersect. However, the gradient is bounded at such points.
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(a)

(b)

Figure 2.7. Normalization of distance field. (a) The composition of non-normalized

distance fields can lead to a non-monotonic approximate distance field, (b) First order

normalization yields a monotonic distance field.
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3. UNSIGNED DISTANCE FIELD CONSTRUCTION

Based on the theory described in the previous chapter, detailed algorithms are pro-

posed for constructing algebraic distance fields from NURBS and Bezier curves and

surfaces.

3.1 Algebraic Distance Field Construction Algorithm for a NURBS Curve

The flowchart in Fig. 3.1 illustrates the steps for the algebraic distance computa-

tion from a NURBS curve. These steps are explained in detail below. The algorithm

performs an initial check for repeated control points of the NURBS curve, in which

case the NURBS curve reduces to a degenerate point. In such a case the distance is

computed to the degenerate point and the execution of the algorithm is stopped. For

a non-degenerate case, the algorithm proceeds as described below.

3.1.1 Bezier Decomposition

Since NURBS geometries are piecewise parametric representations, they are not

suitable for direct implicitization. Therefore, the NURBS curve is first decomposed

into its Bezier segments. Given a NURBS curve of degree p, the Bezier segments can

be obtained by inserting additional knots at interior knot locations until the multi-

plicity becomes p. Established subdivision techniques using knot insertion described

in [64, 77, 78] were used. The decomposition process is illustrated in Fig. 3.2 using a

degree two NURBS curve.
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Input&:&NURBS&

Curve&

Is&degenerate&

point&?&

Decompose&NURBS&

curves&into&Bezier&

segments&

No&

Yes&

Boolean&composi>on&

of&distance&fields&of&

Bezier&segments&

Output:&Algebraic&

distance&field&of&NURBS&

Curve&

Calculate&distance&

from&degenerate&

point&

One&>me&ini>aliza>on&

Ini>alize&algebraic&

level&set&for&each&

Bezier&curve&

Input&:&Bezier&Curve&&

Figure 3.1. Flowchart describing the algebraic distance field construction for a NURBS

curve.

3.1.2 Algebraic Distance Field Construction for Bezier Curve

After Bezier decomposition, the algebraic distance field is constructed for each

Bezier segment. The flow of control for the construction of distance fields from a

Bezier curve is shown in Fig. 3.3. This algorithm also begins with a check for

the case of repeated control points that reduces the Bezier curve to a degenerate

point. In such a case distance between the given point and the degenerate point is
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(a) (b)

Figure 3.2. Decomposition of a NURBS curve into its Bezier segments. (a) Degree

two NURBS curve with control polygon, (b) Bezier curves with respective convex

hulls.

computed and the algorithm is terminated. For a non-degenerate case, the convex

hull is constructed for the Bezier curve using its control points.

Normalized Distance Field of Convex Hull

The algebraic distance field is based on the trimming procedure described in Sec-

tion 2.5. The trimming procedure requires the following condition to be met - a

convex trimming region � � 0 (Fig. 2.6) that encloses the parametric curve segment

such that the end points of the curve segment lie on the trimming boundary. In this

work, the convex hull of the Bezier segments are proposed as the trimming region

since the convex hull satisfies the requirement on convexity and the condition on

curve endpoints. The convex hull is also straightforward to compute from the Bezier

control points.
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Calculate&distance&

from&degenerate&

point&

Calculate&normalized&distance&

from&circular&region&enclosing&

line&segment&

Input&:&Bezier&Curve&

Is&degenerate&

point&?&

Yes&

No&

Ini>alize&convex&hull&

Is&curve&

linear/nearly&

linear?&

Yes&

Output:&Algebraic&

distance&field&of&

Bezier&curve&

Calculate&normalized&

distance&from&convex&hull&

No& Implici>ze&Bezier&curve&

One&>me&ini>aliza>on&

Calculate&normalized&

distance&from&line&segment&

Calculate&normalized&

distance&from&implicit&curve&

Boolean&opera>ons&using&

RHfunc>ons&

Figure 3.3. Flowchart describing the algebraic distance field construction for a Bezier

curve.

Let (xi, yi) and (xi+1, yi+1) be the end points of the i�th edge of the convex hull,

then the algebraic representation of that edge is given by its normalized implicit

equation

hi(x, y) = ±(x� xi)(yi+1 � yi)� (y � yi)(xi+1 � xi)
p

(xi+1 � xi)2 + (yi+1 � yi)2
(3.1)

The implicit equation hi(x, y) gives signed distance to an infinite line passing through

the edge. The sign of the implicit field is chosen so as to ensure hi(x, y) � 0 inside

the convex hull. Then, the distance field of the convex polygon is obtained using the

R-conjunction operation of Eq. (2.12). Such a process is equivalent to determining
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the minimum distance of the implicit fields of the individual edges. The resulting

field is a signed distance measure to the convex hull. The field for the convex hull of

a Bezier curve is shown in Fig. 3.4.

(a) (b)

Figure 3.4. Function representation of convex hull. (a) Convex hull as trimming region

� � 0 for the Bezier curve, (b) Implicit field of convex hull of the Bezier curve.

In the case of linear or nearly linear Bezier curve, it is not possible to construct a

convex hull from the control points. For such a case, a circle with the line segment

joining the end points of the Bezier curve as diameter is chosen as the trimming region

� � 0.

Normalized Distance Field of Implicit Curve

An implicit representation f of each Bezier curve is obtained by the implicitization

process using Bezout resultant. The implicit function is normalized locally near the

curve by scaling it by the gradient value at a point on the curve. The gradient value

at one of the end control points of the Bezier curve was chosen here for scaling the

implicit function. The derivative of the implicit function for scaling is calculated by
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exploiting the Bezout resultant matrix A described earlier in Eq. (2.7). The derivative

is obtained using Jacobi’s formula as:

@|A|
@xi

= tr



adj(A)
@A

@xi

�

(3.2)

where, @
@xi

is partial derivative with respect to the ith coordinate variable, tr is the

trace operator, and adj is the adjugate or the transpose of the cofactor matrix. Since

each term in the Bezout matrix A is linear in x and y, the derivative of Bezout

resultant matrix in Eq. (3.2) is a constant. In the case of linear or nearly linear

Bezier curve, implicit representation f is the line passing through the end points of

the Bezier curve. Then, the normalized distance representation of the line is given by

Eq. (3.1).

Trimming Operation

After the normalized fields are computed for the trimming region as well as the

implicit curve, the algebraic distance field for Bezier curve is calculated by the trim-

ming operation on the normalized fields using Eq. (2.15). Here, the convex hull of

the Bezier curve is used as the trimming region � for the implicitized representation f

of the Bezier curve. An example of the calculated algebraic distance field for a Bezier

curve is shown in Fig. 3.5(a).

3.1.3 Compositions using R-conjunction

Further compositions are then carried out between adjoining Bezier curve fields

using the R-conjunction operation given in Eq. (2.12). The resulting distance field,

given below, corresponds to the nearest Bezier segment:

g1 ^ g2 = g1 + g2 �
q

g21 + g22 (3.3)

where, g1 and g2 are algebraic distance fields of adjoining Bezier curves. The composed

distance field for the NURBS curve is shown in Fig. 3.5(b).
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(a) (b)

Figure 3.5. Composition of distance field of Bezier curves. (a) Distance field of each

Bezier curve, (b) Composed distance field of the NURBS curve.

3.2 Extension to NURBS Surfaces

The algebraic distance field construction technique for planar NURBS and Bezier

curves is extended to three-dimensional NURBS and Bezier surfaces in this section.

The basic theory and algorithm remain the same, only di↵erence being the under-

lying technique used for implicitization and the technique used for constructing the

trimming region. Bezier surfaces are implicitized using Dixon’s resultant described

in Section 2.3.2.

3.2.1 Trimming Region for Bezier Surface

For the case of a three-dimensional parametric surface, the convex hull is con-

structed from the control point grid of the Bezier patch (Fig. 3.6). Each face of the

convex hull is described by the equation of a plane. Let (x1, y1, z1), (x2, y2, z2) and
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(x3, y3, z3) be three non-collinear vertices of the i�th face of the convex hull. Then,

the normalized field of the face is constructed using the following implicit equation

hi(x, y, z) = ±Ax+By + Cz +Dp
A2 +B2 + C2

(3.4)

where,

A =

�

�

�

�

�

�

�

�

�

1 y1 z1

1 y2 z2

1 y3 z3

�

�

�

�

�

�

�

�

�

, B =

�

�

�

�

�

�

�

�

�

x1 1 z1

x2 1 z2

x3 1 z3

�

�

�

�

�

�

�

�

�

, C =

�

�

�

�

�

�

�

�

�

x1 y1 1

x2 y2 1

x3 y3 1

�

�

�

�

�

�

�

�

�

, D = �

�

�

�

�

�

�

�

�

�

x1 y1 z1

x2 y2 z2

x3 y3 z3

�

�

�

�

�

�

�

�

�

The distance measure corresponding to the convex hull is obtained by R-conjunction

operation on the normalized fields of the faces. In the case of planar, or nearly planar

(a) (b)

Figure 3.6. Three-dimensional convex hull as the trimming region for a Bezier patch.

Bezier patch, since its control point grid degenerates to a plane, it is not possible

to construct a three-dimensional convex hull from the control points. In such a pla-

nar case, the implicit representation of the patch is the plane containing the patch.

Hence, a trimming region has to be constructed such that its intersection with the

plane gives the planar Bezier patch. This implies that the boundary of the patch must

lie on the the trimming region. Using this insight, the trimming region is chosen to

be the boundary � of the planar patch as shown in Fig. 3.7.



42

Now, the trimming region � corresponds to the planar region bounded by � and its

implicit representation is obtained by using the algebraic distance field computation

procedure for planar curves. The R-function in Eq. (2.14) is used to construct the

algebraic distance field of the planar patch. First, the normalized implicit field f1

is obtained as the implicit equation of the plane containing the patch. The implicit

function f2 is constructed from the implicit representation of trimming region � such

that it is identically zero in the interior of �. At any point in the domain, f2 is

computed at its corresponding projected point on the plane of the Bezier patch.

Φ≥0$

f=0$

P1$

P2$

P1proj$

P2proj$ Γ$

Figure 3.7. Trimming region for planar Bezier patch.

This process is illustrated in Fig. 3.7 using two test points P1 and P2. In each case,

the test point is projected onto the plane of the patch and then algebraic distance

is calculated to the bounding curve �. If the projected point P proj
1 lies outside the

bounding curve then the algebraic distance field of the planar patch is computed as

g =
p

f 2
1 + f 2

2

where, f2 is the distance from the projected point P proj
1 to �. If the projected point

P proj
2 is on or inside the bounding curve then Eq. (2.14) reduces to normalized
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distance from plane, i.e., g = f1. The distance field for a planar patch is illustrated

in Fig. 3.8.

(a) (b)

Figure 3.8. Planar patch. (a) Planar NURBS patch, (b) Algebraic distance field of

the planar patch on a plane slicing the patch in three-dimensional space.

3.2.2 Normalization of Three-Dimensional Distance Fields

In general, the distance fields computed on the three-dimensional convex hull as

well as the implicitized Bezier patch needed greater care in normalization to ensure

that the resulting distance fields resembled the exact ones.

Normalized Distance Field of Three-Dimensional Convex Hull

The distance field of the three-dimensional convex hull was constructed by R-

conjunction operations on normalized implicit field of its planar faces. As mentioned

in Section 2.6, the R-conjunction operation preserves normalization at almost all

points except at points on the intersection edge between any two faces. Hence, after

each R-conjunction operation, the resulting distance field was normalized prior to

further compositions. The field �k, obtained after each pairwise R-conjunction oper-
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ation on the �̂k�1 normalized field and kth face of the convex hull, was normalized

by its gradient as follows:

�̂k =
�k

|r�k|
(3.5)

For normalized fields of the convex hull faces, |r�k| = 1 near the faces except at

their intersection. In Section 2.6, the bounds on the gradient of field obtained using

R-conjunction operation near the intersection region was derived as 0 < |r�k|  3.

Here, normalization of the R-conjunction fields is carried out by a scaling operation

using a representative value of r�k such that 1 < |r�k|  3. In this work, @�k

@xi
is

chosen to be 1 such that |r�k| =
p
3. The algebraic distance field of the convex hull

with and without the proposed scaling are compared in Fig. 3.9.

(a) (b)

Figure 3.9. Normalization of field of trimming region. (a) Field of trimming region

before scaling, (b) Field of trimming region after scaling.

Normalized Distance Field of Implicit Surface

The implicit function f of the Bezier patch obtained using Dixon’s resultant is

normalized by scaling it using the ratio of the implicitized distance s(xr) and the

exact distance d(xr) at a representative point xr. Here, a control point that does not
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lie on the Bezier patch is chosen as the representative point xr. The scaled implicit

function f̂ is then given by

f̂ =
f

( s(xr)
d(xr)

)
(3.6)

This strategy was used to avoid computing the gradient |rf | since that is compu-

tationally more expensive to carryout. The algebraic distance field for a Bezier patch

with non-normalized and normalized implicit function are compared in Fig. 3.10.

(a) (b)

Figure 3.10. Algebraic distance field of a bicubic Bezier patch. (a) Distance field of

Bezier patch before scaling of implicit field, (b) Distance field of Bezier patch after

scaling of implicit field.

3.3 Time Complexity of Algebraic Distance Field Algorithm

Consider a NURBS curve of degree p. Further, assume that the NURBS curve

decomposes into n Bezier curves. Then, the time complexity of this decomposition

process is O(n). Each Bezier curve comprises of p+1 control points. Hence, for each

step in constructing algebraic distance field of the Bezier curve, the time complexity

is a function of its degree p as follows -
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• Time complexity of convex hull construction is O(p log(p))

• Time complexity of computing normalized distance field of convex hull is O(p)

• Time complexity of computing the resultant depends on the determinant cal-

culation and is O(p3)

• Time complexity of trimming operation is O(1)

Thus, the time complexity of constructing algebraic distance field of Bezier curve is

O(p3) and that for the NURBS curve is O(np3).

Given a NURBS surface of degree p ⇥ p that decomposes into n Bezier patches,

the time complexity can be computed as follows -

• Time complexity of convex hull construction is O(p2 log(p))

• Time complexity of computing normalized distance field of convex hull is O(p2)

• Time complexity of computing the resultant depends on the determinant cal-

culation and is O(p6)

• Time complexity of trimming operation is O(1)

Thus, the time complexity of constructing algebraic distance field of Bezier surface is

O(p6) and that for the NURBS surface is O(np6).

3.4 Algebraic Distance Field for Complex Three-Dimensional Geometries

In this example, the algebraic distance field is demonstrated on the three-dimensional

geometry of a hip prosthesis. A representative model of the hip implant (Fig. 3.11(a))

was constructed using Bezier patches. The algebraic distance field over a cross-section

of the prosthesis is shown in Fig. 3.11(b).

A more complex geometry, of that of the Utah teapot [79], is demonstrated next.

The teapot model consisted of 32 bicubic Bezier patches (Fig. 3.12(a)). The algebraic
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(a) (b)

Figure 3.11. Hip prosthesis. (a) Model of hip implant constructed in this study for

demonstration, (b) Algebraic distance field over a cross-section of the hip implant.

(a) (b)

Figure 3.12. The utah teapot. (a) The teapot modeled using 32 bicubic Bezier patches,

(b) Algebraic distance field on a plane slicing the teapot.

distance field for Utah teapot is demonstrated on a plane slicing the geometry (Fig.

3.12(b)).
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4. PROPERTIES OF THE ALGEBRAIC DISTANCE FIELD

The algebraic distance field proposed in this work is a non-iterative and e�cient

approximation to the exact distance function obtained through Newton-Raphson it-

erations. In this chapter the properties of the algebraic distance field are examined

to determine the quality of its approximation to exact distance. The properties of

the algebraic distance are detailed below, and the performance and robustness of the

algebraic measure are compared against Newton-Raphson iterations that is used to

determine the orthogonal distance.

