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Modeling And Control For Robotic Assistants: Single And Multi-Robot
Manipulation

Abstract
As advances are made in robotic hardware, the complexity of tasks they are capable of performing also
increases. One goal of modern robotics is to introduce robotic platforms that require very little augmentation
of their environments to be effective and robust. Therefore the challenge for a roboticist is to develop
algorithms and control strategies that leverage knowledge of the task while retaining the ability to be adaptive,
adjusting to perturbations in the environment and task assumptions. This work considers approaches to these
challenges in the context of a wet-lab robotic assistant. The tasks considered are cooperative transport with
limited communication between team members, and robot-assisted rapid experiment preparation requiring
pouring reagents from open containers useful for research and development scientists. For cooperative
transport, robots must be able to plan collision-free trajectories and agree on a final destination to minimize
internal forces on the carried load. Robot teammates are considered, where robots must reach consensus to
minimize internal forces. The case of a human leader, and robot follower is then considered, where robots
must use non-verbal information to estimate the human leader's intended pose for the carried load. For
experiment preparation, the robot must pour precisely from open containers with known fluid in a single
attempt. Two scenarios examined are when the geometries of the pouring and receiving containers and
behaviors are known, and when the pourer must be approximated. An analytical solution is presented for a
given geometry in the first instance. In the second instance, a combination of online system identification and
leveraging of model priors is used to achieve the precision-pour in a single attempt with considerations for
long-term robot deployment. The main contributions of this work are considerations and implementations for
making robots capable of performing complex tasks with an emphasis on combining model-based and data-
driven approaches for best performance.
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ABSTRACT

MODELING AND CONTROL FOR ROBOTIC ASSISTANTS:

SINGLE AND MULTI-ROBOT MANIPULATION

Monroe D. Kennedy III

Kostas Daniilidis

Vijay Kumar

As advances are made in robotic hardware, the complexity of tasks they are capable of per-

forming also increases. One goal of modern robotics is to introduce robotic platforms that require

very little augmentation of their environments to be effective and robust. Therefore the challenge

for a roboticist is to develop algorithms and control strategies that leverage knowledge of the task

while retaining the ability to be adaptive, adjusting to perturbations in the environment and task

assumptions. This work considers approaches to these challenges in the context of a wet-lab robotic

assistant. The tasks considered are cooperative transport with limited communication between team

members, and robot-assisted rapid experiment preparation requiring pouring reagents from open

containers useful for research and development scientists. For cooperative transport, robots must be

able to plan collision-free trajectories and agree on a final destination to minimize internal forces

on the carried load. Robot teammates are considered, where robots must reach consensus to min-

imize internal forces. The case of a human leader, and robot follower is then considered, where

robots must use non-verbal information to estimate the human leader’s intended pose for the car-

ried load. For experiment preparation, the robot must pour precisely from open containers with

known fluid in a single attempt. Two scenarios examined are when the geometries of the pouring

and receiving containers and behaviors are known, and when the pourer must be approximated. An

analytical solution is presented for a given geometry in the first instance. In the second instance, a

combination of online system identification and leveraging of model priors is used to achieve the

precision-pour in a single attempt with considerations for long-term robot deployment. The main

contributions of this work are considerations and implementations for making robots capable of per-

forming complex tasks with an emphasis on combining model-based and data-driven approaches for

best performance.
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Nomenclature

SE(3) The special euclidean group in three dimensions.
W,R,E,H,O SE(3) frames: world, robot, end-effector, human, carried load (respectively).
A, B Mobile manipulator arm and base SE(3) frames respectively.
t, td, t0, tf Time: t is current time, td is time delay, t0 is an initial time and tf is the final time.
RWA Rotation matrix: subscript indicates rotation from frame A to W.
φWA Vector of exponential coordinates: rigid body orientation vector in SE(3). Subscript indi-

cates rotation from frame A to W. φWA is the axis angle representation of rotation from
frame A to W which is the unit rotation axis multiplied by the rotation angle and satisfies
the exponential map: RWA = exp

(
φ

[×]
WA

)
(which is the exponential of the skew symmet-

ric matrix constructed from φWA).
ri Position vector in inertial frame W.
pWA(t) Pose vector: the pose of frameA in inertial frameW , pWA(t) =

[
x y z φx φy φz

]T
with x, y, z being the translation component and φWA the vector of exponential coordi-
nates.

T (pWA), TW,A,FK( · ) Transformation matrix: SE(3) transformation matrix describing transla-
tion and rotation from frame A to frame W. FK( · ) is transformation
from inertial frame to end-effector frame.

d Translation component x, y, z of rigid body transformation.
x, ẋ, x̂, x̄, x, X State representations: state, time differentiated state, estimated state, state mean,

state vector, state matrix respectively.
z Output variable, derived from the state.
v, ω Velocities: Linear and angular velocities in inertial frame.
qa,i, qb,i, q Generalized coordinates: generalized coordinates of manipulator, base and vector

representation.
J(q) Jacobian: The derivative of the forward kinematics map with respect to generalized coordi-

nates.
m, ρ, V Material properties: mass, density and volume.
g Gravity.
li Manipulator link lengths: (constant quantities for determining forward kinematics).
I, Ĩ Rigid body inertia: 3 × 3 inertia matrix in body fixed frame and transformed into another

frame.
D(q), C(q̇,q), G(q) System Dynamical Terms: Generalized inertia matrix, Coriolis, centrifugal

vector and gravity vector.
π Vector for linearized manipulator dynamics.
W Work.
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K,P Energy: kinetic and potential energy respectively.
L Lagrangian.
H Hamiltonian.
τ Torque: applied at revolute joints.
f 3x1 force vector in inertial frame.
w Wrench: 6x1 force and torque vector in inertial frame
ex Error vector, subscript indicates state.
Ch, Cnh Sets for holonomic and non-holonomic constraints.
Amanip Constraint matrix for manipulator dynamics against external forces.
Gi Contact wrench: contact wrench used to define the resultant force and moment in body fixed

frame for a force applied at ri.
f( · ), F Dynamical systems model: describes the evolution of states as a function of the current

state, inputs and systems parameters. F is a linear model.
β(t) Model parameter vector: vector of model parameters that may vary with time.
S Objective function for optimization.
PH Objective function hessian.
∇x Gradient operator.
γ Step-size gain.
λ Lagrange multipliers.
Q Positive semi-definite matrix.
pr( · ) Probability density function.
pstat Discrete probability of an event.
η Noise: usually associated with sensor measurement or general uncertainty.
N Gaussian Distribution
Σ Generic covariance matrix.
χ Chi-points: points in unscented Kalman filter used to characterize the uncertainty for nonlinear

functions
Zkf , χ,Kkf ,Qkf ,Rkf ,Lkf ,Mkf Kalman Filter: measurement matrix, Chi/sigma points, Kalman

gain, measurement uncertainty, process uncertainty, measure-
ment covariance update, state covariance update.

σ( · ), cov( · ), Γkf , Wσ Kalman filter: sigma point operator, covariance operator, sigma point
matrix operator, sigma point weighting matrix.

