616 research outputs found

    Robustness of stability of time-varying index-1 DAEs

    Get PDF
    We study exponential stability and its robustness for time-varying linear index-1 differential-algebraic equations. The effect of perturbations in the leading coefficient matrix is investigated. An appropriate class of allowable perturbations is introduced. Robustness of exponential stability with respect to a certain class of perturbations is proved in terms of the Bohl exponent and perturbation operator. Finally, a stability radius involving these perturbations is introduced and investigated. In particular, a lower bound for the stability radius is derived. The results are presented by means of illustrative examples

    Asymptotic integration of linear differential-algebraic equations

    Get PDF
    This paper is concerned with the asymptotic behavior of solutions of linear differential-algebraic equations with asymptotically constant coefficients. Some results of asymptotic integration which are well known for ordinary differential equations (ODEs) are extended to differential-algebraic equations (DAEs)

    Robust stability of differential-algebraic equations

    Get PDF
    This paper presents a survey of recent results on the robust stability analysis and the distance to instability for linear time-invariant and time-varying differential-algebraic equations (DAEs). Different stability concepts such as exponential and asymptotic stability are studied and their robustness is analyzed under general as well as restricted sets of real or complex perturbations. Formulas for the distances are presented whenever these are available and the continuity of the distances in terms of the data is discussed. Some open problems and challenges are indicated

    Asymptotic behavior of solutions of quasilinear differential-algebraic equations

    Get PDF
    This paper is concerned with the asymptotic behavior of solutions of linear differential-algebraic equations (DAEs) under small nonlinear perturbations. Some results on the asymptotic behavior of solutions which are well known for ordinary differential equations are extended to DAEs. The main tools are the projector-based decoupling and the contractive mapping principle. Under certain assumptions on the linear part and the nonlinear term, asymptotic behavior of solutions are characterized. As the main result, a Perron type theorem that establishes the exponential growth rate of solutions is formulated

    Computational Methods for Nonlinear Systems Analysis With Applications in Mathematics and Engineering

    Get PDF
    An investigation into current methods and new approaches for solving systems of nonlinear equations was performed. Nontraditional methods for implementing arc-length type solvers were developed in search of a more robust capability for solving general systems of nonlinear algebraic equations. Processes for construction of parameterized curves representing the many possible solutions to systems of equations versus finding single or point solutions were established. A procedure based on these methods was then developed to identify static equilibrium states for solutions to multi-body-dynamic systems. This methodology provided for a pictorial of the overall solution to a given system, which demonstrated the possibility of multiple candidate equilibrium states for which a procedure for selection of the proper state was proposed. Arc-length solvers were found to identify and more readily trace solution curves as compared to other solvers making such an approach practical. Comparison of proposed methods was made to existing methods found in the literature and commercial software with favorable results. Finally, means for parallel processing of the Jacobian matrix inherent to the arc-length and other nonlinear solvers were investigated, and an efficient approach for implementation was identified. Several case studies were performed to substantiate results. Commercial software was also used in some instances for additional results verification

    Dynamic Modeling and Stability Analysis of Stochastic Multi-Physical Systems Applied to Electric Power Systems