4.1 Exact Value at Zero Level Set

An important property of distance function satisfied by the algebraic distance field

is zero value on the respective curve or in other words exact value on the zero level

set. This implies that the zero level set of the algebraic distance field will exactly

represent the curve geometry in implicit representation. Thus, the algebraic distance

field preserves the geometric exactness of the explicit boundary.

4.2 Di↵erential Properties

The di↵erential properties of the algebraic distance field depend on the di↵erential

properties of the implicit representation of Bezier curve and its convex hull, and also

on the R-functions used for performing boolean operations on the implicit functions.

During the process of distance field construction, all implicit functions are normalized

to first order near the boundary. This implies that these functions behave like exact

distance function and satisfy an important property of distance function (Eq. (2.2))

near the boundary. Such a normalization is preserved by R-function operations almost
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everywhere. The e↵ect of R-function operations on the di↵erential properties of the

algebraic distance field is discussed next.

The following two-dimensional analysis, motivated by the analysis in [72], enables

the estimation of the bounds for gradient of approximate distance field in the neigh-

bourhood of a boundary. Let û be the approximate distance function obtained by

R-function operation F on normalized fields �1 and �2.

û = F (�1,�2)

The partial derivatives and the magnitude of gradient of û are

@û

@x
=
@F

@�1

@�1

@x
+
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@û

@y
=
@F
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Since, �1 and �2 are normalized, r�1.r�2 varies between -1 and +1. Hence, the

theoretical bounds on |rû| are
✓

@F

@�1
� @F

@�2

◆2

 |rû|2 
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@�1
+
@F
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◆2

(4.2)

Using R-conjunction Eq. (2.12), F (�1,�2) is given by

F = �1 + �2 �
q

�2
1 + �2

2

Now, the partial derivatives of F with respect to �1 and �2 are
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(4.3)
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Near the boundary, if �1 = 0 and �2 6= 0 or �1 6= 0 and �2 = 0, |rû| = 1.

However, for points where �1 = 0 and �2 = 0, |rû| 6= 1. Thus, R-conjunction

preserves normalization near the boundary except when �1 = 0 and �2 = 0. It can

be shown that at such points the gradient is bounded as follows.

In the �1 � �2 coordinate plane, the point of interest is the origin, where �1 =

�2 = 0. A quadratic transformation [80] of the �1 � �2 plane to �0
1 � �0

2 plane is

defined as �0
1 = �1 and �0

2 = �2/�1 as shown in Fig. 4.1. Under this transformation

the origin is mapped onto the entire �0
2-axis. At the origin in the �1 � �2 plane, an

indeterminate form �0
2 =

0
0 exists.

Φ1#

Φ2#
#

Φ1’#

Φ2’#

Figure 4.1. Quadratic transformation of �1 � �2 plane to �0
1 � �0

2 plane.

By approaching the origin along the line of slope m (line �2 = m�1),

�0
2 =

�2

�1
=

m�1

�1
= m, 8 �1 6= 0

hence,

lim
�1!0

�0
2 = m ) lim

�1!0

�2

�1
= m

Substituting in Eq. (4.3),

@F

@�1
� @F

@�2
=

m� 1p
1 +m2

,
@F

@�1
+
@F

@�2
= 2� m+ 1p

1 +m2
(4.4)

Thus the bounds for gradient of distance function in the neighbourhood of the bound-

ary are given by

| m� 1p
1 +m2

|  |rû|  |2� m+ 1p
1 +m2

| (4.5)



51

Thus, the maximum value of the upper bound is 3 and the minimum value of

lower bound is 0 (Fig. 4.2).

Figure 4.2. Bounds on the gradient of R-conjunction composition of normalized alge-

braic distance fields.

The bounds on the gradient of algebraic distance field in the neighbourhood of

the boundary completely characterize rate of change of distance in this region.

4.3 Double Points and their Elimination

The methodology described in this work exploits algebraic geometry concepts

that are briefly elaborated here. Given an irreducible plane algebraic curve Cp of

degree p, by Bezout’s theorem [80], it can be shown that the curve of algebraic

degree pmay possess as many as
(p� 1)(p� 2)

2
self-intersections or double points (see

Fig. 4.3). The critical question of concern here is whether the implicitized version of

the rational parametric curve will possess self-intersections. This possibility depends

on the inverse mapping, given an algebraic curve, to its equivalent rational parametric

form. The existence of the rational parametric form depends on the genus G of the

curve defined as

G =
(p� 1)(p� 2)

2
�DP (4.6)

where, DP is the number of double points present in the algebraic curve. In order

for a curve to have a rational parametrization, its genus needs to be zero. Thus,

an implicitized curve obtained from a rational parametric curve of degree three will
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posses a single double point when implicitized. However, if the singular point lies

(a) (b)

Figure 4.3. Illustration of singular points on a degree three Bezier curve. The homo-

geneous control points are (-10,-8,0,1), (-8,-1.2,0,1.2), (5,-2,0,2), and (6,-8,0,1). (a)

The lone singular point lies outside the convex hull of Bezier curve allowing one to

construct, (b) The algebraic distance field of Bezier curve.

outside the convex hull region (see Fig. 4.3), then the algebraic distance field is not

a↵ected by the singular point as the convex hull is used to trim the distance field.

But, if the singular point falls inside the convex hull, then it a↵ects the algebraic

distance construction. In such a case, the parametric curve is subdivided at the

singular point to force the singular point to lie outside the trimming region (Fig.

4.4). The parameter t corresponding to the singular point is calculated using moving

line techniques [81–83] discussed briefly in the next section. Subdivision is performed

by using the knot insertion algorithm at the parameter t on the curve. Algebraic

distance field is then constructed for each sub-curve and composed using R-functions.

The above technique can be extended to higher degree curves with multiple singu-

larities. However, higher the degree of the curve, the greater the number of singular

points per Eq. (4.6). Therefore, in this work, the methodology is restricted to low

degree NURBS curves (d  3).
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Φ≥0$

f=0$

Singularity$
due$to$self5
intersec7on$$

Subdivision$at$
singular$point$

Two$sub5curves$
with$respec7ve$
convex$hulls$

Figure 4.4. Subdivision of curve to remove the singular point from the convex hull.

4.3.1 Computing Singular Points of Plane Rational Curves

Computing singular points of a planar rational curve is non- trivial. Given an

algebraic curve f(x, y, w) = 0 in its homogeneous form, a point P0 = (x0, y0, w0) is a

singular point on the curve if and only if

fx(x0, y0, w0) = 0, fy(x0, y0, w0) = 0, fw(x0, y0, w0) = 0 (4.7)

P0 is a singular point of f = 0 with multiplicity r if all derivatives of order r � 1 are

zero at P0 and atleast one rth derivative of f does not vanish at P0. The standard

way to obtain singular points is to solve the above system of equations [84]. This

method involves implicitizing the parametric curve symbolically to obtain f(x, y, w) =

0, then di↵erentiating f to find its partial derivatives and then solving the system

of equations. Hence, it is not very convenient to be used as a part of geometric

algorithms. Alternately, the parametric curve can be directly used to determine the

singular points [81, 82].

Let P (t) = (x(t), y(t), w(t)) be a rational curve and L(t) denote the moving line

a(t)x+ b(t)y + c(t) = 0, then L(t) follows P (t) if [85]

P (t).L(t) = 0 or a(t)x(t) + b(t)y(t) + c(t)w(t) = 0
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For any rational cubic bezier curve, there exist two moving lines of degrees 1 and 2

respectively, which follow the curve and are referred to as µ-basis [83]. The degree

1 moving line is an axial moving line with axis at the singular point of the curve.

This means that all the lines in the family will pass through the axis point. Hence,

the singular point is obtained as the intersection of any two lines belonging to this

family. In Fig. 4.5, the solid lines represent the degree 1 moving line with axis at the

singular point of the curve. The dotted lines represent the degree 2 moving line. The

intersection of the two moving lines gives the points on the curve. The parameter

t corresponding to the singular point is calculated from the degree 2 moving line

equation.

Figure 4.5. Moving lines following the cubic curve.

4.4 Numerical E�ciency Relative to Newton-Raphson Iterations

The time complexity of the algebraic distance construction algorithm is derived

in 3.3. In general, the cost of computing the algebraic distance field from a NURBS

curve is O(np3), where n is the number of Bezier segments in the NURBS curve and

p is the degree of the curve. With the assumption of low algebraic degree, p may be
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assumed to be fixed. Hence, in practice, the computational cost is dependent on n

alone.

Next, the computational e�ciency of the algebraic distance field is compared to the

Newton-Raphson iterations through the following examples. Three NURBS curves

(Fig. 4.6) of degrees two, three and four respectively are chosen for the test. The

distance field is constructed both algebraically and using Newton-Raphson iterations.

The corresponding computational expense is plotted in Fig. 4.7. As can be seen, the

algebraic distance estimation costs approximately 12� 14% of the Newton-Raphson

iterations.
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Figure 4.6. Test curves with corresponding control net and algebraic distance field.

(a) A quadratic NURBS curve, (b) A cubic curve and (c) A quartic curve.
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Figure 4.7. Comparison of algebraic distance method and Newton-Raphson iterative

scheme for curves of varying degree in Fig. 4.6 (tested using computer with single

Intel i5 processor and 4G memory).

4.5 Uniqueness of Solution and Robustness

The exact distance field and the algebraic distance field for an S-shaped curve

are compared in Fig. 4.8. The circular regions marked in the figure indicate points

that are equidistant from the curve. At these points, the exact distance calculations

are non-unique leading to non-smooth distance fields overall. The algebraic distance

field, on the other hand, gives a smoother estimate of the distance to the curve while

preserving exactness to the parametric curve. Thus, the algebraic procedure provides

a more robust estimate of the distance.

Unlike the exact distance function that is often not uniquely defined near points

of high curvature, the algebraic distance field is unique and su�ciently smooth for

use during analysis.
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(a)

(b)

Figure 4.8. Comparison of distance fields. (a) Exact distance field with the marked

regions corresponding to points that are equidistant to two di↵erent points on the

curve, and (b) Algebraic distance field.
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5. SIGNED DISTANCE FIELD CONSTRUCTION

The algebraic distance field discussed in the previous chapters is unsigned by con-

struction. This is due to the composition of constituent algebraic distance field of

Bezier patches to obtain the resulting distance measure of the bounded solid. In gen-

eral, the constituent Bezier curves or patches are not bounded and do not divide the

space into inside and outside regions. Hence, the concept of sign does not apply in this

case. Thus, the constituent algebraic distance fields of Bezier patches are unsigned

by construction and lead to unsigned field for the bounded solid. The only case when

a signed distance field can be constructed from the algebraic distance technique is if

the constituent Bezier geometry is closed or bounded.

While an unsigned distance field is su�cient to model the influence of known

behavior on boundaries over the underlying domain, sign of the distance field for

bounded solids further enable the point membership query in CAD/CAE applica-

tions. Signed distance function finds application in contact problems for constructing

the gap function for contact condition between two bodies [59, 86]. Signed distance

function finds application in variety of analysis problems solved using level set meth-

ods such as topology optimization [87, 88], stefan problem for solidification [89, 90],

fluid-interface problems [56, 91], crack and fracture [92–94]. The signed distance to

the interface is used for initialization of the level set function in such applications.

Further, signed distance field has also found applications in collision detection [60,95].

It is also applied for volumetric geometry representation [96] and morphing [97] in

CAD applications. The applications of signed distance function are summarized in

Table 5.1.

In this chapter, algorithms are developed for computing the sign associated with

the distance field of a closed NURBS curve or NURBS solid boundary. It will be seen
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Table 5.1. Classification of problems in CAD/CAE applications that require signed

distance function.

Problem

Charac-

teristic

Type Application Example Problems

Geometry

Modeling

CAD Geometry and Volume

Representation

O↵set surfaces and me-

dial axis problems

Blending

CAD Geometry Modification Morphing be-

tween shapes, fillet-

ing/chamfering

CAD Heterogeneous Material

Modeling

Functionally graded ma-

terials

CAE Enriched Field Approxi-

mations

Crack, material interface,

boundary condition

Multi-Body

Interaction

CAD Collision Detection Robotics and automa-

tion, animation

CAD/CAM Interference Detection Verification of manufac-

turing assemblies, ma-

chining toolpath genera-

tion

CAE Contact Mechanics Impact and metal form-

ing simulations
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later in the chapter that this sign is calculated as by-product of the algebraic distance

field calculation technique.

5.1 Signed Distance Function

Given a domain ⌦, bounded by the region @⌦, for any point x 2 Rn a signed

distance representation d⌦(x) of the domain is given by the following expression

d⌦(x) = sign(x) inf
p2@⌦

k x� p k (5.1)

where

sign(x) =

8

<

:

1 if x 2 ⌦,

�1 otherwise
(5.2)

While the sign of the distance function enables classification of points as inside

or outside the solid; the distance from the boundary captures the influence of fields

defined on the boundaries over the interior and hence enables queries of the field

values (material or behavior) and their derivatives in the interior. Thus, given only

the boundary of a bounded solid, it is possible to infer volumetric data for the solid

by constructing its signed distance representation.

In general, sign of the distance field is computed by projecting the query point

to the surface of the solid and evaluating the dot product of the normal at the pro-

jected point and the direction vector from the query point to the projected point.

For piecewise planar approximations, point projection operation is computationally

inexpensive. However, the challenge is that normal is not defined on edges and ver-

tices. Hence, sign calculation techniques for such geometries focus on algorithms for

computing approximate normals at such points. For non-linear geometries, the point

projection problem is computationally expensive as it involves iterative solution pro-

cedure. Hence, a computationally inexpensive non-iterative solution is desired for

the signed distance problem. In this work, an algebraic measure of signed distance

is proposed. Since, this is an approximation to the exact signed distance function,
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it is referred to as Algebraic Level Set or Algebraic Distance Field instead of Signed

distance function.

5.2 Algorithm for Algebraic Sign Calculation

The algorithm for algebraic sign calculation is based on case by case point con-

tainment queries. First, a concave/convex bounding box is constructed for the closed

boundary using the convex hull of each Bezier patch (Fig. 5.1(a)). The point contain-

ment is queried in this bounding box. If the point is outside the bounding box, then

the algorithm stops and point is outside the bounded solid. However, if it is inside

the box then the next case is queried. In the next step, point containment queries are

performed in the Polygon-Bezier regions shown in Fig. 5.1. If query point lies inside

one of these regions, then the algorithm stops and point is outside the bounded solid,

else the query point lies within the solid.

Positive value of the algebraic sign function implies point containment in the

enclosed region while zero implies a boundary point. Let Pi be a point in the plane

Interior of 
closed 
curve 

Concave 
Bounding  
Box 

Polygon-Bezier 
regions 

(a) (b)

Figure 5.1. Construction of signed distance field of closed NURBS curve. (a) Illustra-

tion of sign calculation technique, (b) Sign of the field of the closed NURBS curve.

and g(x, y) be the distance field of the closed NURBS curve with bounding box field



62

� and m curved Bezier polygons (shaded regions in Fig. 5.1(a)) with distance field

 j, j 2 1, . . . ,m. The sign associated with the distance field g(x, y) at point Pi is

given by the following scheme

sign(g) =

8

>

>

>

<

>

>

>

:

0 if g = 0 ,

-1 if (� < 0) or (� � 0 and any  j � 0, j 2 1, . . . ,m and g 6= 0) ,

1 otherwise

This scheme applies to bounded NURBS surfaces as well. In the following sections,

algorithmic details of constructing the bounding box and polygon-Bezier regions will

be discussed. Further, algorithms for point containment queries in the bounding box

and the algebraic sign calculation in polygon-Bezier regions will be detailed.