κ( · , · ) Kernel function.
V [ · ] Variance: used to characterize uncertainty of a test point for a Gaussian process.
σκ, lκ,K, LGP Gaussian process parameters: Gaussian radial basis function variance and length-

scale, covariance matrix, information matrix.
eres Residual error between model approximation and generating data.
u Control input.
s Control objective: error attenuation after feedback linearization if necessary.
Llie Lie derivative operator: lie derivative of a function along a vector field measures changes in

the function along differential equation solutions of the vector field.
V , Llie,fV(x) Lyapunov function and Lie derivative, note that if x(t) is a solution to ẋ(t) =

f(x(t), t) then V̇(x(t)) = Llie,fV(x).
M , Ωc, Ss Controller Stability: invariant set, region of stability, stable set.
Kp, Kd Control gains: proportional and derivative gains.
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L, A, D, G Laplacian matrix, adjacency matrix, diagonal neighbor matrix and graph respectively.
Tchrd Path Planning: time allocated to complete path chord segment.
h, s Human Intent Quantities: Human leader head orientation and step vectors.
α, β Pouring and receiving containers respectively. These will be used in Part III.
Vα, Vβ Container volume: for either container α or β.
Aβ , Aα Area: associated with cross-sections in either containers α or β.
hα, hβ Fluid height: fluids heights associated with either containers α or β.
LL,α Container lip width function: describes lip width for the pouring container.
qfr Volumetric flowrate.
Vβ Pouring: receiving container fluid volume.
VL,α,Vα,t Pouring: volume above the pouring container lip edge.
Vs,α, Vα,θ Pouring: volume below the pouring container lip edge.
As,α Pouring: cross sectional area separating volume above and below pouring edge in pouring

container.
hL,α Pouring: height of fluid above the pouring edge lip of the pouring container.
AL Pouring: cross-sectional area of fluid exiting pouring container at the pouring edge.
v(hL,α) Pouring: velocity of fluid exiting pouring container.
Pbern Pouring: Pressure on fluid from atmosphere used in Bernoulli equation.
Wα Pouring: Specified pouring container width.
Hα Pouring: Specified pouring container height.
lα Pouring: Specified pouring container length.
ϕ, rL,α Pouring: pouring container lip opening angle for V-shaped lip with angle ϕ and circular

lip with radius rL,α.
Γ( · ) Pouring: Symmetric container geometry function, describes symmetric radius as a function

of height.
HΓ Pouring: Symmetric container height.
Vβ,θ, Vα,θ Pouring: Volume profile, this is the volume versus angle for the receiver and pouring

containers.
eΓ Pouring: ‘distance’ between two symmetric container geometries.
r̄res, rres,max Pouring: residual after fitting volume profile, residual average and maximum al-

lowed.
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Chapter 1

Introduction

1.1 Motivation

Over the past few decades robotics has evolved from automation in the 1980-90’s to major break-

throughs in autonomy in the 2000’s and now to human-augmentation. With each advance, robots

have become more capable, with augmentation being the most exciting endeavor to date. The goal

is to now go beyond teleoperation and performing repetitive tasks, and become effective, capable

collaborators with human teammates. To meet this objective robots must not only be capable of

completing complex tasks, but it is essential that the robots be able to consider humans working

alongside them. Using human-human collaboration as a standard, humans are able to effectively

complete complex tasks together, and sometimes require minimal explicit (e.g. verbal) communi-

cation by anticipating the actions of others in the team. Incorporating these abilities into robots is a

large area of research, and this work takes a step towards making it become a reality.

1.2 Challenges and Opportunities

To be effective collaborators, robots must be able to perform complex tasks reliably in unstructured,

dynamic environments designed for humans. An outstanding challenge is how to effectively model

the complex tasks in such a way that natural perturbations that occur for a deployable robotic system

can be accommodated within expected operation conditions. Another challenge is how can the robot

become a more effective collaborator, with the ability to communicate in more natural ways with
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human counterparts (where natural indicates similarity to human-human interaction). An additional

challenge is how to make the robot capable of performing complex tasks and becoming an effective

collaborator with limited training examples and data. To address these challenges, this work pro-

poses to leverage model-based approaches (such as knowledge of physical models and principles)

along with the modern data-driven techniques in system identification, to allow the robot to adapt

to perturbations in task assumptions and in one presented instance, even estimate the humans intent

within the task.

1.3 Problem Statement

Given a collaborative (or assistive) manipulation task with a given metric of success, can the robot’s

model of the task be learned or adapted, and a controller designed which maximizes the metric of

success?

For a given task which can be represented in terms of relevant states x, the problem is to de-

termine the set of robot actions u that will facilitate the desired state. Formally, given a state x(t)

which combines the robot and the task, the robot’s input u(t), modeling parameters β(t), and output

z(t), the general system dynamics are described by

ẋ(t) = f(x(t), u(t),β(t), t)

z(t) = h(x(t),β(t), t) (1.1)

where f( · ) is the dynamical system process model and h( · ) is the output function. If a desired

output based on the task objective is described by the function

zdes(t) = hdes(x(t),β(t), t), (1.2)

then output error can be defined as

e(t) = zdes(t)− z(t) (1.3)
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The goal is to find the control input which meets the task objective by minimizing this error while

better approximating the system dynamics. In certain applications this requires adjusting the model

of the system dynamics to better reflect the true world model. This is represented formally by

minimizing the following functional subject to the system dynamics

min
u(t)

S = m(x(tf ), u(tf ), tf ) +

∫ tf

t0

g(e(t),β(t),x(t), u(t), t)dt

subj to: ẋ(t) = f(x(t), u(t),β(t), t)

z(t) = h(x(t),β(t), t) (1.4)

where m( · ) and g( · ) are the terminal and running costs respectively. For the described model and

parameters this may reduce to an optimal control problem, but for unknown model parameters this

formally considered an adaptive control problem. In some instances the complete structure of f( · )

and h( · ) are unknown (not just parameters β). In this case to meet the overall objective by reaching

a final desired output, these functions must also be identified.

1.4 Thesis Contributions and Outline

Figure 1.1: An illustration of a mobile manipulator. This manipulator has seven degrees of freedom and the
mobile base is non-holonomic. For every joint the position, velocity and efforts are observable.

When a robot performs a manipulation task, the control problem in (1.4) can be subdivided into

the characterization of a functional describing operational success, a model for the robot, a model

for the task and a control policy. The control policy is designed to combine the knowledge of both

the robot and the task to approach the optimum described by the functional. When prior knowledge

about the task dynamics are known, it can be combined with system identification techniques for

improved modeling. For many tasks, valid performance requires prediction of a future state of

4



the system. When this is required, the estimated model can be used in predictive control with the

performance improving with increasing model accuracy.