    Full text link
    [ES] La naturaleza aleatoria que caracteriza algunos fenómenos en sistemas físicos reales (e.g., ingeniería, biología, economía, finanzas, epidemiología y otros) nos ha planteado el desafío de un cambio de paradigma del modelado matemático y el análisis de sistemas dinámicos, y a tratar los fenómenos aleatorios como variables aleatorias o procesos estocásticos. Este enfoque novedoso ha traído como consecuencia nuevas especificidades que la teoría clásica del modelado y análisis de sistemas dinámicos deterministas no ha podido cubrir. Afortunadamente, maravillosas contribuciones, realizadas sobre todo en el último siglo, desde el campo de las matemáticas por científicos como Kolmogorov, Langevin, Lévy, Itô, Stratonovich, sólo por nombrar algunos; han abierto las puertas para un estudio bien fundamentado de la dinámica de sistemas físicos perturbados por ruido. En la presente tesis se discute el uso de ecuaciones diferenciales algebraicas estocásticas (EDAEs) para el modelado de sistemas multifísicos en red afectados por perturbaciones estocásticas, así como la evaluación de su estabilidad asintótica a través de exponentes de Lyapunov (ELs). El estudio está enfocado en EDAEs d-index-1 y su reformulación como ecuaciones diferenciales estocásticas ordinarias (EDEs). Fundamentados en la teoría ergódica, es factible analizar los ELs a través de sistemas dinámicos aleatorios (SDAs) generados por EDEs subyacentes. Una vez garantizada la existencia de ELs bien definidas, hemos procedido al uso de técnicas de simulación numérica para determinar los ELs numéricamente. Hemos implementado métodos numéricos basados en descomposición QR discreta y continua para el cómputo de la matriz de solución fundamental y su uso en el cálculo de los ELs. Las características numéricas y computacionales más relevantes de ambos métodos se ilustran mediante pruebas numéricas. Toda esta investigación sobre el modelado de sistemas con EDAEs y evaluación de su estabilidad a través de ELs calculados numéricamente, tiene una interesante aplicación en ingeniería. Esta es la evaluación de la estabilidad dinámica de sistemas eléctricos de potencia. En el presente trabajo de investigación, implementamos nuestros métodos numéricos basados en descomposición QR para el test de estabilidad dinámica en dos modelos de sistemas eléctricos de potencia de una-máquina bus-infinito (OMBI) afectados por diferentes perturbaciones ruidosas. El análisis en pequeña-señal evidencia el potencial de las técnicas propuestas en aplicaciones de ingeniería.[CA] La naturalesa aleatòria que caracteritza alguns fenòmens en sistemes físics reals (e.g., enginyeria, biologia, economia, finances, epidemiologia i uns altres) ens ha plantejat el desafiament d'un canvi de paradigma del modelatge matemàtic i l'anàlisi de sistemes dinàmics, i a tractar els fenòmens aleatoris com a variables aleatòries o processos estocàstics. Aquest enfocament nou ha portat com a conseqüència noves especificitats que la teoria clàssica del modelatge i anàlisi de sistemes dinàmics deterministes no ha pogut cobrir. Afortunadament, meravelloses contribucions, realitzades sobretot en l'últim segle, des del camp de les matemàtiques per científics com Kolmogorov, Langevin, Lévy, Itô, Stratonovich, només per nomenar alguns; han obert les portes per a un estudi ben fonamentat de la dinàmica de sistemes físics pertorbats per soroll. En la present tesi es discuteix l'ús d'equacions diferencials algebraiques estocàstiques (EDAEs) per al modelatge de sistemes multifísicos en xarxa afectats per pertorbacions estocàstiques, així com l'avaluació de la seua estabilitat asimptòtica a través d'exponents de Lyapunov (ELs). L'estudi està enfocat en EDAEs d-index-1 i la seua reformulació com a equacions diferencials estocàstiques ordinàries (EDEs). Fonamentats en la teoria ergòdica, és factible analitzar els ELs a través de sistemes dinàmics aleatoris (SDAs) generats per EDEs subjacents. Una vegada garantida l'existència d'ELs ben definides, hem procedit a l'ús de tècniques de simulació numèrica per a determinar els ELs numèricament. Hem implementat mètodes numèrics basats en descomposició QR discreta i contínua per al còmput de la matriu de solució fonamental i el seu ús en el càlcul dels ELs. Les característiques numèriques i computacionals més rellevants de tots dos mètodes s'illustren mitjançant proves numèriques. Tota aquesta investigació sobre el modelatge de sistemes amb EDAEs i avaluació de la seua estabilitat a través d'ELs calculats numèricament, té una interessant aplicació en enginyeria. Aquesta és l'avaluació de l'estabilitat dinàmica de sistemes elèctrics de potència. En el present treball de recerca, implementem els nostres mètodes numèrics basats en descomposició QR per al test d'estabilitat dinàmica en dos models de sistemes elèctrics de potència d'una-màquina bus-infinit (OMBI) afectats per diferents pertorbacions sorolloses. L'anàlisi en xicotet-senyal evidencia el potencial de les tècniques proposades en aplicacions d'enginyeria.[EN] The random nature that characterizes some phenomena in the real-world physical systems (e.g., engineering, biology, economics, finance, epidemiology, and others) has posed the challenge of changing the modeling and analysis paradigm and treat these phenomena as random variables or stochastic processes. Consequently, this novel approach has brought new specificities that the classical theory of modeling and analysis for deterministic dynamical systems cannot cover. Fortunately, stunning contributions made overall in the last century from the mathematics field by scientists such as Kolmogorov, Langevin, Lévy, Itô, Stratonovich, to name a few; have opened avenues for a well-founded study of the dynamics in physical systems perturbed by noise. In the present thesis, we discuss stochastic differential-algebraic equations (SDAEs) for modeling multi-physical network systems under stochastic disturbances, and their asymptotic stability assessment via Lyapunov exponents (LEs). We focus on d-index-1 SDAEs and their reformulation as ordinary stochastic differential equations (SDEs). Supported by the ergodic theory, it is feasible to analyze the LEs via the random dynamical system (RDSs) generated by the underlying SDEs. Once the existence of well-defined LEs is guaranteed, we proceed to the use of numerical simulation techniques to determine the LEs numerically. Discrete and continuous QR decomposition-based numerical methods are implemented to compute the fundamental solution matrix and use it in the computation of the LEs. Important numerical and computational features of both methods are illustrated through numerical tests. All this investigation concerning systems modeling through SDAEs and their stability assessment via computed LEs finds an appealing engineering application in the dynamic stability assessment of power systems. In this research work, we implement our QR-based numerical methods for testing the dynamic stability in two types of single-machine infinite-bus (SMIB) power system models perturbed by different noisy disturbances. The analysis in small-signal evidences the potential of the proposed techniques in engineering applications.Mi agradecimiento al estado ecuatoriano que, a través del Programa de Becas para el Fortalecimiento y Desarrollo del Talento Humano en Ciencia y Tecnología 2012 de la Secretaría Nacional de Educación Superior, Ciencia y Tecnología (SENESCYT), han financiado mis estudios de doctorado.González Zumba, JA. (2020). Dynamic Modeling and Stability Analysis of Stochastic Multi-Physical Systems Applied to Electric Power Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/158558TESI

    Asymptotic integration of linear differential-algebraic equations

    Get PDF
    Abstract. This paper is concerned with the asymptotic behavior of solutions of lin-ear differential-algebraic equations with asymptotically constant coefficients. Some re-sults of asymptotic integration which are well known for ordinary differential equations (ODEs) are extended to differential-algebraic equations (DAEs)

    Bohl exponents for time-varying linear differential-algebraic equations

    Get PDF
    We study stability of linear time-varying differential-algebraic equations (DAEs). The Bohl exponent is introduced and finiteness of the Bohl exponent is characterized, the equivalence of exponential stability and a negative Bohl exponent is shown and shift properties are derived. We also show that the Bohl exponent is invariant under the set of Bohl transformations. For the class of DAEs which possess a transition matrix introduced in this paper, the Bohl exponent is exploited to characterize boundedness of solutions of a Cauchy problem and robustness of exponential stability
    corecore