585 research outputs found

    Decimeter-Level Indoor Localization Using WiFi Round-Trip Phase and Factor Graph Optimization

    Get PDF
    Indoor localization using WiFi signals has been studied since the emergence of WiFi communication. This paper presents a novel training-free approach to indoor localization using a customized WiFi protocol for data collection and a factor graph-based back-end for localization. The protocol measures the round-trip phase, which is very sensitive to small changes in displacement. This is because the sub-wavelength displacements introduce significant phase changes in WiFi signal. However, the phase cannot provide absolute range information due to angle wrap. Consequently, it can only be used for relative distance (displacement) measurement. By tracking the round-trip phase over time and unwrapping it, a relative distance measurement can be realized and achieve a mean absolute error (MAE) of 0.06m. For 2-D localization, factor graph optimization is applied to the round-trip phase measurements between the STA (station) and four APs (access points). Experiments show the proposed concept can offer a decimeter-level (0.26m MAE and 0.24m 50%CDF) performance for real-world indoor localization

    Localization using Distance Geometry : Minimal Solvers and Robust Methods for Sensor Network Self-Calibration

    Get PDF
    In this thesis, we focus on the problem of estimating receiver and sender node positions given some form of distance measurements between them. This kind of localization problem has several applications, e.g., global and indoor positioning, sensor network calibration, molecular conformations, data visualization, graph embedding, and robot kinematics. More concretely, this thesis makes contributions in three different areas.First, we present a method for simultaneously registering and merging maps. The merging problem occurs when multiple maps of an area have been constructed and need to be combined into a single representation. If there are no absolute references and the maps are in different coordinate systems, they also need to be registered. In the second part, we construct robust methods for sensor network self-calibration using both Time of Arrival (TOA) and Time Difference of Arrival (TDOA) measurements. One of the difficulties is that corrupt measurements, so-called outliers, are present and should be excluded from the model fitting. To achieve this, we use hypothesis-and-test frameworks together with minimal solvers, resulting in methods that are robust to noise, outliers, and missing data. Several new minimal solvers are introduced to accommodate a range of receiver and sender configurations in 2D and 3D space. These solvers are formulated as polynomial equation systems which are solvedusing methods from algebraic geometry.In the third part, we focus specifically on the problems of trilateration and multilateration, and we present a method that approximates the Maximum Likelihood (ML) estimator for different noise distributions. The proposed approach reduces to an eigendecomposition problem for which there are good solvers. This results in a method that is faster and more numerically stable than the state-of-the-art, while still being easy to implement. Furthermore, we present a robust trilateration method that incorporates a motion model. This enables the removal of outliers in the distance measurements at the same time as drift in the motion model is canceled

    Sensor Networks TDOA Self-Calibration: 2D Complexity Analysis and Solutions

    Full text link
    Given a network of receivers and transmitters, the process of determining their positions from measured pseudo-ranges is known as network self-calibration. In this paper we consider 2D networks with synchronized receivers but unsynchronized transmitters and the corresponding calibration techniques,known as TDOA techniques. Despite previous work, TDOA self-calibration is computationally challenging. Iterative algorithms are very sensitive to the initialization, causing convergence issues.In this paper, we present a novel approach, which gives an algebraic solution to three previously unsolved scenarios. Our solvers can lead to a position error <1.2% and are robust to noise

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors

    WiFi Access Points Line-of-Sight Detection for Indoor Positioning Using the Signal Round Trip Time

    Get PDF
    The emerging WiFi Round Trip Time measured by the IEEE 802.11mc standard promised sub-meter-level accuracy for WiFi-based indoor positioning systems, under the assumption of an ideal line-of-sight path to the user. However, most workplaces with furniture and complex interiors cause the wireless signals to reflect, attenuate, and diffract in different directions. Therefore, detecting the non-line-of-sight condition of WiFi Access Points is crucial for enhancing the performance of indoor positioning systems. To this end, we propose a novel feature selection algorithm for non-line-of-sight identification of the WiFi Access Points. Using the WiFi Received Signal Strength and Round Trip Time as inputs, our algorithm employs multi-scale selection and Machine Learning-based weighting methods to choose the most optimal feature sets. We evaluate the algorithm on a complex campus WiFi dataset to demonstrate a detection accuracy of 93% for all 13 Access Points using 34 out of 130 features and only 3 s of test samples at any given time. For individual Access Point line-of-sight identification, our algorithm achieved an accuracy of up to 98%. Finally, we make the dataset available publicly for further research

    Generalizable Deep-Learning-Based Wireless Indoor Localization

    Get PDF
    The growing interest in indoor localization has been driven by its wide range of applications in areas such as smart homes, industrial automation, and healthcare. With the increasing reliance on wireless devices for location-based services, accurate estimation of device positions within indoor environments has become crucial. Deep learning approaches have shown promise in leveraging wireless parameters like Channel State Information (CSI) and Received Signal Strength Indicator (RSSI) to achieve precise localization. However, despite their success in achieving high accuracy, these deep learning models suffer from limited generalizability, making them unsuitable for deployment in new or dynamic environments without retraining. To address the generalizability challenge faced by conventionally trained deep learning localization models, we propose the use of meta-learning-based approaches. By leveraging meta-learning, we aim to improve the models\u27 ability to adapt to new environments without extensive retraining. Additionally, since meta-learning algorithms typically require diverse datasets from various scenarios, which can be difficult to collect specifically for localization tasks, we introduce a novel meta-learning algorithm called TB-MAML (Task Biased Model Agnostic Meta Learning). This algorithm is specifically designed to enhance generalization when dealing with limited datasets. Finally, we conduct an evaluation to compare the performance of TB-MAML-based localization with conventionally trained localization models and other meta-learning algorithms in the context of indoor localization

    Design of advanced benchmarks and analytical methods for RF-based indoor localization solutions

    Get PDF
    • …
    corecore