University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

6-1999

Sequential Composition of Dynamically Dexterous
Robot Behaviors

R.R. Burridge
University of Michigan - Ann Arbor

A.A. Rizzi
Carnegie Mellon University

Daniel E. Koditschek

University of Pennsylvania, kod@seas.upenn.edu

Follow this and additional works at: http://repositoryupenn.edu/ese papers

b Part of the Electrical and Computer Engineering Commons, and the Systems Engineering

Commons

Recommended Citation

R.R. Burridge, A. A. Rizzi, and Daniel E. Koditschek, "Sequential Composition of Dynamically Dexterous Robot Behaviors", The
International Journal of Robotics Research 18(6), $34-555. June 1999. http://dx.doi.org/10.1177/02783649922066385

“The final, definitive version of this article has been published in the Journal, <<em>The International Journal of Robotics Research>, 18/6, 1999, © by
SAGE Publications, Inc. at the <<em>The International Journal of Robotics Research> pages: 534-555. On SAGE Journals Online:
http://ijr.sagepub.com/content/18/6/534.abstract

NOTE: At the time of publication, author Daniel Koditschek was affiliated with the University of Michigan, Ann Arbor. Currently, he is a faculty
member in the Department of Electrical and Systems Engineering at the University of Pennsylvania.

This paper is posted at ScholarlyCommons. http://repositoryupenn.edu/ese_papers/686

For more information, please contact repository@pobox.upenn.edu.


http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=repository.upenn.edu%2Fese_papers%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=repository.upenn.edu%2Fese_papers%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=repository.upenn.edu%2Fese_papers%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1177/02783649922066385
http://ijr.sagepub.com/content/18/6/534.abstract
http://repository.upenn.edu/ese_papers/686
mailto:repository@pobox.upenn.edu

Sequential Composition of Dynamically Dexterous Robot Behaviors

Abstract

We report on our efforts to develop a sequential robot controller composition technique in the context of
dexterous “batting” maneuvers. A robot with a flat paddle is required to strike repeatedly at a thrown ball until
the ball is brought to rest on the paddle at a specified location. The robot’s reachable workspace is blocked by
an obstacle that disconnects the free space formed when the ball and paddle remain in contact, forcing the
machine to “let go” for a time to bring the ball to the desired state. The controller compositions we create
guarantee that a ball introduced in the “safe workspace” remains there and is ultimately brought to the goal.
We report on experimental results from an implementation of these formal composition methods, and present
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Abstract

We report on our efforts to develop a sequential robot controller composition technique in the
context of dexterous “batting” maneuvers. A robot with a flat paddle is required to strike repeatedly
at a thrown ball until the ball iz brought to rest on the paddle at a specified location. The robot’s
reachable workspace is blocked by an obstacle that disconnects the freespace formed when the ball
and paddle remain in contact, forcing the machine to “let go” for a time in order to bring the ball to
the desired state. The controller compositions that we create guarantee that a ball introduced in the
“safe workspace” remains there and is ultimately brought to the goal. We report on experimental
results from an implementation of these formal composition methods, and present descriptive statistics

characterizing the experiments.




1 Introduction

In this paper we explore empirically a simple but formal approach to the sequential composition of robot
behaviors. We cast “behaviors” — robotic implementations of user specified tasks — in a form amenable
to representation as state regulation via feedback to a specified goal set in the presence of obstacles,
Our approach results ideally in a partition of state space induced by a palette of pre-existing feedback
controllers. Fach cell of this partition is associated with a unigue controller. The controllers are designed
and then ordered in such a fashion that entry into any cell guarantees passage to successively “lower” cells
until the “lowest,” the goal cell, has been achieved. The volume of the composite domain of attraction

around the goal cell is thus as large as the union of the domains of all constituent controllers.

1.1 Statement of the Problem

We are interested in tasks requiring dynamical dexterity — the ability to perform work on the environment
by effecting changes in its kinetic as well as potential energy. Specifically, we want to explore dynamical
interactions between robot and environment such as active balancing, hopping, throwing, catching, jug-
gling, and other tasks requiring active regulation of kinetic energy. At the same time, we wish to explore
how such dexterous behaviors can be marshalled toward goals whose achievement requires at least the

rudiments of strategy.

We have for some time explored paddle juggling of a ping pong ball as a task domain that epitomizes
dynamically dexterous behavior. The dynamics of the environment necessitate constant action from the
rocbot, as the ball will fall to the floor unless repeatedly struck from below or balanced on the paddle
surface. Moreover, the intermittent nature of the robot-ball interaction provides a focussed testbed for
studying the hybrid (mixed continuous and discrete) control problems that seem to arise in many areas of
robotics. In the work presented in this paper, we add a strategic aspect to the robot’s task by introducing
obstacles. The machine must acquire and contain a thrown ball, maneuver it through the workspace while
avoiding obstacles that necessitate re-grasping! along the way, and finally bring it to rest on the paddle

at a desired location. It seems appropriate to refer to the robot’s task as “Dynamical Pick and Place.”

L In general, re-grasping is required when the free configuration space attendant upon a specified grasp is disconnected,
and the goal does not lie in the presently occupied connected component. As will be seen, in the present problem, the con-
figuration space of the “palming” grasp disconnects the goal from the component where the ball is typically introduced. The
robot can only “connect” the two components by adopting a “juggling” grasp, whose configuration space has a dramatically

different topology.




From the perspective of control theory, our notion of “behavior” comprises merely the closed loop
dynamics of a plant operating under feedback. Yet here, as is often the case when trving to control a
dynamical system, no available feedback control algorithm will successfully stabilize as large a range of
initial conditions as desired. Instead, situations often arise in which different control laws will stabilize
different local regions of the system’s state space. If they were properly coordinated, the region of the
workspace across which their combined influence might be exerted would be significantly larger than the
domain of attraction for any one of the available local controllers, However, the process of combination
requires switching between control modes — an aspect of “hybrid” control theory that is not presently well
established. This paper develops methods of switching among local controllers that lead to the creation
of more complex controllers with formal stability properties, and this specific instance of stable hybrid

control represents our present notion of behavioral composition.

In order to test our methods, we use a three degree-of-freedom robot whose paddle-juggling capabilities
are already well-established (Rizzi 1994). Although our available juggling control law induces very good
regulation about a given goal, there will always be ball states that it can not contain: the goal has a
limited domain of attraction. Those same “missing” states, however, might be successfully handled by
retuning the parameters of the juggling control law: a new goal point, or perhaps different gain settings.
In this paper we will resort solely to such retunings to explore the problem of behavioral composition.
For all aspects of the robot’s task - containing the initial throw, moving the ball through the workspace,
negotiating the obstacle that divides the workspace, and finally bringing the ball to rest on the paddle
— we reqguire that it use members of the established palette of juggling control laws with different goal

points or gain tunings.

1.2 Previous Literature

1.2.1 Pick and Place in Cluttered Environments

Our focus on the dynamical pick and place problem is inspired in part by the HANDEY system developed
by Lozano-Perez and colleagues (Lozano-Pérez et al. 1987), who emphasized the importance of developing
task planning capabilities suitable for situations where regrasping is necessitated by environmental clutter
{see footnote 1), however our setup presents dynamical rather than quasi-static regrasping problems.
Indeed, our emphasis on robustness and error recovery as the driving consideration in robot task planning
derives from their original insights on fine motion planning (Lozano-Pérez, Mason and Taylor 1984) and

the subsequent literature in this tradition bears a close relation to our concerns, as will be touched upon




below.

