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Abstract—Indoor localization using WiFi signals has been
studied since the emergence of WiFi communication. This paper
presents a novel training-free approach to indoor localization
using a customized WiFi protocol for data collection and a factor
graph-based back-end for localization. The protocol measures
the round-trip phase, which is very sensitive to small changes in
displacement. This is because the sub-wavelength displacements
introduce significant phase changes in WiFi signal. However, the
phase cannot provide absolute range information due to angle
wrap. Consequently, it can only be used for relative distance
(displacement) measurement. By tracking the round-trip phase
over time and unwrapping it, a relative distance measurement can
be realized and achieve a mean absolute error (MAE) of 0.06m.
For 2-D localization, factor graph optimization is applied to the
round-trip phase measurements between the STA (station) and
four APs (access points). Experiments show the proposed concept
can offer a decimeter-level (0.26m MAE and 0.24m 50%CDF)
performance for real-world indoor localization.

Index Terms—WiFi Localization, Round-trip Phase, Factor
Graph Optimization

I. INTRODUCTION

THE emergence of location-based services (LBS) has
profoundly shifted many facets of modern life, from

navigating unfamiliar environments to logistics management.
Global Positioning System (GPS) and Real-time Kinematic
(RTK) have provided decimeter-level localization for out-
door applications, supporting various sectors and applications.
However, the usefulness of GPS and RTK is greatly limited in
the indoor environment due to signal attenuation and multipath
effects. This has spurred the search for alternative solutions for
indoor localization. Indoor spaces such as airports, shopping
malls, hospitals and offices present unique challenges to nav-
igation, asset tracking and space utilisation. An inaccurate or
insufficient indoor localization can lead to sub-optimal user
experiences and inefficiencies in operations (e.g. finding a
specific parking space in a large underground parking area).
Accurate indoor localization could significantly mitigate these
issues, offering more user-friendly services. Likewise, accurate
indoor localization extends to fields like indoor transportation
(e.g. autonomous robots and vehicles), where positioning accu-
racy is the key factor for the task. Moreover, in emergencies,
pinpointing an individual’s exact location within a structure
can be a life-saving tool for first responders.
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Research in indoor positioning and localization using WiFi
has attracted significant attention in recent years owing to
its ubiquitous and pervasive nature. Existing WiFi-based lo-
calization systems are typically based on RSSI (received
signal strength indicator), FTM (fine time measurement) /
RTT (round-trip time) in 802.11mc [1] and CFR (channel
frequency response). RSSI shows the signal power at the
receiver, and curves can be fitted to present the relationship
between range and RSSI [2] while RTT provides a meter-
level accuracy in ranging [3] by measuring the time of
flight directly. Then the localization can be accomplished
by trilateration/multilateration using the range measurements
between the user and several known devices. AoA (angle-
of-arrival) can be estimated from CFR since it contains the
phase of each subcarrier on each antenna in MIMO and
then used for localization via triangulation/multi-angulation
[4], [5] In real world-deployment, limitations apply to these
methods. RSSI could vary up to 10dB error [2] for a given
distance, leading to a significant error in ranging. For RTT, the
accuracy is strictly limited by bandwidth and environment.
According to evaluations in [3], the RTT ranging results
could vary a few meters given a 10cm actual displacement
in a typical indoor environment, which is insufficient for
accurate localization. Using wider bandwidth could improve
the performance, but it may introduce other issues like a
high price, incompatibility with old devices, excessive power
consumption and noncompliance with local radio regulations.
For AoA, the accuracy depends on the number of antennas,
and it also faces price, compatibility and power control issues
if more antennas are adopted for better performance. Apart
from that, it is not available on legacy or low-cost single-
antenna WiFi devices. In addition to localization using range
or angle estimation, radio fingerprinting also shows potential
in indoor localization. All of RSSI, RTT and CFR can be
used for radio fingerprinting, and since it does not utilize the
range and angle directly, the limitation of theoretical accuracy
discussed above can be bypassed. It generally consists of a
training phase and a positioning phase. A database would be
built based on the radio measurements at different locations
in the training phase and used as a reference for localization
during the positioning phase. For example, [6] divides the test
area using 400 0.5cm×0.5cm squares that form a grid, then
measures the CFR of WiFi packets from multiple WiFi APs on
3 Rx antennas at each square to build a fingerprint database.



Fig. 1: System block diagram of proposed indoor localization
system

For localization, the position is determined by the best match
of the query CFR within the database. It demonstrates a
localization accuracy of 1–2 cm, even in non-line-of-sight
scenarios. This kind of fingerprinting-based method shows
excellent performance in localization but may be impractical in
real-world deployment. The 0.5cm-spacing grid in [6] requires
a special mechanical structure to move the WiFi receiver to
a specific location to collect data, and there will be 40,000
sample points per 1 m2, indicating a huge effort and cost to
collect the data. To make matters worse, the database requires
an update after the environment changes (e.g. several WiFi
APs are moved), leading to high maintenance costs.

In this work, we present a novel method for indoor localiza-
tion by tracking the WiFi round-trip phase (RTP) over time.
It is achieved by using a customized WiFi protocol similar
to Chronos [7] and using a factor graph optimization-based
back-end for localization. Since measuring the phase can only
provide relative distance due to angle wrap, a new factor graph
model is developed to calculate the 2D location based on the
RTP measurements between the STA and 4 APs. A testbed is
built using commercial WiFi devices, and Fig. 1 illustrates the
system. RTP is implemented on Raspberry Pi onboard WiFi
chip where customized firmware runs the protocol. We also
collect RTT data using ESP32 to compare the performance
between RTT and RTP. Finally, the Raspberry Pi relays the
collected data via UDP to a master PC that optimises the factor
graph.

Contributions. By tracking WiFi RTP for localization, we
have accomplished the following objectives for the indoor
localization system:

1) Decimeter-level. Our localization system could reach
decimeter-level accuracy such that it could support var-
ious applications, from indoor navigation to rescue mis-
sions in low-visibility scenarios like a fire.

2) Training-free. Our localization system only needs to know
the location of the AP, and there is no requirement to
collect the wireless fingerprints for training, reducing the
complexity of real-world deployment. It makes the instal-
lation process more practical and easier for maintenance
in the long run.

