1,458 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Teleoperated and cooperative robotics : a performance oriented control design

    Get PDF

    Seeing things

    Get PDF
    This paper is concerned with the problem of attaching meaningful symbols to aspects of the visible environment in machine and biological vision. It begins with a review of some of the arguments commonly used to support either the 'symbolic' or the 'behaviourist' approach to vision. Having explored these avenues without arriving at a satisfactory conclusion, we then present a novel argument, which starts from the question : given a functional description of a vision system, when could it be said to support a symbolic interpretation? We argue that to attach symbols to a system, its behaviour must exhibit certain well defined regularities in its response to its visual input and these are best described in terms of invariance and equivariance to transformations which act in the world and induce corresponding changes of the vision system state. This approach is illustrated with a brief exploration of the problem of identifying and acquiring visual representations having these symmetry properties, which also highlights the advantages of using an 'active' model of vision

    Sequential Composition of Dynamically Dexterous Robot Behaviors

    Get PDF
    We report on our efforts to develop a sequential robot controller-composition technique in the context of dexterous “batting” maneuvers. A robot with a flat paddle is required to strike repeatedly at a thrown ball until the ball is brought to rest on the paddle at a specified location. The robot’s reachable workspace is blocked by an obstacle that disconnects the free space formed when the ball and paddle remain in contact, forcing the machine to “let go” for a time to bring the ball to the desired state. The controller compositions we create guarantee that a ball introduced in the “safe workspace” remains there and is ultimately brought to the goal. We report on experimental results from an implementation of these formal composition methods, and present descriptive statistics characterizing the experiments.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67990/2/10.1177_02783649922066385.pd

    Generalised regular form based SMC for nonlinear systems with application to a WMR

    Get PDF
    In this paper, a generalised regular form is proposed to facilitate sliding mode control (SMC) design for a class of nonlinear systems. A novel nonlinear sliding surface is designed using implicit function theory such that the resulting sliding motion is globally asymptotically stable. Sliding mode controllers are proposed to drive the system to the sliding surface and maintain a sliding mo-tion thereafter. Tracking control of a two-wheeled mobile robot is considered to underpin the developed theoretical results. Model-based tracking control of a wheeled mobile robot (WMR) is first transferred to a stabilisation problem for the corresponding tracking error system, and then the developed theoretical results are applied to show that the tracking error system is globally asymptotically stable even in the presence of matched and mismatched uncertainties. Both experimental and simulation results demonstrate that the developed results are practicable and effective

    Graph learning in robotics: a survey

    Full text link
    Deep neural networks for graphs have emerged as a powerful tool for learning on complex non-euclidean data, which is becoming increasingly common for a variety of different applications. Yet, although their potential has been widely recognised in the machine learning community, graph learning is largely unexplored for downstream tasks such as robotics applications. To fully unlock their potential, hence, we propose a review of graph neural architectures from a robotics perspective. The paper covers the fundamentals of graph-based models, including their architecture, training procedures, and applications. It also discusses recent advancements and challenges that arise in applied settings, related for example to the integration of perception, decision-making, and control. Finally, the paper provides an extensive review of various robotic applications that benefit from learning on graph structures, such as bodies and contacts modelling, robotic manipulation, action recognition, fleet motion planning, and many more. This survey aims to provide readers with a thorough understanding of the capabilities and limitations of graph neural architectures in robotics, and to highlight potential avenues for future research

    Modeling And Control For Robotic Assistants: Single And Multi-Robot Manipulation

    Get PDF
    As advances are made in robotic hardware, the complexity of tasks they are capable of performing also increases. One goal of modern robotics is to introduce robotic platforms that require very little augmentation of their environments to be effective and robust. Therefore the challenge for a roboticist is to develop algorithms and control strategies that leverage knowledge of the task while retaining the ability to be adaptive, adjusting to perturbations in the environment and task assumptions. This work considers approaches to these challenges in the context of a wet-lab robotic assistant. The tasks considered are cooperative transport with limited communication between team members, and robot-assisted rapid experiment preparation requiring pouring reagents from open containers useful for research and development scientists. For cooperative transport, robots must be able to plan collision-free trajectories and agree on a final destination to minimize internal forces on the carried load. Robot teammates are considered, where robots must reach consensus to minimize internal forces. The case of a human leader, and robot follower is then considered, where robots must use non-verbal information to estimate the human leader\u27s intended pose for the carried load. For experiment preparation, the robot must pour precisely from open containers with known fluid in a single attempt. Two scenarios examined are when the geometries of the pouring and receiving containers and behaviors are known, and when the pourer must be approximated. An analytical solution is presented for a given geometry in the first instance. In the second instance, a combination of online system identification and leveraging of model priors is used to achieve the precision-pour in a single attempt with considerations for long-term robot deployment. The main contributions of this work are considerations and implementations for making robots capable of performing complex tasks with an emphasis on combining model-based and data-driven approaches for best performance
    • …
    corecore