Comprehensive work by Kak and colleagues (Tung and Kak 1994) has yielded a contemporary quasi-
static assembly environment in the best traditions of HANDEY. The system builds a plan based upon
sensed initial conditions, spawns an execution process that senses exceptions to the planned evolution of
states and produces actions to bring the world’s state back to the intermediate situation presumed by
the plan. We wish to examine the ways in which this higher level “feedback” (local replanning is a form
of feedback) can be reasoned about and guaranteed to succeed, albeit in the drastically simplified setting

of the dynamic pick and place problem ocutlined above.
1.2.2 Hybrid Control and Discrele Event Systems

The difficult question of how to reason about the interplay between sensing and recovery at the event level
in robotics has been considerably stimulated by advent of the Ramadge-Wonham DES control paradigm
{Ramadge and Wonham 1987). In some of the most careful and convincing of such DES inspired robotics
papers, Lyons proposes a formalism for encoding and reasoning about the construction of action plans
and their sensor-based execution {Lyons 1993, Lyons and Hendriks 1994). In contrast to our interest,
however, Lyons explicitly avoids the consideration of problems wherein geometric and force sensor reports

must be used to estimate progress and thereby stimulate the appropriate event transitions.
1.2.3 Error Detection and Recovery

Despite the many dissimilarities in problem domain, models and representation, the work proposed
here seems to bear the closest correspondence to the “fne-motion planning with uncertainty” literature
in robotics (for example, as expounded in the excellent text of Latombe (Latombe 1991)) originated
by Lozano-Perez and colleagues (Lozano-Pérez, Mason and Taylor, 1984). Traditionally this literature
focuses on quasi-static problems (generalized damper dynamics (Whitney 1977) with coulomb reaction
forces (Erdmann 1984) on the contact set). Furthermore, the possible control actions typically are
restricted to piecewise constant velocity vectors, each constant piece corrupted by a constant disturbance
vector of known (bounded) magnitude and uncertain direction arising from a uniform distribution over
the unit ball. In contrast, we are interested in Newtonian dynamical models, and our control primitive

is not a constant action but the entire range of actions consequent npon the closed loop policy, @, to be




specified below.?

Differences in models notwithstanding, we have derived considerable motivation from the *LMT”
framework which attempts to match systematically the low level controllers’ goals and capabilities with
the more abstract requirements that characterize a task. In the work of Lozano-Perez and colleagues
{Donald 1987, Erdmann and Mason 1988), high level progress is made through a sequence of controller
actions whose successful termination is ensured via careful choice of compliant motions in the presence
of rigid objects. The sequence itself has been designed via a back chaining of motion pre-images. In
our work, the funnelling action of sensorless compliance to rigid objects (Erdmann and Mason 1988)
is replaced by the stability of a general dynamical system, but we borrow heavily from the notion of

pre-image back-chaining, as will be seen in Section 3.
1.2.4 Juggling

In (Burridge, Rizzi, and I{oditschek 1995{1)) we introduced the notions of dynamical safety and obstacle
avoidance, while in (Burridge, Rizzi, and Koditschek 1995(2)) we discussed the controller composition
algorithm mentioned in Section 3. In this paper, we further our work by showing how to compose

controllers in such a manner as to avoid an obstacle that disconnects the workspace.

In previous work (Buehler, Koditschek and Kindlmann 1990(2), Rizzi and Koditschek 1994), we have
paid a great deal of attention to the lower level palette of controllers. OQur architecture implements event-
driven robot policies whose resulting closed loop dynamics drive the coupled robot-environment state
toward a goal set. We strive to develop control algorithms that are sufficiently tractable as to allow cor-
rectness guarantees with estimates of the domain of attraction as well. Thus, we have focused theoretical
attention on “practicable stability mechanisms” - dynamical systems for which effectively computable
local tests provide global (or, at least, over a “large” volume) conclusions. At the same time, we have fo-
cused experimental attention on building a distributed computational environment that supports flexibly

reconfigurable combinations of sensor and actuator hardware controllers, motion estimation and contrel

? Moreover, we never “bother” to develop an explicit disturbance model even though we are specifically interested in
operating in the empirical world with all its uncertainties and unmodeled phenomena. On the one hand, the theory and
experience of building working controllers (Koditschek 1987, Whitcomb, Rizzi and Koditschek 1993) teaches us that the
inevitable small but persistent disturbances arising from modeling errors, sensor inaccuracy and slight miscalibration are
countered by the local structural stability properties of stable dynamical systems. On the other hand, large, arbitrary and
unanticipated perturbations should be recoverable as long as they are relatively rare and do not violate the domain of
attraction of every feedback policy at our disposal. In the end, of course, the only acceptable test of one or another model

is to place the finished system in the physical setting for which it was designed.




algorithms, and event driven reference trajectory generators. The result has been a series of laboratory
robots that exhibit indefatigable goal seeking behavior, albeit in a very narrow range of tasks. In the
present work we explore the “higher level” problem of generalizing the range of tasks by composing the

existing controllers, achieving new tasks that no single existing controller was capable of in isolation.

1.3 Overview of the Approach

1.3.1 Feedback Confers Robustness

Physical disturbances to a system can be classified, broadly speaking, into two categories. The first
includes the small, persistent disturbances arising from model inaccuracies and sensor and actuator noise.
Spin and air drag on a falling ball modelled as a point mass, or spurious changes in camera measurements
introduced by lighting variations in a scene represent typical examples of this first type of disturbance.
The second category includes large, significani changes to the world as expected. For example, when
a parts tray is severely jostled or arrives unexpectedly empty then an assembly robot’s world model is
likely to have been grossly violated. Such large potentially catastrophic disturbances typically occur quite

ravely (otherwise, they would have been accounted for systematically by the robot’s designers!).

A common tradition in robotics and control has been to model these disturbances in the hope of
treating them rationally. One typically appeals to stochastic representations of small perturbations and
introduces an optimal design (for example a Kalman filter) to handle them. Analogously, recovery
from catastrophe is similarly “model” based, typically being addressed by special “exception handling”
routines specifically written for each particular failure anticipated. But disturbances are generally left
out of nominal models precisely because they are so difficult to model. The systematic origin of the
typical small disturbance often defies a stochastic representation and the resulting optimal designs may
be overly aggressive. Analogously, if the human system designers haven’t imagined a severe failure mode,

then the system will be unable to react to it when it occurs, with possibly disastrous results.

In contrast, feedback controlled systems can be designed to confer a level of robustness against both
types of disturbance without recourse to explicit disturbance models. On the one hand, asymptotically
stable systems are generically locally structurally stable. This means that the first class of disturbances
can degrade performance (e.g., biasing the goal set, or coarsening the neighborhood of the goal set to
which all initial conditions in its domain of attraction are eventually brought) but, if small enough, cannot

destroy stability of the (possibly biased) goal. On the other hand, if the closed loop system induced by a




feedback controller exhibits a global {or merely “large”) domain of attraction then large disturbances can
never take it “by surprise”, so long as the original state space and dynamical model used to represent the
world (not the disturbance) remain valid following the perturbation. The system will merely continue to
pursue the same shepherding function, now applied at the new state, with the same tireless progression

toward the goal as before.
1.3.2 Feedback Sirategies as Funnels

A decade ago, Mason (Mason 1985) introduced the notion of a funnel as s metaphor for the robust,
self-organizing emergent behavior displayed by otherwise unactuated masses in the presence of passive
mechanical guideways.® He understood that the shape of the guideways constituted an embodied com-
putational mechanism of control that ought to be rendered programmable. In this paper, we embrace
Mason’s metaphor and seek to extend it to active electromechanical systems (i.e., possessing sensors and

actuators) as being more obviously programmable.

Figure 1: The Lyapunov Function as Funnel: Idealized graph of a positive definite function over its

state space.

Figure 1 depicts the idealized graph of a positive definite scalar valued function centered at a geal point
- its only zerc and unique minimum. If a feedback control strategy results in a closed loop dynamics on
the domain (depicted as the x-y plane in these figures) all of whose motions lead down the funnel, then
this is said to be a Lyapunov function. In such a case, Mason’s metaphor of sand falling down a funnel is
particulazrly velevant since all initial conditions on the plane lying beneath the over-spreading shoulders
of the funnel (now interpreted as the graph of the Lyapunov function) will be drawn toward its bottom

— the goal.

In Figure 2 we depict a complicated boundary such as might arise when the user specifies an “obstacle”

3 Other researchers in robotics and fine motion planning have introduced comparable metaphors {Lozano-Pérez, Mason

and Taylor, Ish-Shalom 1984).




Figure 2: Ideal “funnel” capturing the entire “obstacle free” state space of the system.