3) Compatible. Broadband and multi-antenna techniques for
an improved position using WiFi signal have been stan-
dardized in IEEE 802.11az [8], but it may take a long

while to deploy them in the real world since new radio
hardware is required to support it. On the contrary, we
use 20MHz bandwidth and only one antenna to make
our system compatible with various WiFi devices. This
feature is not only required by legacy devices but also
popular IoT devices such as ESP32 and Raspberry Pi
with limited WiFi capabilities due to cost, size and power
consumption considerations. Additionally, our system
could be fused into future systems with range and angle
measurements since it is relatively self-contained and can
work independently.

4) Software only. Our method does not rely on modifying
the radio hardware, which could reduce the risk of
damage and make the deployment user-friendly.

The following paper is organized as follows: the related
work is presented in Section II and we describe the prin-
ciple of RTP and compare it with RTT in Section III. Our
implementation and testbed are illustrated in Section IV. The
experiment results for ranging are presented in Section V with
the corresponding signal processing. Then the factor graph
model for localization is detailed in Section VI. Finally, we
conclude in Section VII and discuss future work.

II. RELATED WORK

In this section, we provide a review of the relevant literature
and existing studies (Table I presents a selection of representa-
tive works in the field), offering a background of WiFi-based
indoor localization. Following this, we discuss the baseline
that underpins our work.

A. Localization Using WiFi RSSI

In [2] the authors fit a path loss model that presents
the relationship between the RSSI and the distance. During
localization, the distance is calculated from RSSI and then the
trilateration is used for localization. RADAR [9] is one the
first WiFi RSSI fingerprint-based localization work. 3 APs are
set up, and the RSSI of the beacon signals from the APs are
collected as signatures at the different sample locations. After
the initialization of the signature database, K nearest neighbour
(KNN) is used to search the location from the database given
an RSSI measurement of the 3 APs at an unknown location.
Horus [13] improves it by using a probabilistic model and
builds a more extensive database for better fingerprinting.
GIFT [14] uses RSSI gradient over the 2-D space as a map of
signatures. Since this type of signature is more complicated, a
particle filter is used to acquire the location. [15] treats RSSI
signatures as a high-dimensional image and trains a CNN
(convolution neural network) to learn the feature. However, the
generalization of the aforementioned fingerprinting/learning
approaches is not validated, and the model may be retrained
if the environment changes.

B. Localization Using WiFi RTT

[10] calibrates RTT measurement to remove the bias and
then uses the trilateration method to locate the STA. [12] uses
a Kalman filter as a sensor fusion back-end that takes RTT



TABLE I: Typical Indoor Localization Work Using WiFi Signal

System Device Number
Of AP

Measurement Key Techniques Localization
Method

Accuracy
(m)

Training
Required

RADAR [9] Lucent WiFi 3 RSSI Fingerprint KNN 2.9(50%
CDF)

Yes

System in [10] Smartphone 4 RTT Sensor modelling Trilateration 1.0(50%
CDF)

No

DeepNar [11] Smartphone 7 RTT Fingerprint Deep learning 0.62(50%
CDF)

No

System in [12] Smartphone 4 RSSI & RTT Sensor modelling Kalman filter &
trilateration

0.35(50%
CDF)

No

SpotFi [4] Intel 5300 5 CSI & RSSI AoA (using MIMO) & Sensor
modelling

Quadratic
optimization

0.6(50%
CDF)

No

System in [6] Not Specified 1 CSI Fingerprint (frequency hop-
ping over a 321MHz band, us-
ing MIMO )

Similarity match-
ing

0.01(75%
correlation
with
correct fin-
gerprints)

Yes

Chronos [7] Intel 5300 1 CSI (RTP) Tracking RTP over frequency
(frequency hopping over all
2GHz and 5GHz WiFi band,
using MIMO)

Quadratic
optimization

0.65(50%
CDF)

No

Our system Raspberry Pi 4 CSI (RTP) Tracking RTP over time (no
frequency hopping, no MIMO)

Factor graph op-
timization

0.24(50%
CDF)
0.26 (mean
error)

No

and RSSI as input. Before the Kalman filtering, the RTT is
calibrated and the RSSI is converted to distance using a path
loss model. The final step is to use trilateration for the location
of the STA. Instead of trilateration, [16] builds a signature
database using RTT and RSSI at different locations. A hand-
crafted metric is used to evaluate the similarity between the
signatures and map a given signature to a location. [17]
presents a particle filter-based RTT localization using the
Gaussian mixture model. DeepNar [11] develops an end-to-
end neural network that maps the RTT measurement from
multiple APs to the probabilities at different locations and then
uses the probability as the weight to get the final estimation.

C. Localization Using WiFi CFR

PinLoc [18] builds a CFR database by collecting CSI data
at different locations during initialization. Then a vote-based
classification algorithm is developed to map the CSI as a
signature to the localization. FILA [19] adopts a probabilistic
model based on the correlation between the observed CSI
and the fingerprint. CRISLoc [20] builds a reconstructable
fingerprint database using transfer learning that can discard
outdated signatures automatically. SpotFi [4] collected the CSI
from a 3-antenna commercial WiFi card to calculate the AoA
of the signal from the STA to the AP. MUSIC algorithm
is used to improve the angular resolution and RSSI is also
collected for coarse ranging. When multiple APs are utilized,
the STA can be located using the bearing and range. Phaser
[5] combines two 3-antenna WiFi cards to improve the AoA
performance. For synchronization, one antenna is shared by
both cards as a common reference such that there are 5
working antennas on the AP. DeepFi [21] trained a neural
network similar to DeepNar [11] that maps the CSI data to
location probability. To improve performance, [6] hops over
different WiFi channels to form a wide-band sensing and
shows a centimetre-level accuracy. It collects the CSI for a

321MHz band by frequency hopping and builds a fingerprint
database with a centimetre-level localization resolution. It
offers better performance than our system but is challenging to
deploy in the real world. Occupying the 321MHz spectrum is
not very practical for a WiFi system and collecting the WiFi
fingerprint at the centimetre level is a costly and resource-
intensive task.