5.3 Construction of Convex/Concave Bounding Box from Bezier Control

Polygons

5.3.1 Bounding Box for Closed Planar Curves

The first step in the sign calculation is to construct a tight bounding box for the

closed curve. It is assumed that the control points are always stored in a counter-

clockwise order. Consider the convex hull of the ith Bezier curve with vertices

v1, v2, . . . , vk, . . . vn, where v1 and vn are the end points of the bezier curve. Then,

any vertex vk which is on the left of the line segment formed by v1 and vn is removed

and the remaining vertices belong to the bounding box as illustrated in Fig. 5.2. An

example of bounding box construction is shown in Fig. 5.3. A closed NURBS curve

with its control polygon is shown in Fig. 5.3(a). Fig. 5.3(b) shows the bounding

box constructed from the convex hull of the bezier segments of the NURBS curve.

The solid edges of the convex hulls contribute towards constructing the bounding box

while the dashed edges are removed.

The degenerate case when the bounding box is a complex polygon due to self-

intersection is handled as shown in Fig. 5.4. One of the two intersecting convex hulls is

updated by a corner cutting process. The corner cutting process essentially utilizes the
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Counterclockwise ordering 

Convex hull of 
Bezier control 
points 

Bezier curve with convex hull 

Remove points 

v1 

vn 

vk 

vk+1 

Figure 5.2. Bounding box construction details.

(a) (b)

Figure 5.3. Construction of bounding box of closed NURBS curve. (a) Closed NURBS

curve with control polygon, (b) Bounding box constructed from Bezier control poly-

gons.

property of Bezier curves that by adding control points to control polygon, the control

polygon approaches the Bezier curve. Thus, the control points of the Bezier curve
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are updated by adding new control points such that the corresponding Bezier curve is

unaltered and the control points move closer to the curve eliminating the intersection

of the convex hulls. Let the Bezier curve be Cp(u) =
Pp

i=0 Bi,p(u)Pi

where Bi,p are

Corner Cutting  

Figure 5.4. Handling degenerate case in bounding box construction.

the basis functions and Pi are the original control points. Now, using corner cutting

process, an additional control point is added such that Cp+1(u) =
Pp+1

i=0 Bi,p(u)Qi

,

where Qi are the new control points. For Cp+1 to be same as Cp, the following relation

must hold

Qi = (1� ↵i)Pi + ↵iPi�1 (5.3)

where ↵i =
i

p+1 and i = 0, . . . , p+ 1

5.3.2 Bounding Box for Bounded Solids

The bounding surface is assumed to comprise of either NURBS patches or Bezier

patches. In the algebraic distance field construction process, NURBS patches are

decomposed into Bezier patches and convex polyhedron is constructed for each Bezier

patch. Similar to the two-dimensional case, an assumption on ordering of control

points is enforced such that normal of each patch points to outside of the solid.
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An assumption of ordering is also enforced on each face of the convex hull such

that the vertices are counter-clockwise. Conceptually, bounding box for solids is an

extension of the two-dimensional case. Thus, the faces of each convex hull that lies

inside the bounding surface are removed and a bounding box is constructed out of

all the faces lying on or in the exterior of the bounding surface. However, in terms

of implementation, it is non-trivial to extend the algorithm from two-dimensions to

three-dimensions. The bounding box algorithm for bounded solids is illustrated in

Fig. 5.5. It is assumed that the Bezier patches and their respective convex hulls are

precomputed during one time initialization of Algebraic Level Set.

Input&:&Bezier&Patches&Si&,#
#Bezier&Polygon&Convex&Hull&

Chulli#with&faces&fki,&
1≤&i#≤nbez#,#1≤&k#≤nfi&

Bezier&Patch&Si#,&i#=#1#
&

Output:&Convex/
Concave&Bounding&Box&

IniAalize&Polyhedron&

nki&.&Nk
i&≥&0&&

Add&face&to&
Polyhedron&

Bezier&Polygon&
Convex&Hull&Face,&

k#=#1#

k#<#nfi&i=i+1#

k=k+1#

Compute&centroid,&Cki#
Compute&face&normal,&nki&

Project&Ck#on&Si#K>&Pki#&&
Compute&bezier&surface&
normal&at&Pki#,&Nk

i&
#

No&

Yes&

i#<#nbez&

No&

Yes&

Yes&

Input&:&Bounding&box&
polyhedron&

Convert&to&Bounding&Box&

No&

Figure 5.5. Bounding box Algorithm.
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Populate Bounding Box Polyhedron from Bezier Convex Hulls

The first step in constructing the bounding box is to identify faces of convex hulls

of Bezier patches that lie outside the parametric geometry and then, populate the

bounding box polyhedron with these faces. Consider the convex hull of the ith Bezier

patch with faces f i
1, f

i
2, · · · , f i

k, · · · , f i
ni
f
. For each face f i

k, the centroid C i
k is projected

onto the patch. At the projected point P i
k, the surface normal N i

k is computed. Let

ni
k be the normal of the face f i

k. Then, the face lies outside the bounding surface if

ni
k.N

i
k � 0. This face is added to the bounding box polyhedron.

Input&:&Bounding&box&
polyhedron&with&faces&Fj#
and&face&normals&nj#

1≤&j#≤nbbox#&
&&&

Faces&Fp#and&Fq#
p=1,#q=1#

pstored#=#p&&&

p≠q&

p=p+1,#q=1#

Yes&

No&

||npXnq||2&<&tol1&
#and##

####d(Fp,Fq)#<#tol2&

q=q+1#

Fp  Fq ≠ φ

Fsub=FpCFq#
Remove&Fp&,&Add&Fsub&&

&pstored=pK1&

Modify&overlapping&
faces&

IniAalize&Minmax&box&for&
bounding&box&and&faces&

Yes&

Yes&

No&

q<nbbox&

Yes&

p=pstored#
p<nbbox&

No&

No&

Yes&

Output:&Convex/
Concave&Bounding&Box&

No&

Stop&

Figure 5.6. Algorithm to convert bounding box polyhedron into a valid bounding box.
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Convert Bounding Box Polyhedron into a Valid Bounding Box

The polyhedron populated from convex hull faces of Bezier patch may contain

overlapping or intersecting faces. In this step, such faces are identified and modified

to get a valid polyhedron. A valid polyhedron, in this work, refers to a polyhedron

with faces that only share vertices and edges with other faces of the polyhedron. The

algorithm for this process is outlined in Fig. 5.6. Faces are queried pairwise (Fp, Fq)

for intersection checks. Intersection checks on pair of non-coplanar faces are elimi-

nated by checking for coplanarity of the face pair. This elimination is accomplished

by checking the following condition

k np ⇥ nq k2< tol1 and |d(Fp, Fq)| < tol2 (5.4)

where np and nq are normals of faces Fp and Fq respectively and d(Fp, Fq) is the

distance between the two faces. Tolerances tol1 and tol2 are chosen to check for the

coplanarity conditions. The intersection checks on the faces are done using a geometry

library in Java - JavaGeom [98]. Once the intersecting face pairs are identified, a

subtraction operation is performed Fsub = Fp � Fq using the same library. A set of

subtracted faces Fsub is obtained. Face Fp is then removed from the polyhedron and

the new faces in set Fsub are added to the polyhedron. This process is continued till

all intersecting faces are modified to get a valid polyhedron. Further, minmax boxes

made out of the minimium and maximum (x, y, z) coordinates are constructed for the

bounding box and its faces for operations downstream. Bounding box construction

is illustrated for a torus geometry in Fig. 5.7.

5.4 Signed Distance Field in the Bounding Box of NURBS Curve

The sign in the bounding box is calculated by one of the standard point in polygon

tests [99,100]. These include but are not limited to Parity test, Winding number test,

Orientation based test.
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(a) (b)

Tensor=product.NURBS.
representaBon.

Bezier.
patches.

Bezier.
DecomposiBon.

(c) (d)

Figure 5.7. Construction of bounding box of bounded solid. (a) Torus NURBS

bounded surface, (b) Torus control polygon, (c) Bezier decomposed torus surface,

(d) Bounding box for torus.

5.5 Signed Distance Field in Curved Polygon-Bezier Regions

Given a Bezier curve f = 0, a convex hull is obtained from the associated control

point polygon of the Bezier curve. The Bezier curve divides the convex hull into

two regions, each of which is referred to as Polygon-Bezier region in this work. The

polygon-Bezier region is defined as a region bounded by a Bezier curve and a set of

linear edges (see Fig. 5.8). Let f � 0 and �f � 0 be the two half spaces formed by

the Bezier curve. Let � � 0 be the region inside the control polygon. Then, �1 � 0
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and �2 � 0 are the two polygon-Bezier regions obtained by the set-theoretic boolean

operations, �1 = �
T

f and �2 = �
T

�f. The distance fields �1 � 0 and �2 � 0 are

constructed during the process of the distance field construction of the Bezier curve.

In order to obtain the sign of the distance field of NURBS curve, it is required to

store the signed field of the polygon-Bezier region whose linear edges form a part of

the bounding box of the NURBS curve. The easiest way to do this is to check which

of the two polygon-Bezier regions has zero field value for a point in the convex hull

belonging to the bounding box. In other words, a test vertex of the convex hull � that

does not lie on the Bezier curve is used to choose the right polygon-Bezier region. The

test vertex must lie on the bounding box. Then, the correct polygon-Bezier region

(�1 or �2) is the one for which the corresponding field value (�1(x, y) or �2(x, y)) is

zero at this test point. The methodology is same in three-dimensions for computing

sign in Polyhedron-Bezier regions of the Bezier surfaces.

f=0$

Φ1≥0$

Φ2≥0$

Figure 5.8. Polygon-Bezier regions.

5.6 Special Cases

A discussion of sign calculation for general three-dimensional NURBS geometries

was covered in the previous sections. A discussion of techniques to handle special

surfaces of three-dimensional CAD geometries is presented in this section.
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5.6.1 Planar NURBS Surfaces

The algebraic distance field construction for a planar NURBS surface is discussed

in Section 3.2.1. In the case of sign calculation of a geometry with a planar face, the

underlying steps are modified as follows

• Bounding Box Construction - The planar face is added to the bounding box

polyhedron of the solid.

• Signed Field of Polyhedron-Bezier Regions - This step is skipped for the planar

face as a Polyhedron-Bezier region does not exist.

• Sign Calculation - This step proceeds as before without any modification.

5.6.2 Trimmed Parametric Geometries

The trimmed NURBS geometries are a special case of B-rep geometries where a

parent NURBS surface is trimmed by a NURBS curve resulting in a trimmed surface.

The information that can be imported from IGES CAD files about such trimmed

geometries comprise of the parent NURBS surface definition and the trimming curve

defined in the parametric space of the parent NURBS surface. In this work, planar

trimmed surfaces are assumed and handled as follows

• Bounding Box Construction - The bounding box polygon of the trimming curve

is initialized. The planar face bounded by this polygon is added to the bounding

box polyhedron of the solid.

• Signed Field of Curved Bezier Polyhedron - This step is skipped for the planar

face as a Polyhedron-Bezier region does not exist

• Sign Calculation - This step proceeds as before without any modification

Currently, non-planar trimmed surfaces cannot be handled by the algorithm.
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5.7 Illustrative Examples

Consider the example of hip prosthesis from Section 3.4. In this section the

sign calculation for the hip implant is illustrated through a step-by-step procedure.

The hip-implant consists of two trimmed NURBS surfaces and one extruded NURBS

surface. First, the extruded NURBS boundary is decomposed into Bezier patches

as shown in Fig. 5.9(a). In this process, convex hull is initialized for each Bezier

patch. Further, bounding boxes are initialized for the trimming curves of the planar

trimmed NURBS surfaces. Next, the bounding box is constructed using the convex

hulls of Bezier patches and the planar polygon faces formed by bounding box of the

trimming curves (see Fig. 5.9(b)). Finally, point-containment queries in bounding

box and polyhedron-Bezier region enable algebraic sign calculation as shown in Fig.

5.9(c). Algebraic sign calculation is also demonstrated for the torus geometry from

Fig. 5.7 and the Utah teapot from Section 3.4 (see Fig. 5.10).
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Extruded  
NURBS surface Trimmed  

surface 

Trimmed  
surface 

Bezier patches 

NURBS surface trimmed by 
NURBS Curve – two faces 

(a)

Bounding Box 

Construct 
bounding box 
from external 
faces Convex Hull of 

Bezier Control 
Polygons 

Bounding box for trimming curves 

(b)

Point containment 
in bounding box 

Sign Calculation 

Algebraic Sign 
Calculation 

Point containment in 
polygon-bezier regions 

(c)

Figure 5.9. Sign calculation for hip implant. (a) Bezier decomposition, (b) Construc-

tion of bounding box, (c) Algebraic sign calculation.
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Torus with bounding box 
Algebraic Sign Field 

(a)

Algebraic Sign Field Utah teapot with bounding box  

(b)

Figure 5.10. Examples of algebraic sign field. (a) Torus, (b) Utah teapot.
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6. ALGEBRAIC SOLUTION TO GEOMETRIC COMPOSITIONS

B-rep geometries obtained from solid modeling kernels form the geometrical foun-

dation in a variety of applications in the areas of computer-aided simulation of ma-

chining, robotics and automation, computer graphics, animation, computer simulated

environments and engineering analysis. Boolean operations on B-rep geometries are

fundamental to such applications [8, 101–104].

In existing CAD systems, B-rep CAD models are represented by a collection of

trimmed spline patches such as NURBS. Boolean operations on such a representa-

tion involves numerical surface-surface intersection operation between the trimmed

NURBS patches. Surface-surface intersection algorithms attempt to determine the

explicit geometric representation for the intersecting boundary during boolean op-

erations involving surfaces (see Fig. 6.1(a)). Surface intersection calculation is a

challenging problem as it is very di�cult to satisfy the conflicting goals of accuracy,

robustness and e�ciency simultaneously using the existing methods.

However, in many applications concerning the analysis of multi-body interactions

as in analysis of contact between two bodies, often it is not required to explicitly

compute the intersection between interacting B-rep CAD models (see Fig. 6.1(b));

an implicit knowledge of the intersection may be su�cient. For example, multi-body

interactions between parts of an assembly occur in manufacturing applications. In or-

der to avoid design errors at the manufacturing or assembly stages, the CAD models

of these assemblies are inspected using visualization tools for any interference between

the parts [105–108]. Such an application only requires knowledge of whether an in-

tersection between the B-rep CAD models occurs. Further, interference detection is

also common in machining applications such as interference free toolpath generation

and verification of generated toolpath through computer-aided simulation of machin-

ing operations [109–112]. Multi-body interaction problem is also solved in contact
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(a)

(b)

Figure 6.1. Classification of boolean operations based on application. (a) Ex-

plicit boolean operation : geometry construction through boolean operations require

surface-surface intersection computation,(b) Implicit boolean operation: multi-body

interaction between tool and part requires only interference detection.

mechanics applications such as simulation of impact or metal forming process [59,86].

In such problems, the aim is to impose the non-penetration condition between the

bodies. Such a contact condition is often modeled using a gap function based on

signed distance function.
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In this chapter, a purely algebraic solution to the problem of implicit boolean

operations between NURBS B-rep solids is presented. In the proposed technique,

there is no numerical computation of intersection region or the exact signed distance;

all implicit boolean compositions in CAD and CAE are addressed algebraically using

the algebraic level sets.

6.1 Surface Intersection Problem

Rational polynomial parametric surfaces such as Bezier, B-spline and NURBS

surface patches are common in CAD and isogeometric analysis [20, 21, 42]. Given

two parametric surfaces P (u, v) : R2 ! R3 and Q(s, t) : R2 ! R3, the intersection

problem is posed as the solution to the equation

P (u, v) = Q(s, t) (6.1)

or

X(u, v) = X(s, t)

Y (u, v) = Y (s, t) (6.2)

Z(u, v) = Z(s, t)

This is an underconstrained system of three non-linear equations in four unknowns

u, v, s, t. Hence, numerical methods are often utilized to solve this problem. The

surface intersection problem is further complicated by the presence of open segments,

closed loops and self-intersections (singularities) (Fig. 6.2). Surface intersection solu-

tion techniques can be broadly classified into four categories: algebraic, subdivision,

lattice and marching methods. Hybrid methods have also been developed recently

combining features of the above methods.

