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Continuous Sign Recognition of Brazilian Sign

Language in a Healthcare Setting
José Elı́as Yauri Vidalón and José Mario De Martino

Abstract—Communication is the basis of human society. The
majority of people communicate using spoken language in oral
or written form. However, sign language is the primary mode
of communication for deaf people. In general, understanding
spoken information is a major challenge for the deaf and hard
of hearing people. Access to basic information and essential
services is challenging for these individuals. For example, without
translation support, carrying out simple tasks in a healthcare
center such as asking for guidance or consulting with a doc-
tor, can be hopelessly difficult. Computer-based sign language
recognition technologies offer an alternative to mitigate the
communication barrier faced by the deaf and hard of hearing
people. Despite much effort, research in this field is still in its
infancy and automatic recognition of continuous signing remains
a major challenge. This paper presents an ongoing research
project designed to recognize continuous signing of Brazilian
Sign Language (Libras) in healthcare settings. Health emergency
situations and dialogues inspire the vocabulary of the signs and
sentences we are using to contribute to the field.

Index Terms—Brazilian sign language, Libras, Continuous
signing, Sign language recognition.

I. INTRODUCTION

S INCE the origin of humanity, people have been using

language to convey messages, concepts, ideas, moods,

feelings, and emotions. While the majority of people use

oral language as a system of communication, deaf people

use sign language. Contrary to the common belief that sign

language is a universal language, there are different sign

languages scattered around the world, e.g., American Sign

Language (ASL) in the USA [1], British Sign Language

(BSL) in England, German Sign Language (GLS) in Germany,

Portuguese Sign Language (PSL) in Portugal, Brazilian Sign

Language (Libras) in Brazil [2], etc. Each sign language has

particularities that makes it unintelligible to others.

Sign language is a visual-spatial language that uses agreed

gestures to convey meaning. Gestures can be manual and

non-manual. Manual gestures are performed by movements

of the fingers, hands, and arms, while non-manual gestures

are composed by movements of body and head, eye-gaze

orientations and facial expressions. Gestures can also be static

or dynamic. The former consists of the single positioning of

body or limbs forming a posture, e.g., pointing. The later
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consists of a set of positions that change over time, e.g.,

clapping. A sign consists of a gesture, or gestures performed

simultaneously, which has an agreed meaning by the deaf

community. During translation, the meaning of a sign can be

interpreted as one or more words of an oral language.

In sign language, a sign can be strictly manual or non-

manual, or a combination thereof. Manual signs can be one-

handed (those performed only by the dominant hand) or two-

handed (those performed by both hands simultaneously, where

the second hand is called the non-dominant hand). Non-manual

signs usually involve features such as mouth movements and

facial expressions. As mentioned before, according to the

temporal variation, a sign can be static or dynamic. For

example, in Libras, the sign representing the letter A of the

alphabet is a static sign, and the sign GRIPE [Flu] is a

dynamic sign which also has facial expressions (Fig. 2d).

Additionally, similar to conversations in oral language where

the speaker says a sequence of words to construct clauses and

sentences, a signer uses a sequence of signs to convey meaning

(e.g., the sequence of signs HOJE EU ADOECER GRIPE in

Libras means [Today I got sick with the flu], Fig. 2a–d).

Wherever there are deaf people, sign language emerges

spontaneously. Sign language is acquired by children born into

deaf families and transmitted from generation to generation,

primarily through special schools and deaf adults. However,

life is not easy for the deaf. Access to public services and

information in a world dominated by oral communication is

difficult for them. For instance, accessing basic services like

healthcare, education, legal and other services without a sign

language interpreter can be stressful or impossible for many

deaf people, who feel marginalized, ignored and isolated by

society. Although interpreters can be of great help in better

communication between deaf people and those without hearing

impairment, the lack of interpreters in number and fluency lim-

its their availability to a few situations. Computer-based sign

language recognition (SLR) systems have become a promising

technology that can help overcome these constraints. The main

goal of SLR is to be able to recognize and translate sign

language.

Since the Nineties, many SLR approaches have been pro-

posed [3]. Most proposals have focused on isolated signs

(both static and dynamic), while only a few approaches have

focused on continuous signing (e.g., sentences, phrases, and

discourses). When the recognition process has to deal with

dynamic signs, sophisticated methods are required to manage

the temporal information.

