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Abstract

This paper is concerned with the problem of attaching meaningful symbols to aspects
of the visible environment in machine and biological vision. It begins with a review
of some of the arguments commonly used to support either the ‘symbolic’ or the
‘behaviourist’ approach to vision. Having explored these avenues without arriving
at a satisfactory conclusion, we then present a novel argument, which starts from
the question: given a functional description of a vision system, when could it be
said to support a symbolic interpretation 7 We argue that to attach symbols to a
system, its behaviour must exhibit certain well defined regularities in its response to
its visual input and these are best described in terms of invariance and equivariance to
transformations which act in the world and induce corresponding changes of the vision
system state. This approach is illustrated with a brief exploration of the problem of
identifying and acquiring visual representations having these symmetry properties,
which also highlights the advantages of using an ‘active’ model of vision.



1 Signals or Symbols ?

This paper is an attempt to deal with some of the issues in the continuing debate
between adherents of the ‘traditional’ AI approach to vision (eg. [1, 2]) and those
advocating a ‘behaviourist’, stimulus-response model [3] . While the debate is hardly
new and is arguably part of the wider one between these approaches to Al in general
(eg [4, 5]), it has been drawn into sharper focus in recent years by the upsurge of
interest in neural networks in general and in particular by the Active Vision model
of computer vision [6, 7], which was the central theme of the workshop on Computer
Vision (Ruzenagaard, Denmark, 1992), in which we gave the first presentation of
some of these ideas.

While there are several ways to characterise the dichotomy between the two ap-
proaches, it seems to us that the essential issue can be phrased in the question “Does
an Active Vision system (AVS) need symbols 7”7, with the implied alternative that
all that needs to be done in vision can be described adequately in terms of signal
processing (we take it for granted that all will agree that any vision system must do
some signal processing). The emphasis on the word ‘active’ is important and requires
elucidation: in their definitions of Active Vision, both Bajcsy [6] and Aloimonos [7]
stress what might be called action for vision, in other words, the vision system has
at its disposal a set of actions by which it can acquire additional information. Typi-
cally this would involve at least motion of the image sensor (see also [8]), controlled
by feedback from existing measurements, with the aim of gathering sufficient data
for solution of a specific visual problem or problems. It also happens, however, that
many applications of such vision systems involve wvision for action: the vision system
is part of the control processing for a robot or other mobile device, whose goal is
not ‘seeing’, but ‘acting’ [3]. In this case, issues of real-time operation and other
physical constraints are more significant. For our purposes, the significant feature in
both cases is that the primary goal of the vision system is to produce an appropriate
‘motor response’ to its visual input, rather than to utter ‘I see a cup’ any time a
picture of a cup is thrust before it - we cannot expect to get very far in our discussion
of the need for symbols if we start by assuming that the output of the system has to
be symbolic.

In this paper, we discuss those aspects of visual behaviour and visual coding which
are relevant to the ‘symbol question’. We then attempt to define symbols in a func-
tional way, which depends on the relationship between internal and external states
of a vision system. These ideas are illustrated using some simple model problems, in
which the acquisition of visual representations using standard neural network tech-
niques is the vehicle for an exploration of the main ideas in the paper. We have
included as many examples as we can from current and past practice in the field, as
well as from the relevant literature on biological vision, which continues to serve as an
‘existence proof’ that vision is at all possible. As a further tutorial aid, we introduce



a rather trivial AVS - one whose level of sophistication is comparable, in biological
terms, to the lowliest invertebrate. We hope that this will not only help to focus our
discussions, but may also be useful as a tool for teaching and even exploring some of
the other issues in Active Vision.

2 The Function of Vision

2.1 Vision as Inference

Marr’s book begins with the ‘plain man’s’ definition of “to see” as “to know what is
where by looking” [1]. In fact, this might be taken as a definition of Active Vision,
since looking is an active process. In any event, the definition carries with it symbolic
baggage: however the information obtained visually is represented internally, it clearly
is not the original source of the data; if I see a cup, I do not have a cup stored in
my visual cortex, I have a symbol which represents a cup. Vision is therefore a
process of inference, in which hypotheses about the state of the world are confirmed
or rejected on the basis of evidence acquired visually. This is as true for machine
vision as for biological vision (eg. [1, 2, 9, 10, 11, 12]). Thus in a recent survey
article [13], Rosenfeld elaborates the Marr paradigm in a way which brings out the
inferential nature of the vision process ( a simplified version is given in Fig. 1) and
makes the role of symbols clear. The unfortunate fact that the data upon which the
inference is based are ambiguous in most cases of practical interest and, worse still,
that the hyopthesis set is potentially unbounded, should not be allowed to obscure
the fundamental point that any system which can be described as ‘seeing’ must use a
symbolic description, in which a given symbol represents not just a subset of the input
visual array, but more significantly corresponds to a subset of the input signal space.
If we are working with single 2-D images of 256 x 256 pixels, then the visible object
‘cup’ will correspond to some well-defined subset V. of the signal space R**® x R?*%¢

‘/'C c R256 % R256 (1)

The main problem in vision is that no one has a very clear idea of what that subset
is, but that is not a matter of principle. In principle, vision is an application area
for statistical inference techniques [14, 6, 2]. Even when this is not explicitly stated,
it 1s often implicit that a priori knowledge is being used to constrain solutions to
problems, with the idea that some solutions are more likely than others (eg. [15, 16]).

There are certain practical difficulties in the way of applying the techniques of
inference directly to the image data: R?°® x R is a rather big place in which
to look for subsets. This explains the relatively complex structure of the vision
paradigm , compared with the conventional pattern recognition system components
of feature extraction, followed by classification. Of course, even this hierarchical
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approach has its limitations, particularly in its failure to address the control issues
which are considered by many to be fundamental in vision [6, 17]. In this respect,
one of the main attractions of Active Vision is that by the controlled gathering of
additional information, many of the inference tasks are simplified [7]. Nonetheless, the
combination of feature extraction and hypothesis testing remains the basic paradigm
for vision, whether the processing is bottom-up, top-down or a combination of the
two. This is as true today as it was 25 or so years ago, when the field was in its infancy.
In this regard, it is interesting to note that there is clear evidence in biological systems
of feedback paths from higher to lower visual centres [18].

Just as hypothesis testing strategies have become more subtle, so have the al-
gorithms of feature extraction. From the work of Roberts [19] on luminance edge
detection in 1965, this has evolved to the sophisticated techniques used today, such
as regularization [15], Hough transforms [20, 21], multiresolution analysis [22, 23, 24],
tensors [25] and tangent bundles [16], aimed at providing ever more effective ways
of detecting edges and grouping them into potential boundary contours. Of course,
in many systems, there is information available from shading, texture, motion and
stereopsis (eg. [7]), but this is essentially a matter of degree, not of principle.

To illustrate the idea in an Active Vision context, consider the following simple
simulation. The system consists of a ‘cockroach’, named Blatta Borealis (BB), in
honour of its discovery in northern climes, which is able to explore the 3 x 3 window
of its 2-D world centred on its current location. Its action is to seek the darkest place
in the image in which to hide. In other words, it moves at each step in a direction
which decreases intensity. The diagram below shows the result of a single simulation
run, which terminates in this case in the absolute minimum of the luminance. The
white crosses indicate the position of the cockroach at each step and the line shows
its trajectory.

The symbol set used in this example consists of the 4 compass directions and a
null symbol ¥ = {N, S, E, W, ¢}, the 4 directions corresponding in the obvious way
to the 4-neighbours of the current location ¥ = (x,y). At each step, one symbol is
selected on the basis of the luminance gradient ¢(Z), which is estimated using a pair
of gradient operators. If u(Z) is the luminance at @, the gradient is given by

(@) = 3 widi(u(@ + 5i) = u(@ = 7)) 3w (2)

where the 4 displacement vectors p; are given by

p1= (170) p2 = (171) p3 = (071) 0y = (_171) (3)

and the weights are

w; = V2/| 7| (4)



The mapping to symbols is simply

Nt lgy ()] = [lg=(Z)]| and g,(¥) <
S it gy (@) 2 [lg2(7)|| and g,(7) >

s(@) =4 E it gy ()] < llgo(D)] and g.(7) < (3)
Z/ if1||gy(i")|| < |lg2(@)[| and g.(7) >

The action taken by the cockroach is obvious: it moves to the pixel specified by the
direction and if the direction is null, it remains where it is. It is not hard to see that,
from an arbitrary starting point, the cockroach will eventually settle at the luminance
minimum in whose basin of attraction that starting point lies. In the example shown,
there is a single minimum, which is reached in some 120 steps from the given starting
point. Why use a symbolic approach in such a simple problem 7 There are three
main reasons:

1. The set of symbols maps directly and 1 — 1 onto an appropriate set of
actions.

2. The mapping from luminance to symbols is chosen to ignore irrelevant
features of the luminance: the symbols are invariant to both the mean
luminance and to the steepness of the luminance gradient.