This thesis considers these concepts of task modeling for stable control in real-world collabora-

tive tasks. This work first presents the cooperative transport problem where robots must transport a

load as a member of a team through an obstacle filled environment. The task is to transport the load

while avoiding obstacle collisions, as well as minimizing internal stresses in the carried load which

consume energy and do not contribute to motion. It is noted that the optimal solution is centralized,

where a single governor dictates the actions of all members. However when robots are decentral-

ized, or when humans are present as teammates, centralized solutions are not always viable. Hence,

it becomes a necessity to collaborate in order to approach the centralized performance. The contri-

butions of this work toward this goal considers the entire pipeline of effective transport. First, if a

goal pose is agreed upon by all teammates, with the assumptions that all collaborators want to avoid

collision and conserve energy by taking the shortest feasible path this work presents a computa-

tional efficient way to decompose traversable free-space which contains the optimal path. Secondly,

this work considers the case when robots are teammates with other robots while not knowing other

robots grasp locations, but the the goal pose and optimal path is known by all robots. For this case,

this work presents a computationally efficient way that robots can minimize internal stresses in the

carried load if they reach consensus while simultaneously transporting. Third, this work considers

the case when robots are teammates with humans, and humans are the leaders with an internal goal

pose that is not initially known to the robot. In this case it is assumed that the human does not want

to collide with obstacles and wants to take the shortest, feasible path. This work presents a way

that robots can learn from how humans effectively transport with humans based on human leader

observation, specifically asking the question: based what direction is the leader’s head pointing,

how are their feet moving, what is the haptic force and torque felt in the carried load applied by

the leader, what is the velocity of the carried load and finally what are the surrounding obstacles

how do human followers predict the motion of human leaders? A method of transferring this highly

complex model from the human-human observation to the robot is successfully demonstrated. With

this ability to reasonably predict the humans expected pose on a short time horizon, then within that
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short look-ahead time a collision free trajectory can be applied and with the known grasp points

of the human and robot the wrench that minimizes internal stresses can also be applied along the

calculated optimal trajectory for efficient transport. This work presents this method of prediction

and leaves for future work the complete combination of the pipeline from demonstrated successful

components.

This work then considers the task of a robot assistant preparing an experiment for collaboration

with wet-laboratory research scientists. The task is to efficiently pour fluid between an open pouring

and a receiving container. An efficient pour is characterized as both quick and precise. It is assumed

that there is no spillage and that the properties of the poured fluid are known. The contributions of

this work for this task are two fold. In the case where the geometry of all containers are known,

and the receiver can be observed during the pour, an analytical solution is provided which considers

the expected flow-rate of the fluid given both containers geometry. With this analytical solution,

the robot is able to pour very quickly and precisely leveraging a hybrid controller that both ensures

steady flow and considers the system dynamics in order achieve the desired receiver volume. In the

case where the geometry of the pouring container is not known analytically, it is assumed that the

geometry can be approximated by an initial external scan of the container. While for simplicity this

work considers symmetric pouring containers, this is not a limitation as long as a distance metric can

be defined between container geometries. During the pour only the receiving container is observed,

and the system dynamics must be adjusted based on an initial estimate obtained from a single scan

of the pouring container geometry. The main contribution in this case is that both classical system

identification and learning are used simultaneously to predict the pouring container behavior. This

prediction is a necessity because the time delay between the rotational velocity control input of the

pouring container and the observed volume in the receiver is substantial for certain pouring container

geometries. This predicted model for the pouring container is then used in a hybrid controller to

achieve the control objective by anticipating the nonlinear dynamics. This is implemented on the

Rethink Robotics Sawyer and KUKA intelligent industrial work assistant (iiwa) manipulators.

The methods developed in this work are easily generalized for new tasks. It is assumed that

the task process model is not fully known, but some inherent structure can be exploited. For a
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process model manifold that is continuous with low curvature, system identification can leverage

the inherent structure and be coupled with model priors from data utilized in a framework such as

Bayesian modeling approach (in this work a Gaussian process). When the process model manifold

is continuous but has high curvature, statistical modeling approaches like the Gaussian process be-

come expensive in areas of high curvature as the generating data must be maintained. Here it is

advantageous to utilize a neural network with adequate architecture. This is because the computa-

tional graph is capable of representing the highly curvature manifold of the process manifold with

the static computational graph structure, allowing for an efficient model representation. Often with

high curvature process model manifolds it is harder to exploit knowledge of the inherent structure.

However this knowledge can usually be used as a guide when designing the neural net architecture.

The rest of the thesis is organized as follows, Chapter 2 presents related work in collaborative

robotics and task adaptation, Chapter 3 presents mathematical preliminaries. In the next section,

the problem of cooperative transport is investigated. Robots must collaborate in order to transport

a load in a cluttered environment without collision while conserving energy by minimizing internal

stresses on the load during transport. Given a target pose for the carried load, Chapter 4 presents

a method of computationally efficiently modeling the free space that can be traversed. This free

space decomposition is then used to obtain an optimal trajectory that remains in the interior of the

free space. In Chapter 5, it is assumed that a target trajectory has been determined, and the goal is

to efficiently transport the load while minimizing internal stresses and therefore conserve energy.

When all robotic teammates know the grasp location of all other teammates the control input can

be calculated to transport along the trajectory while minimizing internal stresses. Chapter 5 investi-

gates the scenario where there are teams of robots, but communication is limited or expensive and

the grasp location of other robotic teammates are unknown. An efficient consensus algorithm is

proposed where robots share critical, minimal information in order to reduce internal stresses. In

Chapter 6, a human leader robot follower scenario is considered. The stipulation is that explicit

communication (verbal, digital, gestures) is not permissible between the human and robot. It is

also assumed that no prior contextual knowledge about the carried object is known for the robot

follower to make an educated guess on the expected final intended location. Therefore the robot
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must observe both the human leader and the surrounding environment to make an educated guess

on a local horizon about the humans intended target pose which would lie on the global intended

trajectory. Chapter 6 presents a method of leveraging select measurable quantities to estimate the

human leaders intended pose on a local time horizon. Together, these sections describe and provide

contributions to the entire cooperative transport framework for human robot collaborative trans-

port. When carrying with a human collaborator, Chapter 6 allows for the prediction of the leaders

intended pose for a local time horizon, Chapter 4 allows for computationally efficient free space

decomposition for planning a collision free trajectory to the local goal, and if the grasp location of

the human is known then Chapter 5 presents a controller to actuate along the trajectory in a manner

that minimizes interaction forces.

In the next section, autonomous precision pouring is investigated. The goal is for a robotic

assistant to quickly and precisely pour a specified amount of a known fluid between open containers.

This is directly useful for wet-lab scientists who perform many rapid experiments. In Chapter 7 it

is assumed that analytically models for both the pouring and receiving container geometries are

known. A control strategy is proposed that allows for quick precise pours leveraging the known

analytical model. In Chapter 8 the geometry of the pouring container does not have an analytical

representation and the geometry must be estimated in order to approximate the underlying pouring

dynamics. A modeling strategy is proposed which leverages both system identification as well as

machine learning to estimate the model while performing control in order to pour precisely from the

known container in a single attempt. Finally, conclusions and ideas for future work are presented in

Chapter 9.
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Chapter 2

Collaborative Robotics

2.1 Collaborative Tasks

The goal of robotics is to make human life safer, more enjoyable and more productive. As robotics

matures use cases arise where robots must work with and around humans in close proximity while

manipulating objects and navigating in unstructured, dynamic environments. Specifically, human-

robot collaboration is an important emerging field with high societal and economic impact. Robots

can perform collaborative tasks in a variety of environments, including but not limited to indoor

environments such as a domestic or office buildings and perform service tasks for assisted living or

general assistance. Assistant robots are also valuable in outdoor environments in both rural and ur-

ban settings with examples being street cleaning, farming or construction. This work will focus on

robot assistants in indoor environments, specifically pertaining to home or work environments. An

example of collaborative robots in such domestic settings is robots living alongside people as effec-

tive ‘roommates’, setting the stage for robots preparing meals and performing or assisting in chores

[7, 8, 53, 84]. Collaborative robots can also be considered to directly augment the disabled, with

a common use case being a semi-autonomous wheelchair with manipulation capabilities [42, 52].