We would like to highlight the Chronos project [7], a
pioneering initiative that proposed the measurement of Wi-
Fi RTP for localization and motivated our research. Chronos
developed a custom round-trip Wi-Fi communication protocol
for measuring Wi-Fi RTP across all available Wi-Fi channels
in the 2.4GHz and 5GHz bands. This acted as a wide-band
ranging solution using frequency hopping, allowing for track-
ing of RTP over frequency. For localization, Chronos adopts
MIMO to measure the distance between various antenna pairs
between the STA and AP, and framed the positioning problem
as a quadratic optimization. However, their technique comes
with some complications. Its use of all Wi-Fi channels can
potentially lead to traffic collisions, and a full measurement
duration of approximately 86ms doesn’t cater well to robotic
vehicles as they can move by a decimeter within this measure-
ment window, thus reducing accuracy. Additionally, it hinges
on the MIMO capability of radio hardware, which might
not always be accessible. Despite these constraints, Chronos
introduced the innovative method for Wi-Fi localization, which
is to utilize the round-trip phase. It inspired us that accurate
relative distance measurement can be acquired by tracking the
round-trip phase over time and then processed for precise lo-
calization. This is primarily due to the phase’s high sensitivity
to displacement. Consequently, this approach can eliminate
the need for frequency hopping and MIMO, substantially
enhancing compatibility. However, it’s crucial to note that
since the measurement involves relative distance rather than
absolute range information, the localization backend needs to



be re-engineered to accommodate this type of measurement.

D. Baseline Methodology

This study uses WiFi RTT-based trilateration/multilateration
[10] localization as the baseline. The first reason is that
our method shares very similar WiFi hardware specifications
as RTT. Both ours and RTT can operate using a single
antenna and a bandwidth of 20MHz, enhancing compatibility
for real-world implementations. A crucial factor is the wide
applicability of these specifications in current digital wireless
communication protocols, meaning they can be generalized
across a variety of systems (802.11n, 802.11a, 802.11ac, LTE
and 5G). Given that these specifications are fundamental and
compatible with more affordable hardware options, they have
the capacity to utilize existing, cost-effective legacy hardware.
This makes the implementation of the localization system
not only straightforward but also budget-friendly. The second
point of consideration is that RTT trilateration/multilateration
localization relies on a geometric model, rather than utilizing
a trained model derived from a fingerprint database. This
characteristic aligns with our approach, which eliminates the
need for training. Except for the method mentioned in [10],
related works typically require multiple antennas and/or train-
ing. Consequently, it would not be equitable to use them as a
benchmark for comparison.

III. MEASURING ROUND-TRIP PHASE

In this section, we present the method to measure the
round-trip phase for relative distance measurement using WiFi
signals. WiFi round-trip time is shown as the background first,
and then we provide the details of the round-trip phase.

A. Background: Round-Trip Time

Round-trip communication can remove asynchronization by
exchanging information. Fig. 2a shows the simplified work-
flow of RTT [1]. The STA sends a request and then the AP
starts sending the response. The AP sends a response at t1 and
arrives at STA at t2. Then, the AP sends an acknowledgement
to the STA at t3 and arrives at the AP at t4. Finally, the
AP sends t1 and t4 back to STA. Note that the time used
above is the measured local time instead of the true time.
Considering the offset between the true time and local time,
t1 = t1′ + ∆tSTA, t2 = t2′ + ∆tAP , t3 = t3′ + ∆tAP ,
t4 = t4′ + ∆tSTA where t1′, t2′, t3′, t4′ are the true
timestamps and ∆tSTA and ∆tAP are the time offset. The
offset would be cancelled in round-trip time estimation as
t4−t3+t2−t1 = t4′+∆tSTA−(t3′+∆tAP )+t2′+∆tAP −
(t1′+∆tSTA) = t4′−t3′+t2′−t1′. Consequently, the distance
between the STA and AP would be (t4− t3 + t2− t1)/2× c
where c is the speed of light.

The RTT/FTM would be performed multiple times in a
burst, and the average value is used as the final result. How-
ever, the bandwidth and multi-path effect still limit the RTT
ranging accuracy in the real world. Radio-based ranging is
strictly dependent on bandwidth [22], [23] and it is verified by
[3] that 80MHz bandwidth outperforms 20MHz significantly.

(a) RTT (b) RTP

Fig. 2: RTT and RTP workflow

Additionally, [3] finds that the RTT ranging is not stable in
the indoor area, varying up to 5m throughout the experiment
with 20/40MHz bandwidth. [24] evaluates low-cost ESP32S2
chips for RTT ranging and finds that the error is up to 20m
sometimes, and 75% of the errors are below 5m when using
20MHz bandwidth. The evaluations above indicate that RTT is
an effective way for ranging, but the error is very large when
using a relatively narrow bandwidth (20MHz) in an indoor
scenario.

B. Details Of Round-Trip Phase

Instead of measuring time, we measure the RTP using a
customized protocol. WiFi RTP was first proposed by Chronos
[7] that the RTP is measured in all available WiFi channels
in the 2GHz band and 5GHz band to simulate a wide-band
ranging. Rather than tracking phase over RF frequency as
Chronos [7], our work focuses on tracking phase over time
for relative distance measurement and Fig. 2b also shows the
workflow of RTP. The protocol shares a very similar structure
to RTT, but the payload in the protocol is CSI from which
the carrier phase can be inferred. CSI describes the wireless
channel frequency response using complex numbers so that
amplitude response and phase response can be presented
simultaneously [25]. It is calculated from the fixed preambles
during channel estimation, which the WiFi baseband processor
operates. In the scenario that there is no asynchronization
between the transmitter and receiver, the CSI would be

H(i, t) =

N∑
k=1

ak(i, t)e
−j2π(fc+fi)τk(t) (1)

where t is the time, i is the subcarrier index, fc is the RF centre
frequency, fi is the baseband frequency of subcarrier i, ak is
the attenuation and initial phase factor of path k presented in
complex number, τk is the propagation delay of path k and N
is the number of paths.



Considering inevitable asynchronization in real-world de-
vices, the measured CSI is shown in equation (2) [25], [26].

Ĥ(i, t) = s(t)H(i, t) exp (j(β(t)i+ ωcfot+ θ(t) + θnl(t, i)))
(2)

where Ĥ is the measured CSI, s is the scaling factor, j is the
imaginary unit, β is the linear phase error factor, ωcfo is the
carrier frequency offset, θ is the phase offset error, θnl is the
non-linear phase error.