3. On the other hand, the symbols respect the natural symmetries of the
problem. In the example of Fig. 2, the image array is 128 x 128 pixels,
giving a group of symmetries generated by the 8 combinations of rotation
by multiples of 7/2 and reflection about the y — axis and the 128 cyclic
shifts in the horizontal and vertical directions. This large group of linear
transformations T' € G act on the image w () by changing the coordinates

Tu(?) =u(T'?) Tcg (6)
The symbols are transformed in the same way

Ts(7)=s(T7'%) Tcg (7)

2.2 Vision as a Mapping

It may be possible to treat vision as a symbolic process, but is it necessary or even
useful to do so 7 A behaviourist approach to vision is illustrated in Fig. 3 , in which
vision is a function or mapping from the visual input to the response. If the image
array is regarded as a vector u € R?*® x R?*® and the response is a vector r € RM
then vision is defined as the function f

r = f(u), F:R* x R*¥ — RM (8)
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Figure 2: Simulated ‘cockroach’ locates the darkest point in its 2-D world. White
crosses denote points on its trajectory, which are connected by the black line.

The main problem in vision is not, therefore, identification of subsets of R?%% x R?56
but identification of the mapping f. This also is a nontrivial problem, but not as
a matter of principle. There are indeed several powerful general theorems on 3-
layer neural networks as universal mappings (eg. [27, 28, 29]). These show that any
continuous function such as f can be approximated by such a network, as can certain
discontinuous ones.

While it may go against the grain for some to accept this paradigm, it has arguably
a longer history than symbolic approaches to vision, one which goes back at at least
to the work of Pitts and McCulloch on modelling the reflex control of eye movements
[30] and building on relevant biological literature (eg. [31, 32]) to the current high
level of interest in neural networks for visuomotor control (eg. [33, 34, 36]). There
are several reasons for preferring this approach to conventional symbolic vision:

1. By embedding the visual response in a metric space, an error measure on
the system’s performance may be defined. This makes it feasible to use
the methods of functional approximation with a neural network based on
error minimization. It removes at a stroke one of the major weaknesses of
the ‘standard model’: the difficulty of quantifying the performance of the
various system components [6, 2].

2. Equally importantly, the functional approach emphasises continuity of re-
sponse, ensuring that small perturbations of the input produce only small
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Figure 3: Behaviourist Approach to Vision.



effects on the output. This gives the system noise immunity and underlies
its ability to generalise from patterns in a training set to novel stimuli [37].

3. Precisely because they have been inspired by biological systems, neural
networks have a computational style which is much closer to that used by
biological systems [37, 4]. This raises opportunities for cross-fertilization
between artificial and natural vision research, whose benefits are already
becoming apparent in a number of studies of visuomotor coordination [34,

33, 35].

These properties would be advantageous in any perceptual system, but in Active
Vision, they are decisive: only functional methods can be expected to perform ade-
quately inside the control loop of an AVS. As an illustration, consider the functional
approach to the cockroach problem, BBV (Blatta Borealis Volans). This also makes
use of the gradient, but unlike BB uses the update rule

fn — fn—l - 55(1_;”_1) (9)

where ¢ is a suitably chosen step size. Since the coordinates are discrete, positions
have to be rounded to the nearest pixel, but this is a limitation imposed by the
problem domain. The result of the corresponding simulation run to Fig. 2 is shown
in Fig. 4, which illustrates that BBV does indeed ‘fly’ or at least hop to the minimum
in less than a dozen iterations. A further improvement on BB is the respect for a full
range of rotations of the image, as opposed to the 4 rotation subgroup. In short, this
18 a superior system.

3 Visually Guided Behaviour

3.1 Discontinuity in Behaviour

The argument about continuity of response is specious, for two main reasons:

1. The decision boundaries in the symbolic system can be made ‘soft’ in a
number of ways. For example, any effective inference technique will give
an estimate of the probability that a given symbol is correct [16, 12]. The
symbolic output can either be represented by this probability distribution,
which will generally be a continuous function of the input, or the symbol
can be selected according to the probabilities [14]. Both methods give a
form of continuity in the mapping from inputs to symbols.

2. In any case, there are many situations where the system needs to ‘jump’
to a distinct state, based on its observation of its surroundings. To take a
well studied example, consider a rather simple biological AVS - the toad.
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Figure 4: Continuous functional approach to the cockroach problem.

Ewert showed that depending on the size and orientation of a visual target
pattern, toads will either orient towards it, with a view to eating it, or
veer away, with a view to avoiding being eaten [32]: toads have at least
two quite distinct visually guided behaviours - Prey (P) or Flee (F). There
is no behaviour which is 0.8P + 0.2F (in ambiguous cases, they may not
move). Evidently, the toad is attaching symbols to its visual input and
these symbols, P and F, determine which type of response the toad will
adopt. There are two senses in which these symbols act:

(a) They define sets of input patterns which are equivalent, in the
sense that each pattern in a given set gives rise to the same symbol.
This is the invariance property of symbols.

(b) They define sets of actions which are equivalent. The symbol is an
initiator of the response, but its subsequent development depends
on future inputs - if the prey or predator moves in response to the
toad’s action, it will have to adjust its response accordingly, if it
is to succeed.

This second aspect of symbols deserves further comment. The major distinguishing
feature of an AVS is that it changes its input, whether by sensor motion or other
means. This implies that, given the state of the system at time ¢, it is not generally
possible to predict with certainty its state at time ¢t + 1. Consequently, there will
be a multitude of paths from a given initial state to a specified goal state, such as



Figure 5: The cockroach gets trapped in a ‘black hole’.

eating or not being eaten. Thus action require symbols as surely as perception does
- a symbol for an action must constrain the evolution of the system state sufficiently
for the goal to be reached, but not so tightly that it cannot take the unexpected into
account. These two properties define the semantics of the symbols: the mapping
between symbols and the system states, which we may assume include its input.

As an illustration of this idea, consider the following modification of the BB prob-
lem, illustrated in Fig. 5. In this problem, BB’s world is peppered with randomly
placed ‘black holes’, which are deep enough to attract its attention, but too small to
hide in. As can be seen from Fig. 5, BB soon gets trapped by a black hole into a
limit cycle of ‘1 step forward -1 step back’. In order to overcome the problem, we
must introduce jumps into BB’s behaviour: if there is no detectable black hole in the
window, then carry on as before; otherwise, ignore that part of the gradient estimate
due to the black hole. This is easily accomplished by modifying the weights w; of (4)

w; = { \/§/||Pl||2 if [g:(7)] <t (10)

Via

0 else

This effectively introduces a ‘black hole’ symbol, which attaches to the individual
gradient components ¢;(#), which is used to adapt the ‘motor response’ symbols to
the perceived environment. The success of the strategy is illustrated in Fig. 6, which
restores the response of BB to its original form, despite the ‘noisy’ environment. To
acknowledge the sophistication of this behaviour, this evolved form will be called BBS
(Blatta Borealis Sapiens). Albeit simple, this exampleillustrates a general principle of

10
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Figure 6: By using a simple ‘black hole avoidance’ procedure, the smart cockroach

avoids the traps.

symbols in behaviour, which is expressed in Fig. 7. In this system, symbols are used to
switch the behaviour of a linear dynamical system mapping inputs to outputs, so that
it can adapt its response to discontinuities in the environment, such as the presence or
absence of a predator. It is evident that it has the same ‘universal mapping’ property
as 3-layer neural networks [29]. In effect, symbols in this system represent control
strategies or programs, between which the system switches according to its perceived
environment and goals. Attaching symbols to behaviours in this way ensures that the
symbols represent something ‘real’ to the system: the visual input is then organised
or grouped according to the needs of the system and not to the apparently arbitrary
metric of the vector space in which the input vectors are defined. In this view, symbols
simplify both the description and the implementation of the control tasks confronting
the system. In more realistic examples, this reduction of complexity is essential in
understanding the system behaviour.