Although sophisticated data capture devices can help in

the recognition process, for instance, data gloves that provide

detailed information about the hand and fingers, or an elec-
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tromagnetic 3D position tracker that tracks a specific limb of

the body, recognition methods based on video cameras (called

vision-based methods) are still preferred since cameras are

less expensive and do not interfere with the signing process

(the signer is not required to wear sensors). Despite all the

technological advances, the SLR process is still challenging,

mainly due to the simultaneous-sequential nature of sign

production which conveys meaning through many modes at

once [1]; the signer’s inflections and variability [2]; the high

degree of freedom in human movement [4]; and the large

vocabulary of signs [3].

In this paper, we present an ongoing research project that

aims to develop an SLR system for continuous sentences

of Brazilian sign language (Libras). Although there is no

official number of Libras speakers, according to the 2010

Brazilian census [5], the number of Brazilian deaf and hard

of hearing people was estimated at almost two million. In our

proposal, instead of trying to recognize only isolated signs

or single combinations of them, we aim to develop a system

that recognizes the basic, real-life vocabulary and continu-

ous sentences used in a specific domain. Among the major

difficulties reported by the deaf individuals themselves [6],

we chose the area of “health emergencies in a hospital”

since it provides high social value. Therefore, 58 signs from

Libras were selected to provide a basic vocabulary. We then

recorded video data of isolated signs and 15 sentences by

using a single Kinect sensor [7]. Next, we describe our

approach to recognizing isolated signs and our attempt to

recognize signs in sentences based on the Hidden Markov

Model (HMM) [8]. The remainder of this paper is organized as

follows: Section II summarizes the related works, Section III

presents our proposal, and finally, the conclusions are exposed

in Section IV.

II. RELATED WORK

From a linguistic point of view, in 1960 Stokoe [9] was

the first to demonstrate that signs (in the ASL lexicon)

are comprised of a relatively small number of meaningless

subunits (like phonemes in speech) that may be recombined

to produce a potentially large lexicon. He proposed three sign

parameters: hand shape, hand location, and hand movement.

Later, parameters of hand orientation and facial expression

were introduced into the sign language phonology. Although

both hands might be involved in the formation of many signs,

there is only one primary active articulator in the lexical item,

the dominant hand. The non-dominant hand either articulates

nothing, or mimics what the dominant hand is doing, or serves

as a place of articulation [10]. Parameters related to the hand

establish the manual signal features (MS), while the other

parameters define the non-manual signal features (NMS).

During the Eighties, besides the simultaneous sign produc-

tion theory proposed by Stoke, theories of the sequential nature

of sign production were proposed. Models like the movement-

hold [11], posture-movement [12], posture-detention [13], and

others were proposed to describe signs in a sequence of

subunits or feature bundles, one of which can be independently

affected by morphological processes and phonological rules.

The value of the linguistic basis lies on the fact that it can

help to understand, decompose, and model the signs in order

to improve the recognition process.

From a computational point of view, the first SLR systems

emerged in the early Nineties [3], most of them focused

on isolated signs, both static and dynamic, and a few on

recognizing continuous sentences. In the following paragraphs

we discuss the works that inspired our proposal on continuous

sign language recognition.

Starner and Pentland [14] presented the seminal work in

recognizing ASL sentences using HMMs [8]. In this approach,

the signer wears two distinctly colored gloves for each hand

and sits in front of a camera. Based on a vocabulary of 40

signs, they tested 99 sentences of constrained structure (i.e., a

personal pronoun, verb, noun, adjective, and personal pronoun

again, in this order). Each sign is modeled using an HMM

of four states and multidimensional Gaussian observations

of the 2D features extracted from the hand. They achieved

a recognition rate of 97% for sentences. They used a rigid

grammar model for constructing the sentence, however the

sentence structure in sign language may have a flexible word

order.