In these instances, robots must be able to perform dexterous tasks in human-based unstructured

environments. A challenge is the modeling the expected dynamics of manipulated objects while

adapting to other environmental considerations that may perturb the expected behavior while ro-

bustly performing the given task. Manipulated objects generally have affordances (an intended use
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and style of manipulation) that may be a function of the object geometry or augmented property

(e.g. an open container filled with liquid may be handled differently than an empty container). Ap-

propriate methods to approximate and model these affordances for manipulation while achieving an

expected performance is a topic of ongoing research [51].

2.2 Methods of Improving Task Execution in Unstructured Environ-

ments

One approach to improve manipulation abilities for complex tasks in low or unstructured environ-

ments is learning from demonstration. In the context of manipulation, various levels of abstraction

may be employed. For instance, the relation between task success and joint motion or even low

level joint velocities and efforts correlating to a portion of a task. In imitation learning, the robot

attempts through trial and error to reproduce operational success by extracting key features from ob-

served motions and efforts [36, 37, 53]. The robot may also record the joint states during successful

operation and try to reproduce these for repeated success [57, 58].

A more contextual approach is to better understand the task and environment in order to better

reason about the conditions leading to successful task execution. One obvious approach is to use

prior knowledge about expected interaction during manipulation with a level of compliance so that

desired performance can be achieved without a highly accurate model [1]. Another approach is to

improve the model by explicitly involving the human in the model update through direct questions

[12]. The robot can interact with the human in the context of training where the robot tests the

humans response, essentially playing games with a purpose [36]. If it is possible for the robot

to ‘fail’ at a task multiple times with the ability to reset the task state and not suffer significant

repercussion, then the robot may perform the task and use failure cases to improve performance

under certain assumptions [69].

One component the robot may be required to model is the collaborating human’s intent. One

effective way to convey intent is through explicit verbalization [84]. A drawback to this approach

is that for complex tasks, this form of communication can quickly become laborious. When intent

is not explicitly stated it is generally impossible for the robot to know with absolute certainty what
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the human intends [7]. Therefore, in such cases it is often useful to consider the human input in the

context of the task and environment along with some prior knowledge. An example of this in the

transport scenario is the assumption that the human would want to avoid collision. In this example,

the task becomes determining the free region of space and estimating the desired path which would

minimize expended energy [29, 52]. Methods of implicit communication may include (but are not

limited to) tracking of the pose of the human leader’s head, observing the wrench applied by the

leader and observing the motion of the human leader’s feet [7, 20, 67].

The works considered in this section all performed the tasks of autonomous pouring or cooper-

ative transport in a cluttered environment in whole or in part. The next section will further consider

the task of cooperative transport.

2.3 Cooperative Transport

The general cooperative transporting problem is to have a robotic agent work effectively with single

or multiple counterparts to transport an object through a cluttered environment without collision

while wasting limited energy on motions or forces that do not contribute to the specified desired

trajectory. One way to characterize these wasted forces is through interaction forces, which are

forces that apply tension or compression to the carried object while not contributing to overall

wrench or motion [35, 78]. An example of wasted motion is that which does not contribute to

achieving the objective trajectory or obstacle avoidance, adding no value to transport (e.g. spinning

in place). When there is a designated leader, the robot must be able to ascertain the desired trajectory

from the leader in order to carry effectively. This objective can be performed through explicit

communication where for a human leader indicates desired motions verbally to direct the robot. And

in the case of repeated carrying paths, the expected efforts can be recorded and mimicked [57, 84].

When explicit communication is limited, the robot teams can use their limited communication to

augment existing shared knowledge to transport effectively [30, 31, 68, 71]. When explicit or digital

communication is not possible or feasible, then implicit communication must be employed. A

common approach is to allow the robot to be compliant, where an applied wrench over a given

threshold causes the motion of the robot while it supports the carried object [1, 24–26, 67, 76]. In
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addition to compliance, it is important for the robot to move in a manner that considers the grasping

and kinematic constraints [17, 63, 74, 82]. It is also important during fast motions to consider the

coupled dynamics of the manipulator and the mobile base of the mobile robot [14, 83]. Another

consideration is the modeling of obstacles for collision avoidance. Obstacles can be represented

using polytopes with mixed integer quadratic programming to ensure estimated feasible trajectories

lie outside obstacles [43]. This is usually very computationally expensive, which leads to the method

of modeling free traversable space for collision avoidance [16, 29, 77], and is usually far more

computationally tractable. Another approach is to use a more continuous representation of obstacles

with potential fields, where viable paths do not pass through or too close to obstacles as the heuristic

would drastically penalize an invalid path [52]. Finally, when carrying an object with a human with

implicit communication, the human intent (as it relates to desired motion) must be modeled. With

commercially available sensors and open-source software it is relatively straightforward to track a

humans head pose, feet motion, torso and the applied wrench through the manipulator. If desired,

these can be combined with predefined gestures that indicate desired motion, or the relation between

these quantities and the intended motion can be adapted from a model prior or learned with no or

few assumptions using deep learning methods [20, 67]. Studies show that human collaborators

prefer when robotic teammates can anticipate their intent as this makes the interaction feel more

natural [22]. In implementation, this usually takes the form of the robot being proactive, by using

intent estimation as a feed-forward term in control [6, 27]. Another challenging task is autonomous

pouring, where similar to cooperative transport the objective for successful task completion is clear

however the pouring model may be unknown.

2.4 Autonomous Pouring

Robotic autonomous pouring is an important technology for improving the safety, productivity and

repeatability in the wet laboratory setting as well as increasing the abilities of mobile manipulators

in domestic environments. Work has been done to allow robots to effective manipulate containers

and pour liquids in kitchen settings [8, 51, 53]. To effectively handle fluids, the liquid must first

be observable. Many methods have been used to track fluids, from tracking the water during flight
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using thermal imaging or optical flow [61, 80] to detecting the surface of standing fluid [56] or in

a clear pouring container classifying the amount of fluid into discrete amounts [45]. Once the fluid

has been observed, the pouring process must be modeled. This can be done by either designing

pouring dynamics that resembles the observed physics then using system identification to improve

estimated parameters [49, 72], or by learning effective motion primitives that produce the expected

flowrate correlated with joints states [34, 58, 69] or container geometry [11, 38].

In order to pour precisely, the robot must perform feedback control to pour the desired amount

of fluid. To pour relatively quickly, smooth pouring trajectories can be designed with input shapers

to transport the filled container to the pour location and pour without sloshing [2, 4, 85], and it is

noted in [33] that minimum jerk motions are especially effective in minimizing sloshing. Depending

on the desired degree of precision, the volume of the fluid can be generally classified to set volume

amounts [62], or the fluid can be directly observed for more precision [28]. The geometry of the

pouring container determines the relation between the robots angular motion and the pouring rate.