3.2 Jumping without Symbols

Of course frogs and toads jump, but that says nothing about their use of symbols; on
that definition, a thermostat is permanently engaged in a monologue of exclamations
of the form “I am too hot”/“I am too cold”. Such an interpretation is wrong on two
grounds:

11
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Figure 7: Symbols can be used to switch between modes of a linear system to model
arbitrary nonlinear behaviour.

1. A discontinuous signal is not a symbol; it is a discontinuous signal. Even if
a system uses such signals to switch between behaviours, there is no reason
to imbue them with symbolic content. On that basis, presumably any
signal which is constant across some subset of Y x RY can be regarded as
a symbol, simply because it can be regarded as the characteristic function
of the set. Most such sets have no conceivable meaning - the only semantics
that can be built out of them is set theory !

2. It is doubtful whether the system need be discontinuous to achieve this
sort of behaviour - it is enough that its behavioural modes correspond to
distinct attractors, towards which the unforced system will tend to move,
ie. in the absence of external stimuli (eg. [38]). The symbols in Fig.
7 could be replaced by continuous contert vectors which determine the
system dynamics. This use of contextual control signals was first proposed
as a useful approach to vision by Granlund [39].

In the case of BBV, it is interesting to note that BBV still performs adequately
in the presence of black holes, although it takes rather longer on average to converge
(Fig. 8). A simple continuous adaptive rule is again based on modifying the weights

wi(#) = V2 exp(—7g7 (7 Zexp —vg2(@)/ | pil|? (11)

12
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Figure 8: The continuous cockroach is less troubled by black holes, but they do upset

its trajectory.

leading to a system BBVS, whose performance in noise is as good as that of BBV on
clean data, as shown in Fig. 9. Symbols serve no useful purpose in describing this
behaviour, which is essentially that of a 3-layer network (Fig. 3).

4 Visual Coding and Memory

4.1 A Rate-Distortion Problem ?

It may be possible to achieve functional equivalence in a system using continuous
data, but this ignores an important part of the cost of such a system - the quantity of
information it requires. The amount of information generated by BB is rather easy
to measure: it is 2 bits per pixel(bpp), since the 4 direction symbols occur with equal
probability and the termination symbol occurs with vanishingly small probability on
any family of smooth surfaces showing isotropy statistically. Its continuous equivalent,
BBV, generates a potentially unbounded amount of information, on the other hand,
because its data are continuous. In real animals, which need to store and process such
low level representations, the quantity of information involved is clearly a significant
factor. The idea that low level vision serves a coding function is one which is both
widespread in the literature on biological vision [40, 41] and is implicit or explicit in
several works on neural networks for low level vision [42, 43, 44]. And what is the
output of a coder, if not symbols ?

13
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Figure 9: Avoidance procedure improves the continuous cockroach performance.

The branch of information theory dealing with this problem is rate-distortion
(R-D) theory [45], which answers the question “What is the minimum average amount
of information we need to preserve from an information source in order to reconstruct
the source outputs with some prescribed average distortion level 7”. More precisely,
if the source outputs are image vectors u € R™ x RV, the coder can be defined as a
stochastic mapping to vectors v in a reproduction alphabet, governed by a conditional
probability density ¢(v|u). A distortion function, d(u,v), is defined as a distance
measure on pairs u, v of source outputs and reproductions. The rate-distortion prob-
lem is, given the source output density p(w), to find the conditional density ¢(./.) for
which the mutual information I(gq)

1g) = [ [ dudvp(u)g(v]u)log,[g(v]u)/r(v)] (12)

1s minimum, subject to the constraint on average distortion

D(q) = [ [ dudvp(u)g(v|u)d(u,v) = D (13)

where

r(v) = [ dup(w)q(o]u) (14)

is the probability density for the reproduction. The rate-distortion function R(D) is
thus defined [45] as

R(D)= il I(g) (15)

14



This can be solved at least formally by the use of variational methods, but concrete
results generally require the use of a tractable form of distortion function, such as
mean square error (m.s.e.)

d(u, ’U) = N_2 ZZ(UU — vi]‘)z (16)

and a simple density p(w). It is nonetheless interesting to note that for a corre-
lated Gaussian vector source and m.s.e. error criterion, the optimum coder uses
a Karhunen-Loeve (KL) transform [46], which happens to be the solution to which
Sanger’s network converges [43] and to be a special case of the Linsker model [42]. On
the other hand, the Laplacian pyramid scheme [47] obviously draws some inspiration
from the measured responses of retinal ganglion cells [48], while the more complex
coder devised by Daugman is based on the so called Gabor representation [44, 49],
whose similarity to the responses of simple cortical neurons was noted by Marcelja [50]
and also informed the original work of Granlund [51]. There are therefore numerous
ways in which the ‘coding metaphor’ has been found productive.

In all of these cases, the coder consists of a linear transformation, whose primary
effect is to redistribute the energy in the image so that most of the energy is in
relatively few transformed components, followed by quantization, which has the effect
of assigning most bits to the transformed signal components of highest variance and
fewest to those with least [46]. From the neural perspective, an appropriate form
of quantizer is a so called threshold coder, which shares the information it produces
between an address component and a magnitude component, just as biological neurons
do [46].

For such a formulation of vision to be feasible, both the source density p(w) and
the distortion function d(w,v) must be known. Now the source statistics can be
acquired implicitly through the use of a neural network, as the work of Linsker [42]
and Sanger [43] shows. The choice of a distortion measure appears to be more of a
problem, to which there are two possible answers:

1. The cost function does not have to be a simple error measure such as
m.s.e.. Indeed, v does not even have to be a vector such as w. For the
theory to be applicable, all that is required is an appropriate form of cost
function on the joint space of source and coder outputs [45]. In the case
of BB, for example, it is possible to define the cost between the quantized
gradient and the original gradient in terms of the actions which they cause.
One suitable form of cost is the ezcess path length BBV uses when it uses
a quantized gradient, compared with that used when the gradient is not
quantized, in getting from its initial position to its terminal point. Let
Zn(m) be the nth point on the trajectory of BBV when its gradient is
quantized to m bits accuracy

Tn(m) = Tna(m) = 6Qm(g(Tn-a(m)) (17)

15



where Q,,(.) is the mapping defined by an m-bit quantizer. The total path
length from an initial point ¥ is then a function of the quantizer resolution
m

I(m) =3 [[Fa(m) = Zua(m)] (18)

where ¥o(m) = @o. An ‘action based’ cost function for the gradient repre-
sentation is just the average of the excess path length

e(m) = 1(m) = ||[Zoc(m) = Zo(m)]] (19)

over an appropriate ensemble of surfaces and initial points. The distortion-
rate curve of Fig. 10 was produced by averaging e(m) over an ensemble
of 50 randomly selected initial points on the surface of Fig. 2, with the
gradient quantized using a scalar quantizer, ie. for the two components of
the gradient,

Qm(ga(f) = QmQ(Q_mga(f))v a=1T,Y (20)

where @(.) is a 6-bit uniform quantizer whose range exactly covers the
range of gradients in the image. The entropy of the quantizer output,
estimated from the histogram over the entire ensemble, was used as the
abscissa in Fig. 10. As can be seen, the error is negligible for quantizer
resolutions m > 4, the spatial quantization of the array being the dominant
factor.

The point of this example is not to advocate the use of path length as a
cost measure in Active Vision; it may be appropriate for some applications.
It is just to emphasise that from ‘average cost # m.s.e.” it does not follow
that ‘R-D theory no use’.

. Such a use of R-D theory with an application specific cost measure might
be regarded as a general solution to a specific problem [7]. On the other
hand, it is reasonable to ask how the theory might be applied to the general
problem of vision, given that the visual system can be applied to a wide
variety of tasks, each with its distinctive costs. To take a specific example,
visual memory can be used for a huge variety of tasks, from navigation to
object recognition. Which code should be used for visual memory 7 The
most robust solution may well be to use a general, image domain distortion
measure, ie. v € RY x RY: a specific solution to a general problem. While
m.s.e. has its weaknesses in this respect, some other relatively simple
measure may be found. Indeed, the whole motivation for regarding vision
as an appropriate domain for scientific investigation is surely that it s
general - it is not simply part of a control loop.