Note that β(t) can be interpreted as a time delay term
in the receiver baseband. Thus, it adds a linear phase error
with respect to subcarrier frequency similar to the propagation
delay. In the real-world scenario, the true propagation delay is
unknown, and β(t) is time-varying and depends on propaga-
tion delay, signal detection delay and clock asynchronization,
making it difficult to estimate. This effect would add unknown
phase errors to every subcarrier, leading to non-negligible
uncertainty in phase measurements. The only exception is the
subcarrier 0, because the linear phase error is β(t)i, which
would be 0 given i = 0. However, subcarrier 0 is not used in
actual communications. The major reason is that the baseband
frequency of subcarrier 0 is 0 Hz which would be mixed
with inevitable DC offset/bias in radio hardware. Fortunately,
the phase of subcarrier 0 can be interpolated from adjacent
subcarriers even if the exact value of β(t) is not given. For
subcarrier i and subcarrier −i (i ̸== 0), the corresponding
phase error would be β(t)i and −β(t)i, whose sum is 0. It
indicates that the sum of phases of subcarrier i and −i has
cancelled the effect from β(t). Consequently, by using a few
pairs of symmetrical subcarriers and finding the mean phase,
subcarrier 0 can be estimated. In our implementation, only
subcarrier −5,−4,−3,−2,−1, 1, 2, 3, 4, 5 are used, and since
they are very close to subcarrier 0, the non-linear effect term
θnl(t, i) is ignored. As a result, the CSI would be the following
equation for subcarrier 0.

Ĥ(0, t) = s(t)H(0, t) exp (j(ωcfot+ θ(t)) (3)

To remove the phase offset from ωcfo, round-trip communi-
cation takes effect. We can model that ωAP

cfo = −ωSTA
cfo since

the carrier frequency offset would be opposite for the STA-
To-AP packet and AP-To-STA packet. As a result, the product
of those two CSI at subcarrier 0 would be

ĤRT (t2, t4) (4)

=ĤAP (0, t2)ĤSTA(0, t4) (5)

=sRT (t2, t4) (6)

×H2(0, t4) (7)
× exp (jωcfo(t4− t2)) (8)

× exp (j(θRT (t2, t4))) (9)

where
ĤRT is round-trip CSI (RTCSI),
ĤAP is the measured CSI on the AP (CSI of the request,

CSI REQ),
ĤSTA is the measured CSI on the STA (CSI of the response,

CSI RES),
sRT is the round-trip scaling factor,

θRT is the round-trip phase offset, which is caused by regular
CSI phase offset θ(t).

sRT and θRT come from the frequency response of the radio
hardware and can be treated as constant over time. Also,
ωcfo and (t4− t2) are modelled stable over time, as a result,
equation (8) is also a constant phase offset. In fact, (t4− t2)
would change with (t4 − t3), the propagation time, which
would vary up to 0.1us, assuming the system works within
a range of 30m. This timing error is applied to the carrier
frequency offset that is generally tens of kilohertz (e.g. the
frequency offset would be 58.25KHz given 5.825GHz carrier
frequency and 10PPM frequency offset). In this case, the
phase error introduced by unstable (t4− t3) is minimal (e.g.
0.1us× 58.25KHz × 2π = 0.037rad) and can be neglected.
Consequently, as long as (t3 − t2), the baseband processing
time, is stable, (t4−t2) can be assumed to be a constant value.
H2(0, t4) is the true round-trip channel response and it is also
the same as H2(0, t2) assuming that the channel response does
not change between a t2 and t4 since the gap is very short
(a few milliseconds). By tracking ĤRT over time, we can
monitor how H2(0, t) changes over time. Note that subcarrier
0 is not used in WiFi protocol, so it is interpolated from the
adjacent subcarriers.

There are a few limitations in mapping the round-trip phase
(phase of RTCSI, ĤRT ) to the true phase. The phase would
wrap by every 2π making it impossible to measure the absolute
phase. As a result, it can only provide relative phase measure-
ment, which is the displacement between two locations. Note
that the derivative of phase w.r.t. time is frequency. If the STA
is moving, it would be the instantaneous Doppler frequency
shift. To track the phase over time, the minimum sampling rate
must be higher than twice the instantaneous round-trip Doppler
frequency shift, indicating the RTP measurement has to be
performed frequently. Finally, equation (10) can be used to
convert the unwrapped phase to an estimated distance, which
is the true distance with an unknown offset.

drtp(t4) = −1

2

∠ĤRT (t2, t4)

2π
×λ = dtrue(t4)+doffset (10)

where λ is the wavelength, ∠ĤRT is the unwrapped angle of
RTCSI, dtrue is the true distance and doffset is the unknown
offset.

IV. IMPLEMENTATION AND TESTBED

Due to hardware limitations, RTT and RTP are implemented
on different radio devices.

A. ESP32-Based RTT

ESP32 is a microcontroller unit (MCU) with an integrated
WiFi function. It has been adopted for numerous internet of
things (IoT) applications and ESP32S2 has a built-in function
for WiFi RTT measurement. By calling the API from the
manufacturer, RTT can be utilized. Additionally, there is a
UART port on the development board so it can communicate
with other devices.



B. Raspberry Pi-based RTP

Raspberry Pi is a popular microcomputer, and there is
much research focusing on its on-board WiFi chip. Nexmon
[27] provides a way to patch the WiFi firmware and the
Nexmon CSI extractor [28] offers us access to the CSI of
the WiFi packet. Using Nexmon and Nexmon CSI extractor, a
customized wireless communication protocol is developed on
Rasberry Pi CM4 to measure the WiFi RTP as described in
Section.III.

C. Ground Truth

To collect the ground truth for localization, IOS ARKIT is
used. It runs on an iPhone and is designed for AR applications
by APPLE. Since motion tracking is crucial in AR applica-
tions, IOS ARKIT has a built-in real-time localization system
that uses the sensors on the phone, such as IMU, camera
and laser radar. By logging the localization result reported
by IOS ARKIT, an indoor localization ground truth can be
acquired. Two major strategies are used in our ARKIT-based
ground truth system for optimal performance. The first is to
add visual landmarks to the environment by attaching texture-
rich posters to the wall and the floor such that the camera
can capture more reference points for the internal localization
system. The second is to scan the whole room multiple times
allowing localization system build a map first, then start the
tracking for experiments. By checking the localization result
with the BOSCH GLM50C laser distance meter, the ARKIT
system running on an iPhone 12 with IOS 13.1 can provide a
centimeter-level localization.