— here, the set of states outside the bounded area that the user forbids us to enter.? Ideally, we would like
a control strategy that “funnels” the entire state space of the system to the goal. We suggest this as well in
the figure by sketching a complex funnel whose shape is exactly adapted to the domain.’ Unfortunately,
it is usually very difficult or impossible to find globally attractive control laws, so Figure 2 often cannot
be realized for practical reasons. Moreover, there is a large and important class of mechanical systems
for which no single funnel (continuous stabilizing feedback law) exists (Brockett 1982, Koditschek 1992).

Fortunately, we need not yet abandon the recourse to feedback.
1.3.3 Sequential Composition as Preimage Backchaining

Instead, we turn to another tradition introduced within the fine motion planning literature roughly one
decade ago by Lozano-Pérez, Mason, and Taylor {Lozano-Pérez, Mason and Taylor 1984) — the notion
of preimage back-chaining. Assume the availability of a palette of controllers whose induced funnels have
targets that can be placed at will. Then we may deploy a set of multiple controllers whose combined
{local} domains of attraction cover a large portion of the entire state space of the system. If such a set
is rich enough that the domains overlap and goal sets lie within domains of other controllers, then it is
possible to “backchain” away from the overall task goal, partitioning the state space into regions where

the different controllers will be active, and arrive at a switching scheme between the controllers that will

4 Of course, this picture dramatically understates the potential complexity of such problems since the free space need

not be simply connected as depicted!
5 In a previous series of papers with Rimon (Rimon and Koditschek 1992), the third author has addressed the design

of such global funnels for purely geometric problems wherein the complicated portion of the domain is limited to the
configuration space. In contrast, in this paper, we are concerned with complex boundaries that run through the velocities

as well — e.g., see Figure 11.
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Figure 3: Sequential composition of funnels: the goal point of each previous controller lies within the
domain of attraction induced by the next.

provably drive any state in the union of the various domains to the overall goal state.

This method of combining controllers in sequence is depicted in Figure 3. Note that the controller
represented by each funnel is only active when the system state is in the appropriate region of state
space, as sketched at the bottom of the figure. As each controller drives the system toward its local goal,
the state crosses a boundary into another region of state space where another controller is active. This
process is repeated until the state reaches the final partition, which is the only region to contain the goal

set of its controller.

We are now in a position to approximate Figure 2 with Figure 4, and this simple idea captures the

essence of our present contribution,

Figure 4: A suitable composition of local funnels partitions (a close approximation to) the free space
state space into cells assigned to a unique controller.

This scheme affords the same robustness against disturbances discussed above. Local stability against




small disturbances is obtained because each funnel represents a Lyapunov function for that particular
controller and goal point. It also provides robustness against large, unanticipated disturbances because
the control system has no higher-level state, or preconceived plan. If the state of the system shifts to
a distant location, then the controller appropriate for thet particular region of state space automatically
activates, and the process begins again. Similarly, if the state takes a favorable leap toward the goal state,
or starts in the goal partition, then intermediate controllers will never be activated. Thus, as long as the

state doesn't jump outside the union of all the domains in the partition, it will be effectively handled.

As we try to suggest in Figure 4 this version of preimage backchaining is particularly convenient when
the obstacle free space has a complicated geometry. Because the domains used for the partition of state
space must be invariant, there is a natural notion of safety that arises from this approach. If there are
obstacles in state space, but they do not intersect any of the constituent domains of the partition of state

space, then it follows that the state will never reach an obstacle while under the composite controller.

1.4 Contributions of the Paper

1.4.1 Formal Presentation

When written a little more carefully, as will be done below, it is fairly easy to verify the theoretical
validity of the backchaining approach outlined above. In the absence of noise, each local controller is
guaranteed by definition to drive its entire domain to its goal. In doing so, the controller forces the
system into the domain of a higher-priority contreller. This process must repeat until the domain of the
goal controller is reached,

For the nonlinear problems that inevitably arise in robotics, however, invariant domains of attraction
are difficult to derive in closed form, so the utility of the approach is called into question. Moreover,
physical systems are inevitably “messier” than the abstracted models their designers introduce for con-
venience, and the question arises whether these ideas incur an overly optimistic reliance on closed loop

models.
1.4.2 Empirical Implementation

Our experimental environment is highly nonlinear and “messy,” and challenges the idealized view of
the formal method in several ways. We have no closed form Lyapunov functions from which to choose

our domains of attraction. Instead, we are forced to use conservative invariant regions found using

10




experimental data and numerical simulation. Furthermore, theve is significant local noise in the steady-
state behavior of the system, so that even our “invariant” regions are occasionally violated. Nevertheless,
as will be shown, our composition method has proven to be very robust in the face of these problems. We
were able to create a palette of controllers that successfully handled a wide range of initial conditions,

persevering to the task goal while avoiding the obstacles, despite the significant noise along the way.

1.5 Organization of Paper

The paper follows a logical development roughly suggested by Figures 1 through Figure 4. In Section
2 we provide a high level overview of the hardware and software, describe how entries in the controller
palette (suggested by Figure 1) arise, and introduce the Juggle, ®;, a controller used as a basis for all
entries in our palette. We also introduce variants of ®: Catching, ®¢; and Palming, ®p. In Section 3 we
introduce the notion of a safe controller suggested by Figure 2, as well as formally define the sequential
composition depicted in Figure 3. In Section 4 we implement the partition suggested by Figure 4, and

report on our empirical results.

2 Physical Setting

2.1 Hardware System
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Figure 5: (a) The Biihgler Arm. (b} The horizontal workspace with obstacles.

For the experiments described in this paper, we use the “Biihgler,” a three degree of freedom direct drive
machine pictured in Figure 5(a), which we have discussed in a variety of other settings. Two cameras
provide ball images at 6011z, and all computation is done on a network of twenty transputers (Rizzi and

Koditschek 1996, Rizzi 1994, Rizzi, Whitcomb and Koditschek 1992).
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Figure 6: Flow chart showing the various state machines in the system.

Y

Figure 5(b) shows an overhead view of the workspace, and depicts the various obstacles with which the
robot must contend. The inner and outer edges of the annular workspace are caused by the “shoulder”
offset and finite paddle length respectively. The visual boundaries are obstacles because the robot will
lose sight of the ball, thus failing its task, if the ball strays beyond these lines. Finally, a fiat obstacle is
introduced that disconnects the horizontal workspace. The robot may pass under the obstacle (which we
will refer to as the Beam), and the ball may pass over it, but no contact between the two is possible in
the region occupied by the Beam. Thus, in addressing the problem of how to bring a ball from one side
of the Beam to the other, we encounter a simple situation wherein a regrasp (see Footnote 1) maneuver

is necessary for the task to succeed.

In this paper, we focus largely on the state of the ball, (b,5) € 8 = IR®. For the most part, it will be
convenient to decompose this state into the direct sum of horizontal and vertical subspaces, B="H &V,

with (h, i;) € H, and (v,7) € V, where b= (h,v), b= (h, ).
2.2 Software System

Our justification for limiting attention to the ball states is provided by the formal properties of the robot’s
sensing and control laws whose software implementation is depicted in Figure 6. Ball states, (b,b) € B, are
viewed by the vision system, V' (cameras and image processing), which produces image plane locations,
i. An observer, 0, uses i to triangulate ball positions and produce estimates of the full state of the ball,
(b, E:) These ball state estimates are fed back to V' to direct its focus of attention, and also interpolated
to produce estimates at 330 Hz for the rest of the system. This nonlinear V' - ( sensing loop is discussed
in detail in {(Rizzi and Koditschek 1996): for present purposes it suffices to note that the sensor feedback
loop is globally asymptotically stable, so that (b, i)) — (b, b) whenever the ball enters the robot’s field of

view.