16



Although these two approaches are contradictory to some extent, it may be pos-
sible to combine a robust and general low level cost function with application specific
high level measures, such as path length, in an overall solution.

In this connection, it is interesting to note that the R-D function for a product
source, whose components are statistically independent, ie.

() = T ol 1)
and a sum distortion measure

d(u,v) = Zd(ui,vi) (22)

is just the sum of the R-D functions for the individual components w;. This could
be an explanation for the parallel coding of form, colour and motion found in human
vision [18, 52]: at least to a first approximation, these properties of visual objects
are independent and can reasonably be assumed to have separate distortion criteria
attached to them.

The above discussion has focused on the source coding function in vision. This is
only part of the story, however. Source coding tells us what to represent, it does not
say how to represent it: it is a significant, but weak constraint on the form of visual
representation. Omne problem it does not address is the channel coding problem,
which in the present context may be formulated as “What form of representation
minimises the risk of ‘channel errors’ in its translation by subsequent processes 77.
In other words, are some forms of representation more susceptible than others to
ambiguity 7 The answer is surely that there must be a premium on selecting internal
representations which are as robust as possible. In this connection, it is worth recalling
the results of some early experiments of Shannon on the per character entropy rate
of sources of standard English text. He found that given a sufficient left context, the
rate is about 1 bit/character, using a 27 character alphabet [53]. Since displayed text
normally employs a bit array of at least 7 x 5 in size, this implies that in the visual
input, only 1/35th of the information is actually used. The consequence is great
tolerance to errors. Perhaps one of the main reasons why we tend to equate discrete
signals with symbols is that the systems we have developed to transmit and store
information are highly redundant - the mapping between signals and the symbols
that they express is virtually unambiguous. Unfortunately, the mapping between
visual signals and the symbols they express is (i) out of our control, by and large,
and (ii) extremely ambiguous. This does not mean that we should throw away the
symbols.

4.2 A Control Problem

Arguments from information theory have an appeal partly because of the very ab-
stractness and generality of the theory - the ‘Information Theory, Photosynthesis and
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Figure 10: Rate-distortion curve for the gradient estimator used in the cockroach
problem. The distortion function is the additional path length travelled by a cock-
roach using a quantized gradient. The information rate is the entropy of the quantised
gradient.

Religion’ problem [54]. This has made it all too easy to misapply information theory.

Suppose for the sake of argument, however, that such is not the case here. What
can R-D theory say about vision 7 One thing it cannot say is that vision must use
symbols: R-D theory applies equally to any communication system, whether its input
and output are continuous or discrete [45]. Similarly, the neural networks of Linsker
and Sanger store information as continuous variables, both the ‘short term’ neural
activations and the ‘long term’ unit weights are continuous, as is the case in many
networks employing some form of Hebbian learning. More fundamentally, how is it
possible to categorize the visual input without considering the system response 7 To
take a simple example, suppose we have a system which tracks a moving object, so
that whenever the object is displaced by a vector Z from one time frame to the next,
the system responds with a corresponding movement 6y = #. If we only examine
the input 7, we shall not reach any conclusion about what the system ‘thinks’ is
important, but if we look at the combination of input and response, we can see there
is a definite and simple relation, to which we can attach meaning.

The central argument, in the context of Active Vision, is whether there should
be some level of vision for which a task-independent, image domain error measure is
appropriate. On the existence or usefulness of such a layer, the main argument for
‘vision as coding’ rests. The importance of making a distinction between active and
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passive observers has long been recognised among perceptual researchers [55], and
it 1s thought that active vision is necessary for the development of visually guided

behaviour [56]:

1. That active vision plays a central role in learning was elegantly demon-
strated by Held and Hein 1963 [57]. They reared kittens in the dark until
they were 8-12 weeks old. From that age on, the kittens’ sole visual ex-
posure was received in a specially designed apparatus where one (active)
kitten could move about freely while a second (passive) kitten was carried
around in a gondola copying the motions of the active kitten, thus making
sure that the two kittens received the same visual stimuli. The kittens were
later tested in a series of experiments involving visually guided behaviour.
As can be expected, the active kitten tested normal but the passive kitten
had no ability to make proper use of visual information.

2. An extension of this work was done by Hein and Gower 1970 [58]. They
repeated the above experiment, but this time each kitten received both
active and passive visual exposure. One eye was used for active vision the
other for passive vision. When tested the kittens behaved normally when
using the ‘active’ eye but their visually guided behaviour was lost when
only the ‘passive’ eye was used.

3. The necessity of active vision for adaption and learning in humans was
also demonstated by Held and Hein 1958 [59] in a number of optical re-
arrangement experiments. The results of the experiments have been ver-
ified several times [60]. In these experiments the subjects view the world
through a pair of goggles that optically displaced or rotated the field of
view. In one experiment, the observer viewed his hand under three dit-
ferent conditions. One was a no-movement condition, the second was a
passive-movement condition, in which the observer’s arm was moved back
and forth by the experimenter. The third was an active-movement condi-
tion, in which the observer moved his hand. There was considerable adap-
tion to the distortion produced by the goggles under the active-movement
condition, whereas in the other conditions there was not.

4. In another experiment observers wearing goggles either walked around for
about one hour or were wheeled around in a wheelchair for an hour over the
same path. They were then tested to determine the amount of perceptual
change that had taken place. Adaptation to the distortion produced by
the goggles occured in the active vision condition, but not in the passive
vision condition [61, 62].

While these experiments cannot be conclusive, they indicate strongly that activity
plays a decisive role in visual learning. Even in humans, who might reasonably be
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assumed to have the greatest need for generality in visual processing, it seems that
the association of visual stimulus with activity is essential for successtul learning. It
seemns that closing the system-environment loop is necessary for learning and that the
appropriate metaphor for an Active Vision System is therefore a control one, rather
than a coding one [36].

The implications for system design are profound - ‘understanding’ of the world is
impossible to achieve by studying the world in isolation, but can be attained only by
integrating the effect on the world caused by the system’s response into the analysis.
‘Understanding’ then no longer means being able to decompose the world into bits
and pieces (ie symbols), but that the system is able to predict changes in the world
caused by its actions. Thus, understanding the world gives the system the potential
to drive the world towards a desired state. It would seem then that what an Active
Vision System needs is not a set of image domain symbols, but rather task-dependent
control strategies that force the (world+system) to converge towards desired states.

5 Signals and Symbols

While other arguments could of course be adduced in favour of one side of the debate
or another, we feel that we have done enough to demonstrate that for every conven-
tional argument in favour of symbolic vision, we can come up with a counter which at
the very least raises doubts about its validity. Perhaps we have been looking at the
problem from the wrong point of view. Suppose, for example , that we have a purely
functional description of an AVS, but one in which we make explicit the presence of
stored information by using a state-space description of the form

r(t) = flu(t), p(1)] (23)
where
P(t+1) = glu(t), d(t)] (24)
is the state at time ¢ + 1 and the other terms are as in (8) and the functions f[.], g[.]
are nonlinear mappings. The state vector ¢(t) € V' will contain all internal variables,
as well as ‘visible’ parts such as the system’s position and orientation; if learning is
involved, it will also include memory variables such as connection strengths. The
significant point about the description is that it ‘opens up the black box’ of conven-
tional functional approaches to external inspection: we are free to measure any state
variable at any time. Are there any circumstances in which we would be justified in
attributing symbols to such a system 7

5.1 What are Symbols ?

To put it differently, do certain types of mapping f[.],g[.] admit of a symbolic inter-
pretation 7 It could be that any such mapping does or that only certain classes do -
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in a sense, the more restricted the class is, the more useful the concept of symbol. By
the same token, we take no comfort at all from the observation that any computable
function can be implemented on what Newell calls a physical symbol system [63]. We
take it for granted that the mappings could be implemented on a general purpose
digital computer or on analogue hardware. The real issue is whether symbols would
help us in (i) identifying and (ii) describing the mappings - in seeing inside the black
box (or Chinese Room [5]). How would we recognise a symbol if we saw one ?