Algebraic methods : The intersection problem becomes easier to solve if one of

the surfaces has an implicit representation of the form f(x, y, z) = 0 and the second
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(a)

Singularity+Loop+ Open+Curve+

(b)

Figure 6.2. Various components of the intersection curve. (a) Simple intersection

between a cylinder and a cuboid, (b) Possible intersection curves based on position

of cylinder.

has a parametric representation Q(u, v) : R2 ! R3. In this case, the intersection

problem reduces to finding a solution to the equation

f(x(u, v), y(u, v), z(u, v)) = 0 (6.3)

This is a non-linear root finding problem which can be solved by using the Newton’s

method. In general, the CAD geometric representations are parametric in nature

and hence the algebraic geometric technique of implicitization is used to obtain an

implicit representation of one of the parametric surfaces [73, 113–115]. However,

the implicitization process for a tensor-product surface of degree (m,n) leads to an

implicit representation of degree 2mn. For instance, a bicubic surface patch results

in an equation of degree 18 with 1330 terms! As a result, during numerical root

determination, this algebraic method not only lead to large scale computation, but

also to significant loss of accuracy, making the method unattractive for practical

applications. Therefore, the algebraic approach is generally combined with other

methods such as subdivision or marching methods into a hybrid scheme [43, 44].

These approaches will be discussed in the following sections.
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Subdivision methods : These methods are based on a divide and conquer strategy

[11, 45–48]. The strategy involves recursive subdivision of the geometry until one

obtains a simple direct solution (e.g. plane/plane intersection). Accuracy depends on

the number of subdivision steps. While these methods converge in the limit, a need

for high-precision can lead to data proliferation making the computation slow. Also,

correct connectivity of the solution branches in the vicinity of singular or non-singular

branches is di�cult to guarantee, and small loops maybe missed or extraneous loops

may be present in the approximation of the solution [116].

Lattice methods : In this technique, the problem of surface-surface intersection

is simplified into a series of low geometric complexity curve-surface intersection prob-

lems. This is done by approximating one of the surfaces by a grid of finite number

of curves [49]. Intersection of each of these curves with the other surface yields dis-

crete points in space. These points are then connected to get the intersection curve.

An initial decision of grid resolution may lead to incorrect connectivity or missing

features of the solution. Hence, these techniques su↵er from robustness problems in

getting the correct intersection topology.

Marching methods : These methods trace each branch of the intersection curve

using information of the local geometry [50–52]. They require starting points for each

branch of the curve. Most of the algorithms are based on local geometry coupled with

quasi-Newton methods for tracing the curve. This technique su↵ers from convergence

issues as well as choice of step size to prevent component jumping and looping (Fig.

6.3). Most algorithms use conservative step size that makes them slow.

6.1.1 Challenges with Current Approaches

In general, in the above described surface intersection techniques, it is challenging

to simultaneously achieve goals of accuracy, robustness and e�ciency. As discussed

above, greater accuracy in general is associated with greater data proliferation and
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Figure 6.3. Issues with currently popular marching method illustrated by two branches

of intersection curve in paramteric space of one of the surfaces. (a) Component

jumping or straying, (b) Looping.

computational cost. The impact of the goals of accuracy, robustness and e�ciency

on CAD as well as CAE phases and a summary of the extent to which these goals

are met by the current methods is discussed below.

Accuracy : Accuracy of intersections is important for engineering applications.

Numerical inaccuracies may lead to detection of wrong topology of solution (Fig.

6.4). The algebraic complexity of the intersection curve as described in algebraic

methods makes it very di�cult if not impossible to describe the curve exactly. Due

to the high polynomial degree of the equation to be solved (Eq. (6.3)), a closed form

expression for the intersection curve is, in general, not possible. Consider two bicubic

surfaces P (u, v) and Q(s, t). Let the implicitized equation of P (u, v) be f(x, y, z),

which will be of degree 18 consisting of 1330 monomials. Then, the intersection of

the two bicubic patches is given by

f(Q(s, t)) = 0 (6.4)
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Figure 6.4. Three possibilities for topology of intersection curve between two cylinders

with di↵erent diameters [117].

This is a polynomial of degree (54, 54) in the variables (s, t) consisting of 3025 mono-

mials and describing an algebraic curve of total degree 108. Hence, the intersection

of simple surfaces can lead to a very complex intersection curve. Nearly all surface

intersection techniques are based on approximation schemes such as subdivision or

polytope approximation, or grid approximation in lattice methods, and hence, lead

to inexact geometry. Even algebraic methods need to solve the algebraic equation

numerically, and that leads to inaccuracy in the solution. Hence, the current methods

do not yield an exact geometry corresponding to the intersection.

Robustness : The intersection techniques need to detect all curve branches, loops

and singularities to ensure robustness. However, robustness is a↵ected by step size in

marching methods or number of subdivision steps or other numerical choices. Thus, in

general, robustness is not automatic but dependent on heuristic numerical parameter

choices.

E�ciency : The intersection determination need to be e�cient as they are recurring

operations in CAD/CAE. However, in most numerical schemes, the goal of e�ciency

is often in conflict with the goal of accuracy. For instance, very high-precision subdivi-
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sion leads to data proliferation making the scheme ine�cient. E�ciency of marching

methods is governed by step size that also controls the accuracy of the solution.

Since the algebraic complexity of the intersection curve determines the required step

size, the nature of the intersection geometry (and therefore the required robustness)

has a strong impact on the e�ciency; sacrificing accuracy to improve e�ciency may

also sacrifice robustness. Hence, it is very di�cult to satisfy the conflicting goals of

accuracy, robustness and e�ciency simultaneously using existing methods.

6.2 Algebraic Boolean Operations

An algebraic point containment strategy is developed to perform implicit boolean

operations without explicit surface intersection operations. Consider n B-rep geome-

tries �1, . . . ,�i, . . . ,�n undergoing boolean operations. Let s1, . . . , si, . . . , sn be their

respective algebraic sign field. The interior domain ⌦i of the ith B-rep geometry �i is

defined as the region si � 0. The algebraic sign of each B-rep solid is used to perform

point classification queries. Pairwise boolean operations are performed by using the

point classification queries. Examples of pairwise boolean operations between B-rep

geometries �i and �j are as follows

• Boolean Union (⌦i [ ⌦j) : si � 0 or sj � 0

• Boolean Intersection (⌦i \ ⌦j) : si � 0 and sj � 0

• Boolean Subtraction (⌦i � ⌦j) : si � 0 and sj  0

In Fig. 6.5(a), three intersecting B-rep solids are shown. Further, seven regions

formed by boolean operations between the three solids are highlighted. At any query

point P (⇠, ⌘), the algebraic sign field si, sj, sk of each solid is evaluated. Using these

sign fields, the region containing the query point can be identified. Further, boolean

operations using the sign fields will give an implicit sign field corresponding to the

region of interest (see Fig. 6.5(b)).
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Figure 6.5. Algebraic boolean operations. (a) Algebraic point classification, (b) Il-

lustrative example of boolean operations between rectangle and circle using algebraic

level sets.
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6.3 Comparison with Surface Intersection Technique

The algebraic implicit boolean operations are performed using point-wise queries

of the non-iterative algebraic level set function. The algebraic nature of the query

makes it e�cient compared to the complex numerical surface intersection operation.

Further, at a query point, the technique gives an accurate point containment check

as opposed to the numerical inaccuracies associated with the surface intersection op-

eration. Further, robustness of intersection technique in the presence of singularities

is a↵ected by numerical choices of the algorithm. However, the algebraic boolean

operation technique is independent of such singularity issues as the query is not com-

puted using the intersection geometry. It is a function of the interacting geometries

(see Fig. 6.6).

Ω1

Ω2

Ω1 −Ω2

Figure 6.6. Algebraic boolean operation is not a↵ected by the presence of singular

intersection.

6.4 Illustrative Examples

Algebraic boolean operation between a wrench and an elliptical hole is shown

in Fig. 6.7(a). In this example, the algebraic sign query is used for heterogeneous

material modeling. In Fig. 6.7(b), the wrench has an elliptical hole with no material

property, while in Fig. 6.7(c), an elliptical inclusion is modeled inside the wrench.
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(a) (b)

(c)

Figure 6.7. Heterogeneous material modeling. (a) Wrench and elliptical primitive

geometries, (b) Wrench with elliptical hole, (c) Wrench with elliptical inclusion.

A more complex example of multiple algebraic boolean operations is illustrated

in Fig. 6.8. These operations result in the geometry of wheel with spokes.

Ω1

Ω2

Ω2 Ω3

Ω6

Ω5

Ω4

Ω7

Ω1 − Ωi
i=2

6

∑
$

%
&

'

(
)∪Ω7

Figure 6.8. Multiple algebraic boolean operations.
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Algebraic boolean operations between a cube and cylinder are shown in Fig. 6.9.

The topology of the intersection curves with di↵erent cylinder positions is captured

here.

Loop Open Curve Singularity 

Figure 6.9. Topology of intersection curve as captured by Algebraic boolean opera-

tions.

Further, algebraic implicit boolean operations are shown to enable sign calculation

in a utah teapot constructed from sign field of three primitive geometries (see Fig.

6.10). No surface intersection operations or stitching is performed to construct the

geometry, hence, there is no challenge with maintaining water tightness.
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Algebraic Point Containment   

Utah teapot with bounding box  

Modeled as three NURBS B-rep 
primitives 

No trimming operation or surface 
intersection computations 

Figure 6.10. Algebraic boolean operations to construct sign field of utah teapot.
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7. CAD/CAE INTEGRATION

The problem of CAD/CAE integration faces the challenges of mesh generation prob-

lem, capturing geometric features exactly, point containment problem and surface

intersection problem. The mesh generation problem is eliminated by meshless ap-

proximations such as Kantarovich method and the class of isoparamteric approxi-

mations (IGA, HPFC) with trivariate or volumetric CAD geometry representations.

However, meshless approximations have di�culty in capturing the geometric features

exactly as well as the numerical challenge of point containment and surface inter-

section problem. On the other hand, isoparametric volumetric approximations can

ensure exact geometry and enable point containment. But the major challenge with

the latter class of analysis techniques is the need for trivariate analysis ready CAD

models. The existing CAD systems cannot provide such a representation, hence, such

geometries need to be constructed from scratch and new CAD modeling tools need

to be developed.

In order to utilize the current CAD modeling systems, while solving the challenges

with CAD/CAE integration, a new analysis technique is proposed that brings together

the advantages of the meshless methods and the isoparametric volumetric schemes.

The analysis technique developed in this work is based on the HPFC theory as well

as its generalization to enriched field modeling developed in the references [1, 2, 118].

Through these techniques, geometry changes in iterative design problems can be lo-

calized during analysis by procedurally mimicking the CSG procedure of CAD during

analysis [1, 42, 119]. Further, the proposed technique utilizes Algebraic Level Sets to

enable algebraic solutions to the problems of point containment and surface inter-

section during CAD/CAE integration. In the proposed strategy, surface intersection

operations are eliminated by modeling the primitive geometries or individual com-

ponents of a multi-component CAD model as enrichments on a trivariate regular
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domain. Algebraic level sets of the enrichments are used to enable e�cient point con-

tainment checks to infer boolean compositions. Algebraic level sets ensure exactness

of geometry while eliminating iterative numerical computations. This technique en-

ables direct analysis of complex physical problems without meshing, thus, integrating

CAD and CAE. The idea of the proposed technique is constrasted against traditional

FEA through a two-dimensional example in Fig. 7.1.

x"

Analysis"Technique"

Primi3ve"CAD"geometries""

Proposed"CAD/CAE"Integra3on"

i"
j"

!"(i"j)$

fi(d)"

fj(d)" Analysis"using"
algebraic"level"sets"
f(d)$

No"surface"intersec3on"
opera3ons"

i"
j"

!"(i"j)$

x" x"

CAD" Meshing" CAE"

Geometry"construc3on"
involves"surface"
intersec3on"opera3ons"on"
primi3ve"geometries""

Tradi3onal"FEA"

Figure 7.1. Algebraic level sets based isogeometric analysis contrasted against tradi-

tional FEA.
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7.1 Background

The HPFC theory and enriched field modeling are integral to the analysis tech-

nique proposed in this work. Hence, these techniques are briefly reviewed in the

following discussion.

7.1.1 Hierarchical Partition of Unity Field Compositions (HPFC) Theory

The HPFC theory [1] describes a design state D as the product space D = (G ,M )

of geometry G ⇢ H1, material M ⇢ H0 and an appropriate mapping A : G ⇥

M ! U to behavior U for analyzing the design state. The global design state is

constructed by a composition of the primitive states in a manner that is analogous

to CSG procedure (Fig. 7.2). At any point x in the design domain ⌦, the following

form of the constructed fields is proposed

f(x) =
X

i

wi
⌦(x)f

i(x) (7.1)

such that weights obey partition of unity as follows

P

i

wi(x) = 1

0  wi  1
(7.2)

kwikL1(Rd)  C1 (7.3)

krwikL1(Rd) 
CG

diam⌦i
(7.4)

Such partitions of unity ensure convergence of the global approximations when errors

in local approximations are bounded.

7.1.2 Enriched Field Approximations

The ideas developed in [1, 118], were further extended by Tambat and Sub-

barayan [2] to enrich the approximation constructed in the previous section with
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Figure 7.2. The Hierarchical Partition of Unity Field Compositions theory describes

a complex design state consisting of a triad of functions (belonging to an appropriate

function space and) approximating geometry, material and behavior through compo-

sitions of functions defined on the primitive entities in a manner analogous to the

constructive solid geometry procedure.

known behavior or material property on surfaces (or curves or even vertices) within

the domain.

Let the geometry of the underlying domain ⌦ be defined as S⌦(p, q, r) and the

behavioral field as f⌦(x(p, q, r)). Let the geometry of the lower-dimensional en-

riching geometry be parametrically defined as C�(s, t) and the behavioral field as

f b
�(x(p, q, r) ! (s, t)). Then, the global approximation field f(x) at any point x in

the domain is given by the following weighted composition (see Fig. 7.3):

f(x) = w⌦(x)f⌦(x (p, q, r)) + wb
⌦(x)f

b
�(x(p, q, r) ! (s, t)) (7.5)

Here, the weights w⌦ and wb
⌦ obey partition of unity property [53] such that w⌦ +

wb
⌦ = 1. Since the influence of the enriching field must decay with distance from

the enriching geometrical entity, the weight fields are required to be monotonically
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Figure 7.3. Global approximation is constructed by hierarchical composition of lower

order primitives with the higher order primitive.

decreasing functions of distance. Some possible functions for weight field wb
⌦ include

the exponential function (Eq. (7.6)) and the spline function (Eq. (7.7)) [25]

wb
⌦ = e�(

d
de )

2

w� (7.6)

wb
⌦ =

8

>

>

>

<

>

>

>

:

w�(1� 6
8(

d
ds
)2 + 1

8(
d
ds
)3) 0  d

ds
< 1

w�(
3
8(2�

d
ds
)3) 1  d

ds
< 2

0 d
ds

� 2

(7.7)

where d is the algebraic distance measure from the enriching geometry �, de and ds

are scaling factors and w� is the assigned weight value on the enriching geometry �.