Estimated ball states, (5, f)), are passed through a memoryless transformation, m, to produce reference

12




robot states, (r,#,7). We refer to m as a mirror lew. The references, (r,#,#), are fed to an inverse
dynamics joint space controller (Whitcomb, Rizzi and Koditschek 1993, Whitcomb 1992), C, which
produces torques, 7, for the actuator block, A (amplifiers, motors, etc.), which generates true robot joint
states, {g,¢) € Q. It will sometimes be useful to decompose the robot position into its (joint space)
constituents: ¢ = (¢, 6r, 1.}, The robot states are delivered to C for feedback control. Again, we note
that the controller has been shown to be globally asymptotically stable, so that (g,4) — (r,7) whenever
i* exists.

In this paper we will completely ignore the transients in V' —( and C'— A, and assume that (5, Et) = (b, f})
and {g, 4} = (r,#), as these conditions are eventually gnaranteed by the internal stability of our algorithm.
This reduction of & (a dynamical controller) to m (a memoryless nonlinear transformation) affords the
very simple composition method presented in Section 3. In practice, the transients are generally rapid
enough to support this simplified reasoning. Of course, in some situations we inevitably pay a price in
performance (see Section 4.4.3 for further discussion of this topic). In the sequel we will be concerned

with various choices of m, but will use the symbol “®” to denote the various controllers that arise.

2.3 Closed Loop System

b,b .9

o D
; ey = (L ])

Figure 7: (a) The closed loop dynamics, f, induced by @. (b) The intermittency of the robot-environment
interaction allows us to view the dynamics as a return map, with important implications vis & vis re-

grasping (see footnote 1), as depicted in 14.

In Figure 7(a) the environment, F, is added to close the loop back from robot to ball. The resulting
closed loop dynamics induced by a particular controller, ®, are denoted fs. Assumptions made in the
previous section (that is, (g,4) ~ m(b, b)) allow us to view fs as evolving entirely within B, the state
space of the environment (ball). Note that the intermittent contacts characteristic of juggling promote a
view of this closed loop from the perspective of a return map on a Poincaré section (Buehler, Koditschek

and Kindlmann 1990(2)), thus fe is 2 map rather than a vector field, as illustrated in Figure 7(b).
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We are interested in encoding and achieving user goals taking the form of a desired set of world states,
G C B. A controller, &, achieves those goals if ¢ is attracting and invariant under fs. If so, we would
like to characterize its domain of attraction, denoted Dg(®) C 8.

During the last five years we have developed an approach to robot controller design that has produced
controllers with large domains of attraction to single set points by essentially reshaping the total energy

exchanged between the robot and its environment, as depicted in Figure 1.

2.4 Example: The Juggle &;

Our juggling behavior is induced by a control law in which a single ball is struck repeatedly by the robot
paddle in such a way as to direct it toward a limit cycle of specified apex height at a desired horizontal
position with no horizontal velocity. We refer to this controller as ;. According to assumptions made
in Section 2.2, ®, reduces to my, 8 memoryless (nonlinear) transformation of the ball state, which we

now describe: (Rizzi 1994, Rizzi and Koditschek 1993).
2.4.1 The Mirror Law, m;

For a given ball state, (b,b), we begin by inverting the kinematics of the arm to caleulate the robot
position that would just touch the ball: ¢(b) = (¢, 8:,0). For convenience, we choose zero for the third

degree of freedom to eliminate redundancy. This effectively gives us the “ball in joint space coordinates.”

Next, we express formulaically a robot strategy that causes the paddle to respond to the motions of

the ball in four ways:

(i) ¢ = ¢y causes the paddle to track under the ball at all times.

(ii) @ “mirrors” the vertical motion of the ball as expressed by the original planar mirror law (Buehler,

Koditschek and Kindlmann 1990(2)).

(iii) Radial motion of the ball causes the paddle to raise and lower, resulting in the normal being adjusted

to correct for radial deviation in the ball position.

(iv) Angular motion of the ball causes the paddle to roll, again adjusting the normal so as to correct

for lateral position errons.
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Define the ball’s vertical energy and radial distance as

1,
w2 b+ 38 and, p S48 (1)

respectively, where -y represents gravity. The complete mirror law combines these two measures with the

set point apex position expressed in joint space coordinates: G 2 (Py, @5, 7) to form the function

73 b
Or ~
my (b, b) A 0, | = Oslno + :;(m: M)} A+ sooley A+ seady | (2)

{ii) B D)
Fio(de — @) + Nu¢5

?pr _ (:)

There are nine parameters in (2): three representing the position of the desired set point {the desired

velocity is zero), four for the PD gains for radial and angular control, and two for the gains regulating
vertical energy. In Sections 2.5 and 4 we will create controllers that act in different ways on different
areas of the workspace by changing the values of these parameters. At such times it will be useful
to think of our controller as determined by an element of parameter space, ®{£),£ € Z, where £ =
(775 Pos o, Koo, Ko, K10, K11, Ko, 1)

As we will see, different choices of the parameters, £, can lead to qualitatively different behavior of
fo. We will use the notation @ to refer to a “typical” controller having parameters from the region of =

leading to juggling behavior with non-zero apex height and an attracting limit cycle with single set point

apex G.
2.4.2 Analysis, Simulation, and Empirical Fxploration of D(®;).

It is useful to decompose the goal point, G, into its horizontal and vertical components: ¢ = (Gy, Gv),
where Gy = (g, $), and Gy = 7. In previous work, Rizzi et. al. (Rizzi and Koditschek 1994) have shown
that the vertical and horizontal subsystems of fz, are essentially decoupled. This allows us to examine

the two systems independently and combine the results.

Buehler et. al. (Buehler, Koditschek and Kindlmann 1990(2)) showed that the restriction of fs, to
VY has global attraction to Gy. Cwrrently, however, we can only show local attraction for the horizontal
system. Empirical results show that Dy (®;) indeed changes very little as apex height changes within the
relevant range of heights, and we focus largely on the horizontal system for the remainder of this paper.

Henceforth, when we refer to D(®;), we will mean Dg{®;).

15




The mirror law used in the experiments discussed in this paper does not permit a closed-form expres-
sion for the apex-apex return map. Recently, we have made strides toward developing a mirror law that
has a solvable return map (Rizzi and Koditschek 1994), vet still generates similar behavior. As will be
seen in the sequel, this would be very helpful to our methods, but the absence of closed form expressions

does not impede the ideas introduced in Section 1.3,
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Figure 8: Empirically derived estimate of the horizontal juggling domain, Dy {9 5). Note for the purposes
of subsequent discussion that the symbol(s) “+” (“”) denote the points which failed {succeeded) in
remaining within the robot’s annular and visual workspace under the action of ;.
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Figure : Numerically derived estimate for the horizontally safe juggling domain. The symbol(s) “+”
{“”) denote(s} the points which failed (succeeded) in remaining within the robot’s annular and visual
workspace under the action of the numerical simulation of &,

Due to the complexity of the system, it is difficult to “feel out” the boundaries of the domain of atirac-
tion for ®@; through systematic juggling experiments. Nevertheless, in Figure 8, we display experimental
data used to formulate an approximation of what we will come to call in Section 3.2 the safe domain
for a juggling controller operating within the bounded workspace formed from the robot’s paddle and
visible region — the region of Figure 5(b} with no flat obstacle inserted (Burridge, Rizzi and Koditschek

1995(1)). The particular choice of parameters, £, for this controller came from previous empirical work,
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In these plots, the axes Rho and Phi refer to the horizontal polar coordinates of the ball relative to the
robot’s base.

To overcome this difficulty, and to speed up deployment, we created a numerical simulation of the
juggler. In Figure 9, we display the same data as Figure 8 run through the numerical simulation of the
robot operating under @ ;. Since all but one of the starting conditions that failed on the real robot failed
in simulation, we are persuaded that the simulation provides a conservative approximation to the robot’s

true actions.

2.5 The Complete Palette

In Section 4 we will deploy a selection of different controllers from the palette represented by £ in (2)
with which to run our experiments. Most of those controllers will be copies of a particular ®;(£) which
vary only in the angular component, ¢, of the set point. Taking advantage of the rotational symmetry of
my in (2}, we will rotate a numerically derived domain of attraction for & (&) along with the set points,

completing the requirements for our methods.