It is probably useful to start with a simpler concept, about which there ought
to be correspondingly fewer doubts: a measurement. To be specific, what are the
minimum requirements we would place on one of the state variables, ¢,,, say, for it
to be identified as a measurement of average luminance 7 We believe there are two
main requirements:

1. The state variable should vary systematically (preferably linearly) with the
average luminance.

2. Tt should not vary with any other change in the visible environment.

The second of these properties is a familiar one: a measurement should be invariant
to transformations of the input other than those which change the quantity measured.
The first was alluded to briefly in section 1: a measurement should be equivariant
to transformations affecting the quantity measured. There has recently been a great
deal of work on symmetries in general nonlinear mappings of the form of (24), in
which the concepts of invariance and equivariance have played a central role [65].
Note that we have said nothing about the details of how ¢,, 1s to be computed, but
we have specified how it is to behave with respect to the environment. In other words,
if we decided it would be useful to have such a state variable, we would have to train
the neural network explicitly to produce it; given some unit in a previously trained
network, we could decide whether it had such a function by observation of its response
to changes in the input. It would help us to understand what was going on in the
network to arrive at such a conclusion.

In our view, measurement is the simplest example of a process with symbolic con-
tent: measurements are typically scalars, whose magnitude varies in the prescribed
way with respect to changes of input; symbols are in general based on vector quan-
tities, but they are defined by the invariance and equivariance of those quantitites
with respect to transformations acting on the world state. These transformations
include not only the obvious coordinate transtforms caused by relative motions, but
also changes in luminance, the presence of other objects and indeed the ‘motions’
from one object to another.

To understand the relationship between the various transformations with which
we have to deal in vision, consider Fig. 11, which shows the three parts of a typ-
ical vision scenario: the ‘world’ or environment in which the system is located and
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World State Image System State

Figure 11: Transformations in vision. Changes in the ‘world’ state induce changes in
the image, to which the system responds. Vision must solve the inverse problem of
identifying the change in world state from that in the image.

which contains visible objects; the image by which the system acquires its informa-
tion about the world and the system state vector, which contains the ‘knowledge’ the
system has about the world and which determines its response to its current input.
Transformations act on each of these components: a change in a visible object, such
as a translation or rotation, induces a corresponding change in the image and this in
turn leads to a change in the system state. If we can discover, by examining the way
the system state changes in response to changes in the world, a systematic depen-
dence of certain state variables on particular objects or object properties, then we
may reasonably infer that the system is using symbols for those objects/properties.
The problem is made vastly more difficult by the presence of the intermediate step -
the formation of the image - a process which introduces singularity and consequent
uncertainties in the communication between outer and inner worlds [64, 7].

In an AVS model, the picture is apparently complicated by the existence of feed-
back: actions must affect world state (Fig. 12). Thus if #(¢) is the current world
state, then

Y(t+1) = h[p(t), r(?)] (25)

where the response vector 7(t) is, as in (23) above, the system output at time ¢.

In one sense, however, the AVS model has one obvious benefit over the conven-
tional one: the presence of an output coupled to the environment means that not
only is it possible to learn by associating input and output - stimulus and response
- but it may also be the case that feedback from the environment can function as a
form of ‘supervision’, albeit a noisy one. The idea of using vision to provide feedback
has been studied in a variety of contexts, including control of eye movements [66],
coordination of hand and eye movement [67, 68] and object recognition and manip-
ulation [69]. The precise form of the feedback and learning mechanisms vary, but
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Figure 12: Transformations in active vision. Changes in the ‘world’ state induce
changes in the image, to which the system responds, inducing a consequent transfor-
mation in world state.

the general principle is the same: specific motor signals result in motions producing
specific changes in visual input.

We can illustrate invariance and equivariance in a way which draws on this prin-
ciple and which also illustrates a major difference between active and passive vision.
Counsider the four element pattern of Fig. 13 in its four configurations, which corre-
spond to (i) the original pattern, (ii) swapping left and right elements on each row,
(iii) swapping the two rows and (iv) swapping both rows and columns. Although
there are only four distinct patterns, this suffices because the four transformations
form a group which is the direct product of two factor groups, namely the subgroup
71 = {I, T}, where the first element is the identity and the second swaps columuns,
and the subroup 7, = {I,T,}, where the second transformation is the row swap. If
the pattern is written as a vector v € R*, the matrix representations of the transfor-
mations are just

1 000
0100

I= 0010 (26)
00 01
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Figure 13: A four component pattern and transformations formed by row and column

SWELpS.
0100
100 0
T1_0001 (27)
0010
and
0010
000 1
T2_1000 (28)
0100

It is not hard to see that these operations commute and hence that the four products
form a group which represents the actions illustrated in Fig. 13.

This set can be seen as a simple illustration of a set of patterns representing
‘what’ and ‘where’ independently. For example, we might regard the patterns v, Thv
as representing two configurations (‘views’) of the same object, ie. one ‘what’ and two
‘wheres’, but regard the pattern Thu as a different object, but in the same configu-
ration as the object u, whatever the choice of w. It may seem a rather small world,
with four states, but it is sufficient to illustrate invariance and equivariance. Suppose,
for example, that we can find some symbol f(u), where w € {v,Tiv,Tyv,T;T v}
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which is invariant to the ‘what’ subgroup {I,T5}. This is a function of the pattern
elements which is unchanged if they are row-swapped. One obvious choice is the
vector defined by

Filu)=(<u, e > <u,e,>)" (29)
where < .,. > denotes inner product and the four vectors e;,0 < ¢ < 4 are the unit
vectors .

€p = 5(1717171)T (30)
1 T
€ = 5(1717_17_1) (31)
1 T
€; = 5(17_1717_1) (32)
and .
€3 = 5(17_17_171)T (33)

Those familiar with the Haar transform will recognise these vectors. More impor-
tantly, they are eigenvectors of the transformations T, T, and hence provide an
irreducible representation of the group 77 @ 7;. To show that the function f,(u) is
invariant to row swaps, it suffices to note that

Tie; = (—1)e;, 0<i<4 (34)
and hence that
F1(Taou) = (< Tyu,eq >, < Tou, e, >) = f,(u) (35)

where the right equality follows from (34) and the observation that each T'; has a
symmetric matrix representation. Similarly, the function f,(w)

Fo(Tiu) = (< u,e0 >, < u,e; >)° (36)

is invariant to column swaps. Since these two functions are invariant to the respective
subgroups, it follows that any function of the form g(f;(w)) inherits the invariance.
Moreover, the two functions also exhibit equivariance, in the sense that there is a
representation of the subgroup 7; on the 2 — D subspace spanned by the respective
eigenvectors, with matrix representation

I':((l) (1)) (37)

and



which is the same for both subgroups. In other words,
fi(Tiu) =T fi(u), i=12 (39)

Thus the functions f,(w) exhibit the invariance and equivariance properties required
to separate ‘what’ from ‘where’ and provide a simple example of an ideal symbol
system. It is less obvious, however, whether such a representation of the signal space
can be acquired through passive ‘observation’. This clearly requires an unsupervised
learning algorithm, such as Sanger’s generalisation of the Oja eigenvector estimator
[43], which uses successive approximation to find eigenvectors of the input signal
covariance matrix. In the present case, if we present such a network with a training
sequence consisting of all four transformations of vectors selected at random, then
the covariance matrix will have the form

1
Ru = Z(RU + TleTl + TZRUTZ + TszRUTle) (40)

where

R, = Evv’ (41)

is the covariance matrix of the random vectors. It follows immediately from (40)
that the covariance R, is invariant to the transformations T, T, and hence that its
eigenvectors are just those of (30)-(33). Its eigenvalues depend of course on the signal
statistics - a fact which can be significant in estimating them from the training data.
The four eigenvector estimates at training cycle n are given by

ei(n) =< (v(n) — 9:(n)), ei(n) > (v(n) - B:(n)) (42)

where
vi(n) = vi1(n)+ < (v(n) — vi_1(n)), eim1(n) > ei_1(n) (43)

is the estimate of the current input vector v(n) based on the first 7 estimated eigen-
vectors and ensures orthogonality of the estimated vectors. At each step, the vectors
e;(n) are normalised. This algorithm was used to produce the estimated eigenvectors
shown in Fig. 14, which are correct to about 0.1% and were produced in a training
sequence consisting of 10 cycles of each of the four transformations of a set of 1000
randomly chosen vectors. Thus a conventional eigenvector hunter can locate the rele-
vant subspaces of the signal space to derive the symbols. Correspondingly, a network
which transformed the signal into the eigenvector coordinates, ie.

y=FEu (44)

where E is the matrix whose rows are eigenvectors e;, 0 < ¢ < 4, would have an output
y which displayed the desired invariance and equivariance. Note, moreover, that the
eigenvectors are unique in this respect - no other basis has the right invariance and
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Figure 14: Eigenvector estimates found by the Sanger algorithm, closely matching
the eigenvectors of the covariance matrix.

equivariance properties - and that they also represent the most efficient way to code
the input [43, 42].