The weight field thus constructed limits the influence of enriching feature over a finite

distance.
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The approximations both over the domain and on the enriching entities are con-

structed using NURBS, which are popular in CAD for modeling geometrical sur-

faces [64]. Also, NURBS basis functions exhibit properties such as partition of unity,

local support, domain of influence, smoothness, convex hull and non-negativity that

are critical to ensuring convergence of approximations to a known solution. Thus,

the behavioral field f⌦ is isoparametrically defined as

f⌦(x(p, q, r)) =
X

I

NI(p, q, r)ûI (7.8)

where, NI(p, q, r) are the NURBS basis functions over the underlying domain and

ûI is the field value at the I-th control point of the NURBS geometric domain. The

behavioral field f b
� is defined as

f b
�(x(p, q, r) ! (s, t)) =  (x)

 

X

J

NJ(s, t)v̂J

!

(7.9)

where, NJ(s, t) are the NURBS basis functions over the lower order primitive and

v̂J is the field value at the J-th control point of the enriching geometry,  is an

enrichment function that provides the required spatial modulation of the field u to

together achieve the desired enrichment and x(p, q, r) ! (s, t) is a projection from

the point x on the underlying domain to the closest point P (s, t) on the lower order

enriching primitive.

7.2 Overview of Numerical Scheme

In this work, direct analysis on B-rep CAD models is enabled using the HPFC

theory and enriched field approximations. Approximations are constructed on an un-

derlying domain, that does not conform with the geometry of the B-rep CAD model,

similar to the meshless approximations distinct from geometry. The HPFC theory is

applied to construct analysis approximations by blending behavior on the boundaries

of free form CAD models with the approximations on the underlying domain. The

boundary conditions on the geometric model are represented as lower order primitives
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(Fig. 7.4). The fields on these lower order primitives are composed with the approx-

imations built on the underlying domain through weight fields constructed using the

algebraic level sets. Further, the algebraic level sets also enable algebriac point con-

tainment queries and compositions during analysis. Geometry-based analysis of free

form CAD models is demonstrated using linear elasticity problems.

!

!

Γbt$
Γbu$

Γbt$

Γbu$
Ω$

Explicit(trac+on(
(boundary(

Explicit(displacement(
(boundary(

Uniform(
grid(

Implicit(boundary(
Γbt$

Γbu$

Figure 7.4. Global approximation is constructed by hierarchical composition of explicit

boundary conditions with approximations on a uniform grid.

7.3 Formulation of Discretized Solution System

Consider the domain ⌦ with boundary �. The boundary � consists of the dis-

placement and traction boundary conditions. The corresponding dirichlet boundary

�u, or traction boundary �t is modeled explicitly as lower order NURBS primitive.

In general, the total potential energy for linear elastic systems is given by

⇧⇤(u) =

Z

⌦

1

2
�ij"ij d⌦�

Z

⌦

b̂iui d⌦�
Z

�t

t̂iui d� (7.10)
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where �ij = Dijkl"kl is the generalized Hookes law relating stress �ij to strain

"kl, and Dijkl is the fourth order elasticity tensor. The displacement field ui is ap-

proximated by the weighted composition between the domain and the boundary as

described in Eq. (7.5).

ui = wd
i u

d
i + wb

iu
b
i = ũd

i + ũb
i (7.11)

such that wd
i +wb

i = 1. Superscripts d and b correspond to domain and boundary

respectively. The influence of the boundary on the underlying domain is modeled

using weight field wb
i constructed as a monotonically decreasing function of the alge-

braic distance field. The strain and stress components in terms of the domain and

boundary displacements are as follows

"ij =
ui,j + uj,i

2
=

(wdud)i,j + (wdud)j,i
2

+
(wbub)i,j + (wbub)j,i

2
= "̃dij + "̃bij (7.12)

�ij = Dijkl"kl = Dijkl"̃
d
ij +Dijkl"̃

b
ij (7.13)

The total potential energy is then written as a function of ud and ub.

⇧⇤(ud,ub) =

Z

⌦

1

2
�ij "̃

d
ij d⌦+

Z

⌦

1

2
�ij "̃

b
ij d⌦�

Z

⌦

b̂iũ
d
i d⌦�

Z

⌦

b̂iũ
b
i d⌦�

Z

�t

t̂iũ
d
i d��

Z

�t

t̂iũ
b
i d�

(7.14)

The stationarity of the total potential energy with respect to ud and ub yields the

following equilibrium conditions.

�⇧⇤
u

d =

Z

⌦

�ij "̃
d
ij d⌦�

Z

⌦

b̂iũ
d
i d⌦�

Z

�t

t̂iũ
d
i d�

�⇧⇤
u

b =

Z

⌦

�ij "̃
b
ij d⌦�

Z

⌦

b̂iũ
b
i d⌦�

Z

�t

t̂iũ
b
i d� (7.15)

The displacement fields of the higher and lower order primitives are next dis-

cretized using NURBS basis functions as shown in Eqs.

ũd = wd
X

I

NI(p, q, r)u
d
I =

X

I

ÑI(p, q, r)u
d
I (7.16)

ũb(x(p, q, r) ! (s, t)) = wb
X

J

NJ(s, t)u
b
J =

X

J

ÑJ(s, t)u
d
J (7.17)
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After substituting the approximating fields into the equilibrium equations, the

following matrix system is obtained:
2

4

Kdd Kdb

KdbT Kbb

3

5

8

<

:

ûd

ûb

9

=

;

=

8

<

:

gd

gb

9

=

;

+

8

<

:

hd

hb

9

=

;

(7.18)

where, the sti↵ness matrices are constructed as

[Kdd] =

Z

⌦

(B̃d)TDB̃d d⌦

[Kbb] =

Z

⌦

(B̃b)TDB̃b d⌦

[Kdb] =

Z

⌦

(B̃d)TDB̃b d⌦ (7.19)

,the work equivalent forces are determined by integration of tractions on primitive

boundaries

{gd} =

Z

�d
t

(Ñd)T t̂ d�

{gb} =

Z

�b
t

(Ñ b)T t̂ d� (7.20)

and the body forces are determined as follows

{hd} =

Z

⌦

(Ñd)T d̂ d⌦

{hb} =

Z

⌦

(Ñd)T b̂ d⌦ (7.21)

If �b is a traction boundary, then the matrix system reduces to
2

4

Kdd Kdb

KdbT Kbb

3

5

8

<

:

ûd

ûb

9

=

;

=

8

<

:

0

gb

9

=

;

+

8

<

:

hd

hb

9

=

;

(7.22)

since wd = 0 on �d
t

If �b is a dirichlet boundary, then the matrix system reduces to
h

Kdd

in

ûd

o

=
n

gd
o

+
n

hd

o

�
h

Kdb

in

ûb

o

(7.23)

since ûb are known displacements on the boundary.

For more than two primitives, the solution system is formed by a pairwise in-

teraction between the primitives following an approach similar to that described in

reference [1].
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7.4 Algebraic Level Sets in Analysis

The information required for engineering analysis and implicit boolean operations

comprises of the following point-wise queries:

• Classification as inside or outside

• Field values (material or behavior), f i

• Field derivatives, @f i

@xj

The B-rep CAD representation is insu�cient to provide such a volumetric informa-

tion as its information exists only on the boundaries. However, a signed distance

representation of a B-rep solid is su�cient to evaluate the above mentioned queries.

The algebraic level sets proposed in this work are non-iterative approximations to

signed distance function. Thus, algebraic level sets enable the following operations in

the proposed analysis technique (see Fig. 7.5).

• Enable construction of weight fields - Capture influence of boundaries on un-

derlying domain through monotonic distance measure.

• Enable point classification - To identify quadrature points inside primitive, as-

sign material properties and enable algebraic boolean operations.

7.5 Numerical Examples

In this section, the analysis technique described in the previous section is applied

to elasticity problems with known analytical solutions to validate the scheme. In all of

the examples, meshless analysis of B-rep CAD models is demonstrated. It is assumed

that the geometric models are represented only by NURBS boundaries and that a

parametric description of the domain of analysis is not available. A background grid is

constructed in each problem using a rectangular NURBS primitive. The background

grid does not conform to the domain of the geometric model. Boundary conditions
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Figure 7.5. Role of algebraic level sets in CAD/CAE integration.

are defined on the explicitly modeled lower order NURBS primitives. Weight fields

are constructed using the exponential function given in Eq. (7.6). Algebraic distances

are computed from the boundaries of the lower order primitives. Material assignment

is based on point containment checks using the signed field from the boundaries of

the geometric model. Thus, the proposed technique allows direct analysis on B-rep

CAD models without tedious mesh generation.

7.5.1 Plate with an Elliptical Hole

An elastic plate with an elliptical hole under uniform tension is known to have an

analytical stress concentration factor that is dependent on the ratio of the major to

minor diameter of the ellipse. The geometry and boundary conditions for this problem

are shown in Fig. 7.6(a). The modulus of elasticity of the plate is assumed to be

100 units and the Poissons ratio is 0.3. A background uniform grid is constructed as

a rectangular (2lX2w) NURBS primitive with the dimensions indicated in Fig. 7.6.
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The two traction boundaries are modeled explicitly as lower order NURBS primitives.

The geometric model and the background mesh are independent of each other and

are composed hierarchically as shown in Fig. 7.6(c). Point containment checks in the

B-rep CAD model of the plate with elliptical hole were used to eliminate quadrature

points on the mesh lying outside the material domain.

The analytical stress concentration factor for elliptical hole with a
b
= 2 accounting

for the finite plate width is 5.9 [120]. The stress plot (�yy) is shown in Fig. 7.6(b) for

a uniform control point grid spacing of h = 0.03 units and local refinement around the

hole. The stress concentration factor obtained was 5.5292. Further local refinement

resulted in an improved stress concentration factor of 5.7348.

7.5.2 Curved Cantilever under End Loading

In this example, a curved cantilever beam is subjected to tip loading as shown

in Fig. 7.7(a). The modulus of elasticity of the beam was assumed to be 100 units

and the Poissons ratio was 0.3. The analytical stress field solution is given by the

following equations [121] :

�r =
P
N
(r + a2b2

r3
� a2+b2

r
)sin✓

�✓ =
P
N
(3r � a2b2

r3
� a2+b2

r
)sin✓

⌧r✓ = � P
N
(r + a2b2

r3
� a2+b2

r
)cos✓

where N = a2 � b2 + (a2 + b2)log( b
a
)

(7.24)

A background mesh was constructed as a rectangular (2b X2b) NURBS primitive

with the specific numerical values as indicated in Fig. 7.7(a). The displacement

and traction boundary conditions were modeled explicitly as lower order NURBS

primitives. The geometric model and the background mesh are independent of each

other as shown in Fig. 7.7(b). The behavior on the explicit primitive boundaries

are composed hierarchically as shown in Fig. 7.7(c). The variation of the numerical

solution of stress field �✓ is plotted with radial distance at ✓ = ⇡
2 and compared with

the analytical solution in Fig. 7.8.
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Figure 7.6. Plate with elliptical hole. (a) Geometry (a = 0.2, b = 0.1, w = 0.5, l = 1)

and boundary conditions, (b) Stress plot in y-direction (�yy), (c) Hierachical compo-

sitions of behavior on explicit geometries.
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Figure 7.7. Curved cantilever beam. (a) Geometry (a = 0.2, b = 0.4) and boundary

conditions (P = 0.2 units), (b) Underlying control point grid is independent of the

geometry, (c) Hierachical compositions of behavior on explicit geometries.

7.5.3 Analysis of a Wrench under Use Load

A problem with relatively complex two-dimensional geometry is considered next;

a wrench is analyzed under the loading and boundary conditions shown in Fig. 7.9(a).



101

!

Figure 7.8. Variation of stress field �✓ with radial distance r at ✓ = ⇡
2 .

A rectangular background grid was constructed independent of the wrench geometry.

The behavior on the explicit boundaries are hierarchically composed as shown in Fig.

7.9(c). The modulus of elasticity of the wrench was assumed to be 100 units and

the Poissons ratio was 0.3. The displacement and traction boundary conditions were

modeled explicitly as lower order NURBS primitives. Weight fields were constructed

from each of these primitives using algebraic distance field. The e↵ective weight field

corresponding to the rectangular domain NURBS primitive in the analysis problem

is shown in Fig. 7.9(b). Deformed shape is plotted in Fig. 7.10.

7.5.4 Analysis of a Hip Implant

The analysis of a hip implant under prescribed loading and boundary conditions is

demonstrated. The implant is fixed at its lower end while traction boundary condition

is applied on the top surface. The implant material is assumed to be elastic with
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Figure 7.9. Analysis using boundary representation of a wrench. (a) Loading and

boundary condition on the wrench, (b) Weight field of the rectangular domain NURBS

primitive constructed using algebraic distance from the displacement and traction

boundaries, (c) Hierachical compositions of behavior on explicit geometries.



103

Figure 7.10. Analysis results. The resultant displacement as well as the deformed

shape shown magnified five times.

elastic modulus E = 100 units and poisson’s ratio ⌫ = 0. Loading and boundary

conditions are shown in Fig. 7.11(a).

A uniform background NURBS approximation of 20X20X20 control point grid

is constructed independent of the implant geometry. The explicit traction and dis-

placement boundaries are modeled as NURBS surfaces. Weight field was constructed

from each boundary primitive using algebraic level sets. The e↵ective weight field

corresponding to the background domain NURBS primitive in the analysis problem

is shown in Fig. 7.11(b). Displacement field in z-direction is plotted in Fig. 7.11(c).

7.5.5 Heat Conduction in Utah Teapot

A heat conduction analysis problem is demonstrated for the utah teapot geometry

discussed in the previous chapter. The thermal conductivity of water in the teapot

was assumed to be 1 unit. A temperature boundary condition of 100 �C was applied

to the bottom surface of the teapot while the top surface was exposed to air at

25 �C. Convection and radiation e↵ects were neglected. The loading and boundary

conditions are shown in Fig. 7.12(a).
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(c)

Figure 7.11. Analysis of a hip implant. (a) Geometry and boundary conditions, (b)

Weight field on the background domain goes to zero on explicit boundaries,(c) z-

displacement plotted on a cross-section of the implant.

A uniform background NURBS approximation of 25X25X25 control point grid

was constructed independent of the utah teapot geometry. The behavior on the ex-

plicit dirichlet boundaries were hierarchically composed with the background domain.

The temperature boundary conditions were modeled explicitly as lower order NURBS

primitives. Weight fields were constructed from each of these primitives using alge-
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braic level sets. The e↵ective weight field corresponding to the rectangular domain

NURBS primitive in the analysis problem is shown in Fig. 7.12(b). Temperature

distribution in the teapot is plotted in Fig. 7.12(c).

T1=250C 

T2=1000C 

(a) (b)

(c)

Figure 7.12. Thermal analysis of utah teapot. (a) Geometry and boundary conditions,

(b) Weight field on the background domain goes to zero on temperature boundaries,(c)

Temperature field plotted on a cross-section of the teapot.
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8. CRACK GROWTH ANALYSIS USING UNSIGNED DISTANCE FIELD

The potential applications of the algebraic distance field in modeling fracture and

damage are demonstrated using the enriched field modeling technique [2] described

in Chapter 7. The choice of enrichment function depends on the apriori knowledge

of the behavior. For example, to model the discontinuity in the solution field across

the crack surface, the Heaviside step function is used as enrichment such that  = 1

above the crack surface and  = �1 below it [2, 25, 118, 122]. The continuous and

discontinuous fields are modeled completely independent of each other and composed

to obey partition of unity. The weight field is constructed using the algebraic distance

field developed in this thesis. The significant computational advantage of such an

enrichment strategy is that the changes are localized to crack geometry during crack

propagation. Also, note that the work described in this chapter is in collaboration

with the authors of [123].

8.1 Dirichlet Boundary Conditions

In this example , a two-dimensional square domain of size 2⇥2 units is considered.

The domain is centered at the origin with the x�axis in the horizontal direction and

the y�axis in the vertical direction. The boundary �1 is restrained in y�direction

and a displacement of uy = 0.015(1�x2) units is applied on the boundary �2 (see Fig.

