13,277 research outputs found

    The role of eye movement in upright postural control

    Get PDF
    金沢大学人間社会研究域人間科学系秋田県立大学 総合科学教育研究センターVision contributes to upright postural control by providing afferent feedback to the cerebellum. Vision is generally classified into central and peripheral vision. In measurements of postural sway, in which participants are required to maintain a stable upright posture while fixating on a visual target, non-retinal eye positional information due to the fixation is used as well as the retinal information from both visual fields. However, little is known about the role of non-visual eye positional information in postural control. This study examined the role of non-visual eye position information in upright postural control by comparing participants\u27 centre of pressure (COP) sway between two experimental conditions: (1) a space-fixed visual target condition (control), in which eye movement was not controlled, and (2) a head-fixed visual target condition (treatment), in which eye movement was inhibited. Using 12 university students, COP sway and electrooculograms (EOG) were measured under both conditions. In the space-fixed condition, participants maintain an upright posture while fixating on a visual target fixed on a screen 1 m in front of them. In the head-fixed condition, participants maintained an upright posture while gazing at a target moving in sync with their head sway on the screen. The COP was evaluated by path length, area, root mean square, velocity and position. Eye movements were evaluated by the mean eye movement angle. The mean eye movement angle was significantly larger in the vertical direction then in the horizontal direction in both experimental conditions and was also found to be larger in the space-fixed condition than in the head-fixed condition. No significant different was found in any COP parameter between both conditions. It was suggested that non-visual eye position information from the external eye muscles to the sensory perception system contributes little to postural stabilisation under the measurement conditions used in this study. © Springer-Verlag Italia 2009

    Differential postural effects of plantar-flexor muscles fatigue under normal, altered and improved vestibular and neck somatosensory conditions

    Full text link
    The aim of the present study was to assess the effects of plantar-flexor muscles fatigue on postural control during quiet standing under normal, altered and improved vestibular and neck somatosensory conditions. To address this objective, young male university students were asked to stand upright as still as possible with their eyes closed in two conditions of No Fatigue and Fatigue of the plantar-flexor muscles. In Experiment 1 (n=15), the postural task was executed in two Neutral head and Head tilted backward postures, recognized to degrade vestibular and neck somatosensory information. In Experiment 2 (n=15), the postural task was executed in two conditions of No tactile and Tactile stimulation of the neck provided by the application of strips of adhesive bandage to the skin over and around the neck. Centre of foot pressure displacements were recorded using a force platform. Results showed that (1) the Fatigue condition yielded increased CoP displacements relative to the No Fatigue condition (Experiment 1 and Experiment 2), (2) this destabilizing effect was more accentuated in the Head tilted backward posture than Neutral head posture (Experiment 1) and (3) this destabilizing effect was less accentuated in the condition of Tactile stimulation than that of No tactile stimulation of the neck (Experiment 2). In the context of the multisensory control of balance, these results suggest an increased reliance on vestibular and neck somatosensory information for controlling posture during quiet standing in condition of altered ankle neuromuscular function

    MECHANISMS OF GAZE STABILITY DURING WALKING: BEHAVIORAL AND PHYSIOLOGICAL MEASURES RELATING GAZE STABILITY TO OSCILLOPSIA

    Get PDF
    Visual sensory input plays a significant role in maintaining upright posture during walking. Visual input contributes to control of head, trunk, and leg motion during walking to facilitate interaction with and avoidance of objects and individuals in the environment. The vestibular system contributes to postural control during walking and also to stabilization of the eyes during head motion which may allow for more accurate use of visual information. This dissertation reports the findings of five experiments which explore how the nervous system uses vision to control upright posture during walking and also whether the act of walking contributes to gaze stability for individuals with severe vestibular loss. In the first experiment, continuous oscillatory visual scene motion was used to probe how the use of visual input changes from standing to walking and also to determine whether the trunk motion response to visual motion was the same in the medio-lateral (ML) and anterior-posterior (AP) directions. In the second experiment, visual feedback (VFB) regarding the approximate center of mass position in the ML and AP directions was used to demonstrate that ML path stability was enhanced by concurrent visual feedback for young and older adults. In the third experiment, adults with vestibular loss and healthy adults were both able to use VFB during treadmill walking to enhance ML path stability and also to separately modify their trunk orientation to vertical. The final two experiments investigated whether gaze stability was enhanced during treadmill walking compared to passive replication of sagittal plane walking head motion (seated walking) for individuals with severe vestibular loss. Individuals with severe bilateral vestibular hypofunction displayed appropriately timed eye movements which compensated for head motion during active walking compared to seated walking. Timing information from the task of active walking may have contributed to enhancement of gaze stability that was better than predictions from passive head motion. This dissertation demonstrates: 1) the importance of visual sensory input for postural control during walking; 2) that visual information can be leveraged to modify trunk and whole body walking behavior; and 3) that the nervous system may leverage intrinsic timing information during active walking to enhance gaze stability in the presence of severe vestibular disease