Now consider an appropriate model for the active case. A simple way to ex-
press this is to assume that a network is required whose output (response) is invari-
ant /equivariant to the two subgroups 7;,7 = 1,2. A 4-input 2-output single layer
perceptron, was presented with a training sequence consisting of 1000 cycles of each
of the four transformations of a randomly chosen vector and target outputs given by
the four columns of the matrix

-1 A3 0 ®

This corresponds to representations of T';,2 = 1,2, given by
1 0
"o
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Figure 15: Weight vectors for the two unit perceptron after training. The weights
closely match the two relevant eigenvectors. The left image is the weight vector for
the ‘what’ unit and the right that for the ‘where’ unit.

- () ("

In effect, the first unit is a symbol for ‘what’ and the second one for ‘where’, according

and

to our previous definition. The result of the training is shown in Fig. 15, which shows
the weight vectors for the two units. It is not too hard to see that they are just the
eigenvectors ey, ey, which are indeed the correct 1 — D subspaces of the signal space.
The residual m.s. output error was less than 1% in this case.

Although both ‘passive’ and ‘active’ models show the right properties in the ideal
case, this example is defective as an abstraction of the vision problem. The missing
component is the singularity of the process converting the ‘real world’ of the visible
environment into images. The singularity has several sources: the projection from
3 — D to 2 — D, noise and the windowing of the signal - the world is only partly
visible. In the present example, we shall focus on the windowing problem, which like
the 3 — D to 2 — D problem is actually a projection problem, in that only a subspace
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of the signal space is observable. Consider, therefore, the same problem as before,
with the group consisting of the direct product of row and column swap subgroups,
but suppose now that, while the same transformations affect the ‘real’ signal, the
observable signal is just the subspace consisting of the first three signal components.
In other words, the ‘retina’ of the model system has three input units, not four, giving
the input signal

u' = I3u (48)
where
1 0 00
01 00
=100 1 0 (49)
0000

The crucial feature of the windowing operator Is is that it does not commute with
the swaps T';,¢ = 1,2, as is easily verified

LT, #TI;, :=1,2 (50)

This has the effect of destroying the eigenstructure of the covariance matrix R, of
(40), replacing the eigenvectors by those shown in Fig. 16, which unsurprisingly have
a zero in their last component.

The presence of a zero is not in itself the problem, but the fact that the eigen-
evectors no longer represent invariant subspaces of the transformation operators
T;,» = 1,2, most certainly is: no combination of the projections of the signal onto
these eigenvectors will give a function having invariance or equivariance to the trans-
formations. Indeed, there is no subspace of the 3 — D windowed signal which is
invariant to the transformations and so no polynomial function of the input compo-
nents which is invariant. Thus a symmetry property of the ‘real world’ can be and
generally will be lost in perception. This is a consequence of the lack of commutation
between the windowing operator and the transformations - a close relation of the un-
certainty principle [12]. In fact it is formally identical to the commutation relations
defining the prolate spheroidal sequences. In other words, although this is a simple
example, it illustrates the fundamental problem that ‘what’ and ‘where’ operations
do not commute at the signal level [12], despite our unshakable belief that in reality
they do: we could place an arbitrary object at an arbitrary position, assuming the
Laws of Nature do not forbid it.

Now consider the 2-output perceptron, which has two advantages over the unsu-
pervised net: it has a sigmoid nonlinearity in its output and it is supervised. It may
not come as a surprise to find that it does indeed learn to represent ‘what’ and ‘where’
just about as effectively as before, but it is nonetheless significant that it does. To
illustrate the point, in Fig. 17, the total squared output error is shown as a function
of training cycle number for both the original and windowed inputs, using exactly
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Figure 16: Eigenvector estimates found by the Sanger algorithm, after windowing to
three nonzero components.

the same initial conditions and training sequence. There is a slightly larger error for
the windowed input case, but the performance is virtually unaffected: the average
error in the output is still less than 1%. In other words, if actions and visual input
are associated and if the actions predictably cause specific transformations of the
environment, then the limitations inherent in the process of vision can be overcome:
action can indeed help vision.

To try to get a more realistic model, it is worth examining the growing body
of work on visuomotor coordination. One general approach to learning such skills,
which has received considerable attention is known as feedback-error-learning (eg.
[71, 69]), which is based on the idea that a feedback control system can be used to
generate an error signal, which is in a suitable form for training a feedforward (open
loop) controller. This has the obvious attraction that by minimising the error, the
system acquires a model of the dynamics which by definition minimises the amount
of information needed from feedback, so that, in the limit, it can virtually act in
an ‘open-loop’ fashion, maximising its speed of response to motor commands, for
example. In practice, the accuracy of the model will be affected by sensor noise and
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80 100

Figure 17: Output error plotted against training cycle number for the 4-input
(dashed) and 3-input (solid) perceptrons.

variability of the environment, necessitating some level of feedback after learning.
Nonetheless, there is clearly a sense in which the reduction in feedback variance
corresponds to the replacement of conscious effort by effortless competence, which is
typical of human learning, especially in visuomotor tasks.

Although this particular model of learning is more directed at motor control than
vision, it does indicate that, for example, task-oriented object discrimination is pos-
sible [69]. A more general setting for discussing the relationship between action and
vision is provided by the model of Fig. 18, which adapts the standard state-space
control paradigm to active vision. The principle of operation of such systems is that
the state estimator uses the sensor output to estimate the ‘plant state’, which in this
case is that part of the world state relevant to the system; the estimated plant state
is then used through the control law to derive a suitable control signal for the motor
system, generating a response [70]. There is of course no question that such a system
has advantages over an open loop system in the control of actions; it is less obvious
whether it may have advantages in terms purely of vision. This is the problem we
wish to address now.
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Figure 18: Adaptation of state-space control system to active vision. Note: functions
labelled s are subcortical; ¢ are cortical.

In other words, we are interested in state estimation: state estimation is a symbolic
act, according to our definition. In effect, state estimation implies modelling of the
‘system-+world’, requiring an internal representation with the proper invariance and
equivariance properties. A system description such as Fig. 18 sets constraints on
what can be going on ‘inside the box’: not every feedback system will have state
variables ¢; which correspond to ‘plant’ states v;, in the way which is demanded by
this system. In particular, there will need to be estimates of the system’s position
and configuration with respect to the environment. It is apparent, however, that
the strict invariance and equivariance of group theory will have to be weakened to
account for the fact that noise and disturbances affect the state estimation. We
are thus led to the concepts of e-invariance and e-equivariance: a random mapping
f : R" — R™ is e-invariant with respect to a set 7 of transformations, selected
according to some probability distribution P(T), if the mean squared error over both
the transformations and the mapping ‘noise’,

E||f(z) — f(Tz)||* < eE|| f(=)||* (51)

while a mapping f : R" — R™ is e-equivariant with respect to a set 7 of transfor-
mations if

E|ITf(z) — f(Tz)||* < eE||f(=)||* (52)

Note that the transformation will generally have a different representation in the out-
put space, but this does not prevent its being classed as equivariant. The idea behind
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these definitions is just to give a ‘mean square error’ measure which is appropriate in
the present context. It is perhaps worth noting that the rate-distortion arguments of
section 4.1 support the weakening of invariance and equivariance in this way, on the
grounds of efficiency. As a concrete example, the associator whose weight vectors are
illustrated in Fig. 15 is e-invariant /equivariant at the level of 0.03% to the respective
row and column swaps; the corresponding figure for the eigenvector approximations
is 1%.

Thus, if the ‘external’ state of the system, 1, is changed to ¥’ = T, where the
transformation T is selected according to the distribution P(T) and there exists a
subspace of the ‘internal’ system state-space, with state vector ¢p; = II ¢, such that
the mapping f

¢ = f(9) (53)
18 e-equivariant, ie.