8.1). The material is isotropic linear elastic with a modulus of elasticity of E = 200

units and Poisson’s ratio of ⌫ = 0.

In this example, the enriched field approximation theory is used to satisfy prescribed

non-homogenous boundary conditions. Realizing the fact that boundaries of a domain

are lower-dimensional geometrical entities, an enriching field can be constructed on

them using the procedure described in Chapter 7. Let the boundary where dirichlet



107

!2

!1

x 

y 

! 

"

f!2y
b = 0.015(1" x2 )

f!1y
b = 0

Figure 8.1. Plate with specified boundary conditions : Geometry and loading.

boundary conditions are specified be denoted by �u and let the specified boundary

conditions be f b
�. The behavioral approximation to the solution of the boundary value

problem is then constructed as described before

f(x) =
�

1� wb
⌦

�

f c
⌦(x(⇠, ⌘)) + wb

⌦f
b
� (P (x) ! t) (8.1)

where, f c
⌦ is the underlying continuous approximation and wb

⌦ is the weight function.

In this example, the square geometry is modeled as a bi-quadratic NURBS surface

with uniform, 10 ⇥ 10 control point distribution, and the boundaries (�1,�2) are

modeled as quadratic NURBS curves with 10 control points each. The exponential

blending function (Eq. (8.2)) is used which in turn is a function of the algebraic

distance field (d).

wb
⌦ = e

�
⇣

d
d0

⌘2

(8.2)

f(x) smoothly approximates the specified boundary conditions as the weight field wb
⌦

goes to 1 on the boundary �u and decays exponentially away from the boundary.

Note that in the proposed approach, the boundary approximation f b
� is constructed

independent of the underlying continuous approximation f c
⌦. Also, the prescribed
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Figure 8.2. Comparison of Dirichlet boundary conditions. (a) Displacement field uy

obtained by enrichment technique is plotted and compared with imposed boundary

condition and boundary condition enforced using lagrange multipliers, (b) The same

plot is now magnified in the shaded block region shown in the previous figure.

boundary conditions are satisfied exactly. The resulting y-directional displacement

field is shown in Fig. 8.2. A comparison with the imposed boundary condition

and the boundary condition enforced using lagrange multipliers is also shown. It

is observed that using enrichment technique, the Dirichlet boundary condition is

enforced fairly well when compared with the oscillatory displacements obtained by

lagrange multipliers.

8.2 Plate with Crack

In this example, we consider an isotropic, elastic square plate 2x2 units centered

on the origin with x-axis in the horizontal direction and the y-axis in the vertical

direction with a horizontal center crack of length 0.2 units. Unit traction is applied

in the y direction on the top edge of the plate with the bottom edge restrained in

the y direction except at the bottom center where the displacement was restrained in

both x and y directions. The modulus of the plate was assumed to be 100 units and
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the Poissons ratio was 0.3. The geometry and boundary conditions of the problem

are shown in Fig. 8.3(a). The algebraic distance field is used to determine the weight

field of the crack over the rectangular domain as shown in Fig. 8.3(b).

! 0 =1

2a#

(a) (b)

Figure 8.3. Plate with crack under tension. (a) Geometry and boundary conditions,

(b) Algebraic distance field based weight field of the crack geometry.

The stress intensity factor (SIF) is obtained using the displacement correlation. The

expression for the stress intensity factors obtained using displacement correlation

under plain strain conditions (and under plane stress conditions if ⌫ is replaced by

⌫ = ⌫/(1 + ⌫) ) are:

KI =
µ
p
2⇡ (vb � va)p
r (2� 2⌫)

(8.3)

KII =
µ
p
2⇡ (ub � ua)p
r (2� 2⌫)

(8.4)

where µ is the shear modulus, ⌫ is Poisson’s ratio, r is the distance from the crack

tip to the correlation point, (ua, va) and (ub, vb) are the orthogonal displacements in

x and y directions at correlation points a and b respectively.
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(a) (b)

Figure 8.4. Plate with crack under tension. (a) Displacement fields in y-direction, (b)

Normal stress fields in y-direction.

As a validation exercise, the SIF was first determined. The displacement field and

stress field in the y-direction in the plate corresponding to such a crack are shown in

Fig. 8.4. The SIF determined using displacement correlation was 0.7797 units, which

compares very well with the analytical solution of 0.785 units.

8.3 Modeling Cracks through Material Enrichment

A heat conduction application is considered here in which heat flows from one

face of the solid into the opposite face that is cooled. In the presence of a thermal

defect, normal heat flow is blocked and therefore causes a temperature rise behind

the defect.

In this example, the defect is modeled implicitly as a material enrichment [2]

of zero thermal conductivity over the underlying domain. The enriched thermal

conductivity of the domain is modeled as:

k = (1� w)k0 + wke (8.5)

where, k0 is the thermal conductivity of the underlying material, ke is the thermal

conductivity of the defect. The weight function w smears the loss in thermal conduc-
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tivity over a finite distance. The weight function is constructed as a monotonically

decreasing function of distance from the defect. A Gaussian form of weight field is

used in this example:

w = e
�
⇣

s
s0

⌘2

(8.6)

where s is the algebraic distance field from the defect and s0 is a scaling factor.

An infinite strip defect was modeled as an equivalent two-dimensional problem

with a line defect. A two-dimensional square domain of size 2⇥2 units was considered

(see Fig. 8.5(a)). Constant temperature boundary conditions were enforced on top

and bottom edges of the domain as shown in Fig. 8.5(a). The enriched thermal

conductivity of the domain is shown in Fig. 8.5(b). The obtained numerical solution

for rise in temperature behind the defect is plotted against the analytical solution [124]

in Fig. 8.5(c).

The accuracy of the material enrichment model is a function of the distance scaling

factor s0. As s0 ! 0, the smeared region approaches a sharp crack configuration.

Refinement studies were performed for three scaling factors s0 = 0.2, 0.1, 0.05 (Fig.

8.5(c)). In the limit, as s0 ! 0, the solution approaches the analytical one with

refinement of the control point spacing h. The convergence in error as a function of

the distance scaling factor, s0 for three points on the crack at distance x from the

crack center is shown in Fig. 8.5(d).

8.4 Analysis of a Curved Crack

The problem of an infinite plate with a curved center crack under uniaxial tensile

stress is modeled here and the numerical convergence of the stress intensity factors

is demonstrated. This problem was adapted from the reference [125]. The analytical

stress intensity factors are [126]:

KI =
�

2

p

⇡Rsin(�)



(1� sin2 (�/2) cos2 (�/2)) cos (�/2)

1 + sin2 (�/2)
+ cos (3�/2)

�

(8.7)
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Figure 8.5. Thermal conduction in the presence of infinite strip defect. (a) Infinite

strip defect modeled as a two-dimensional domain with a line crack, (b) Enriched

thermal conductivity over the domain, (c) Validation for rise in temperature behind

defect, (d) Error in rise in temperature as a function of distance scaling factor.
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KII =
�

2

p

⇡Rsin(�)



(1� sin2 (�/2) cos2 (�/2)) sin (�/2)

1 + sin2 (�/2)
+ sin (3�/2)

�

(8.8)

where � is the uniaxial tensile stress, R is the radius of the circular arc, and 2� is

the angle subtended by the arc at the center as shown in Fig. 8.6(a).

The problem is modeled using a finite square domain of size 2 ⇥ 2 units and a

circular crack of radius R = 1.005 units, center angle 2� = 11.42� such that the ratio

of the square side length to crack length is reasonably large (� 10) (see Fig. 8.6(a)).

Only one half of the plate with the crack was modeled due to symmetry across the

y-axis. The loading and boundary conditions are described in Fig. 8.6(b). Elastic

material properties with modulus E = 100 and poisson’s ratio ⌫ = 0.3 were chosen.

Previously developed method for enriched isogeometric approximations [2] was

adopted to model the crack. A general enriched approximation for modeling fracture

is of the the form:

f = (1� we)f⌦ + wefe (8.9)

where, the continuous field (f⌦) and discontinuous enriching field (fe) are approxi-

mated independent of each other and composed to obey partition of unity. The weight

field we is defined as an exponentially decaying function of algebraic distance. The

discontinuity due to the crack is modeled using Heaviside step function H(x) as:

fe(P (x) ! t) =
X

I

NI(t)ûIH(x) (8.10)

Uniform control point grid discretizations of 20⇥ 20, 25⇥ 25, 31⇥ 31 and 34⇥ 34

were chosen for the convergence study. The analytical solution for Mode I and Mode

II stress intensity factors (for the chosen parameters) are KI = 0.5556 and KII =

0.0556 respectively. The numerical stress intensity factors were calculated using the

displacement correlation method. The resulting expression for estimating the stress

intensity factors under plane strain conditions (and under plane stress conditions if

⌫ is replaced by ⌫ = ⌫/(1 + ⌫)) are:

KI =
µ
p
2⇡ (vb � va)p
r (2� 2⌫)

(8.11)
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Figure 8.6. Plate with a curved crack. (a) Infinite plate modeled as a two-dimensional

finite domain with a center curved crack, (b) Geometry, loading and boundary condi-

tions, (c) Error in numerical stress intensity factors as a function of number of control

points.
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KII =
µ
p
2⇡ (ub � ua)p
r (2� 2⌫)

(8.12)

where, µ is the shear modulus, ⌫ is Poisson’s ratio, r is the distance from the crack

tip to the correlation point, (ua, va) and (ub, vb) are the orthogonal displacements in

x and y directions at correlation points a and b respectively. The convergence in the

stress intensity factors is shown in Fig. 8.6(c).

8.5 Three-Point Bending Test

In this example, a beam in three point bending is considered (Fig. 8.7). This

example has been adapted from [127]. The crack growth is studied for the following

geometrical parameters, l = 0.3 units, w = 0.075 units, a = 0.025 units and the

following material parameters, E = 36.5 GPa, ⌫ = 0.1. The boundary conditions are

as shown in Fig. 8.7(a) with F = 1 unit.

a"

d"

2w"

2l"

F"

(a)

(b)

Figure 8.7. Three-point bending test (a) Geometry and boundary conditions. (b)

Underlying regular control point grid independent of internal boundary.
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The phenomenon of fracture is characterized by a sharp jump in the solution field

across the crack faces. Cracks are modeled using a behavioral approximation of the

form:

fd
�(P (x) ! t) = H(x)

X

I

NI(t)ûI (8.13)

where, H(x) models the discontinuity across the crack geometry. The Heaviside step

function H (x) is defined here as

H(x) =
d (x)

|d (x) | (8.14)

where, d (x) is the signed distance to the crack geometry from the spatial location

x. The corresponding weight field we
⌦ for the enriching behavioral field is defined as

an exponentially decaying distance field as in previous example. The continuous and

discontinuous fields are modeled completely independent of each other and composed

to obey partition of unity (see Fig. 8.7(b) ). Hence, the changes are localized to

crack geometry during crack propagation. In this example, the underlying continu-

ous geometry is modeled using a uniform bi-quadratic NURBS discretization with a

spacing of h = 0.05 units over the domain, and the initial crack geometry is modeled

using a quadratic NURBS curve with 10 control points. At the ith step of crack

propagation, the fracture criterion is evaluated and the angle of crack propagation

✓ is computed [2]. A linear NURBS segment of length �a = 0.005 units is created

between crack tip at the ith step and the new crack tip. The original crack geometry

and the new NURBS segment are joined into a single uni-variate NURBS curve for

the (i+1)th crack propagation step. Snapshots of crack propagation steps are shown

in Fig. 8.8.

8.6 Simulations of Inclined Crack Propagation

Crack propgation in a 45� inclined edge-cracked specimen under uniform tension

is modeled next. Geometry and loading conditions were as shown in Fig. 8.9. The

elastic modulus was assumed to be 100 units and the Poisson’s ratio was 0.3.
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Figure 8.8. Snapshots of crack propagation steps in the three-point bending test.
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Figure 8.9. Plate with inclined crack under tension. (a) Geometry and boundary

conditions, (b) Underlying regular control point grid independent of inclined crack.

The crack was modeled as a material enrichment [2] with a modulus value of zero.

The elastic modulus of the underlying material was enriched with a cohesive damage

description to nucleate and propagate the crack. Thus, the enriched elastic modulus

of the domain was of the form:

E = (1� w)E0 + w(1�D)E0

0  D  1
(8.15)

where, E0 is the elastic modulus of the undamaged material, D is the measure of

damage with D = 0 being the pristine state and D = 1 being the fully damaged

state of the material at which it does not bear any load (fractured state). The weight

function w smears the loss in modulus over a finite spatial region. The algebraic

distance field was used to determine the weight field of the crack over the rectangular

domain.
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The crack propagation was based on maximum damage at points on a circular

path ahead of the crack tip. In general, the damage measure D is defined as the

ratio:

D =
G

�
(8.16)

where G is the energy release rate and � is the fracture toughness. In this example,

a bilinear irreversible cohesive damage description was used [2]. Snapshots of crack

propagation steps are shown in Fig. 8.10. It can be observed that the crack eventually

becomes horizontal, which is expected due to the symmetric tension loading on the

specimen.

(a) (b) (c) (d)

Figure 8.10. Snapshots of crack propagation steps in order: Step 2 �! Step 6 �!

Step 10 �! Step 15.

8.7 Analysis of Three-Dimensional Cracks

The heat conduction problem considered in Section 8.3 is reconsidered here. Specif-

ically, a three-dimensional domain with a planar circular defect is analyzed. Geometry

and boundary conditions are shown in Fig. 8.11(a). The converged numerical solution

for rise in temperature behind the defect is compared to the analytical solution for

distance scaling factors s0 = 0.1, 0.05, 0.03 in Fig. 8.11(b). As before, as s0 ! 0, the

numerical solution approaches the analytical solution [124]. Again, the convergence
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in error as a function of the distance scaling factor, s0 for three points on the crack

at distance x from the crack center is shown in Fig. 8.11(c).

q(

T0(

q=1unit, T0=0  
k=1(unit(
r=0.125(units(

(a)

Distance((scaling((
parameter,(s0(
Refinement((
parameter,(h=0.015(

(b)

(c)

Figure 8.11. Thermal conduction in the presence of a cirular defect. (a) Three-

dimensional domain with a circular defect: geometry and boundary conditions, (b)

Validation for rise in temperature behind defect,(c) Error in rise in temperature as a

function of distance scaling factor.
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Finally, a complex, three-dimensional freeform NURBS defect geometry was cho-

sen to illustrate the application of algebraic distance field for modeling an implicit

crack. Geometry and boundary conditions are shown in Fig. 8.12(a). The algebraic

distance field for the complex defect geometry is plotted in Fig. 8.12(b) over three

planes slicing the geometry in x, y and z directions respectively. The numerical so-

lution for temperature in the domain is plotted over the same three slices in Fig.

8.12(c). Through this example, it is reinforced that an approximate distance func-

tion as developed in this study is su�cient to enrich underlying domain with known

discontinuous behavior.
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Figure 8.12. Thermal conduction in the presence of complex freeform defect geometry.

(a) Geometry and boundary conditions, (b) Algebraic distance field plotted over

planes slicing the defect geometry in the three principal directions, (c) Temperature

solution plotted over the same planes as the algebraic distance field.
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9. SIMULATIONS OF DAMAGE AND FRACTURE IN ULK UNDER PAD

STRUCTURES DURING CU WIREBOND PROCESS

9.1 Introduction

The fragility of ULK dielectrics has made Back End of Line (BEOL) integration

and packaging a significant challenge for the sub-32 nm technology node and beyond

[128, 129]. The ULK dielectrics have made the ILD layer more fragile with weaker

mechanical sti↵ness and fracture-resistance [129, 130]. In the case of wire bonded

packages, the reliability concern associated with the fracture of ULK dielectrics while

bonding over the active circuits is a significant challenge due to the impact load and

the high ultrasonic energy transmitted to the ILD stack. In general, the die sizes

in (wirebonded) fine feature technology are pad limited since they are dictated by

I/O rather than active areas. Thus, there is a need to place bond pads over active

circuitry since that minimizes die size and improves wafer utilization [131]. This is a

significant reliability challenge in wirebonded low-k and ULK dies due to the impact

load and the high ultrasonic energy transmitted to the ILD stack [132] which makes

the ULK dielectric stacks vulnerable to wirebond-induced fracture. This challenge is

further exacerbated by the fact that copper wire bonding is set to replace gold wire

bonding in high I/O devices because of its lower cost [133, 134]. Since copper is a

sti↵er material, it requires greater force to insure good bonding to pad, and a larger

bond force in turn increases the risk of ULK fracture during the bonding process. This

implies that wirebonding is being performed using sti↵er wire on a weaker support

structure.