D. System Integration

By attaching the ESP32 to the Raspberry Pi, RTT and RTP
can work simultaneously (in different WiFi channels 1). The
ESP32 connects to the Raspberry Pi via the USB cable then the
Raspberry Pi process and saves the uploaded RTT measure-
ments from ESP32 using UART. For RTP measurements, the
Raspberry Pi uses the onboard WiFi chip with the customized
protocol and logs data. For the STA, an additional iPhone is
mounted on top of the Raspberry Pi chassis to collect the
ground truth. An NTP (network time protocol) server is set
up in the local area network to synchronize the Raspberry
Pi and the iPhone such that ground truth can share the same
timestamp as Raspberry Pi. Fig. 3 shows the whole device.

V. EVALUATION FOR RTP-BASED RANGING

A. Multi-path Effect On RTP

A simulation is performed to evaluate the RTP performance
in a strong multi-path scenario. Since the reflected signal can
be modelled as the signal transmitted from a mirror of the
original signal source with respect to the reflection interface,
a few signal source mirrors are placed in the simulation as Fig.
4. Additionally, the trajectory of the STA is planned as a circle
whose radius is 3m, and the linear velocity is 0.94m/s. The

1Due to hardware limitations, ESP32 RTT can only work in 2.4G WiFi
band and Raspberry Pi RTP can only work in 5G WiFi band.

(a) Overview of the testbed (b) Mounted on a tripod

Fig. 3: The experimental testbed consisting of a Raspberry Pi
and ESP32

propagation model is shown in equation (11), which consists of
a power loss according to [29] and a phase shift due to the time
delay caused by propagation. The final CSI collected would
be Hsim =

∑
i Hsimi

and then the RTCSI can be calculated
as H2

sim. The phase of the RTCSI, H2
sim, is the RTP and we

also plot the amplitude of the RTCSI in this simulation.

Hsimi
= αi

1

di
exp (−2πj

di
λ
) (11)

where αi is the amplitude factor and di is distance between
the STA and the signal source i. Three simulation results are
shown with parameters in Table II. During the simulation,
signal source 1 is the original signal source while others
are the mirror signal sources due to reflections. The first
simulation only uses signal source 1 and signal source 2 with
amplitude factors of 1.0 and 0.5, respectively. It simulates that
the line-of-sight path conveys higher energy than the reflection
path, which is an acceptable assumption for indoor wireless
communication. Fig. 5a shows the phase and amplitude of
RTCSI and both fluctuate around the true values, which are the
RTCSI using source 1 only. The fluctuation originates in the
interference between the signals from the line-of-sight-pah and
reflection path. For the amplitude, since there are two coherent
signal sources, the amplitude of the combined signal would
change with location due to the constructive and destructive
interference patterns. The signal amplitude would be higher
at a constructive interference point, and vice versa. For the
phase, as the line-of-sight path convey the major proportion
of the energy, the phase deviation due to the multi-path is
smaller and the line-of-sight-path signal takes the dominant
role. As a result, the phase fluctuates about the true RTP. Fig.
5b shows the phase and amplitude when the reflection path
takes the major proportion of the energy and it is clear that
there are obvious errors. It simulates the case that the line-of-
sight path is blocked and the other paths take the major effect.
In this scenario, the RTCSI cannot work as expected, and it is
a common problem in wireless localization. For example, the
WiFi RTT ranging values would be larger [24] and the GPS
also suffers from errors if urban infrastructures such as high-



Fig. 4: Map for simulation. One original signal source (source
1) and 3 reflection signal sources (mirrors).

rise buildings block the direct signal from the satellites to the
receiver [30]. The third simulation uses all 4 signal sources
and Fig. 5c presents the result that the RTP shows a small error
and the measurement is still valid. These simulations indicate
that the RTP only works when the line-of-sight path conveys
the major proportion of the power, or it will track a different
path then lead to errors.

TABLE II: Parameters for RTCSI multipath simulation

Parameter α1 α2 α3 α4

Simulation 1 1.0 0.5 0.0 0.0
Simulation 2 0.5 1.0 0.0 0.0
Simulation 3 1.0 0.5 0.5 0.5

B. Real-world Experiment Setup

The experiment is performed in a 6m x 6m meeting room as
illustrated in Fig. 6. One STA and one AP (only AP0) are used.
The STA leaves and approaches the AP periodically while
collecting RTP, RTT and the ground truth. The Raspberry
Pi measures RTP at 400Hz and the ESP32 measures RTT at
10Hz.

C. Signal Processing

1) RTP: Fig. 7 shows the procedure to get the RTP. The
raw round-trip CSI is first calculated as equation (5) based
on the CSI for the request and the corresponding response. A
low-pass filter is then applied to the round-trip CSI to remove
high-frequency noise. Then the phase of the round-trip CSI is
extracted, followed by the next step to unwrap the phase over
time. Finally, the phase is sub-sampled to 10Hz, which is the
global sampling rate in the whole system.

2) RTT: Fig. 8 shows the procedure to get the RTT. The
raw RTT reported from ESP32 is filtered by a moving mean
filter and then sub-sampled to 10Hz for the sampling rate.

D. Line-of-sight Channel

One AP is installed on a tripod and one STA is mounted
on a robot vehicle. The STA and the AP maintain a line-of-
sight wireless channel during the experiment. The STA collects
the RTT ranging data and RTP ranging data simultaneously
while the robot is moving and the result is shown in Fig.
9a with the ground truth. Note that since the RTP cannot
provide absolute range information, it is shifted vertically
to align with the ground truth at the beginning. The RTP
ranging curve exhibits a close correlation with the ground
truth data, while the RTT ranging shows evident errors. Fig.
9b and Fig. 9c show the distributions of the errors and the
cumulative distribution functions (CDF) of the absolute error,
respectively. It is clear that the RTP ranging outperforms the
RTT ranging that the MAE are 0.06m and 1.08m, respectively.
This experiment demonstrates that our RTP system can reach
centimeter-level ranging in the line-of-sight channel and agree
with the predicted simulation results that this system can work
in the real world as long as there exists a line-of-sight signal.
Note that even if RTT is performed in a line-of-sight channel,
the ranging result is generally above the ground truth. The
error may come from hardware calibration and the inevitable
multi-path in the real world.