Later, Bauer and Heinz [15] proposed a system to recognize

German Sign Language (GSL) sentences based on HMMs. The

signer wears colored cotton gloves in order to reduce the com-

plexity of the hand feature extraction and tracking. Because

they map the entire sentence using HMMs, the variation pro-

duced between the transitions of two consecutive signs is also

incorporated into the model parameters. Afterward the model

parameters of the single sign (also modeled as an HMM) is

reconstructed from these data in order to recognize the sign.

So, in order to detect the sign boundaries in the sentences, they

take into account all possible initial and ending locations of the

sign; and the path search is optimized by means of a beam

search algorithm. Based on a vocabulary of 97 signs, they

achieve a recognition rate of 91.7%. In a subsequent work,

Bauer and Kraiss [16] proposed the extraction of subunits of

a sign in order to find similar feature vectors by using the

k-means algorithm (a feature vector is encoded according to

its cluster). Each cluster/subunit is modeled as an HMM and

a sign consists of a concatenation of these subunits. From

12 signs, they extracted 10 subunits, achieving a recognition

rate of 80.8%. The subunits themselves are different from sign

phonemes because they were determined via clustering instead

of a linguistic approach. Moreover, the number of signs and

subunits are not enough to draw generalizations.

Vogler and Metaxas [4] proposed to decompose signs based

on the Movement-Hold model [11] in order to recognize ASL

sentences. Movements are segments in which some aspects of

the signer’s configuration changes; while Holds are segments

in which all aspects of the signer’s configuration remain

stationary. Thus, a sign is broken into movement and hold

segments, each of which is considered a subunit or phoneme.

The features are provided by a sophisticated electromagnetic

system which gives the 3D location and motion of the hand

and arm. Since this approach takes into account a two-

handed sign, Vogler and Metaxas modeled the sign subunits

by using parallel HMMs, i.e., one model for each hand. From
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a vocabulary of 22 signs and 99 sentences, they showed

that the parallel model of the two hands results in better

recognition than the single modeling of the dominant hand

—at a recognition rate of 84.85% and 80.81%, respectively.

In a later work, in order to make the simultaneous aspects

of ASL more tractable, Vogler and Metaxas [17] proposed to

model the hand shape parameter of a sign by using additional

independent channels. Using data provided by an electronic

glove, they modeled the hand shape based on the degree of

openness of the finger [10], achieving a recognition rate of

87.88%.

Yang et al. [18] proposed a technique to recognize signs in

sentences by using an adaptive threshold based on Conditional

Random Field (CRF) [19]. They constructed a dictionary to

distinguish between sign and non-sign patterns. No transition

models or grammar rules are required to spot the signs,

however the threshold fitting can be difficult to achieve. With

48 ASL signs, they formed 98 sentences (ranging from three to

eight signs per sentence), achieving a recognition rate of 87%.

In their later work, Yang et al. [20] worked to simultaneously

recognize signs and finger spellings in sentences. Using a basis

of 24 signs and 17 alphabetic ALS letters, they experimented

with 98 sentences. By using Hierarchical-CRF and BoostMap

embedding methods, they recognized signs and finger spellings

at rates of 83% and 78%, respectively.

More recent research has focused on the integration of

non-manual signal features (NMS) of signs such as body

postures and facial expressions. The importance of NMS lies

in the fact that it can completely change the meaning of the

sign [1][2]. In this way, Yang et al. [21] presented a framework

that recognizes both manual and non-manual signs in three

steps. Firstly, a Hierarchical-CRF is used to detect segments

of manual signals. Next, the BoostMap embedding method

is used to detect hand shapes in segmented signs and to

recognize finger spellings. Finally, Support Vector Machine

(SVM) is applied to recognize facial expressions if there is

any ambiguity in the two previous steps. Using this approach,

data were collected by using multiple cameras: two orthogonal

cameras (frontal and lateral view) focused on manual data,

with a specific frontal camera focused on the face to capture

facial expressions. Using the basis of 24 signs, 17 alphabetic

letters and 5 facial expressions from ASL, they tested 98

sentences, achieving a recognition rate of 84%.

With new developments in sensor technology, which in-

cludes features that go beyond traditional RGB cameras, new

possibilities for data gathering and interactions have become

available. Zafrulla et al. [22] used Kinect to capture data

and from it developed a sentence verification system for

an electronic game designed for deaf children. Taking the

RGB-D (color and depth range data) image and the skeleton

information provided by the Kinect device, Zafrulla et al.

extracted features from the depth image and the skeleton data.