E|[f(T4) — Te||* < eBl¢, ||’ (54)

then the model of Fig. 18 can be applied meaningfully to the system and corre-
spondingly, it can be said to use symbols for the external state ¥. Of course, one
or two difficulties attend the translation of this definition into practice. In the first
place, both the transformations which act on the external state and their internal
representation take finite time to operate. This can be simulated with a discrete time
system, in which, say, ¥(t + 1) = T (¢) and, similarly, ¢,(t + 1) = T'¢,(¢). More
significantly, we hit the following problems:

1. The system requires an accurate model of the ‘plant’, ie. the dynamics
of the interaction between motor command signals and world state. This
is a complex problem, made more difficult in biological systems by the
changes that occur in the dynamics as an animal grows. Thus, in higher
vertebrates, there must be a degree of adaptivity in the modelling - the
model must be at least partially learned. This is a system identification
problem.

2. Even with an accurate plant model, state estimation is only effective if the
external state variables are observable. An informal definition of observ-
ability is that a system is observable if, given a sufficiently long observation
of the sensor output, we can deduce what the state was at any given time
[70]. Observability requires that the sensor output is sufficiently rich that
any state variable projects unambiguously onto the sensor output space.

We do not have to think too long about this to see that observability is likely to
be a problem. In the first place, any sensor must have a finite window, so that
there are no direct measurements of many of the state variables ;(¢) at any given
time. This is just the singularity problem which was examined in the above example.
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Secondly, state variables such as the system’s position are not directly observable at
any time: for the most part, system motions act differentially; from the visual input,
only velocity can be estimated. In effect, the ‘world dynamics’ include an integrator
for such state variables, introducing an unknown constant of integration into the
estimation. We might be able to cope partially with the first problem by ‘extending
the window’ using memory, but if we cannot solve the second problem, then this will
be impossible. To state the problem succinctly: how do we know where we are, when
the only measurements we have are velocity measurements 7

The answer is that we must use a map of our world, that is, we must be able to
translate certain unique features of the (visible part of the) state vector 4 into a direct
measurement of position. This is a (perhaps the) fundamental perceptual problem
confronting animals: no animal can be born with a map of its environment - it must
acquire it during development and it must acquire it without direct measurement of
position. It hardly needs saying that such a map is a symbolic entity, but how can
it be acquired 7 To answer this question, we have devised a 1-D simulation, which
nonetheless illustrates some of the major issues in map-building and which highlights
the difference between active and passive vision in a way which is relevant to the
discussion in section 4. In particular, we are concerned to discover whether it might
be easier to learn a map if you move yourself around than if you are wheeled around
by someone else: does action really help vision in acquiring a map 7 We start by
representing the system state as a vector ¥ € RY selected from the set of N delta
functions e;, e;; = 6;5, 0 < ¢,5 < N, each of which corresponds to a different 1-D
‘position’ ¢. Each position in the world contains a distinct pattern, corresponding
to the visual input at that location, w(¢). The map-building task is to learn to
associate the visual pattern w(e;) with the position vector e;. Consider, then, a
pattern association task in which each of N patterns uw; € RM is to be associated
with a delta function e;, which represents the 1 — D ‘position’ of the pattern. To
simplify computation, we choose a pattern dimensionality M = N and choose the
patterns to be orthonormal: u!w; = &;, 0 < 7,57 < N. With these choices, the
problem is one which is readily solved using a linear associator, whose matrix form is
just

A=U" (55)

where U is the matrix whose columns are the pattern vectors. This is an almost
trivial problem - a 1-level, linear ‘perceptron’, whose coefficients can be learned using
the delta rule [37]

A(n)=A(n—1)+an)(F - AU)U" (56)

where the n is the training cycle number, a(n) the learning coeflicient and the matrix
F is the matrix whose columns are the target patterns. In the ideal case where F = E|
the targets are noiseless and the associator can be learned in a single training cycle.
Note that, once training is complete, the mapping from the state 1 to associator
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output Aw,; is equivariant to ‘rotations modN’, ie. it T;_je; = e;, then
A’U,(T]B,’) = T]‘A’U,(ei), 0< Z,j < N (57)

This example shows that even a simple system can be regarded as using symbols
because it has an internal representation of the ‘real world position’ which satisfies
the equivariance requirement. We have reduced the problem to this form so that we
can focus on the relevant issue in the present context, namely that we do not have
access to the ‘target patterns’ e; during training. The best that can be expected is
a noisy estimate of position based on velocity measurements. The effect of noise on
learning is illustrated in Fig. 19 and 20. These are based on a noisy target matrix
F whose columns are obtained by shifting the corresponding columns of E by an
amount j;(n) which varies randomly from one training cycle to the next and which
obeys a normal density, quantized to integers

filn) = eijim 0 <1< N (38)
where the index ¢ + j;(n) is calculated mod N and the probability distribution of the
shift j;(n) is

1 k

270 Jk-1

P (k)= dz exp[—x*/207] (59)

Note that in this problem, noise is wholly detrimental to the system’s performance:
the noise-free system performs perfectly after one training cycle. This is a different
situation from those in which a degree of noise in the input training data can be
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used to compensate for an inadequate training set [72]. Fig. 19 shows the error
as a function of cycle number. The first observation to make is that, in order to
get meaningful results, it is necessary to use a learning coefficient which guarantees

stochastic convergence, ie. a(n) = n™h

with a constant learning coefficient, there
1s no convergence in general. With this choice of learning coefficient, however, there
is convergence of the linear associator to a form in which a given input pattern wu;
produces an output vector with a maximum at the true position ¢ and a spread which
reflects the noise standard deviation . To produce the results shown in the figures,
a maximum detector was applied to the output of the linear associator, to give an
output on cycle n

€; =€, Uy, = m]ax Uiy (60)

where

v; = A’U,, (61)

Such ‘winner-take-all’ circuitry is typically implemented by lateral inhibition, a ubiq-
uitous feature of biological perceptual machinery. More importantly, it gives us a
way to compare results and talk about convergence, since in the limit, the modified
(nonlinear) associator will now function correctly, regardless of the noise variance.
More precisely, for any noise s.d. and error € > 0, there exists a cycle number n such
that the system i1s almost certainly e-equivariant after n training cycles.

Fig. 19 demonstrates that the time to convergence is highly dependent on o, a fact
which is confirmed by Fig. 20, which shows the convergence time as a function of o,
averaged over 10 runs. It appears that the time to learn the association increases as a
power of o. This has two causes: the normal curve gets flatter as o increases and the
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Figure 21: System used in test of visual learning and control.

variance of the associator output also increases. Both factors lead to an increase in
the number of training cycles needed to detect the maximum reliably. The conclusion
is that, while it is possible to acquire a map from noisy position estimates, the less
noise there is the better - an active system, with direct motion information, is likely
to be markedly superior to one which relies on velocities estimated from visual input.

A final example combines these ideas in the context of a control problem which
requires ‘visual’ learning. The system is illustrated in Fig. 21, which bears an obvious
resemblance to the state controller of Fig. 18. The transformations and state space
are taken from the first example: there are exactly four world states, related to each
other by the row and column swaps. The ‘visual input’ consists of a projection onto
3—D of the 4 — D state (cf. (48)). The transformation of the state vector is controlled
by a 2 — D binary vector, which in general is the sum (mod2) of the motor command
vector, the feedback vector and an error vector representing dynamical disturbances.
On the nth iteration, the motor command vector, ¢(n), is selected randomly from the
set of four binary vectors, with equal probability for each of the four. The disturbance
vector, e(n), is also selected at random, with errors in the two vector components
being independent and equiprobable, to give a specified error rate, giving a motor
vector

r(n) = e(n) + e(n) (62)

where the addition is mod2. The overall control task is to control the configuration
of the system, so that the world state corresponds to the one selected by the motor
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Figure 22: Average squared error for open loop system.