E. Non-line-of-sight Channel

The line-of-sight channel cannot always be guaranteed in
the real world and in this work we define the non-line-of-
sight channel as the line-of-sight channel being blocked by
radio-reflective material such as a metallic object resulting
in multipath becoming dominant. We set up the experiment
environment as in the previous section but an aluminium sheet
is placed in front of the antenna on the AP to block the line-
of-sight signal. Fig. 9d shows the ranging result and Fig. 9e
and Fig. 9f show the errors. It presents that the RTT ranging
is very likely to be higher than the ground truth but RTP
ranging is always lower than the ground truth. These effects
come from multi-path and signal reflection. Fig. 10 illustrates
it with a simplified case that the line-of-sight path is blocked
and the signal has to be reflected by the wall. The wall acts
as a mirror and AP’ can be treated as the actual location
of the AP. For RTT ranging, it would be larger since the
actual path would always be longer. When performing RTP
ranging, the relative distance from STA(t0) to STA(t1) w.r.t.
the AP’ changes 0.8m meters while the ground truth is 1m.
Consequently, the RTP measurement is lower than the ground
truth since it only measures the changes in the propagation
distance.

VI. EVALUATION FOR RTP-BASED LOCALIZATION

A. Setup

4 APs are set and mounted on tripods and the location is
shown in Fig. 6. The STA is installed on the robot vehicle and
it moves in the free space around the centre of the room. 100
RTP measurements and 10 RTT measurements are collected
per second for each link between the STA and APs. The same
signal processing method is applied as Section.V-C. Due to
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(a) RTCSI simulation 1: one line-of-sight path and
one reflection path; the line-of-sight path conveys
the majority of the radio power. The RTP phase
tracking in this multi-path scenario (dashed blue
line) is very close to the line-of-sight-only scenario
(solid blue line).
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(b) RTCSI simulation 2: one line-of-sight path and
one reflection path; the reflection path conveys
the majority of the radio power. The RTP phase
tracking in this multi-path scenario (dashed blue
line) deviates significantly from the line-of-sight-
only scenario (solid blue line).
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(c) RTCSI simulation 3: one line-of-sight path
and three reflection paths; the line-of-sight path
conveys the majority of the radio power. The RTP
phase tracking in this multi-path scenario (dashed
blue line) is still very close to the line-of-sight-
only scenario (solid blue line).

Fig. 5: RTCSI simulation in multi-path scenario

Fig. 6: Floor plan for the experiment. The meeting room is
6m× 6m and the experiment area is the 4m× 4m square in
the centre, which is enclosed by four APs.

Fig. 7: RTP signal processing procedure

the limited computational resources on the Raspberry Pi, the
measurements are forwarded to a master PC that runs the
localization back-end.

B. RTP Modelling

According to observations in Section.V, the multipath effect
has to be taken into consideration and the measurement model
for RTP ranging becomes

drtp(i, t) = αrtp(i, t)dist(i, t) + βrtp(i, t) + nrtp(i, t) (12)

Fig. 8: RTT signal processing procedure

where
drtp is the RTP ranging result,
i is the index of AP,
t is the time,
dist is the true distance from the STA to the AP,
αrtp is the scaling factor,
βrtp is the offset factor,
nrtp is the additive white (zero-mean) Gaussian noise with

variance σ2
rtpi .

and

dist(i, t) = ∥

xsta(t)
ysta(t)
zsta(t)

−

xAP i

yAP i

zAP i

∥ (13)

where
∥∥ is the vector norm,
xsta is the x-axis coordinate of the STA (similar for ysta and

zsta),
xAP i

is the x-axis coordinate of the AP i (similar for yAP i

and zAP i
).

It is a first-order approximation and the offset factor consists
of not only the multipath effect but also the unknown initial
distance since the RTP is based on relative distance. This
prototype works in a 2-D space, so the location is modelled
as (xsta(t), ysta(t)) and zsta is set to a fixed value. Since the
WiFi round-trip communication can be completed within a
few milliseconds and considering a typical indoor application
that the robot vehicle cannot move very fast, a round (4 mea-
surements between the STA to each AP) of RTP measurements
can be treated as occurring at the same time t. In this way, the
status of the STA at time t can be presented as the following
equation, and it has 10 degrees of freedom.

x(t) = {xsta(t), ysta(t), αrtp(0, t), βrtp(0, t), αrtp(1, t),

βrtp(1, t), αrtp(2, t), βrtp(2, t), αrtp(3, t), βrtp(3, t)}
(14)
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Fig. 9: Ranging evaluation for RTT and RTP

Fig. 10: Non-line-of-sight scenario example

where x is the STA status.
However, at time t, only 4 measurements are available,

which means it is underdetermined. Two constraints over time
are applied to reduce the underdetermination and improve the
localization.

The first is that the scaling factor and the offset factor are
constant within a short time window Tw. That is

αrtp(i, t) = αrtp(i, t0),∀t ∈ [t0, t0 + Tw) (15)

βrtp(i, t) = βrtp(i, t0),∀t ∈ [t0, t0 + Tw) (16)

The second is that the scaling factor and the offset factor
change slowly over time and it is modelled as a random walk.
The derivative of the values w.r.t time is assumed to follow
zero-mean Gaussian distribution. Since the values have been
windowed, the following equations show the actual model used
in our system.

(αrtp(i, t+ Tw)− αrtp(i, t)) ∼ N (0, σ2
rtpi

α
) . (17)

(βrtp(i, t+ Tw)− βrtp(i, t)) ∼ N (0, σ2
rtpi

β
) . (18)

C. Localization Backend: Factor Graph Optimization

As illustrated in Fig. 9c, RTP-based ranging considerably
surpasses RTT, thus indicating a substantial potential for
localization. However, due to the inherent periodicity of the
radio wave, it is not feasible to estimate absolute range from
RTP. The phase can only delineate the differential distances
between the STA and AP at two distinct points in time
during tracking, necessitating long-term memory for effective
localization. To provide a clear and simple example, consider
a scenario comprising two distinct APs situated at different
locations, with one STA orbiting the first AP. The RTP tracking
between the STA and the first AP would remain stable since
the distance remains unchanged during the orbit. Conversely,
the phase tracking for the second AP would exhibit a cyclical
change. While these patterns are insightful, they can only be
processed as a temporal sequence over an extended period. A
traditional method such as the Kalman filter [31] cannot satisfy
this requirement as it loses past measurements, with the mem-
ory retained solely in the covariance matrix. Similar problems
exist in SLAM (simultaneous localization and mapping) in
robotics, and research shows factor graph optimization is an
effective approach [32]. It can model a variety of estimation
problems using optimization. Compared to classic localization
methods like the Kalman filter, the factor graph can keep all
previous measurements for optimization instead of discard-
ing previous measurements after updating the system status.
Additionally, the factor graph also supports a more flexible
way of organizing customized measurements and status. The
STA status, x(t), should be estimated for localization in this
study and the whole system can be modelled as a conditional
probability which is expressed in equation (19).