Working with 60 sentences of constrained structure based on

a vocabulary of 19 signs, they achieved a recognition rate of

51.50% and 76.12% for signers who were both seated and

standing, respectively.

Regarding the works concerned with Brazilian Sign Lan-

guage (Libras) recognition, Pizzolato et al. [23] proposed

recognizing 15 finger-spelled words of Portuguese which in

turn are based on 17 static signs and one dynamic sign (the

sign for the letter J) of the Libras alphabet by using a two-layer

Artificial Neural Network (ANN). Only one finger-spelled

word starts with J, and it is modeled as three static hand

postures. The classification was performed in two stages: first,

words with similar hand postures are grouped together for

preliminary ANN classification; next, another ANN is applied

to disambiguate some confusion between letters. Once the

letters of the sequence have been identified, these letters are

turned into HMMs (one HMM model for each word, in which

the number of states depends on the number of letters of

the word). They achieved a recognition rate of 91.1%. More

recently, Souza and Pizzolato [24] presented a system able to

recognize both finger-spelled words and isolated signs. They

worked with 46 hand shapes and 13 Libras signs. They used

SVM to classify hand shapes, whereas the signs were classified

by using hidden-CRF (one model for the whole sign).

After reviewing the literature, we summarize the major

issues in continuous sign language recognition (SLR):

• The simultaneous-sequential nature of sign production

(the combination of manual and non-manual parameters

while the sign is performed) challenges any SLR algo-

rithm.

• The high degree of freedom (DoF) of human movement

leads to partial or complete occlusion of body parts.

• The high degree of freedom (DoF) of the hand move-

ment produces similar hand shapes and self-occlusion of

fingers.

• The motion and appearance of the sign may vary signif-

icantly even for the same signer.

• In sentences, a sign is affected by the preceding signs

which leads to co-articulated movement between signs.

As a result, there are not always clear boundaries between

two adjacent signs.

• The strong signer dependency on recognition systems.

The recognition accuracy decreases dramatically when

the system is tested with a signer whose data have not

been used to train the system.

• The lack of attention to non-manual features. How to

identify which elements are important to the sign and

which elements are coincidental is a major concern.

Additionally, the merging of manual and non-manual

features is still unresolved.

• The linguistic properties of sign language are still under

study and discussion. Moreover, each sign language has

its own lexicon and particular grammar properties.

• Public availability of data sets are limited both in quantity

and quality for the recognition task.

III. SLR SYSTEM OVERVIEW

The main goal of our project is to develop a system which

recognizes continuous signing of Libras [2]. In order to make

more tractable the issues described in the previous section, we

propose:

• To work within a real-life lexical domain. Due to its high

social value, we have chosen the lexicon of healthcare
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centers. There is evidence that access to health services

for the deaf is difficult [6]. Deaf people can feel mis-

understood, marginalized, and frustrated when they seek

medical attention.

• To deal with the basic vocabulary used in healthcare

settings. The case study of “health emergencies in a

hospital” provides us with a basic vocabulary of signs and

sentences with different level of difficulty. For example,

there are one-handed signs and two-handed signs that

may differ only in some parameters of the sign or require

touching a specific body part which may imply local

movement of fingers, but may also include major or minor

non-manual signals.

• To use RGB-D cameras to collect a database of signs and

sentences. Depth cameras reduce the effects of lighting

variation, occlusion and cluttered background that affect

color cameras. According to our research, there are no

databases on the domain of healthcare settings. Moreover,

the data will be useful for further research and testing.

• To develop a signer-independent recognition system. We

are working with two signers, however just one signer is

used for learning and tuning the model parameters. We

intend to use the other signer during the testing phase for

performance evaluation and providing feedback on the

model.

• To use linguistic foundations of sign language to model

and represent features of both signs and sentences. The

sign’s linguistics provide decomposition tools and signal

process production representations.

• To model sign features by using probabilistic time-series

data models since they have to deal with varying infor-

mation over time.

Next, we describe the architecture of the system and the

stages of the proposed recognition system, as well as the

preliminary results achieved so far.