    Processing of emotional expression in subliminal and low-visibility images

    Get PDF
    This thesis investigated the processing of emotional stimuli by the visual system, and how the processing of emotions interacts with visual awareness. Emotions have been given ‘special’ status by some previous research, with evidence that the processing of emotions may be relatively independent of striate cortex, and less affected by disruption to awareness than processing of emotionally neutral images. Yet the extent to which emotions are ‘special’ remains questionable. This thesis focused on the processing of emotional stimuli when activity in V1 was disrupted using transcranial magnetic stimulation (TMS), and whether emotional properties of stimuli can be reliably discriminated, or affect subsequent responses, when visibility is low. Two of the experiments reported in this thesis disrupted activity in V1 using TMS, Experiment 1 with single pulses in an online design, and Experiment 2 with theta burst stimulation in an offline design. Experiment 1 found that a single pulse of TMS 70-130 ms following a presentation of a body posture image disrupted processing of neutral but not emotional postures in an area of the visual field that corresponded to the disruption. Experiment 2 did not find any convincing evidence of disruption to processing of neutral or emotional faces. From Experiment 1 it would appear that emotional body posture images were relatively unaffected by TMS, and appeared to be robust to disruption to V1. Experiment 2 did not add to this as there was no evidence of disruption in any condition. Experiments 3 and 4 used visual masking to disrupt awareness of emotional and neutral faces. Both experiments used a varying interval between the face and the mask stimuli to systematically vary the visibility of the faces. Overall, the shortest SOA produced the lowest level of visibility, and this level of visibility was arguably outside awareness. In Experiment 3, participants’ ability to discriminate properties of emotional faces under low visibility conditions was greater than their ability to discriminate the orientation of the face. This was despite the orientation discrimination being much easier at higher levels of visibility. Experiment 4 used a gender discrimination task, with emotion providing a redundant cue to the decision (present half of the time). Despite showing a strong linear masking function for the neutral faces, there was no evidence of any emotion advantage. Overall, Experiment 3 gave some evidence of an emotion advantage under low visibility conditions, but this effect was fairly small and not replicated in Experiment 4. Finally, Experiments 5-8 used low visibility emotional faces to prime responses to subsequent emotional faces (Experiments 5 and 6) or words (Experiments 7 and 8). In Experiments 5, 7 and 8 there was some evidence of emotional priming effects, although these effects varied considerably across the different designs used. There was evidence for meaningful processing of the emotional prime faces, but this processing only led to small and variable effects on subsequent responses. In summary, this thesis found some evidence that the processing of emotional stimuli was relatively robust to disruption in V1 with TMS. Attempts to find evidence for robust processing of emotional stimuli when disrupted with backwards masking was less successful, with at best mixed results from discrimination tasks and priming experiments. Whether emotional stimuli are processed by a separate route(s) in the brain is still very much open to debate, but the findings of this thesis offers small and inconsistent evidence for a brain network for processing emotions that is relatively independent of V1 and visual awareness. The network and nature of brain structures involved in the processing of subliminal and low visibility processing of emotions remains somewhat elusive.ESR

    A validation of mobile sensing actigraphy devices for generating a biomechanical model of posture

    Get PDF
    Mobile sensing actigraphy was tested and validated as a modality for computing dynamic posturography. Twelve healthy volunteer subjects (6 male) were administered risperidone and assessed for postural stability using a NeuroCom® Balance Master system and BioSensics® mobile sensors at baseline, 2 hours, 6 hours, and 24 hours post-dose. A strong positive correlation was shown between BioSensics and Balance Master systems in a modified Sensory Organization Task, with Pearson’s r = 0.76, p < 0.001 on composite equilibrium scores. Strong to moderate correlations during the same task showed r = 0.48, p < 0.001 to r = 0.74, p < 0.001. Mobile sensing actigraphy may be a viable alternative to force plate posturography in assessing drug-induced postural instability

    Motor deficits in schizophrenia quantified by nonlinear analysis of postural sway.