In addition to varying the set point for @ ;{£), we will use two other controllers based on {2}, but with

choices of £ that lead to qualitatively different behavior.
2.5.1 Palming: ¢p

If we set to zero the gains regulating the vertical energy of the ball, (kg, k1), then we find that the ball
will lose energy, finally coming to rest on the paddle. The lateral terms (ili, iv) of (2}, however, will
continue to stabilize the ball at the horizontal set point, Gy = (5, $s). The closed loop dynamics of
this new behavior are significantly different from juggling, as the paddle is in continuous contact with
the ball, exerting continuous control over it. We refer to this behavior generically as palming: ®p. The
continuous interaction between ball and paddle allows us to tune the lateral PD gains higher for @ than

for @;.

As our numerical simulator relies on the intermittent nature of contact in juggling, we can not use
it to simulate palming. Currently, we have neither an analytically nor a numerically derived domain
of attraction for fs,, but empirical results have shown that the projection of the domain into H is
comparable in size to that of fa,, if not larger. We will use the same horizontal domain for palming

as for juggling, but the vertical energy component will be restricted to values near zero, as implied by
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empirical tests.
2.5.2 Calching: ®¢

®; may behave poorly when the ball is nearly in continuous contact with the paddle. In these situations,
the system may not notice small bounces, and is very susceptible to noise in the vision system and
observer. ®p, on the other hand, may have PD gains tuned too aggressively for large bounces of the ball,

and should be switched on only when the ball has low vertical energy.

In order to guarantee a smooth transition from juggling to palming, we introduce & catching controller,
&, designed to drain the vertical energy from the ball and bring it down to rest on the paddle. Currently,
a variant of @7 is used in which the vertical set point, 7, is very low, and the robot meets the ball higher
than normal. For an intuitive view of this, see Figure 15.

Due to the hybrid nature of this controlier, we have no analytic or numerical results for its domain
of attraction. Instead, we use a very conservative estimate based on the numerically-derived D(® ;) of
Section 4.1. Although this controller is not ideal, it removes enough of the vertical energy from the ball
that we can safely turn on palming. Currently, catching is the dominant source of task failures, as we

report in Section 4.

3 Formal Idea: Safe Sequential Composition

The technique proposed here is a variant of the preimage backchaining idea introduced in (Lozano-Pérez,
Mason and Taylor 1984), although their algorithm was used for compliant motion in the face of velocity
uncertainty with respect to a generalized damper model of dynamics. We choose to substitute sensory

events for the physical transitions that characterized their control sequences.

3.1 Sequential Composition

Say that controller ®, prepares controlier @ {denoted ®; = ®;) if the goal of the first lies within the
domain of the second: G(®;) C D(®,). For any set of controllers, U = {@;, ..., By}, this relation induces
a directed {generally cyclic) graph, denoted T,

Assume that the overall task goal, G, coincides with the goal of at least one controller: G(®;} = G.

After finding ®;, choose a partial ordering on I" which transforms it into an acyclic graph with all paths

leading down to ®;. For example, consider a breadth-first search back from @;, as outlined in the following
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steps:

1. Let the OPEN-LIST contain ®;. Let Dy, = Dg,, N = 1, and Ds,(N) = Ds,.

2. Append to the end of the OPEN-LIST the list of all controllers which prepare the first element,

and have not previously been placed on the OPEN-LIST.
3. Remove the first element of the OPEN-LIST.

4. For @;, the new first element of OPEN-LIST, let Dy, = Dy, — Dso(N), and let D, (N + 1) =

D5 (N)UDg,. Increment N.

9. Repeat 2,3 and 4 until OPEN-LIST is empty.

At the end of this process, the regions Dg, will be cells in a partition of Ds, (M), where M is the
number of cells in the partition. The automaton will choose controller ®; exactly when the ball state lies
within Dg,.

The domain of each controller in Ds,, is partitioned in such a manner that the automaton will only
switch to a new controller if the ball moves into the domain of a controller which was processed earlier
from OPEN-LIST. Since the attracting goal set of every controller (except ®;) lies in the domain of
another closer to the goal, it is inevitable that Dg, finally be reached, and thus the task goal set will be
approached. This process is depicted in Figure 10, where the funnels represent the various domains, each
attracting to the goal set at the middle of the funnel, and the partition of state space is shown on the
horizontal plane below them.

The domain of attraction for the goal set can now be considered to be not just Dg,, but Ds, =
Us,cs; Pe.- The process of constructing a composite controller from a set of “simpler” controllers is
denoted by ® = \/ g, and is depicted in Figure 10. In that figure, the only active part of each funnel is

the part not over the higher-priority funnels.

3.2 Obstacles and Safety

There are two types of obstacle with which we are concerned. The first consists of regions of the configu-
ration space “off limits” to the robot, Or, whether or not it is in contact with the ball. Robot obstacles
include the floor, joint limits, etc., as well as any physical obstacle in the workspace, and have been

studied in the kinematics literature. The second type of obstacle consists of subsets of ball state space
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Figure 10: Sequential composition of controllers: Each controller is only active in the part of its domain
not already covered by those nearer the goal. Here, ®; = ®5 = @3, and @3 is the goal controller.

which are “off limits” to the ball, even when it is not in contact with the robot. This type of obsiacle
is particularly interesting in the context of intermittent contact, which results in discrete dynamics, and
has not been studied methodically to date. The system is considered to have failed if it allows the ball
to enter any such regions, collectively denoted Op.

Recall that for a particular mirror law, m, each ball state induces a corresponding robot configuration.

We define a workspace obstacle, (3, as the union of ball state obstacles and the set of ball states that

induce the robot into the robot obstacles, which we will loosely call m=*(Og). Thus O = OglJm~1(Or).
3.2.1 Definition of Safety

The “time to obstacle”, 7o, of a particular ball state is defined as the time it would take to reach @ in the
absence of the paddle. Similarly, the time until next impact with the paddle given a particular control
law, &, is denoted 13.

A controller ® is safe with respect to O if there can be found an invariant open subset in D{®) such
that the next impact with the robot always occurs before the ball reaches an obstacle (i.e., 7¢ < 7o) for
all states within the subset. We denote such a safe domain by Do {®).

Notice that for any obstacle and controller, a safe domain is invariant during flight by definition.
Thus, once $ has been selected, only a vielation of cur models — e.g., a perturbation during flight or

impact, an overly large observer error, etc. — can cause a transition out of Dp(®).
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3.2,.2 Safe Deployments

If all the constituent controllers, ®;, in a deployment are safe with respect to an obstacle, then it follows
that the resulting composite controller, @ = \/ ®;, must also be safe with respect to the obstacle. This is
because any state within D{®) is also within D(®;) for the current active ®;, and ®; will not drive the

state into the obstacle from within D{®;).

4 Implementation: Deploying the Palette

4,1 Parameterization of Domains

While fg is not available in closed form, its local behavior at goal G is governed by its Jacobian, Dfs,
which might be computed using Calculus and the Implicit Function Theorem. However, in practice
(Buehler, Koditschek and Kindlmann, 1994, Buehler, Koditschek and Kindimann 1990(1)) we have found
that the Lyapunov functions that arise from D fg yield a disappointingly small domain around G relative
to the empirical reality, and we wish to find a much larger, physically representative domain. Thus, we

resort to experimental and numerical methods to find a large and usable invariant domain.

We created a “typical” juggling controller, @, by using an empirically successful set of parameters,
&, with goal point Gy = (fg, do, 7o) = (0.6,0.0,4.5). Using the simulator introduced in Section 2.4.2, we
then tested a large number of initial conditions, (h;, h,) = (@:,¥:, &1, Yi), covering relevant ranges of H
{the starting height, v;, is the same for all runs, as we are not concerned here with the vertical subsystem,
owing to the decoupling of H and V discussed in Section 2.4.2}). In Figure 11 we show samples of the
“velocity spines” of these tests. In each plot, one initial velocity, s, is chosen, and a range of positions
is mapped forward under iterates of fp. The shaded areas show the location of the first impact of all
states that are successfully brought to Go, (denoted “+") without leaving the workspace serviced by the
paddle. In the left hand column, g§; = 0, while &; varies from large negative to large positive. On the

right side, the roles are reversed. These plots demonstrate the rather complicated shape of the domain

of attraction, as we have tried to suggest intuitively in Figure 2.