A. System Structure

Fig. 1. Overview of the system architecture.

The structure of the proposed continuous sign/sentence

recognition system is shown in Fig. 1. In summary, the

collected sign and sentence samples are sent into the image

processing module to extract salient features. These features

are sent into the classification module to build models of both

signs and transition/movements in order to segment continuous

sentences. In our approach, based on phonetic transcription

of the sign [13], we select frames that provide us a short

representation of the sign motion path. Other motions are

considered transition movements. The recognized signs are

then sent to the translation module which uses language

models to provide a written sentence in Portuguese.

B. Preliminary Results and Discussions

Here we describe the proposals and preliminary results

accomplished in each module.

1) Data Set: The data set consists of signs and sentences

collected by a Kinect sensor [7]. For each sample data, we

recorded the color, depth, and skeleton information. To further

simplify the image processing, signers wore a black sweater

and stood in front of a single Kinect at a distance of 1.2–1.8

meters away.

The vocabulary basis of 58 signs is shown in Table I. Notice

that the signs are written in uppercase and their translations in

brackets. To make more understandable the chosen signs, they

are classified into parts of speech categories (e.g., pronoun,

noun, adjective, verb, and adverb). This helps to understand

how signs can be joined together to make readable sentences

using the grammar of a particular sign language.

TABLE I
SIGNS IN OUR DATA SET

Pronouns EU [I], MEU [My], VOCÊ [You], SEU [Your],
ELE [He], DELE [His]

Nouns NOME [Name], HOSPITAL [Hospital],
GRIPE [Flu], CORAÇÃO [Heart], DOR
[Pain, Ache], DOENÇA [Disease], MÉDICO
[Physician, Doctor], INJEÇÃO [Injection,

Shot], ESTETOSCÓPIO [Stethoscope],
CONSULTA MÉDICA [Medical consultation],
SANGUE [Blood], RECEITA MÉDICA
[Medical prescription], ENFERMAGEM
[Nursing], EXAME [Medical Exam],
COMPRIMIDO [Pill], FEBRE [Fever], PEITO
[Chest], ESTÔMAGO [Stomach], DENTE
[Tooth], REMÉDIO [Medicine], CABEÇA
[Head], HOMEM [Male], MULHER [Female],
ANO [Year], PASSADO [Past], FUTURO
[Future]

Verbs TER [Have], NÃO TER [Do not have], IR
[Go], VIR [Come], DOER [Ache], SENTIR
[Feel], AGENDAR [Schedule], INJETAR [In-
ject], VACINAR [Vaccinate], CONSULTAR
[Consult], CURAR [Cure], ADOECER [Get
sick], QUERER [Want], NÃO QUERER [Do
not want]

Adjectives INFLAMADO [Inflamed], SAUDÁVEL
[Healthy], DOENTE [Sick], POUCO [Little,
Few], BEM [Well], MAL [Not well]

Adverbs ONTEM [Yesterday], HOJE [Today],
AMANHÃ [Tomorrow], AGORA [Now],
AQUI [Here], MUITO [Much, Many]

These collected signs present unique difficulties; for in-

stance, the one-handed signs for I and my have the same

location, but different hand configuration; the two-handed

signs for physician and year have the same location and some

touching between hands, but different movements and hand
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configurations; and the signs for flu, tooth, and get sick rely

on facial expressions.

The 15 sentences collected and explored in this work are

shown in Table II. Sentence length varies from three to eight

signs each. Pronouns are usually omitted depending on the

topic, and the word order follows the grammatical rules of

Libras, which is different from Portuguese grammar. As we

mentioned before, when a sentence is translated, the number

of words could vary in order to maintain the meaning of the

message. Snapshots of the sentence HOJE EU ADOECER
GRIPE, which means Today I got sick with the flu, are

presented in Fig. 2. The sign for EU [I] is one-handed

(Fig. 2b), while signs HOJE [Today] and ADOECER [To get

sick] are two-handed (Fig. 2.a and Fig. 2c); and the sign for

GRIPE [Flu] is one-handed combined with facial expressions

(Fig. 2d).