command, despite the effect of the errors. To demonstrate that this is not a suitable
problem for an open loop system, Fig. 22 shows the squared error between the desired
world state and the actual state, averaged with a simple recursive filter, for the open
loop system with an error rate of 0.1. This is not an acceptable performance. In order
to achieve satisfactory performance, the state must be estimated from the visual input
and the error used to initiate a corrective motion, using a state estimate which is a

binary vector of the form
$(n) = f(Isp(n)) (63)

where ¥(n) = T,(,)v is the world state at time n and is determined by the trans-
formation selected by the motor vector v(n). As before, the vector v is selected at
random at the start of the test. The state estimate ¢p(n) is used to derive a correction
vector ¥(n) by subtracting it from the desired state ¢(n)

¥(n) = ¢(n) + $(n) (64)

The correction is then added to the motor vector »(n). It is not hard to see that,
if the nonlinear associator f(.) produces a reliable estimate of the actual state r(n),
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Figure 23: Average squared error for feedback system during learning for error rates

of 0.1 (solid), 0.2 (dotted) and 0.4 (dashed).

then the correction of (64) will lead to the desired final state

c(n) = r(n) +~v(n) (65)

The visual learning task is, therefore, to associate each input vector with the cor-
responding motor command vector, which requires a 4-input 2-output associator (cf.
(45)) which is robust to errors - in effect, the environment is acting as a noisy supervi-
sor. Note that, in training, it is necessary to replace the discontinuous nonlinearity of
f(.) by a sigmoid function. To show that such learning is effective, Fig. 23 shows the
averaged error, but this time after application of the feedback correction of (63),(64).
The result is that even at the higher error rates, the system still learns to control its
configuration, regardless of the projection from 4 — D to 3 — D and at low error rates,
learning is rapid. Fig. 24 shows that even the addition of normally distributed sensor
noise at a SNR of 10dB leaves the system approximately preserving the necessary
invariance and equivariance.

The approximate invariance and equivariance are illustrated in Fig. 25, which
shows the response of the associator to the four transformations after training with
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Figure 24: Average squared error for feedback system during learning, for error rate
of 0.1 and no sensor noise (solid) or sensor noise with signal-noise ratio of 10 (dotted).

noisy data and an error rate of 0.1. In this figure, each point represents the two output
components in response to input patterns distorted by noise at an SNR of 10dB,
with the hard limiting nonlinearity replaced by a logistic function (as in training).
Although the noise scatters the reponses of both units, 94.5% of responses lie in the
correct quadrant, giving the correct system response. In this case, the output shows
invariance and equivariance at the level of 10%, which mirrors the input SNR.

While this problem is tiny in scale compared with any realistic visual control
problem and the dynamics have been greatly simplified, the example brings together
the various elements discussed above into a structure which is directly applicable to
large scale problems and shows that action can help visual learning.

6 Conclusions

In this paper, we have tried to tackle the perennial problem of finding a meaningtul
and useful definition of symbols in vision. We explored some of the conventional
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Figure 25: Response of 4-input 2-output associator after training to row and column
swaps, showing the separation between the responses to the four transformations.

ideas of symbols and showed that none of them is completely satisfactory. As an
alternative, we have proposed an operational definition based on symmetry properties
and shown that it can lead to insights into the problem of inferring the state of the
‘world” from a necessarily limited set of measurements. We have introduced the
concept of equivariance to emphasise that a symbol, to be meaningful, must stand
in a well defined relation to the state of the world, which can be best described in
terms of the action of the transformations which affect visible objects. We gave a
simple example to illustrate that active vision has the potential for overcoming the
fundamental limitations imposed by the projection operations which are inherent in
vision and which inevitably destroy the symmetries which the 3 — D world manifests.
Despite its obvious simplicity, this example is formally identical, in terms of the
destruction of symmetry caused by windowing, to that which occurs when objects in
translational motion are seen through a spatially limited window such as the eyes.
That example was also used to introduce the idea that we regard a change of object
as a transformation having the same type of decription as motion. While this is a
less familiar idea than that of motion, it is inescapable in a state-space description,
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whether that operates at the level of signals or objects. Indeed, it would seem that
the only consistent way to separate changes of object from changes of object position
is that in the latter case, but not in the former, it is possible to restore the original
view of the object by a motion of the observer. We are tempted to speculate that our
commonsense model of the world, inhabited by objects obeying the laws of motion,
cannot be derived by vision alone, for the reason that the motions have no simple
representation in the signal space; it is only when a system is able to act upon its
environment that the natural symmetry is restored. This seems to us to be about as
close as one can get to explaining why there is an apparent gult between traditional
symbolic methods, which are based on the ‘Newtonian’ ideas of identity and motion,
and connectionist methods, which are bound to the ‘quantum’ world of the signal
space. Clearly, both types of description are necessary and each has a proper place
within the representations employed by an AVS. What is also clear is that trying to
use ‘classical’ methods in a ‘passive’ vision system is an enterprise which is likely to
fail. The experience of the last thirty years of vision research supports this view.

We went on to propose a state-space model of active vision, in which visual signals
provide feedback, leading to the view of perception as state estimation. The problem
of map-building was used to illustrate this idea and to show that even in this essen-
tially perceptual task, active systems can have a considerable advantage, in terms of
learning time. Moreover, it could be argued that many learning tasks can be modelled
in this way - the ability to ‘navigate around’ some conceptual domain is an appealing
metaphor for that which we commonly call knowledge. As a final example, these ideas
were put together in a simple visual control task, which showed that the learning of a
state estimator based on visual input is effective in motor control: the system learns
and uses a symbolic representation of the world state to control movement in the
presence of errors. In this connection, it is interesting to speculate on what vision
has to tell us about the more general use of symbols. It is clear that concepts such as
invariance and equivariance make sense in an essentially geometric domain, such as
vision, but their usefulness in more general contexts seems questionable: could they
help to explain what is going on in the Chinese Room 7 It may be that, just as we
were obliged in the Active Vision framework, to introduce a world model into our
analysis, so as that world model becomes more complex, there will be symbols of a
more abstract nature definable in the same terms as those we have discussed. We
are in no position to make general prognostications on this subject, but perhaps it is
appropriate to quote someone who gave some thought to such matters - Wittgenstein:
“A name signifies only what is an element of reality. What cannot be destroyed; what
remains the same in all changes.” [78].
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Structure of Symbolic Vision Paradigm.

Simulated ‘cockroach’ locates the darkest point in its 2-D world. White
crosses denote points on its trajectory, which are connected by the black
line.

Behaviourist Approach to Vision.

Continuous functional approach to the cockroach problem.

The cockroach gets trapped in a ‘black hole’.

By using a simple ‘black hole avoidance’ procedure, the smart cockroach
avoids the traps.

Symbols can be used to switch between modes of a linear system to model
arbitrary nonlinear behaviour.

The continuous cockroach is less troubled by black holes, but they do upset
its trajectory.

Avoidance procedure improves the continuous cockroach performa nce.

Rate-distortion curve for the gradient estimator used in the cockroach
problem. The distortion function is the additional path length travelled
by a cockroach using a quantized gradient. The information rate is the
entropy of the quantised gradient.

Transformations in vision. Changes in the ‘world’ state induce changes in
the image, to which the system responds. Vision must solve the inverse
problem of identifying the change in world state from that in the image.

Transformations in active vision. Changes in the ‘world’ state induce
changes in the image, to which the system responds, inducing a conse-
quent transformation in world state.

A four component pattern and transformations formed by row and column
swaps.

Eigenvector estimates found by the Sanger algorithm, closely matching the
eigenvectors of the covariance matrix.

Weight vectors for the two unit perceptron after training. The weights
closely match the two relevant eigenvectors. The left image is the weight
vector for the ‘what’ unit and the right that for the ‘where’ unit.

Eigenvector estimates found by the Sanger algorithm, after windowing to
three nonzero components.

Output error plotted against training cycle number for the 4-input (dashed)
and 3-input (solid) pereceptrons.
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Adaptation of state-space control system to active vision. Note: functions
labelled s are subcortical; ¢ are cortical.

Error as a function of training cycle number for various noise standard
deviations.

Convergence time vs. noise s.d.
System used in test of visual learning and control.
Average squared error for open loop system.

Average squared error for feedback system during learning for error rates

of 0.1 (solid), 0.2 (dotted) and 0.4 (dashed).

Average squared error for feedback system during learning, for error rate
of 0.1 and no sensor noise (solid) or sensor noise with signal-noise ratio of

10 (dotted).

Response of 4-input 2-output associator after training to row and column
swaps, showing the separation between the responses to the four transfor-
mations.
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