21




as

cal

a1p

a2 N 1 N
ED o 0% 1

o4

A%
s /

L.
~

o
x
45 o
x
[
X
°
x

-

a2

45 o5 1

ok

[3]
ob

a2
-3

Figure 11: Velocity “spines” - projections onto the zero-velocity piane of slices of H at regularly spaced
velocities — of the invariant attracting domain of ®;. Shaded regions denote initial conditions that were
successfully contained in the workspace while being brought to the goal via iterates of fp,. (a) Left
Column: Varying initial #; from negative (top) to positive (bottom) with #; = 0. (b) Right Column:
Varying initial ; from negative to positive with &; = 0.
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Figure 12: Four 2-D slices of the invariant ellipsoid, Dp € H (smooth curves), and its one-bounce

forward image, fo(Dp) (dots).

4.1.1 D(®;,): The Domain of 9y,

Currently, we have no convenient means of parameterizing the true domain of ®;,, pictured in Figure 11.
Yet to build the sequential compositions suggested in this paper we require just such a parameterization
of domains. Thus, we are led to find a smaller domain, Dy, whose shape is more readily represented,
as introduced in Figure 1, yet which enjoys the invariance property with respect to fz,, namely that
fo,(Do) C Dy. Ellipsoids make an obvious candidate shape, and have added appeal from the analytical
viewpoint (although these will be considerably larger than those we have gotten in the past from Eyapunov
functions derived from Dfs,). Inclusion within an ellipsoid is also an easy test computationally - an

important consideration when many such tests must be done every update (currently 330 Hz).

Starting with a candidate ellipsoid, A.s: C H, centered at Gy, simulate one iteration of the return
map, fz, to get the forward image of the ellipsoid, fo,(Niest). If fo,(MNiest) C Niest then Ny is

invariant under fs,. Otherwise, adjust the “shape” to arrive at A,,,, and repeat the process. In
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Figure 12, we display four slices through the surface of such an invariant ellipsoid found after many trials
(smooth ellipses), along with the same slices of its forward image (dots). Although these pictures do not
in themselves suffice to guarantee invariance, they provide a useful visualization of the domain and its
forward image, and comprise the primary tool used in the search.® The invariant ellipsoid depicted in

Figure 12 will be denoted 7y throughout the sequel.

Relying on the rotational symmetry of the mirror law, (2), we now use ®j, to create a family of
controllers by varying only the angular component of the goal point, ¢, keeping all other parameters
fixed, and rotating Dy to match. We denote a member of this family by &, (¢), with goal Go(#) and

domain Dy().
4.1.2 Dpappre(®;,): Safety with respect to the Workspace Boundaries

The largest safe domain with respect to the paddle’s workspace is indicated by Figure 11. However, since
there is no obvious way of parameterizing this set {recall that geometrically close approximations to this
volume in H will typically fail to be invariant with respect to fg,), we resort to the more conservative

approximation, Dy, shown in Figure 12.
4.1.3 Dgraa(®,,): Safety with respect to the Beam

In Figure 13(a), we depict the simulated iterates of fs, again, but add the Beam to the workspace.
The zero-velocity slice of the safe domain, Dy, has also been added for comparison {ellipse with dotted
boundary). The gray area represents those initial states with zero initial horizontal velocity that are
successfully brought to Gy without leaving the workspace or hitting the Beam {compare to the middle
pictures of Figure 11). The dark region represents all states which hit the Beam, either initially, or after
a few bounces. Note that all states in this figure that don’t hit the Beam initially are successfully brought.
to the goal. This happens because Gy is so strongly attracting that states on the wrong side of the Beam
are simply knocked over it, whereas those already near the goal never stray far enough from it to reach
the Beam. In Figure 13(b), we add horizontal velocity to our initial conditions, and note that secondary

images of the Beam appear, demonstrating the added complexity in the shape of the largest safe domain

% Since Gp is an attractor, the existence of open forward invariant neighborhoods is guaranteed. However, “tuning the
shape” of Miest by hand can be an arduous process. This process will be sped up enormously by access to an analytically
{ractable return map. Even without analytical results, the search for invariance could be automated by recourse to positive
definite programming {& convex nonlinear programming problem) on the parameters {(in this case, the entries of a positive

definite matrix) defining the shape of the invariant set. We are presently exploring this approach to generation of Miest.

24




o8

LE3 7

04

ez

02 a
05

Figure 13: Safe domain for @, with the Beam inserted. Light gray areas represent successful initial
states, darker areas show states that eventually hit the Beam. {a} Zero initial velocity. The appropriate
slice of Dy has been added for comparison. (b) &; = 1.5'2, showing preimages of the Beam.

arising from the introduction of the Beam.

Any @ ;,(¢) whose domain does not intersect the Beam or its preimages, as shown in Figure 13, will

be safe with respect to the Beam, as well as the paddle’s workspace.

Because the Beam divides the horizontal workspace into disjoint regions, we need to take advantage
of the discrete dynamics of fz, to cross it (recall from Section 2.3 this is a return map). We do this by
finding a disjoint, yet still invariant, safe domain for @;,. We generate a series of small ellipsotds starting
on the far side of the Beam, such that each maps forward into the next, and the last maps forward entirely

into Dy, We will call this new disconnected forward invariant domain D; throughout the sequel.

In principle, finding a D, is not much more difficult than finding a Dy. First we choose ancther
controller close to the Beam on the far side, ¢, (qﬁpre), and take a small neighborhood, N, surrounding
its goal, Gp(@pre). This will be the “launch window”. Next, we take the forward image of A under
one iteration of the discrete return map, and find an ellipsoid, A2, that completely contains it. We then
map N> forward, and continue this process until we have found an ellipsoid, V,, whose forward image
is completely contained in Dy. By construction, the union of ellipsoids, Dy := Do UM U ...UM, is

invariant under fs,, and safe with respect to the Beam and the workspace boundaries.

In practice, differences between the true robot behavior and the simulator have proven too substantial
for the small neighborhoods, V;, to effectively contain the trajectory of the ball during the activation of the
trans-Beam controller. Instead, we have been forced to build our Dy domain via direct experimentation.

We inspect the actual experimental distribution of apex points (that should have been in A according to
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Figure 14: Four projections of the union of the disjoint ellipsoids, Dy := D N U Nz U N5, created by

analysis of empirical data.

the simulation), and create an empirically-derived A}. We then repeat this process for Mz, arriving at an
empirically-derived N}, and then again to create N}, For the present case, this turn out to be completely
contained in Dp. The empirically-derived trans-Beam domain D, used in the experiments below has four

parts: N1, N}, N3, and Dy, and is shown in Figure 14 projected onto four orthogonal planes in H.

4.2 Composition of Domains

The robot’s task is to capture and contain a ball thrown into the workspace on one side of the Beam,
negotiate it over the Beam without hitting it, and bring it to rest on the paddle at location Gy =
(0, po, ¢1). We now describe the deployment created by hand using the controllers constructed in the

previous sections to achieve this task.
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4.2.1 Deployment

The only controllers in our palette capable of stabilizing the dynamics about Gy are the stable palming
controllers with goal point Gr, so we choose one with empirically successful parameters: ®p{Gr). The
palming domain is a large ellipsoid in 7, but its projection onto V is much smaller. We only allow palming
for those states with very low vertical energy. We also use a catching controller, ®¢, that has a small
domain at Gr, and successfully reduces the ball’s vertical energy from typical juggling values to values near
zero (i.e., palming values). This introduces the need for ®;,(¢r) — a juggler that attracts juggled balls
to G, but with non-zero vertical energy. Note that by our construction, ® ,(¢r) > ®c(Gr) = ®p(Gr),
but ®;,(¢r) ¥ ®p(Gr), so the system must go through catching from juggling to reach palming. This
idea is depicted intuitively in Figure 15: In the left hand fisure, ®; draws a region of states toward its
goal, which les within D¢. In the right hand figure, ¢ draws its domain down (in vertical energy) to

its goal, which lies within Dp.