TABLE II
SENTENCES IN OUR DATA SET

DOR DENTE ONTEM EU TER
[Yesterday I had a toothache]

MEU MÉDICO BOM
[My doctor is good]

HOJE EU ADOECER GRIPE
[Today I got sick with the flu]

EU AQUI HOSPITAL, CONSULTA MEDICA TER
[Today I am in the hospital, because I have a medical

consultation]

PASSADO MUITOS ANOS DOENÇA CORAÇÃO TER,
AGORA CURAR

[Many years ago, I had a heart illness, but now I am
cured]
SENTIR MAL EU, AGORA IR HOSPITAL

[I am feeling sick, now I am going to the hospital]

ESTETOSCÓPIO MÉDICO TER
[The doctor has a stethoscope]

EXAME SANGUE MEU
[This is my blood exam]

RECEITA-MÉDICA DELE TER MUITO COMPRIMIDO
[His medical prescription consists of many pills]

AMANHÃ VACINAR EU HOSPITAL
[Tomorrow, I am going to get vaccinated at the hospital]

EU DOENTE, MINHA CABEÇA DOER
[I am sick, I have a headache]

EU TER MUITA FEBRE
[I have a high fever]

ONTEM DOR ESTÔMAGO EU TER
[Yesterday I had a stomachache]

ENFERMAGEM HOMEM INJEÇÃO EU
[A male nurse gave me a shot]

ENFERMAGEM MULHER VACINA ELE
[A female nurse gave him a vaccination]

The data were collected from two signers (one male and

one female), and each sign was recorded at least five times.

Sentences do not have any type of cues or delays between

signs, i.e., they are performed naturally.

2) Image Processing: The main goal of this module is

the extraction of distinguishing features in order to recognize

signs. To begin with, we are interested in describing manual

features, so hands should be properly detected, segmented, and

represented.

(a) HOJE (Today) (b) EU (I)

(c) ADOECER (Get sick) (d) GRIPE (Flu)

Fig. 2. Still images of the sentence HOJE EU ADOECER GRIPE which
means Today I got sick with the flu.

An input of sample data Si consists of a sequence of color,

depth and skeleton frames captured by Kinect; all were regis-

tered. The color data consists of a collection of RGB images

Sicolor = {fc1, fc2 , . . . , fcn}; the depth data of depth range

images Sidepth = {fd1
, fd2

, . . . , fdn
}; and the skeleton of 2D

and 3D locations of 20 joints Siskel
= {fs1 , fs2 , . . . , fsn}.

Both color and depth images are 640×480 in size.

Since not every frame carries relevant information for our

purposes, we choose key frames from the sample data by

comparing the entropy between adjacent color frames. Entropy

measures the average information of an image and may be

computed by using the histogram of the intensity levels of the

image. Images with high entropy convey more information

than images with low entropy.

Then, the extracted frames are processed as follows:

• Removing the background pixels of images based on a

depth threshold (e.g., greater than 1.8 m) with the aim of

reducing the next computational overhead.

• Locating the hands in the image space based on the

skeleton data.

• Segmenting and extracting the hand pixels based on both
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color and depth images.

• Computing the features.

In order to reduce the noise in the depth images provided

by Kinect, in a pre-processing step we applied a median

filter [25]. Since the noise pattern presents the characteristics

of salt and pepper noise, the median filter provides an effective

way to fill the missing depth values without blurring the image.

Also, we remove the background, and in our approach the

depth threshold is calculated in the first frame as the depth of

the head joint plus 0.1 m, thdepth = fd1
(fs1(HeadJoint)) +

0.1.

The hand location and tracking is performed by Kinect,

however to reduce the jittering of the joints in the video,

filtering such as a mean value between previous and subse-

quent location is applied. After detecting the hand location,

the pixels of the hands are segmented by using a skin classifier

in the color frame. Next, these pixels are improved through

a conjunction operation with a depth mask extracted in the

depth frame. To develop the skin color model, we gather skin

pixels from the detected signer face [26] taken from the first

two frames (we assume the skin color of the hands have a tone

similar to the skin of the face). A parametric skin detector is

computed as a mixture of Gaussian in the normalized RGB

color space [27]. A pixel that belongs to the skin color model

is classified as skin, otherwise, it is a non-skin pixel. Secondly,

by using as seed the 2D skeleton hand location, a region

growing algorithm operates on both color and depth frames: in

the color frame, pixels that meet the skin detector’s parameters

are classified as skin; in the depth frame, pixels that meet a

threshold (e.g., 0.05m) form a depth mask. Additionally, we

also use spatial coherence to reduce the growth region. Thirdly,

since the returned growth region is a binary image, the final

hand region is the logical conjunction operation between the

color and the depth masks. Applying morphological operations

over the resulting pixels improve the shape of the hand region.

