8,930 research outputs found

    Detection of major ASL sign types in continuous signing for ASL recognition

    Get PDF
    In American Sign Language (ASL) as well as other signed languages, different classes of signs (e.g., lexical signs, fingerspelled signs, and classifier constructions) have different internal structural properties. Continuous sign recognition accuracy can be improved through use of distinct recognition strategies, as well as different training datasets, for each class of signs. For these strategies to be applied, continuous signing video needs to be segmented into parts corresponding to particular classes of signs. In this paper we present a multiple instance learning-based segmentation system that accurately labels 91.27% of the video frames of 500 continuous utterances (including 7 different subjects) from the publicly accessible NCSLGR corpus (Neidle and Vogler, 2012). The system uses novel feature descriptors derived from both motion and shape statistics of the regions of high local motion. The system does not require a hand tracker

    Evaluation of Manual and Non-manual Components for Sign Language Recognition

    Get PDF
    The motivation behind this work lies in the need to differentiate between similar signs that differ in non-manual components present in any sign. To this end, we recorded full sentences signed by five native signers and extracted 5200 isolated sign samples of twenty frequently used signs in Kazakh-Russian Sign Language (K-RSL), which have similar manual components but differ in non-manual components (i.e. facial expressions, eyebrow height, mouth, and head orientation). We conducted a series of evaluations in order to investigate whether non-manual components would improve sign’s recognition accuracy. Among standard machine learning approaches, Logistic Regression produced the best results, 78.2% of accuracy for dataset with 20 signs and 77.9% of accuracy for dataset with 2 classes (statement vs question). Dataset can be downloaded from the following website: https://krslproject.github.io/krsl20/publishedVersio

    Computational Models for the Automatic Learning and Recognition of Irish Sign Language

    Get PDF
    This thesis presents a framework for the automatic recognition of Sign Language sentences. In previous sign language recognition works, the issues of; user independent recognition, movement epenthesis modeling and automatic or weakly supervised training have not been fully addressed in a single recognition framework. This work presents three main contributions in order to address these issues. The first contribution is a technique for user independent hand posture recognition. We present a novel eigenspace Size Function feature which is implemented to perform user independent recognition of sign language hand postures. The second contribution is a framework for the classification and spotting of spatiotemporal gestures which appear in sign language. We propose a Gesture Threshold Hidden Markov Model (GT-HMM) to classify gestures and to identify movement epenthesis without the need for explicit epenthesis training. The third contribution is a framework to train the hand posture and spatiotemporal models using only the weak supervision of sign language videos and their corresponding text translations. This is achieved through our proposed Multiple Instance Learning Density Matrix algorithm which automatically extracts isolated signs from full sentences using the weak and noisy supervision of text translations. The automatically extracted isolated samples are then utilised to train our spatiotemporal gesture and hand posture classifiers. The work we present in this thesis is an important and significant contribution to the area of natural sign language recognition as we propose a robust framework for training a recognition system without the need for manual labeling

    NEW shared & interconnected ASL resources: SignStream® 3 Software; DAI 2 for web access to linguistically annotated video corpora; and a sign bank

    Get PDF
    2017 marked the release of a new version of SignStream® software, designed to facilitate linguistic analysis of ASL video. SignStream® provides an intuitive interface for labeling and time-aligning manual and non-manual components of the signing. Version 3 has many new features. For example, it enables representation of morpho-phonological information, including display of handshapes. An expanding ASL video corpus, annotated through use of SignStream®, is shared publicly on the Web. This corpus (video plus annotations) is Web-accessible—browsable, searchable, and downloadable—thanks to a new, improved version of our Data Access Interface: DAI 2. DAI 2 also offers Web access to a brand new Sign Bank, containing about 10,000 examples of about 3,000 distinct signs, as produced by up to 9 different ASL signers. This Sign Bank is also directly accessible from within SignStream®, thereby boosting the efficiency and consistency of annotation; new items can also be added to the Sign Bank. Soon to be integrated into SignStream® 3 and DAI 2 are visualizations of computer-generated analyses of the video: graphical display of eyebrow height, eye aperture, an

    Continuous sign recognition of brazilian sign language in a healthcare setting

    Get PDF
    Communication is the basis of human society. The majority of people communicate using spoken language in oral or written form. However, sign language is the primary mode of communication for deaf people. In general, understanding spoken information is a major challenge for the deaf and hard of hearing. Access to basic information and essential services is challenging for these individuals. For example, without translation support, carrying out simple tasks in a healthcare center such as asking for guidance or consulting with a doctor, can be hopelessly difficult. Computer-based sign language recognition technologies offer an alternative to mitigate the communication barrier faced by the deaf and hard of hearing. Despite much effort, research in this field is still in its infancy and automatic recognition of continuous signing remains a major challenge. This paper presents an ongoing research project designed to recognize continuous signing of Brazilian Sign Language (Libras) in healthcare settings. Health emergency situations and dialogues inspire the vocabulary of the signs and sentences we are using to contribute to the field301Vision-based human activity recognition8289COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESnão te

    Review on Classification Methods used in Image based Sign Language Recognition System

    Get PDF
    Sign language is the way of communication among the Deaf-Dumb people by expressing signs. This paper is present review on Sign language Recognition system that aims to provide communication way for Deaf and Dumb pople. This paper describes review of Image based sign language recognition system. Signs are in the form of hand gestures and these gestures are identified from images as well as videos. Gestures are identified and classified according to features of Gesture image. Features are like shape, rotation, angle, pixels, hand movement etc. Features are finding by various Features Extraction methods and classified by various machine learning methods. Main pupose of this paper is to review on classification methods of similar systems used in Image based hand gesture recognition . This paper also describe comarison of various system on the base of classification methods and accuracy rate

    Review of constraints on vision-based gesture recognition for human–computer interaction

    Get PDF
    The ability of computers to recognise hand gestures visually is essential for progress in human-computer interaction. Gesture recognition has applications ranging from sign language to medical assistance to virtual reality. However, gesture recognition is extremely challenging not only because of its diverse contexts, multiple interpretations, and spatio-temporal variations but also because of the complex non-rigid properties of the hand. This study surveys major constraints on vision-based gesture recognition occurring in detection and pre-processing, representation and feature extraction, and recognition. Current challenges are explored in detail
    corecore