Hence, Cu wirebonding on fine pitch low-k (and by extension to ULK) devices is

challenged by two facts: (1) higher impact force as well as higher ultrasonic energy is

typically necessary for comparable bond strength (as devices with all SiO2 dielectric
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stack) [130] and (2) bonding over active circuits induces mechanical damage leading

to fracture during probing and wirebonding [135,136]. Multi-material corners in ILD

stacks that are locations of singular stresses [137] and hence, potential crack nucle-

ation sites, further increase the risk of ULK fracture during the bonding process.

Thus, from a design or process optimization point of view, it is essential to develop

insights into bonding mechanism and the risk of ULK fracture during the wirebond-

ing process. The research on wire bonding using copper wire is being conducted

extensively and numerous experimental investigations of the bonding mechanism and

optimization of process parameters were seen in literature [138–143]. Further, few nu-

merical investigations of this problem were also found, but were limited to the study

of deformation and stresses induced by Cu wirebonding process in the Cu free air

ball (FAB), pad and die regions [144–149]. A review of experimental and numerical

findings and recent advances in Cu wirebonding is presented in [132].

However, studies investigating ULK fracture/damage due to wirebonding appear

to be very few in literature and are mostly limited to gold wirebonding. An exper-

imental investigation of gold wire bonding impact on low-k dielectric material and

bond pad failure is presented in [150]. Numerical analysis of delamination in Cu/low-

k bond pads during wire pull test for gold wires uses energy methods to determine the

damage sensitivity of di↵erent three-dimensional bond pad structures [151]. Futher,

brittle delamination failure mode in low-k dielectric stack interfaces was studied in

gold wirebonding using an energy based failure criterion [152]. Similar investigations

into the impact of Cu wirebond on ULK fracture appear to be nearly non-existant

in existing literature. In an experimental study of the underpad damage risk during

Cu ball bonding, damage is evaluated by relating the ultrasonic force measured using

a microsensor method to the mechanical stress acting on the pad [153]. In another

experimental investigation, the impact of Cu wirebonding process parameters on pad

damage was studied [143]. Further, in a numerical study of pull test for Cu wires, the

damage patterns at the end of pull test were seen to be a↵ecting the metal layers [154].
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However, a detailed investigation of ULK fracture/damage due to Cu wirebonding

process was not found in these studies.

In this work, a detailed numerical investigation of the risk of fracture in the ULK

dies due to Cu wirebonding process is presented. Maximum damage induced in the

ILD stack during the process steps is proposed as an indicator of the reliability risk.

A multi-level modeling technique is presented to simulate damage accumulation in

ILD structure during the wirebonding process. A dynamic finite element (FE) model

is constructed in ABAQUS/Explicit to model the deformation and stress fields in

the under pad region during the wirebonding process steps of impact and ultrsonic

vibration [155]. Further, sophisticated isogeometric computational techniques [2,156]

capable of nucleating and propagating cracks at arbitrary locations are used for mod-

eling damage in ILD stack. A damage analysis framework is proposed to develop

insights on risk of fracture in the dielectric layers due to Cu wirebonding process.

Damage accumlation studies are conducted to identify weak interfaces and potential

sites for crack nucleation as well as damage nucleation patterns. Further, the critical

process condition is identified by analyzing the damage induced during the impact

and ultrasonic excitation stages. A number of experimental studies in literature in-

dicated that adding ultrasonic excitation during impact stage (prebleed) softens the

Cu FAB and potentially reduces the risk of die fracture [143, 157, 158]. This finding

was numerically investigated in this work. Finally, representative ILD stack designs

with varying Cu percentage were compared for risk of fracture.

9.2 Demonstration of Simulation Procedure

A two-dimensional plane strain model of the ILD stack is assumed for damage

analysis. The baseline interconnect model configuration used for analysis in this

work is shown in Fig. 9.1. The 28µm⇥4.2µm ILD stack consists of 8 metal layers

(M1-M8) consisting of Cu lines and vias and three types of ILD materials SiO2 (M7-

M8), ULK (M3-M6) and SiCOH (M1-M2). The details of Cu geometry in M1-M2
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layers are not modeled due to the small length scale of these layers. Instead, the two

layers are homogenized by volume averaged material properties of Cu and SiCOH.

Further, interfaces between the material layers of ILD stack comprise of SiC etch stop

layers and Ta barrier layers as shown in Fig. 9.1. These interfaces are modeled as

material enrichments. The material properties of the ILD model are given in Tables

9.1 and 9.2.

Cu 

ILD – SiO2 

ILD - ULK 

ILD – SiCOH & Cu M1-M2 
M3 
M4 

M5 

M6 

M8 

M7 

M6 

M7 Cu 

ILD 

ILD 

SiC Ta 

4.2 µm 

28 µm 

Figure 9.1. A schematic illustration of the baseline interconnect structure with mate-

rial layers and interfaces.

The simulation procedure is demonstrated by applying a constant temperature

field to the ILD stack model. The temperature was increased from 25�C to 100�C.

Due to di↵erence in the coe�cients of thermal expansion (CTE) of the material

domains, thermal strains were induced leading to damage accumulation in the ILD

stack as shown in Fig. 9.2.
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Table 9.1. Material properties for the ILD stack.

Material E ⌫ ↵

(GPa) - (ppm/K)

Cu 122 0.34 16.7

SiC [159] 200 0.16 4.5

Ta 186 0.35 6.5

ILD-SiO2 73 0.17 0.55

ILD-SiCOH [160] 9.5 0.2 12

ILD-ULK [161] 3.3 0.2 12

Table 9.2. Interfacial fracture toughness values used in the present work [162].

Interface G (J/m2)

SiC-Cu 8

ILD-SiC 3

Ta-ILD 5

Figure 9.2. Damage accumulated due to thermal strains in ILD stack.
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9.3 Geometrical Configurations and Load Cases

9.3.1 Candidate Structures Under Pad

The baseline ILD stack configuration in Fig. 9.1 consists of 34% Cu in M3-

M8 layers which is the typical Cu volume fraction used in industry and is referred

to as the Nominal Cu Stack in subsequent discussion. Two other alternative load-

bearing local interconnect structures underneath pad (SUP) are evaluated in this

study (see Figs. 9.3(a) and 9.3(c)). The line/via configuration chosen for the three

representative structures is similar to those in existing literature [151]. The High Cu

Stack configuration in Fig. 9.3(a) consists of 56% Cu volume fraction while the Low

Cu Stack configuration in Fig. 9.3(c) consists of 13% Cu volume fraction. The three

representative configurations have same number of Cu vias. They di↵er with respect

to the Cu line configuration, ranging from no Cu lines in Low Cu Stack to Cu lines in

every layer in the High Cu Stack. A detailed damage analysis is carried out on each

representative structure to compare the relative fracture resistance of the designs.

9.3.2 Load Cases for Damage Modeling

The load imposed on the static ILD stack is extracted from the global finite

element model of the wire bond package [155]. The wirebond process typically involves

impact and ultrasonic stages. Three impact load cases are modeled here to study the

e↵ect of the prebleed magnitude on damage accumulation in ILD stack. These load

cases capture increasing magnitude of ultrasonic excitation during impact stage - no

prebleed, prebleed of 25% (0.25 µm) and 50% (0.5 µm) amplitude of the ultrasonic

excitation (1 µm amplitude). Further, three load cases for the ultrasonic excitation

process correspond to the excitation cycles with coe�cient of friction (COF) 0.5, 10

and 1 respectively. Hence, six load cases are identified from the global model for

the damage simulation. These are summarized in Table 9.3. For each load case,
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Figure 9.3. Representative ILD stack designs with varying Cu volume fraction. (a)

High Cu stack (56%), (b) Nominal Cu stack (34%),(c) Low Cu stack (13%).

traction/displacement boundary conditions were extracted from the global model at

the time step corresponding to the critical state of stress for that load case.

Table 9.3. Load cases considered for damage simulation in ILD structures.

Impact Stage

No Prebleed 25% Prebleed 50% Prebleed

Ultrasonic Excitation Cycle

COF 0.5 COF 10 COF 1
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9.4 Damage Analysis Procedure

A damage analysis framework is proposed to develop insights on risk of fracture

in the low-k dielectric layers due to the wirebonding process. Specifically, the damage

analysis framework aims at the following reliability studies:

• Identify weak interfaces and potential sites for crack nucleation in the ILD layers

• Identify critical process condition leading to damage and fracture

• Study e↵ect of prebleed on low-k damage

• Evaluate ILD stack designs for relative risk of damage and fracture

9.4.1 Damage Analysis Technique for Impact Stage

Damage is modeled in the baseline Nominal Cu Stack for the three impact stage

load cases. In this step, weak interfaces and potential sites for crack nucleation during

impact process, with and without prebleed, are identified and e↵ect of prebleeding

on damage accumulation is studied. Following this, damage evaluated in the impact

with 50% prebleed load case is accumulated to the next (ultrasonic excitation) stage

through an irreversible damage law (see Fig. 9.4) for all the three ILD stack config-

urations. Let Dimpact be the damage accumulated at the end of unloading path of

impact stage. The loading path for the new load case will now follow the unloading

curve of the previous load case as shown in Fig. 9.4. The damage accumulated after

reloading for ultrasonic excitation is computed as

D = Dimpact +
�max � �p
�c � �p

(9.1)

Thus, for each unloading and reloading step, permanent damage is accumulated from

the previous step. Further, the cohesive damage law parameters (�max and �0) for

the reloading step are updated as the new loading path is di↵erent from the loading

path in the previous step. Such a damage modeling scheme is used in this study for

damage accumulation to subsequent process steps.
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Figure 9.4. Irreversible damage law to accumulate damage to the next process step.

9.4.2 Damage Analysis Technique for Ultrsonic Excitation Stage

The bonding process in the ultrasonic excitation stage is captured through exci-

tation cycles with increasing COF from 0 to 1. Thus, damage accumulation in the

ultrasonic excitation stage, �Dultrasonic is defined as

�Dultrasonic =
X

COF

�DCOF (9.2)

where �DCOF is the damage accumulated during the excitation cycle with COF

coe�cient of friction.

In this study, three ultrasonic excitation cycles with varying friction coe�cients

were modeled to simulate the bonding process in the global model. The damage

accumulated during n ultrasonic excitation cycles is then approximated as the lin-

ear combination of the damage accumulation during nCOF cycles of the three load

cases simulated in this study with COF = 0.5, 10,1 and damage accumulation

�D0.5,�D10,�D1 respectively. Thus, Eq. (9.2) reduces to

�Dultrasonic =
X

COF

�DCOF ⇡ �D0.5 +�D10 +�D1 (9.3)

For each load case, damage is accumulated through two cycles and then extrapo-

lated to compute damage accumulation in nCOF cycles. Assume damage during the
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first two cycles to be D1 and D2 respectively. Let Dimpact be the initial damage accu-

mulated from the impact stage. Then, damage accumulation �D1 and �D2 during

the two cycles is given by

�D1 = D1 �Dimpact

�D2 = D2 �D1

The rate of damage accumulation per cycle d(�D)
dN

is approximated as follows

d(�D)

dN
= �D2 ��D1

Further, the damage accumulated for the load cases in corresponding nCOF cycles is

extrapolated as

�DCOF =
X

i

�Di = nCOF



�D1 +
(nCOF � 1)

2

d(�D)

dN

�

(9.4)

In this step, weak interfaces and potential sites for crack nucleation during ultra-

sonic excitation cycles are identified. Further, comparative severity of impact against

ultrasonic excitation process steps is evaluated. Moreover, the total damage accumu-

lation through the process steps for each ILD stack design is evaluated to compare

the designs for resistance to fracture.

9.5 Results and Discussion

In this section, the results of the studies performed using the damage analysis

framework are discussed.

9.5.1 Critical Stresses in SUP for the Load Cases

In reference [156], the authors showed that the out-of-plane stress component �zz

(with x-y plane representing the die plane) is the main driving force for the fracture

in ILD stacks during flip-chip assembly (i.e., for chip-package interaction failures).

Based on this physical insight as well as the observation that the ILD stack would

experience a dominant compressive stress perpendicular to die plane (in z-direction)
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when the capillary tip impacts the bond pad, the �zz component was chosen as the

criterion for identifying the critical step during impact stage. The critical state of

�zz corresponding to each load case is plotted in Fig. 9.5 (obtained from the global

FE model [155]). The displacements on nodes along the external boundary of the x-z

plane (see Fig. 9.5(a)) were extracted and converted into the traction (on top side)

and displacement (on left, right and bottom sides) boundary conditions on the local

2-D ILD stack model. Using these boundary conditions, the damage analysis study

was carried out.

σzz (MPa) 
 

(a) 

(b) 

(b) (c) 

(d) (e) (f) 

Figure 9.5. Critical states of out-of-plane stress �zz in the under pad ILD stack corre-

sponding to the simulated wirebond process conditions: (a) Impact without prebleed

(b) Impact with prebleed of 25% excitation amplitude (c) Impact with prebleed of

50% excitation amplitude (d) First cycle of ultrasonic excitation (e) Second cycle of

ultrasonic excitation (f) Last cycle of ultrasonic excitation.

9.5.2 Damage Nucleation Patterns and Critical Process Step

For the damage model, the value of separation parameters �0 and �c in the bilinear

cohesive damage description were chosen to be 0.1 nm and 1 nm respectively. In the

absence of experimental values for the parameters, the damage values in the work

give a relative measure of risk of fracture in ILD layer and potential crack initiation

sites.
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Impact Stage

Damage nucleation patterns during the impact stage for the baseline interconnect

structure are shown in Fig. 9.6. It is observed that the vertical interfaces through

SiC-Ta-ILD tri-junction in ULK layers are susceptible to damage for impact load

with no prebleed (see Fig. 9.6(a)). Further, for the impact load cases with prebleed

condition, horizontal interfaces through SiC-Ta-ILD tri-junction in ULK layers are

more susceptible to damage than the vertical interfaces (see Fig. 9.6(b)). Maximum

damage indeed occurs at the tri-material corners SiC-Ta-ILD as predicted by the

asymptotic analysis of strength of singularities [156]. The damage in impact stage is

M1-M2 
M3 M4 
M5 
M6 

M8 

M7 

(a)

M1M2 
M3 M4 
M5 
M6 

M8 

M7 

(b)

Figure 9.6. Predicted damage in ILD stacks during impact load cases. (a) Impact

only, (b) Impact with prebleed.

accumulated to the ultrasonic excitation stage using the irreversible damage law as

discussed in Section 9.4.1.

Ultrasonic Excitation

Damage nucleation patterns during ultrasonic vibration process for the baseline

interconnect structure are shown in Fig. 9.7. It is observed that the horizontal
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interfaces in ULK layers through SiC-Ta-ILD tri-junction are susceptible to damage.

It is assumed that an initial damage Dimpact is accumulated from impact stage at

the beginning of this step. It is observed that the maximum damage at the end of

the ultrasonic excitation step is the same as that in the impact stage. The interfaces

damaged during impact stage are not damaged further in the ultrasonic excitation

stage. However, some damage is accumulated during the ultrasonic excitation stage

at other interfaces as shown in Fig. 9.7. Hence, it can be concluded that the impact

loading is more severe than the ultrasonic excitation loading. The maximum damage

indeed occurs at the tri-material corners SiC-Ta-ILD as predicted by the asymptotic

analysis of strength of singularities [156].
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M5 
M6 

M8 

M7 
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Figure 9.7. Damage accumulation in ILD stack during ultrasonic excitation cycles.