Figure 15: Juggle to Catch to Palm: (a} The Juggle drives all of its domain to Gy, which les within the
domain for the Catch, but with non-zero vertical energy. (b) The Catch reduces the vertical energy of

the ball, bringing it down into the domain for Palming,.

Starting with ®7,(¢7), we added new jugglers with new values of ¢ such that each new goal lay just
within the last domain (which was a rotated copy of Dy}, repeating this process until we reached ¢g, and
the Beam blocked further progress. At this point we used Dy, the trans-Beam domain, for &, (), as

described in Section 4.1.3.

Finally, we created another sequence of rotationally symmetric controllers on the far side of the Beam,

starting with one whose goal lies at Go(dpre), and continuing until the edge of the visible workspace
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| Ellipses || Type | Goal:¢ | Domain Type |

1 ®p 0.3 Dp
2 %) 0.3 Do
3 &, 0.3 Dy
4 D, 0.15 Dy
5-8 il 0.0 Dy
9 ®, —0.64 Dy
10 ®, —0.81 Dy
11 b, —0.97 Dy
12 b, —-1.12 De
13 &, ~1.26 Dy
14 @, -14 Dy

Table 1: The full deployment, with controller types, goal points and domain types. All goal points
have the same radial component, 5, so we display here only the angular component, ¢. Ellipse numbers

correspond to those in Figure 16.

blocked further progress. The entire palette of controllers is shown in Figure 16. Note that all domains
are simply rotated copies of Dy except the four ellipsoids swirounding the Beam, which make up the
invariant domain, P, for the trans-Beam controller of Figure 14, Some of the interesting parameters of

this deployment are listed in Table 1.

Every member of this deployment was chosen by hand to ensure that a path exists from all the
domains to the task goal state. The algorithm of Section 3.1 leads in a straightforward manner to a
linear tree with no branches, thus the ideal trajectory of the system should be a stepwise descent from
the first cell of the partition entered through all the intermediate cells, and finally to the catching and

then the palming cell, where it should remain.

1 % :
o o5 1

Figure 16: A “theoretical” deployment using the jump controller of Figure 14.
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4,2,2 A Hierarchy of Controllers

The deployment and controller switching scheme we have just described relies for its formal properties on
the abstracted domain and goal properties of the constituent return maps. In turn, the invariance and
attracting properties of fs arise from abstractions whose validity depends on the underlying tracking and
convergence properties of the continuous controller and observer. Thus, we have a hierarchy of controilers
{and, hence, of abstraction), where each level functions on the basis of certain assumptions about the
quality of performance of the lower levels. As we will see in Section 4.4.3, however, there wilt be situations
where the transients in the robot’s tracking of the reference are too large for it to get to the ball despite
the mirror law, thus viclating the underlying assumptions at the lower level. Moreover, we will see in
Section 4.4.1 that the noise in the system sometimes causes the ball to stray from all the domains of the

deployment, despite their theoretical invariance, viclating the properties assumed by the higher level.

The entire deployment of Section 4.2.1 may be thought of as generating a single {complex) controller,
®, with its own goal and domain, which could then be used as an element of a still more complex
deployment. When this is done, there will be assumptions about the ability of @ to safely move the ball

across the Beam and to its goal, and so the process continues.

In summary, a hierarchical system will function only as well as its constituent abstractions can be
realized empirically. Since no model is ever perfect; all theoretical guarantees are subject to operating
assumptions. It is important to keep in mind the lower-level assumptions being made, so that empirical

settings wherein such assumptions fail can be identified.

4.3 Characteristics of the Test Runs

In Figure 16, we depict the entire deployment of the previous section by superimposing the zero-velocity
slices of all the various domains onto the horizontal workspace, along with projections of the non-zero
velocity parts of D;. There are a total of fourteen ellipsoids for eleven different controllers, the union of
four of them associated with the trans-Beam controller’s domain, Dj, and the same ellipsoid being used
for the final juggling and palming controllers {numbers 1 & 3 in the figure). This is our hand-crafted

realization of the concept depicted in Figure 4.
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Figure 17: (a) Cell {ellipse) number plotted against time for a typical run, with a trace of the ball’s
vertical position added for reference. The dots represent the mode at the moment of impact. (b)
Horizontal projection of the same trace, superimposed on the deployment of Figure 16. The dots show

the apex positions.

4.3.1 A Typical Run

Figure 17(a} shows the trace of typical run, with active controller plotied against time, while Figure 17(b)
shows the same run projected onto the horizontal workspace, along with the deployment of Figure 16.
Typically, the ball was introduced into a cell of the partition that had very low priority, such as ellipses
13 or 14 in Figure 16. The robot brought it fairly quickly, within a few bounces, to the controiler closest
to the Beamn on the far side (9), where it stayed for some time, waiting for the ball to enter the launch

window, A, (8), of the trans-Beam controller’s domain, D;.

At this point the “messiness” of the system mentioned in Section 1.4.2 was most evident, as the
observer (recall Figure 6) would “hallucinate” the ball state within A, (8), activating the trans-Beam
controller, then change its estimate and take the ball state back out of N}, turning on the pre-Beam
controller {9) again {(these spurious transitions are labelled “Launch Attempts” in Figure 17(a}). Although
the action of the robot at impact (dots in Figure 17) was almost always correct, the third degree of
freedom, ¥, (recall eqn.(2)), would visibly shift back and forth during the flight of the ball due to the
large difference in goal location between the pre- and trans-Beam controllers (3 and 8), Eventually, the

true ball state entered N}, the trans-Beam controller (8) became active, and the task proceeded.

In the particular run shown in Figure 17, the ball overshot controllers (5) and (4), going straight from
(6) to (3). The first catch attempt was unsuccessful, with the ball exiting D¢ (2) before entering Dp

(1), so the juggle (3) turned back on, and after a couple of hits, ®¢ turned on again, and the ball was
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Experiment 1 | Experiment 2 | Experiment 3 |
Number of successful runs: 49 (82%) 57 (95%) 23 (38%)
Titme (s} to reach Pre-launch mode : mean 3.954 2,775 1.276
std. dev. 2.086 1.283 0.428
Time {s) spent in Pre-launch mode : mean 9.811 8.368 13.671
std. dev. 10.020 5.879 8.498
Time (s} from Launch to Palming : mean 3.871 5.837 4.351
std. dev. 1.821 4,456 2.204
Time (s} from Throw to Palming : mean 17.636 16.980 19.299
std. dev, 10.190 7.809 8.300
Regressive mode switches: “hallucinated® 98 71 34
Actually taken 4 0 0
Failed Catch attempts: recovered 6 52 7
lost 6 3 1

Table 2: Statistics characterizing three sets of 60 trials each. The first three rows give a breakdown for
the successful runs of the total time into three segments: Throw to Pre-launch, time spent in Pre-launch,
and Launch to Palming. The fourth row has the same statistics for total time from Throw to Palm.
Regressive mode switches are “hallucinated” if the mode switches back before impact.

brought down to the paddle successfully.
4.3.2 Descriptive Stalistics

In Table 2 we list the percentage of successful trials within each of three sets of experiments to be
described below. We also show for all successful trials the mean and standard deviation of the length of
time from introduction to pre-launch mode, time spent there before launch, iime from launch to palming,
and total time from start to finish. We also show the total number of regressive steps considered. Those
“hallucinated” result from controller transitions based on false observer transients, which change back
after the observer settles. All regressive steps actually taken were associated with failed Catch attempts,
where the ball moved out of Dg before it was in Dp, and sometimes moved to juggles further away than
{3). The regressive steps, both those “hallucinated” and those taken, remind us of the gulf between the

ideal assumption, (f), f)) s (b, b}, and reality, as discussed in Sections 2.2 and 4.2.2.