P (X|Z) =

P (x(t0), x(t0 +∆T ), x(t0 + 2∆T ), · · ·
x(t0 + Tw), x(t0 + Tw +∆T ), x(t0 + Tw + 2∆T ), · · ·
|zrtp(t0), zrtp(t0 +∆T ), zrtp(t0 + 2∆T ), · · ·
zrtp(t0 + Tw), zrtp(t0 + Tw +∆T ), zrtp(t0 + Tw + 2∆T ), · · ·
zrtpα

(t0, t0 + Tw), · · ·
zrtpβ

(t0, t0 + Tw), · · · ) (19)

P is the probability,
X is the statuses,
Z is measurements and constraints (conditions),
∆T is the sampling period of the measurement,
zrtp(t0) the RTP ranging result from the AP at time t0

modelled with scaling and offset factor (equation (12)),
zrtpα(t0, t0 + Tw) is the RTP scaling factor constraint. The

difference between αrtp at two consecutive time win-
dows, starting from t0 and t0 + Tw respectively, follows
a Gaussian distribution (equation (17)),

zrtpβ
(t0, t0 + Tw) is the RTP offset factor constraint. The
difference between βrtp at two consecutive time windows,
starting from t0 and t0 + Tw respectively, follows a
Gaussian distribution (equation (18)).

The optimal X can be estimated using maximum posteriori
probability estimation as equation (20). After applying Bayes’
Rule, it would be equation (21).

X̂ =argmax
X

P (X|Z) (20)

=argmax
X

P (Z|X)P (X)

P (Z)
= argmax

X
P (Z|X)P (X)

(21)

P (X) is the priori and P (Z|X) comes from the measurement
model. Take equation (12) for example,

P (zrtp(i, t)|x(i, t)) =
1

σrtpi

√
2π

× exp (−1

2
(
drtp(i, t)− (αrtp(i, t)dist(i, t) + βrtp(i, t))

2σrtpi

)2)

(22)

For equation (17) and equation (18), the probability would be
equation (23) and equation (24), respectively.

P (zrtpα
(i, t)|x(i, t), x(i, t+ Tw))

=
1

σrtpi
α

√
2π

exp (−1

2
(
αrtp(i, t)− αrtp(i, t+ Tw)

2σrtpi
α

)2) (23)

P (zrtpβ
(i, t)|x(i, t), x(i, t+ Tw))

=
1

σrtpi
β

√
2π

exp (−1

2
(
βrtp(i, t)− βrtp(i, t+ Tw)

2σrtpi
β

)2) (24)

This process can be visually represented as a factor graph,
as shown in Fig. 11. At each moment t, a state x(t) is
incorporated into the graph. During this phase, the location
and parameters (αrtp and βrtp) within x(t) are yet to be

determined. As such, they do not form part of the localization
system’s input. Upon obtaining the distance estimates from the
most recent RTP tracking, these measurements are gathered
and employed as system inputs to establish the RTP measure-
ment factor within the graph, depicted as blue lines in Fig. 11.
Throughout each time window, Tw, the scaling factor αrtp and
offset βrtp are held constant to ensure their consistency. At
the start of each time window, Tw, the scaling αrtp and offset
βrtp constraint factors are introduced into the graph to fulfill
the constraint of low variance over time. These are illustrated
by the yellow lines in Fig. 11. After constructing the graph,
the unknown status can be estimated by finding the optimal
X that maximizes the probability as equation 21. We use
GTSAM [32], a factor graph-based sensor fusion library, to run
the optimization with our customized RTP factor. Internally,
GTSAM uses a loss function LZ(X) = − logP (X|Z) such
that

X̂ = argmax
X

P (X|Z) = argmin
X

LZ(X) (25)

where X̂ is the final estimated value. The logarithm can
simplify the exponential calculation in the probability model
and it becomes a non-linear optimization problem to find the
optimal X to minimize the loss function LZ(X). Finally,
Levenberg–Marquardt method [33], [34] is used to find the
optimal value.

D. RTT Modelling

Similar to RTP, RTT ranging is modelled as follows.

drtt(i, t) = αrtt(i, t)dist(i, t) + βrtt(i, t) + nrtt(i, t) (26)

where
drtt is the measured RTT ranging,
αrtt is the scaling factor,
βrtt is the offset factor,
nrtt is the additive white Gaussian noise with variance σ2

rtti .
Also, similar factor graph optimization can be applied as RTT.
During factor graph construction, only the RTT measurements
are used as input, and the unknown localization, together with
the unknown parameters, are presented in the status. Then,
the same optimization is performed as RTP via GTSAM to
search for the optimal status to get the location. Note that
there is only one key difference between RTT and RTP, the
priori probability of the offset factor. For RTP, the offset
factor also works for the initial phase of the relative distance
measurement, and it means the RTP offset factor may vary
a lot since it is related to the true distance. As a result,
there is no specific priori for the RTP offset factor, which
corresponds to a very large variance. However, RTT ranging
can provide absolute distance measurement, so adding a low-
variance priori for the RTT offset factor makes sense. The
RTT offset factor is assumed to be drawn from of Gaussian
distribution estimated from calibration, that is

βrtt(i, t) ∼ N (urttiβ
, σ2

rttiβ
) . (27)

It essentially formulates the same localization system as [10]
that the scaling and offset values are used prior knowledge
and the localization is reached by minimizing a cost function.



Fig. 11: Factor graph interpretation of localization model (only 2 APs are shown but 4 APs are used in the actual model). The
blue lines symbolize the RTP measurements, serving as the input to the system. The x(t) signifies the unknown state, comprising
the location, scaling, and offset factors, which will be estimated from factor graph optimization after graph construction. The
yellow and green lines denote the slow-changing constraints and are added automatically.