    Get PDF
    Motor dysfunction is a consistently reported but understudied aspect of schizophrenia. Postural sway area was examined in individuals with schizophrenia under four conditions with different amounts of visual and proprioceptive feedback: eyes open or closed and feet together or shoulder width apart. The nonlinear complexity of postural sway was assessed by detrended fluctuation analysis (DFA). The schizophrenia group (n = 27) exhibited greater sway area compared to controls (n = 37). Participants with schizophrenia showed increased sway area following the removal of visual input, while this pattern was absent in controls. Examination of DFA revealed decreased complexity of postural sway and abnormal changes in complexity upon removal of visual input in individuals with schizophrenia. Additionally, less complex postural sway was associated with increased symptom severity in participants with schizophrenia. Given the critical involvement of the cerebellum and related circuits in postural stability and sensorimotor integration, these results are consistent with growing evidence of motor, cerebellar, and sensory integration dysfunction in the disorder, and with theoretical models that implicate cerebellar deficits and more general disconnection of function in schizophrenia

    Role of orientation reference selection in motion sickness

    Get PDF
    The overall objective of this proposal is to understand the relationship between human orientation control and motion sickness susceptibility. Three areas related to orientation control will be investigated. These three areas are (1) reflexes associated with the control of eye movements and posture, (2) the perception of body rotation and position with respect to gravity, and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. We refer to this process as sensory selection. This proposal will attempt to quantify subjects' sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms. Measurements of reflexes, motion perception, sensory selection abilities, and motion sickness susceptibility will concentrate on pitch and roll motions since these seem most relevant to the space motion sickness problem. Vestibulo-ocular (VOR) and oculomotor reflexes will be measured using a unique two-axis rotation device developed in our laboratory over the last seven years. Posture control reflexes will be measured using a movable posture platform capable of independently altering proprioceptive and visual orientation cues. Motion perception will be quantified using closed loop feedback technique developed by Zacharias and Young (Exp Brain Res, 1981). This technique requires a subject to null out motions induced by the experimenter while being exposed to various confounding sensory orientation cues. A subject's sensory selection abilities will be measured by the magnitude and timing of his reactions to changes in sensory environments. Motion sickness susceptibility will be measured by the time required to induce characteristic changes in the pattern of electrogastrogram recordings while exposed to various sensory environments during posture and motion perception tests. The results of this work are relevant to NASA's interest in understanding the etiology of space motion sickness. If any of the reflex, perceptual, or sensory selection abilities of subjects are found to correlate with motion sickness susceptibility, this work may be an important step in suggesting a method of predicting motion sickness susceptibility. If sensory selection can provide a means to avoid sensory conflict, then further work may lead to training programs which could enhance a subject's sensory selection ability and therefore minimize motion sickness susceptibility

    Body perception in newborns

    Get PDF
    Body ownership and awareness has recently become an active topic of research in adults using paradigms such as the “rubber hand illusion” and “enfacement” [1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11]. These studies show that visual, tactile, postural, and anatomical information all contribute to the sense of body ownership in adults [12]. While some hypothesize body perception from birth [13], others have speculated on the importance of postnatal experience [14 and 15]. Through studying body perception in newborns, we can directly investigate the factors involved prior to significant postnatal experience. To address this issue, we measured the looking behavior of newborns presented with visual-tactile synchronous and asynchronous cues, under conditions in which the visual information was either an upright (body-related stimulus; experiment 1) or inverted (non-body-related stimulus; experiment 2) infant face. We found that newborns preferred to look at the synchronous condition compared to the asynchronous condition, but only when the visual stimulus was body related. These results are in line with findings from adults and demonstrate that human newborns detect intersensory synchrony when related to their own bodies, consistent with the basic processes underlying body perception being present at birth
    corecore