4.4 Deployment of Invariant Sets

We ran three sets of experiments, each with sixty trials. We started off carefully introducing the ball
to a theoretically correct deployment. Next, we added a set of “catch-alls” — controllers with domains
not demonstrably safe, yet practically effective ~ and once again carefully introduced the ball. We also

modified Do to be more conservative in order to reduce the number of failures due to catching, letting
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a catchall surrounding it save the ball if it strayed out before reaching Dp. Finally, we ran the second
deployment again, but this time with wild, almost antagonistic, introductory tosses of the ball. The

results of these experiments we now discuss in detail and have summarized in Table 2.
4.4.1 Theorelically Correct Deployment

In our first set of experiments, the deployment was exactly that of Figure 16 — an exact implementation
of the formal algorithm presented in Section 3.1. The ball was carefully introduced into the workspace
60 times, 49 of which {82%) were successfully negotiated along the workspace, over the Beam, and safely
brought to rest on the paddle. Five times the ball was knocked out of all safe domains while going over

the Beam, and six times during the transition from catching to palming, which is still being refined.

Some statistics concerning the various segments of a typical run are given in the first column of Table
2. Note that more than half of the total time is spent waiting for the ball to enter the launch window and
get knocked over the Beamn, and differences in the length of this delay account for most of the variance in
total task time. This results from the launch window being small relative to the noise in the robot-ball

system.

The imperfect success rate for this formally correct control scheme belies the exact accuracy of our
models and assumptions. Nevertheless, despite the “messiness” of our physical system, the relatively

high success rate validates the utility of our approach in a practical setting.
4.4,2 Adding “Sefety Nets”

Given the inevitable infidelities of the robot and ball with respect to the ideal models of ball flight, impacts,
and robot kinematics, a physical implementation will remain roughly faithful to the simulation results,
but inevitably depart frequently enough and with significant enough magnitude that some further “safety
net” is required to bring balls that start (or “unexpectedly stray”) outside the domain of the composite

back into it.

Using Figure 11 as a guide, we added very low priority controllers with larger domains of attraction.
These controllers have domains that in some cases extend beyond the end of the paddle {but not into the
Beam), and are not theoretically invariant. Nonetheless, the idea behind our second set of experiments
was to use such controllers as backups for the regular deployment, capturing the ball if it strays away

from the controllers of Experiment 1, and channelling it back into the theoretically sound portion of the
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deployment. In addition, the presence of the catch-all controllers allowed us to reduce the size of D¢,

thus avoiding some of the failures resulting from bad catches.

The ball was again carefully introduced 60 times, Three failures resulted from bad transitions from
catching to palming, but the remaining 57 runs {95%) were successful. The success of these catch-
all controllers confirms the simulation results of Figure 11, suggesting that there exist larger invariant

domains than the conservative Dy, or even D;.

In the second column of Table 2, we give statistics concerning these test runs. Note that the more
aggressive domains bring the ball to the pre-launch mode faster, and actually launch the ball slightly
faster. However, the more conservative domain for catching results in longer delays before palming, with

many more failed catch attempts, although the catchalls nearly always allowed a safe recovery.

4.4.3 Testing the Limits

The final set of tests involved significantly wilder introductions of the ball. Several new controllers were
added to handle high lateral velocities of balls thrown into the workspace. Although the base motor is
quite powerful, we found that the robot could only react quickly enough to contain throws that landed
relatively near its paddle. For those landing further away, the mirror law generated a good reference
trajectory, but the robot was not physically able to track it in time (the ball lands — reaches z = 0 —in
roughly 10 camera frames, or 0.17 ). Of the balls that were thrown “well”, and landed near the paddle,
including some with large horizontal velocity, 23 of 25 (92%) were successfully contained and negotiated
to the final state. In fact, the robot succeeded 23 of 24 times when its favorable initial configuration

enabled it to hit the ball more than twice.

This experiment demonstrates, again, the problems that may arise when the underlying assumptions
{in this case that the robot is successfully tracking the mirror law reference) are no longer valid, as
discussed in Section 4.2.2. Since the mirror law generates “reasonable” trajectories during the normal
course of juggling, it would suffice to ensure that the robot start in a state from which it can handle any
ball state within any domain of the deployment. This was not possible within owr taxing framework, thus

the ball had to be introduced near the paddle in order for the robot to contain it.
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5 Conclusions

We have described an approach to creating switching control algorithms that provides a theoretical
guarantee of the safety of the resultant controller based on the properties of the constituent controllers,
Although the methods proposed in this paper require theoretical constructs that may be difficult or
impossible to obtain exactly, we have shown that conservative approximations can be used in their place
with very good success. We believe that the developing systems discipline described herein may be
extended to build a variety of useful dexterous machines that are similarly single-minded in their pursuit

of the user’s goal behavior and ability to surmount unanticipated perturbations along the way.

Although the robot is running with a deployment of many controllers, it is difficult for a casual
observer to tell that there is more than one controller. The machine’s motion seems coordinated, the
progress of the ball toward its goal seems reasonably timely (see Table 2), and the response to obstacles,
and especially unanticipated disturbances (such as an experimenter deflecting the ball in flight) looks

dexterous.

There are several interesting directions of further study highlighted by these experiments. Clearly, we
need to develop automated methods for finding larger invariant domains than the extremely conservative
Dy found in Section 4.1. This would allow fewer members in the deployment. It would also be useful to
extend the model introduced in Section 2 to explicitly include robot states in the design of a deployment

of Section 3, avoiding some of the problems mentioned in Section 4.4.3.

The deployment created and used in Section 4 was carefully hand-crafted in order to ensure that
there was a path from the starting region to the goal. We would like to develop automatic methods for
creating deployments given families of controllers, such as the rotationally symmetric family of controilers
stemming from Dy. If the system were able to automatically go from G to ® to D, then it could choose
its own deployment by backchaining away from the task goal in a manner analogous to the method used
in Section 4.2.1.

We are also exploring ways to move the controller smoothly from starting point to task goal. At any
point in time, the local controller’s goal would be moving toward the task goal by descending a potential
field such as those discussed in (Rimon and Koditschek 1992). At any moment in time, there would be

tradeoffs between the size of the domain and the velocity of the local goal toward the task goal.
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List of Footnotes

1. In general, re-grasping is required when the free configuration space attendant upon a specified
grasp is disconnected, and the goal does not lie in the presently occupied connected component. As will
be seen, in the present problem, the configuration space of the “palming” grasp disconnects the goal from
the component where the ball is typically introduced. The robot can only “connect” the two components

by adopting a “juggling” grasp, whose configuration space has a dramatically different. topology.

2. Moreover, we never “bother” to develop an explicit disturbance model even though we are specifi-
cally interested in operating in the empirical world with all its uncertainties and unmodelled phenomena.
On the one hand, the theory and experience of building working controllers (Koditschek 1987, Whit-
comb, Rizzi and Koditschek 1993) teaches us that the inevitable small but persistent disturbances arising
from modeling errors, sensor inaccuracy and slight miscalibration are countered by the local structural
stability properties of stable dynamical systems. On the other hand, large, arbitrary and unanticipated
perturbations should be recoverable as long as they are relatively rare and do not violate the domain of
attraction of every feedback policy at our disposal. In the end, of course, the only acceptable test of one

or another model is to place the finished system in the physical setting for which it was designed.

3. Other researchers in roboetics and fine motion planning have introduced comparable metaphors

(Lozano-Pérez, Mason and Taylor, Ish-Shalom 1984).

4. Of course, this picture dramatically understates the potential complexity of such problems since

the free space need not be simply connected as depicted!

5. In a previous series of papers with Rimon (Rimon and Koditschek 1992), the third author has
addressed the design of such global funnels for purely geometric problems wherein the complicated portion
of the domain is limited to the configuration space. In contrast, in this paper, we are concerned with

complex boundaries that run through the velocities as well — e.g., see Figure 11.

6. Since Gp is an attractor, the existence of open forward invariant neighborhoods is guaranteed.
However, “tuning the shape” of Niest by hand can be an arduous process. This process will be sped up
enormously by access to an analytically tractable return map. Even without analytical results, the search
for invariance could be automated by recourse to positive definite programming (a convex nonlinear
programming problem) on the parameters (in this case, the entries of a positive definite matrix) defining

the shape of the invariant set. We are presently exploring this approach to generation of Mpest.
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