The geometry of the container and flowrate can be explicitly modeled [28, 50] or the container

model can be abstracted by realizing that pour motions for full containers if followed are successful

for any starting volume and describes a maximum volume versus angle curve for sufficiently slow

and steady pours [42].
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Chapter 3

Mathematical Preliminaries

In this section the mathematical foundation is presented for controlling manipulators for complex

tasks in unstructured environments. First, the essentials of mobile manipulator kinematics and dy-

namics is presented. Then the fundamentals of optimization and optimal control is discussed, which

then sets the stage for model predictive control. In real world scenarios, the estimated task models

may need to be adjusted and adapted as more information is obtained. This leads to a discussion

of state estimation, then model approximation and adaptive control. When the main structure of

the model is unknown, learning techniques can be leveraged to construct a model from data. Fi-

nally, given an adequate model representation, the essentials for nonlinear control and stability are

presented. While most of the work in later chapters require model estimation in addition to nonlin-

ear control, the discussion of considerations leading to these methods is valuable when considering

deployable robots.

3.1 Mobile Manipulator Kinematics

Consider a rigid body, the degree of freedom (DOF) of the body describes the number of param-

eters (or coordinates) required to fully describe the pose of the rigid body. Holonomic constraints

are those that are functions of the coordinate states. If these constraints are not explicit functions

of time they are called scleronomic constraints. Whereas if they are they are functions of time,

they are referred to as rheonomous constraints. A constraint that is a function of the derivative of
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the coordinates is called non-holonomic. Generalized coordinates qi are defined as those that are

independent of each other and are not subject to holonomic constraints, and therefore describe the

effective degree of freedom for the system. If the constrained system is in equilibrium in the pres-

ence of external forces then the principle of virtual work states “The work done by external forces

corresponding to any set of virtual displacements is zero.” [65]. For a system that is not in static

equilibrium, D’Alembert’s principle considers the balance of external forces and the use of the dif-

ferentiated momentum of a particle as a force acting over a ‘virtual’ (infinitesimal) displacement.

This paves the way for solving the equations of motion of a system as a function of the kinetic

and potential energy as well as external forces, and is formally referred to as the Euler-Lagrange

equations of motion. When ordinary coordinates are used, the constraints restrict motion. These

can be represented in the dynamics using the representation of Lagrange multipliers that essentially

prescribe the required force to ensure the stated constraint is respected during motion.
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Figure 3.1: Mobile Redundant Manipulator Diagram: Frames R,E are robot and end-effector frames respec-
tively. Angular coordinates of manipulator and base represented with qi and the generalized coordinates of
the base is the SE(2) constrained location of frame R and the joints qA,i for the manipulator.

First, define the pose of a rigid body denoted in the frame A with respect to the inertial or world

frame W as

pWA =

[
x y z φx φy φz

]T
(3.1)

where x, y, z are the translation components and φ is the vector of exponential coordinates

where the equivalent rotation matrix can be found using the hat (skew-symmetric matrix) and ex-
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ponential maps: R = exp (φ[×]). The T ( · ) operator is defined to return the frame transformation

matrix given the pose:

T (pWA) = TWA =



RWA dWA

0 1


 (3.2)

where dWA =

[
x y z

]T
is the translation component of pWA and is the location of the origin

of frame A in W.

Figure 3.1 presents the general mobile manipulator in terms of the reference frames R, angular

coordinates q and relevant length quantities li. In this thesis, the frame R is the robot frame and

sits on the mobile base and the z-axis is the same axis as first joint of the manipulator qA,1. The

generalized coordinates for the system are the manipulator angles qA, and the SE(2) location of

frame R: (x, y, φz) as the base has three degrees of freedom and no additional holonomic constraints

in SE(2).

3.1.1 Mobile Base Kinematics

The constraints for the base are the non-holonomic ‘knife-edge’ constraint which restricts motion

along axis that passes through both wheels (y-axis of frame R in Figure 3.1) as well as a no slip

constraint while the wheels move. The first constraint is expressed by:

[
−sin(φz) cos(φz) 0 0 0 0

]
ṗWR = 0 (3.3)

The constraint that ensures the wheels do not slip can be expressed as:

[
−cos(φz) −sin(φz) 0 0 0 0 lb1 lb1

]



ṗWR

q̇b,2

q̇b,1




= 0 (3.4)

As the motion of the mobile is restricted to SE(2), the kinematics of the system is described by
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ṗWR =



lb1cos(φz) lb1sin(φz) 0 0 0 − lb1

lb2

lb1cos(φz) lb1sin(φz) 0 0 0 lb1
lb2




T 

q̇b2

q̇b1


 (3.5)

where lb1 is the radius of the base wheel and 2 · lb2 is the width of the base platform as shown in

Figure 3.1.

3.1.2 Manipulator Kinematics

The manipulator has kinematic redundancy if the number of joints is greater than that needed to

execute a task. In manipulation the task is usually associated with the placement of the end-effector

which is described by 6-DOF pose vector as in (3.1).

The pose of the end-effector is a function of the joint angles and linkage lengths. By defining

a frame associated with every joint, the frames can be composed to find the transform between any

set of frames in the manipulator (here between frames i and i+ n)

Ti+n,i = Ti+n,i+(n−1) · · ·Ti+2,i+1Ti+1,i. (3.6)

Hence, every frame is a function of the current joint angle and all preceding joint angles. A manip-

ulators forward kinematics transformation matrix can be represented by an equivalent and unique

Danavit-Hartenberg (DH) convention by a selection of frames that satisfy the two constraints that

each consecutive DH frame’s x-axis be perpendicular to and intersect the previous frames z-axis,

where the respective joint angle rotation is about each frames z-axis. This is particularly useful in

practical scenarios when the kinematics of a manipulator must be identified through measurements

due to unknown true dimensions of the linkages [65].

The pose of the end-effector connected with a base in frame R represented in the world (inertial

reference) frame W is described by forward kinematic function FK( · )

pWE = TWE = FK(qA,pWR) (3.7)

Differentiating and denoting the generalized coordinates for the base (which describe the location

in SE(3)) as pWR:
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ṗWE =
∑

i

∂FK(qA,pWR)

∂qi

dqi
dt

= J(qA,pWR)



q̇A

q̇B


 (3.8)

Where J is called the Jacobian. Note that this Jacobian can be subdivided into the following compo-

nents where the subscripts v and ω denote linear and angular velocity and subscripts a and b denote

the arm and base respectively:

J(qA,pWR) =



JvA JvB

JωA JωB


 . (3.9)

The Jacobian can be solved for any rigid body in the system, and provides the twist of the rigid

body in the inertial frame W. Therefore throughout the rest of the thesis it can be assumed that the

Jacobian provides the twist in the inertial frame. The components JvB, JωB come from the matrix

in (3.5).