Fig. 3 illustrates the hand segmentation process. The input

data consist of color, depth, and 2D skeleton information

(Fig. 3a–b). The skin detector is applied over the color image

which detects skin pixels (Fig. 3c). Since skin pixels that do

not belong to the hand region might be considered part of it,

taking into account the depth image, those pixels are removed,

resulting in a refined hand region (Fig. 3d).

After extracting salient regions, we perform feature extrac-

tions to adequately describe the signs. From the obtained

2D hand region, we compute its centroid HC = (xc, yc)
and area HA = #pixels. Based on the centroid inter-

frames, we also compute the orientation of motion of the

hand HM = arctan(yk − yk−1/xk − xk−1), where (xk, yk)
indicates the hand location in the kth frame. So far, the feature

vector is 4-dimensional.

From the 3D skeleton data (Fig. 3a), we use as features: the

location of the wrist Wr = (x, y, z), elbow El = (x, y, z),
and shoulder Sh = (x, y, z); the orientation vector shoulder-

to-elbow Sh → El and elbow-to-wrist El → Wr; the

angle between the shoulder-center, shoulder and elbow joint
6 ScShEl, and the angle between the shoulder, elbow and

wrist joint 6 ShElWr; the distance between the wrist to head

and distance between both wrists (notice that we computed a

(a) RGB image and the 2D skele-
ton joints

(b) its corresponding depth image

(c) Skin color pixels (d) Hand regions after being re-
fined using the depth image

Fig. 3. Hand region segmentation.

18-dimensional feature vector from the 3D joint data for each

hand). So, the final feature vector has 45 dimensions.

3) Classification: Extracted manual features are modeled as

probabilistic time series data in the classification module. In

current experiments, we use HMMs in the manner suggested

by Rabiner [8]: one model for each class and with state

transition from left to right. In our approach, the number of

states for each HMM is equal to the number of segments in

the phonetic representation for each sign [13] plus two (we

add the initial and the final state, since our data begin and

end with a hand posture on the side of the body), while

the number of emission symbols varies from eight to 16.

Models are being trained and tested with Murphy’s HMM

Toolbox [28]. Our next concern is how to isolate and recognize

a sign within a continuous sentence, so we plan to search

for an algorithm based on movement patterns that takes into

account the previously learned signs. The initial experiments

produced promising results; although, in the current stage

of our research, we have not yet analyzed enough cases to

allow for a solid accuracy analysis and comparison with other
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approaches.

4) Translation: Since each sign language has its own

grammar rules, we expect that this translation module (un-

der development) uses the recognized signs in the previous

module and produces an understandable sentence. The main

requirement is to maintain the meaning closest to that of the

original signed sentence, so machine translation techniques

will be used.

IV. CONCLUSION

This paper presents an ongoing research project that aims

to recognize continuous signing of Brazilian sign language.

Contrary to most works centered on recognizing isolated

signs, our project focuses on the challenges of continuous

sentences, since real-life communication is fluid, continuous

and expressive.

The vocabulary basis was taken from signs and sentences

used in daily conversations of deaf people in a medical care

facility. In this regard, we are working with 58 signs and

15 sentences modeled with HMMs. Our expectation is that

our system will be able to recognize sentences and provide a

reliable translation.
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L. Sigal, Eds. London: Springer, 2011, ch. 27, pp. 539–562. ISBN
978-0-85729-996-3

[4] C. Vogler and D. Metaxas, “A Framework for Recognizing the Simul-
taneous Aspects of American Sign Language,” Computer Vision and

Image Understanding, vol. 81, no. 3, pp. 358–384, 2001.
[5] Instituto Brasileiro de Geografia e Estatı́stica. (2010) Atlas do
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