(a) Cycle 1, (b) Cycle 2.

9.5.3 E↵ect of Prebleed

In this study, damage is modeled in the baseline ILD stack for the three impact

load cases for the same constitutive behavior of Cu FAB. The maximum damage

results are shown in Table 9.4. It is observed that the maximum damage increases by
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Table 9.4. Maximum damage during impact load cases.

Load Case Maximum Damage

Impact only 0.3427

Impact + 25% Prebleed 0.4290

Impact + 50% Prebleed 0.4412

adding the prebleed excitation and increasing the amplitude of excitation. However,

the prebleed ultrasonic excitation during impact stage is known to soften the Cu FAB,

thus, reducing the impact force needed for bonding it to the pad. Hence, intuitively

the damage in the ILD stack should reduce with prebleed excitation which is contrary

to the observation. This implies that the current constitutive model is unable to

capture the softening behavior of Cu FAB. Further, experimental characterization of

the softening behavior of Cu FAB do not seem to appear in literature. In the absense

of such a constitutive model of Cu FAB that captures the softening behavior, there is

a need for a modeling strategy to induce the softening behavior in the model. Such

a modeling strategy is studied here. In an alternate study, damage is again modeled

in the baseline ILD stack for the three impact load cases but with reduced yield

strength of Cu to model the softening behavior. The % reduction in yield strength of

Cu and corresponding maximum damage results are shown in Table 9.5. It is observed

Table 9.5. E↵ect of softening on maximum damage.

Prebleed % Reduction in Yield Strength Maximum

Load Case of Cu to Model Softening Damage

25% Prebleed 10 0.3442

50% Prebleed 20 0.2360

that such a modeling strategy for softening behavior does result in a decrease in the
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maximum damage in ILD stack. Such an insight is useful for developing constitutive

model of Cu FAB.

9.5.4 Comparision of Representative Dielectric Layer Configurations

The damage accumulation in the three ILD stack configurations are compared in

this section. The damage accumulated in impact stage for impact with 50% load

case is computed for each stack and accumulated to the ultrasonic excitation stage

through the irreversible damage law.

Damage accumulation is calculated for two cycles of each load case of the ul-

trasonic excitation stage with varying friction coe�cients. The rate of change of

maximum damage accumulation d(�D)
dN

is obtained from the two cycles and used to

extrapolate damage to nCOF cycles. It is observed that damage accumulation re-

duces in each cycle and stops after some cycles. First, the total number of cycles

nCOF upto which damage will be accumulated is calculated and then using Eq. (9.4),

the total damage accumulation is calculated for each load case. Finally, the damage

accumulation for the ultrasonic excitation cycles is computed using Eq. (9.3). The

damage accumulation during the ultrasonic excitation stage for the three ILD stack

configurations is shown in Table 9.6.

Based on the damage analysis for impact and ultrasonic excitation stages, it is

concluded that the damage accumulation reduces with increase in % Cu in the ILD

stack designs. Further, for each design, damage accumulation is higher in impact

stage as compared to ultrasonic excitation stage. The comparison is shown in Table

9.7.
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Table 9.6. Incremental damage accumulation during ultrasonic excitation cycles.

COF �D1 �D2
d(�D)
dN

�DCOF

Low Cu Stack

0.5 0.1833 6.5e�04 -0.1826 0.184

10 0.1793 8.1e�04 -0.1785 0.18

1 0.2101 8.7e�04 -0.2092 0.2110

Nominal Cu Stack

0.5 0.0963 3.2e�04 -0.096 0.096

10 0.0877 0.0046 -0.0831 0.093

1 .0989 0.001 -0.0979 .0999

High Cu Stack

0.5 3.2e�04 0 -3.2e�04 3.2e�04

10 4.9e�08 0 -.4.9e�08 .4.9e�08

1 .4.9e�08 0 -.4.9e�08 .4.9e�08

Table 9.7. Comparison of damage in candidate structures.

Maximum damage Maximum damage

accumulated in accumulated in

Impact Stage Ultrasonic Excitation Cycles

Low Cu Stack 1 0.5751

Nominal Cu Stack 0.4412 0.2888

High Cu Stack 0.0212 3.2e�4
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10. CLOSURE

10.1 Summary and Novel Contributions

The main theme of this work was to develop a CAD/CAE integration technique

that enables direct analysis on B-rep CAD models obtained from solid modeling

kernels. To begin with, a survey of computational techniques attempting to address

the issue of CAD/CAE was presented. One or more of the geometric challenges of

mesh generation, exactness of geometric representation in analysis, point containment

queries and surface-surface intersection operations were recognized as the bottlenecks

in current CAD/CAE integration techniques. In this work, a computational technique

that enables CAD/CAE integration while addressing the above mentioned challenges

was proposed.

First, a purely algebraic technique for computing unsigned distance measures from

complex non-linear boundaries was proposed. The procedure was based on the fact

that the resultant of a parametric entity obtained by algebraic implicitization pos-

sesses the properties of distance. The theoretical development of the resultant based

implicit function to construct distance measures for the parametric geometry was

shown using normalization techniques and boolean operations. Algorithms were de-

veloped for algebraic distance field construction for NURBS and Bezier geometries.

The proposed technique overcomes the need for iterative numerical distance compu-

tations at every quadrature point during isogeometric analysis while enabling greater

smoothness of the field and robustness in the distance estimation. Next, the theo-

retical concepts behind the unsigned algebraic distance field were applied to develop

algorithms for sign calculation for bounded B-rep solids. This algebraic signed dis-

tance measure was termed as algebraic level set. The algebraic level set was illustrated

on complex geometries such as the utah teapot. The algebraic level set was further



140

shown to enable implicit boolean operations as opposed to numerical surface inter-

section computations.

Further, a geometry-based analysis scheme was presented that enables tighter in-

tegration between CAD and CAE processes in the design cycle. This scheme relies

on the HPFC theory and enriched field modeling technique to explicitly model the

B-rep boundaries with known behavior and construct global compositions by blend-

ing the approximations on B-rep boundary with those on an underlying domain. In

this technique, the weight functions were typically constructed using algebraic level

sets which facilitates computationally e�cient analysis of complex geometries while

maintaining the geometric exactness of the boundaries to capture the behavior cor-

rectly. Further, all point classification queries and boolean compositions were carried

out using the algebraic level sets. The analysis scheme was demonstrated using linear

elasticity problems.

The applications of algebraic level sets in modeling fracture propagation was

demonstrated using the enriched field modeling technique. Further, the proposed

techniques were applied in a study to assess the risk of fracture of ULK dielectrics in

ILD stacks during wire bonding process.

10.2 Future Research Directions

10.2.1 Algebraic Level Set based Geometry Evolution

Geometry evolution using the algebraic level set is a natural extension to this

thesis. Geometry evolution is fundamental to moving boundary problems such as

crack propagation, phase evolution and evolving geometries in design problems. In

most of the existing techniques, such moving boundaries are represented implicitly

and evolved using level set methods or phase field methods. Such techniques are both

geometrically and behaviorally implicit. However, the work in this thesis is based on

an explicit description of boundaries. A detailed comparison of implicit versus explicit

techniques is discussed in [2]. For evolution of explicit geometry, development of
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robust geometry evolution algorithms that can detect and handle topological changes

is essential. Further, while evolving a NURBS boundary, there might also be a need

for adding or removing the control points in the evolved boundary to capture the

intricate details of the new geometry [163,164].

10.2.2 Modeling Three-Dimensional(3D) Crack Propagation using Alge-

braic Level Set

In this work, fracture examples are demonstrated both in two and three dimen-

sions using the proposed algebraic level sets applied within an enriched isogeometric

analysis scheme. The current work can be further extended to 3D implementation

of crack propagation using algebraic level sets. One of the di�culties in modeling

3D crack propagation is how to describe and track the crack surface such that crack

path continuity is maintained. Further, most of the current algorithms assume C0

continuous crack surface and are not able to model higher order continuity. Another

di�culty is a suitable 3D fracture criterion to be used for crack propagation [165,166].

Majority of the current 3D crack propagation algorithms rely on an implicit de-

scription of crack surface and propagation using level set methods [92, 127, 167, 168].

Recently, an explicit representation of crack as polyhedron and explicit propagation

was proposed in order to overcome the challenges associated with level set evolution

methods [169]. However, this technique assumes a linear approximation of the crack

surface and is exact only in the limit of refinement. Instead, an explicit description of

crack using a NURBS representation allows to capture and propagate the geometry

exactly as demonstrated in 2D examples. For extension in three-dimensions, there

are two possible strategies for modeling crack propagation-

• Choose n discrete points on the boundary of the current crack surface. For each

point, find the corresponding point on the boundary of the new crack surface

using local crack propagation criterion. Construct a NURBS fit to the new
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points. Create an interpolation between the old boundary and new boundary

to extend the original crack surface.

• The second method involves either solving for the unknown control points of

the new crack boundary or solving for the crack propagation direction and step

length at each control point of the original crack surface boundary using global

crack propagation criteria. This approach gets its inspiration from global energy

minimization techniques used for crack propagation [170].

Other characteristics of geometry evolution algorithms discussed in the previous

section need to be considered as well.

10.2.3 Quadrature Schemes for Analysis using Algebraic Level Sets

The analysis techniques proposed in Chapter 7 are based on analysis approxima-

tions distinct from geometry. In such a case, the sign of algebraic level set of the

B-rep solid enables identification of quadrature points outside the solid which are

ignored during the analysis. However, since control points near the boundary of the

solid do not exactly conform to the boundary, they have local support that extends

beyond the boundary. That is, for some interior control points their support will ex-

tend outside the boundary and vice-versa for exterior control points. Hence, the field

values obtained from the analysis have inaccuracies near the boundary and the error

reduces with refinement. However, instead of refining to capture these boundaries,

quadrature schemes can be developed to enable accurate analysis near boundaries.

Some explorations with respect to quadrature schemes are presented in [31,171].
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[28] K. Höllig. Finite Element Methods with B-Splines. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2003.

[29] M. Freytag, V. Shapiro, and I. Tsukanov. Field modeling with sampled dis-
tances. Computer-Aided Design, 38(2):87–100, February 2006.



145

[30] A.V. Kumar, S. Padmanabhan, and R. Burla. Implicit boundary method for
finite element analysis using non-conforming mesh or grid. International Journal
for Numerical Methods in Engineering, 74(9):1421–1447, May 2008.

[31] K. Höllig, U. Reif, and J. Wipper. Weighted Extended B-Spline Approximation
of Dirichlet Problems. SIAM Journal on Numerical Analysis, 39(2):442–462,
January 2001.

[32] C. Ho↵mann, V. Shapiro, and V. Srinivasan. Geometric interoperability for
resilient manufacturing. Technical Report 11-015, Purdue University,Computer
Science Dept.,Cornell Univ., Ithaca, New York, 2011.

[33] C.A. Brebbia. Boundary element methods in engineering: proceedings of the
fourth international seminar, Southampton, England, September 1982. Bound-
ary Elements Series. Springer, 1982.

[34] M.S. Casale. Free-Form Solid Modeling with Trimmed Surface Patches. IEEE
Computer Graphics and Applications, 7(1):33–43, January 1987.

[35] M.S. Casale, J.E. Bobrow, and R. Underwood. Trimmed-patch boundary el-
ements: bridging the gap between solid modeling and engineering analysis.
Computer-Aided Design, 24(4):193–199, April 1992.

[36] K. Li and X. Qian. Isogeometric analysis and shape optimization via boundary
integral. Computer-Aided Design, 43(11):1427–1437, November 2011.

[37] R.N. Simpson, S.P.a. Bordas, J. Trevelyan, and T. Rabczuk. A two-dimensional
Isogeometric Boundary Element Method for elastostatic analysis. Computer
Methods in Applied Mechanics and Engineering, 209-212:87–100, February 2012.

[38] E. Cohen, T. Martin, R.M. Kirby, T. Lyche, and R.F. Riesenfeld. Analysis-
aware modeling: Understanding quality considerations in modeling for isoge-
ometric analysis. Computer Methods in Applied Mechanics and Engineering,
199(5-8):334–356, January 2010.

[39] O. T. Morgan. HIGEOM: A Symbolic Framework for a Unified Function Space
Representation of Geometry and Attributes of Solids. PhD thesis, Purdue Uni-
versity, April 2011.

[40] T. Martin, E. Cohen, and R.M. Kirby. Mixed-element volume completion from
NURBS surfaces. Computers & Graphics, 36(5):548–554, August 2012.

[41] Y. Zhang, W. Wang, and T.J.R. Hughes. Conformal solid T-spline construction
from boundary T-spline representations. Computational Mechanics, 51(6):1051–
1059, September 2012.

[42] D. Natekar, X. Zhang, and G. Subbarayan. Constructive solid analysis: a
hierarchical, geometry-based meshless analysis procedure for integrated design
and analysis. Computer-Aided Design, 36(5):473–486, April 2004.

[43] G.A. Kriezis, P.V. Prakash, and N.M. Patrikalakis. Method for intersecting
algebraic surfaces with rational polynomial patches. Computer-Aided Design,
22(10):645–654, December 1990.



146

[44] S. Krishnan and D. Manocha. An e�cient surface intersection algorithm based
on lower-dimensional formulation. ACM Transactions on Graphics, 16(1):74–
106, January 1997.

[45] J.M. Lane and R.F. Riesenfeld. Bounds on a polynomial. BIT, 21(1):112–117,
March 1981.

[46] T. Dokken. Finding intersections of B-spline represented geometries using recur-
sive subdivision techniques. Computer Aided Geometric Design, 2(1-3):189–195,
September 1985.

[47] E.G. Houghton, R.F. Emnett, J.D. Factor, and C.L. Sabharwal. Implemen-
tation of a divide-and-conquer method for intersection of parametric surfaces.
Computer Aided Geometric Design, 2(1-3):173–183, September 1985.

[48] P. Sinha, E. Klassen, and K.K. Wang. Exploiting topological and geometric
properties for selective subdivision. In Proceedings of the first annual symposium
on Computational geometry - SCG ’85, pages 39–45, New York, New York,
USA, 1985. ACM Press.

[49] Jaroslaw R. Rossignac and Aristides A G Requicha. Piecewise-circular curves
for geometric modeling. IBM Journal of Research and Development, 31(3):296–
313, May 1987.

[50] C.L. Bajaj, C.M. Ho↵mann, R.E. Lynch, and J.E.H. Hopcroft. Tracing sur-
face intersections. Computer Aided Geometric Design, 5(4):285–307, November
1988.

[51] G.A. Kriezis, N.M. Patrikalakis, and F.-E. Wolter. Topological and di↵erential-
equation methods for surface intersections. Computer-Aided Design, 24(1):41–
55, January 1992.

[52] R.E. Barnhill and S.N. Kersey. A marching method for parametric sur-
face/surface intersection. Computer Aided Geometric Design, 7(1-4):257–280,
June 1990.

[53] I. Babuska and J.M. Melenk. the Partition of Unity Method. International
Journal for Numerical Methods in Engineering, 40(4):727–758, February 1997.

[54] J.A. Sethian. Fast Marching Methods. SIAM Review, 41(2):199–235, 1999.

[55] A. Rosenfeld and J.L. Pfaltz. Sequential Operations in Digital Picture Process-
ing. Journal of the ACM, 13(4):471–494, October 1966.

[56] A. Legay, J. Chessa, and T. Belytschko. An EulerianLagrangian method for
fluidstructure interaction based on level sets. Computer Methods in Applied
Mechanics and Engineering, 195(17-18):2070–2087, March 2006.
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