An external wrench w (force and torque) applied at a point on the manipulator with the asso-

ciated Jacobian J in equilibrium exerts a torque in the joints by D’Alembert’s principle of virtual

work δW as

δW = τT δqA −wT δpWE

τT δqA = wT δpWE

τT δqA = wTJδqA

τ = JTw (3.10)

3.2 Mobile Manipulator Dynamics

The Euler-Lagrange equations of motion can be directly derived from D’Alembert’s principle with

the kinetic energy terms being derived from the fictitious additional force (derivative of system
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momentum) multiplied by the virtual displacement and the external forces accounting for input

forces, potential fields (such as the effect of gravity) and constraint forces [65]. The kinetic energy

of a rigid body is defined as

K =
1

2
mv2 +

1

2
ωIω (3.11)

where v, ω are linear and angular velocities respectively, and m, I are the mass and inertia tensor

of the rigid body respectively. If the potential energy of the system is described by P(r), where r

here is the coordinates of the system, then the Lagrangian is defined as

L = K − P (3.12)

Given default coordinates (r) that are a function of the generalized coordinates rj = rj(q1, . . . , qn)

j = 1, . . . ,m, the set of Ch holonomic constraint equations is defined as

hi(r, t) = 0 ∀i ∈ [1, Ch] (3.13)

and a set of Cnh non-holonomic constraint equations is defined as

nk(ṙ, t) = 0 ∀k ∈ [1, Cnh]. (3.14)

The Lagrange equations of motion of the first kind are with respect to the default coordinates

are
d

dt

∂L
∂ṙj
− ∂L
∂rj

= τj +

Ch∑

i=1

λi
∂hi
∂rj

+

Cnh∑

k=1

λk
∂nk
∂ṙj

(3.15)

where τj is the externally applied force that is not subject to constraints and results in motion of the

system and λ are Lagrange multipliers that embody the environment force required to maintain the

given constraint. The generalized coordinates are defined as the minimum number of independent

variables required to express the pose of a body, therefore the selection of these coordinates are

chosen such that they do not violate holonomic constraints. However, these generalized coordinates

may be subjected to non-holonomic constraints
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ak(q̇, t) = 0 ∀k ∈ [1, Cnh]. (3.16)

This is the basis of Lagrange equations of motion of the second kind, expressed in terms of N

generalized coordinates qi

d

dt

∂L
∂q̇i
− ∂L
∂qi

= τi +

Cnh∑

k=1

λk
∂ak
∂q̇i

∀i ∈ [1, N ] (3.17)

3.2.1 Manipulator Dynamics

Consider first a static base, and therefore the dynamics of just a manipulator. Two common ap-

proaches are the Newton-Euler formulation and the Euler-Lagrange equations of motion. For real-

time systems with no ‘loops’ in the linkages (with loops defined as the ability to return to a linkage

frame without revisiting any other frame) the Newton-Euler method is much faster to calculate. The

Newton-Euler method is recursive in that the inertial effects on all of the linkages are found by

applying Newtons third law at linkage interfaces while considering the rigid body dynamics of the

individual linkages. The parameters of interest are the accelerations of the center of mass and the

end (at the next joint location) of the link, the angular velocity and acceleration of the link frame in

the inertial frame. In addition, the gravity force vector and relative frame rotation matrices must be

known. Additionally, the forces and torque applied on or by the links must be also found. Starting

at the base of the manipulator with known angular and linear velocities and accelerations (constant

for static base), the kinematic equations for the manipulator along with observable joint position,

velocity and acceleration are used to find the consecutive angular velocity, acceleration and linear

accelerations of the links all the way to the end-effector link frame of the manipulator. Given these

linear and angular accelerations and velocities with known wrench applied and the end of the ma-

nipulator the force, torque equations can be solved consecutively from the end of the manipulator

to the base of the manipulator [65].

The linear velocity of each joint is described by
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vAi = JvAi,ciq̇A (3.18)

where JvAi,ci is the Jacobian for the linear motion of the centroid of the i′th link. And angular

velocity is described by

ωAi = JωAi,ciq̇A (3.19)

where JωAi,ci is the Jacobian for the angular motion of the centroid of the i′th link. The kinetic

energy of the manipulator with n joints is then

KA =

n∑

i

(
1

2
mAiv

T
AivAi +

1

2
ωTAiI ′AiωAi

)
(3.20)

Where I ′Ai is the inertia tensor for the i′th link in the inertial frame using the similarity trans-

formation

I ′Ai = RWAiIAiR
T
WAi (3.21)

and IAi is the inertial frame in the i′th link frame. Expanding produces

KA =
n∑

i

1

2
q̇TAi
(
mAiJ

T
vAi,ciJvAi,ci + JTωAi,ciRWAiIAiR

T
WAiJωAi,ci

)
q̇Ai (3.22)

=
1

2
q̇TADA(q)q̇A (3.23)

Where DA(q) is a n×n matrix called the inertia matrix for the manipulator. The potential function

for the manipulator is described by

PA =

n∑

i

mAig
Trci (3.24)

where g is the gravity vector, and rci is the a vector in the inertial frame from frame R to the centroid

of the i′th linkage. Then defining the entries of the inertia matrix DA(q) as dA,ij(q) the Lagrangian

becomes
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L = KA − PA =
1

2

n∑

i

dA,ij(q)q̇iq̇j − PA(q) (3.25)

Then the equations of motion including force due to gravity, the applied torques τi applied each

joint become for each joint

τk =
d

dt

∂L
∂q̇k
− ∂L
∂qk

(3.26)

=


∑

j

dkj q̈j +
∑

i,j

(
∂dkj
∂qi

q̇i

)
q̇j


−


1

2

∑

i,j

∂dij
∂qk

q̇iq̇j −
∂P
∂qk


 (3.27)

=
∑

j

dkj q̈j +
∑

i,j

(
∂dkj
∂qi
− 1

2

∂dij
∂qk

)
q̇iq̇j +

∂P
∂qk

(3.28)

=
∑

j

dkj q̈j +
∑

i,j

1

2

(
∂dkj
∂qi

+
∂dki
∂qj
− ∂dij
∂qk

)
q̇iq̇j +

∂P
∂qk

(3.29)

=
∑

j

dkj(q)q̈j +
∑

i,j

1

2
cijk(q)q̇iq̇j + gk(q) (3.30)

The term gk(q) denotes the potential energy. Note that the expansion in (3.29) comes from the

property that the inertia matrix is symmetric therefore

∂dkj
∂qi

=
∂dki
∂qj

(3.31)

and cijk is called the Christoffel symbols of the first kind and are the Coriolis and centrifugal forces

on the manipulator [65]. It’s also worth noting that for the manipulator there is an alternate rep-

resentation leveraging the linearity of the manipulator model property with respect to suitable dy-

namic parameters. This is done by realizing that the Lagrangian in (3.25) with each links mass

as mi, position between the links rotor and center of mass as rci, and inertia tensor at the rotor

Ĩi = Ii +mir
[×]T
ci r

[×]
ci from Huygens-Steiner theorem, can be expressed as
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L =
n∑

i

(
βTK,i − βTP,i

)
πi (3.32)

where the terms βTK,i, β
T
P,i are 11 × 1 vectors that group the kinetic and potential terms to be

multiplied with the vector πi, which is the dynamic parameters for the i′th link containing the

mass, the first moment of inertia and the six elements of the inertia tensor

πi =

[
mi mirci,x mirci,y mirci,z . . .

Ĩi,xx Ĩi,xy Ĩi,xz Ĩi,yy Ĩi,yz Ĩi,zz Ĩmi
]T

(3.33)

where the last term Ĩmi is the motor inertia if desired. Then solving for the equations of motion as

in (3.26) this becomes

τk =
n∑

j=1

yTkjπj (3.34)

where

ykj =
d

dt

∂βK,j
∂q̇k

− ∂βK,j
∂qi

+
∂βP,k
∂qi

(3.35)

which allows (3.34) to be expressed as

τ = Y (q, q̇, q̈)π (3.36)

where Y (q, q̇, q̈) is an upper triangular matrix as shown in [64].