E. Performance

Since the non-linear optimization requires initial values, the
centre of the room (2, 2) is set as the initial value for all the
locations on the trajectory. The initial values for the scaling
and offset factors are set to 1.0 and 0.0 respectively. Leven-
berg–Marquardt algorithm with GTSAM default parameters is
used as the solver for the optimization. Tw is set to 1.0s and
the variance of the distributions in the model is set empirically
as Table III.

TABLE III: Variance Of The Distributions In Factor Graph
Optimization

Name Value Name Value

σ2
rtpi

0.005 σ2
rtti

1.000
σ2
rtpiα

0.010 σ2
rttiα

0.010

σ2
rtpi

β

0.050 σ2
rtti

β

0.050

Factor graph optimization is applied to RTT ranging and
RTP ranging individually. Fig. 12 shows the trajectories and
Table IV shows the errors. It is clear that the RTP-based
localization trajectories are very close to the ground truth,
while the RTT-based trajectories seem chaotic. The average
MAE for RTT and RTP are 1.83m and 0.26m, respectively.
This evaluation indicates that our method using RTP is sig-
nificantly better than the RTT. Note that in this evaluation,
we plot the trajectory instead of discrete points. Even if the
error for RTT localization is at meter level, which is not too
bad, the trajectory looks disorderly since it is a time sequence-
related visualization and the deviations will introduce signifi-
cant distortion to the trajectory. The performance of our RTT
localization method agrees with several RTT-only (fingerprint-
free) localization research [10], [17] that the localization result
is typically accurate around 1-2 meters. The RTT ranging error
arises from the limitation in bandwidth and is the fundamental
constraint. On the contrary, the proposed new method works

in the time domain by tracking RTP over time. In this way,
it can bypass the issues caused by the limited bandwidth but
requires frequent measurement. Fortunately, our prototype and
experiments show that frequent RTP measurement is feasible
and practical in the real world. Moreover, it can be imple-
mented on commercial WiFi devices through a straightforward
firmware patch. It offers an evident improvement that the
RTP localization error is around one-tenth of the error when
compared to RTT localization. It validates the performance
of our system that realizes decimeter-level localization using
existing WiFi infrastructure without data collection followed
by training.

For time complexity, our method runs up to 2.2 × real-time
(raw data capture speed) on an Intel Core i7-7700 CPU. Even
if this prototype is based on offline processing, the speed is fast
enough for real-time processing, which could be implemented
in the future.

Additional experiments are performed using non-line-of-
sight channels that all of the APs are blocked by aluminum
sheets as Section.V-E. Fig. 13 and Table V show the trajectory
and error respectively. The trajectory of RTT-based localiza-
tion is still random while the trajectory of RTP-based one tries
to keep the general shape and the trend but with significant
distortions and offsets. For the average localization error, RTT
localization error increases by around 25% compared with
line-of-sight channels but the value is almost doubled for RTP
localization.

TABLE IV: Localization errors using line-of-sight channel

Trajectory 1 2 3 4 Average
RTT MAE (m) 2.19 1.47 1.84 1.82 1.83

RTT 50%CDF (m) 2.11 1.37 1.77 1.50 1.69
RTP MAE (m) 0.19 0.27 0.26 0.31 0.26

RTP 50%CDF (m) 0.18 0.23 0.24 0.32 0.24



(a) Trajectory 1 (b) Trajectory 2

(c) Trajectory 3 (d) Trajectory 4

Fig. 12: Trajectories in the experiment using line-of-sight channel. Localization based on RTP demonstrates decimeter-level
precision, in contrast to the meter-level precision achieved by RTT. The trajectories derived from RTT localization exhibit
considerable disarray due to the substantial inaccuracies introduced by meter-level errors. For visualization, we plot the
trajectories by sequentially connecting the waypoints, thereby amplifying the visibility of the errors for every waypoint. Given
that the inaccuracies associated with RTT localization tend to be random, linking waypoints influenced by meter-level random
errors produces chaotic patterns.

TABLE V: Localization errors using non-line-of-sight channel

Trajectory 1 2 3 4 Average
RTT MAE (m) 2.15 2.23 2.47 2.28 2.28

RTT 50%CDF (m) 2.00 1.96 2.33 2.36 2.16
RTP MAE (m) 0.52 0.45 0.84 0.42 0.56

RTP 50%CDF (m) 0.51 0.36 0.84 0.39 0.53

VII. CONCLUSION AND FUTURE WORK

This paper presents an indoor localization system based on
the WiFi round-trip phase that uses a customized protocol
and compares it with the WiFi round-trip time. Factor graph

optimization is adopted as the localization back-end and
experimentally evaluated in real-world indoor scenarios. The
prototype validates the idea of using WiFi carrier phase for
localization and experiments show that the round-trip phase-
based localization method offers decimeter-level accuracy.
This method provides a practical solution for accurate indoor
localization using WiFi signals because it is training-free and
implemented on low-cost commercial devices. There are a few
limitations in our system. The optimal performance can only
be reached given good signal quality (e.g. line-of-sight) and
it is a common issue with non-fingerprint-based localization.
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Fig. 13: Trajectories in the experiment using non-line-of-sight channel

Also, the sampling rate for RTP is limited in real-world
scenarios and unwrapping the phase over time naively may
not work if the fast motions of the robotic vehicle generate
Doppler shifts greater than a given threshold. Fortunately, a
similar problem has been solved in the GPS system (RTK)
for carrier phase tracking and it can be solved by using an
integer ambiguity model in phase tracking as [35]. Our proof-
of-concept prototype is validated in a relatively small area
and experiments in a larger area will be done in the future.
It will involve utilizing professional motion capture or camera
tracking devices in the filmmaking industry to acquire accurate
ground truth because the IOS ARKIT cannot guarantee precise
localization in a large area according to our observations.
Since round-trip time and round-trip phase share very similar
patterns in WiFi communication protocol, a new future WiFi
protocol could be proposed that integrates both methodologies

for improved localization performance. Furthermore, similar
to the time difference of arrival (TDoA), the round-trip phase
system can be modified into a passive mode where the STA can
measure the phase difference of arrival (PDoA) by listening
to the communication between the APs for localization. In
this way, the APs can serve an unlimited number of STAs
simultaneously. Additionally, RTP can also be used in sensor
fusion with other sensors like IMU for indoor localization. Last
but not least, this round-trip phase-based method can also be
applied to other wireless localization systems like UWB and
5G.
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