3.2.2 Base Dynamics

For the base dynamics alone, assume that the joints for the manipulator are locked in a given config-

uration such that the vector qA is a constant vector. However, the mass and inertia of the manipulator

mounted on the base cannot be ignored. By defining the rci as the vector from the centroid of the

i′th linkage to the R frame, the effective inertia at frame R of each joint in the joint frame is found

using a generalization of the Huygens–Steiner (parallel axis) theorem. Given that the inertia tensor

is found by integrating over the volume of a rigid body there is the relation dm = ρ(x, y, z)dV that
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relates differential mass and volume with a function of density.

ĨAi,xx =

∫ (
(y + rci,y)

2 + (z + rci,z)
2
)
dm (3.37)

=

∫ (
(y2 + z2) + 2rci,yy + 2rci,zz + r2

ci,y + r2
ci,z

)
dm (3.38)

=

∫
(y2 + z2)dm+ (r2

ci,y + r2
ci,z)

∫
dm (3.39)

= IAi,xx + (r2
ci,y + r2

ci,z)

∫
dm (3.40)

Note that 2rci,y
∫
ydm = 2rci,z

∫
zdm = 0 since this integration is centered about the center of

mass. Therefore similarly for all inertia tensor entries

ĨAi,xx = IAi,xx + (r2
ci,y + r2

ci,z)mAi (3.41)

ĨAi,yy = IAi,yy + (r2
ci,x + r2

ci,z)mAi (3.42)

ĨAi,zz = IAi,zz + (r2
ci,x + r2

ci,y)mAi (3.43)

ĨAi,xy = ĨAi,yx = IAi,xy − rci,xrci,ymAi (3.44)

ĨAi,xz = ĨAi,zx = IAi,xz − rci,xrci,zmAi (3.45)

ĨAi,yz = ĨAi,zy = IAi,yz − rci,yrci,zmAi (3.46)

(3.47)

Hence

ĨAi = IAi +mAi




(r2
ci,y + r2

ci,z) −rci,xrci,y −rci,xrci,z
−rci,xrci,y (r2

ci,x + r2
ci,z) −rci,yrci,z

−rci,xrci,z −rci,yrci,z (r2
ci,x + r2

ci,y)




(3.48)

= IAi +mAir
[×]T
ci r

[×]
ci (3.49)

The base kinetic energy is
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KB =
1

2
mBv

T
BvB +

1

2
ωTBI ′BωB (3.50)

The augmented mass and inertia are

m̃B = mB +

n∑

i

mAi (3.51)

ĨB = RWRIBR
T
WR +

n∑

i

RWAi

(
IAi +mAir

[×]T
ci r

[×]
ci

)
RTWAi (3.52)

where these again are static quantities as the manipulator joints are considered locked. For base

wheel velocities q̇b,1, q̇b,2 which are the right and left wheels respectively, the velocity of the system

is described in terms of these by the Jacobian components

vB =



cos(φR,z) sin(φR,z) 0

cos(φR,z) sin(φR,z) 0




T 

q̇b,1

q̇b,2




= JvB



q̇b,1

q̇b,2


 (3.53)

ωB =




0 0 lb1
lb2

0 0 − lb1
lb2




T 

q̇b,1

q̇b,2




= JωB



q̇b,1

q̇b,2


 (3.54)

as in (3.5). Then by substituting (3.53) and (3.54) along with (3.51) and (3.52) into (3.50) and

realizing that as the system is confined to SE(2) the potential function P(q) = 0, the Lagrangian

(3.12) can be solved with torque inputs to the wheels τk

τk =
d

dt

∂L
∂q̇b,k

(3.55)
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3.2.3 Coupled Dynamics for the Manipulator and Base

When both the base and the manipulator are allowed to move, the coupled dynamics must be con-

sidered. This can again be solved using Euler-Lagrange equations of motion. First the velocity of

each rigid body in the system must be found with respect to the inertial frame W. For the base rigid

body, let the velocity be described by (3.53) and (3.54). For each manipulator linkage, let the linear

and angular velocities be described in the inertial frame by

vAi = vB + ω
[×]
B rci + JvAi,ciq̇A (3.56)

ωAi = JωAi,ciq̇A + ωB (3.57)

Therefore the total kinetic energy for the base and manipulator is

KAB =
1

2

(
mBv

T
BvB + ωTBI ′BωB +

n∑

i

(
mAiv

T
AivAi + ωTAiI ′AiωAi

)
)

(3.58)

And the potential energy is just the portion from the manipulator in (3.24). Expanding mBv
T
BvB

and ωTBI ′BωB:

mBv
T
BvB = mBq̇

T
BJ

T
vBJvBq̇B (3.59)

ωTBI ′BωB = ωTBRWRIBR
T
WRωB

= q̇TBJ
T
ωBRWRIBR

T
WRJωBq̇B (3.60)

Expanding the mAiv
T
Ai
vAi terms using (3.56), produces
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mAiv
T
AivAi = mAi

(
vB + ω

[×]
B rci + JvAi,ciq̇A

)T (
vB + ω

[×]
B rci + JvAi,ciq̇A

)

= mAi

(
vTBvB + vTBω

[×]
B rci + vTBJvAi,ciq̇A + (ω

[×]
B rci)

TvB

+ (ω
[×]
B rci)

Tω
[×]
B rci + (ω

[×]
B rci)

TJvAi,ciq̇A + q̇TAJ
T
vAi,civB

+ q̇TAJ
T
vAi,ciω

[×]
B rci + q̇TAJ

T
vAi,ciJvAi,ciq̇A

)
(3.61)

Using the property that ω[×]
B rci = −r[×]

ci ωB along with q̇B =

[
q̇b,1 q̇b,2

]T
and with JvB, JωB from

(3.53) and (3.54) then (3.61) can be expressed as

mAiv
T
AivAi = mAi

(
q̇TBJ

T
vBJvBq̇B − q̇TBJTvBr

[×]
ci JωBq̇B + q̇TBJ

T
vBJvAi,ciq̇A

− q̇TBJTωBr
[×]T
ci JvBq̇B + q̇TBJ

T
ωBr

[×]T
ci r

[×]
ci JωBq̇B + q̇TBJ

T
ωBr

[×]T
ci JvAi,ciq̇A

+q̇TAJ
T
vAi,ciJvBq̇B − q̇TAJTvAi,cir

[×]
ci JωBq̇B + q̇TAJ

T
vAi,ciJvAi,ciq̇A

)
(3.62)

likewise for the terms ωTAiI ′AiωAi using (3.54), (3.21) and expanding

ωTAiI ′AiωAi = (JωAi,ciq̇A + ωB) I ′Ai (JωAi,ciq̇A + ωB)

= q̇TAJ
T
ωAi,ciRWAiIAiR

T
WAiJωAi,ciq̇A

+ q̇TBJ
T
ωBRWAiIAiR

T
WAiJωBq̇B (3.63)

As the kinetic energy is defined in terms of the inertia matrix and generalized coordinate velocities

KAB =
1

2

[
q̇TA q̇TB

]
DAB



q̇A

q̇B


 , (3.64)
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the task becomes representing the inertia tensor. For simplicity, the following terms are defined as

d1 = mBJ
T
vBJvB

d2 = JTωBRWRIBR
T
WRJωB

d3 = mAiJ
T
vBJvB

d4 = −mAiJ
T
vBr

[×]
ci JωB

d5 = mAiJ
T
vBJvAi,ci

d6 = −mAiJ
T
ωBr

[×]T
ci JvB

d7 = mAiJ
T
ωBr

[×]T
ci r

[×]
ci JωB

d8 = mAiJ
T
ωBr

[×]T
ci JvAi,ci

d9 = mAiJ
T
vAi,ciJvB

d10 = −mAiJ
T
vAi,cir

[×]
ci JωB

d11 = mAiJ
T
vAi,ciJvAi,ci

d12 = JTωAi,ciRWAiIAiR
T
WAiJωAi,ci

d13 = JTωBRWAiIAiR
T
WAiJωB (3.65)

It’s easy to see that d5 = dT9 and d8 = dT10, therefore, using the convention d1,2 = d1 +d2 the inertia

matrix becomes

DAB =



d11,12 d5,8

dT5,8 d1,2,3,4,6,7,13


 (3.66)

where every term d that contains an arm link subscript i is summed for all the joints from i = 1 : n.

The full Lagrangian becomes

L = KAB − PA (3.67)

and the full dynamical equations is found by substituting (3.67) into (3.17) [64, 65, 81]. And for

q =

[
qTA qTB

]T
the final equations of motion can be expressed as
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D(q)q̈ + C(q, q̇) +G(q) = τ +Amanip(q)λ (3.68)

where Amanip(q)λ are the non-holonomic constraints in (3.17), C(q, q̇) is the coriolis and

centrifugal terms, and G(q) is the gravity vector. Additional external forces can be included such

as joint friction or the applied external wrench from (3.10).

3.3 Optimal Control

Optimal control is the description of a control policy that when executed causes the state to follow an

optimal process defined by a functional, subjected to given constraints. However, the first challenge

is determining if for given a functional, does an optimal process (or trajectory through the state

space) exists. To address this, the essentials of optimization are presented followed by applications

to cost functional’s for control objectives, then finally methods to solve for local or global optimal

control policies is presented.

3.3.1 Essentials of Optimization

When solving an optimization problem over a set or given functional, it is assumed that the global

optimum (usually in convex optimization) or local optimum (usually in nonlinear optimization) is

reachable from the given initial conditions. One way to ensure this is by the careful design of the

functional. A set C ⊂ Rn is considered affine if a line segment connecting any two points in the set

C also lies in the set. Extending this to geometric regions defined by the combination of surfaces

(of dimension Rn−1 in n-dimensional space), a geometric region is convex if the set of points inside

the region and on the defining surfaces are affine.

Given a convex region in Rn, an optimization problem’s solution requires finding a point or set

of points that maximize or minimize as specified a stated objective given constraints. For a linear

programming (LP) problem, consider a vector field v and state space x ∈ Rn and a convex polytope

defined by

Ax ≤ b (3.69)

where the rows of A specify normal vectors for the polytope planes and the inequality with vector
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b ensures that the point x is interior to the defining planes. The linear problem is formally stated as

min
x
vTx

subj. to Ax ≤ b

Fx = h (3.70)

This states, given a vector field v, find the point interior to the convex polytope defined by (3.69)

constrained by the equality Fx = h that is in the most ‘negative’ direction of the vector field. When

searching for a unique solution, an inherent limitation to LP is that if the vector field v is aligned

with a row of A, there may be a set of points x that satisfy the LP and lie on the face of the polytope

defined by the corresponding row of A.

A general quadratic programming (QP) problem is formally stated as

min
x
xTQx+ vTx+ a

subj. to Ax ≤ b

Fx = h (3.71)

where a is a scalar, and the quadratic term is xTQx and describes a paraboloid, and since the

objective is to find the minimum of x, the matrix Q is defined to be positive semi-definite meaning

|Q| ≥ 0. While this is the most common approach used (and works well in most cases), it lacks a

degree of elegance. This is because while the quadratic term minimizes the norm of x, the term vTx

minimizes x in the vector field v and these objectives are linearly constrained inside of a polytope

defined by the union of half-spaces Ax ≤ b which can be subject to the same multiple solution

scenario as the LP problem (consider a plane that restricts further minimization of the weighted

norm xTQx and is aligned with v). The use of quadratic constraints are captured in the following

definition.
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The second order cone programming (SOCP) problem is formally stated as

min
x
vTx

subj. to ||Aix+ bi||2 ≤ cTi x+ ai, i = 1, . . . ,m

Fx = h (3.72)

where a norm cone is defined by the set C = {(x, tsocp)| ||x|| ≤ tsocp} ⊂ Rn+1 and the inequality

constraint in (3.72) is a norm cone. Simply stated, the norm cone lies in a space one dimension

higher than the state space x and the norm of x is bounded by a scalar (here tsocp) on the last

dimension. First it must be noted that when ci = 0 this reduces to a quadratically constrained

quadratic program (QCQP), and if Ai = 0 ∀i then this reduces to a general LP. Geometrically,

the SOCP can be thought of as m intersecting ellipsoids in Rn whose shapes and projections are

determined by Ai and are subjected to linear constraints defined by the combination of Ai, bi, ci

and norm cone bounded by a combination of bi, ai. Given the overlapping ellipsoids and hyper-

planes, minimization of vTx within the combined convex region finds the optimum point over the

ellipsoids. It is interesting to note that a constant vector field v over a set of overlapping ellipsoids

(with bounded norm) will find a unique minimum due to the natural curvature of the ellipsoids [73].

To solve these optimization problems, if it is known that a global unique solution exists and

the functions are C1 differentiable, then it can be solved for directly using Lagrange multipli-

ers. For example, given a function f(x) and constraint functions gopt(x) = 0, then by defining

h(x, λ) = f(x) + λgopt(x), then differentiating, then the extremal point is satisfied at the unique

point ∇h(x∗, λ∗) = 0. However, often it is the case that the functions and constraints cannot be

easily solved in this manner, and if so it is not computationally feasible. In these scenarios, nu-

merical methods can be used to find the optimal points. Simplistically, this is done using gradient

descent methods, where the perturbation ∆x which decreases f(x) the most while respecting con-

straints is used to update the estimated optimal state xk+1 = xk + γ∆x. This is done until the

value converges for a given step size γ. There are a host of algorithms to perform this, including but

not limited to Dantzig’s simplex algorithm, Newton’s method, the Gauss-Newton algorithm (sim-
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plification of Newton’s method), and interior point method (an application of Newton’s method).

Dantzig’s simplex algorithm is useful for LP’s where the minimized vector field is not aligned with

a hyper-plane in (3.70). The solution is assumed to be on one of the finite vertices of the defined,

closed polytope. Starting on a vertex, the edges are followed until the optimal vertex is reached,

comparing the functional evaluation at each consecutive function to determine next best step. New-

ton’s method is found by taking a second order Taylor series expansion about the current state

(single dimension) xk: f(xk + ∆x) ≈ f(xk) + f (1)(xk)∆x + 1
2f

(2)(xk)∆x
2. By differentiating

with respect to ∆x, and setting this to zero, the step size ∆x = −f (1)(xk)/f
(2)(xk) is obtained and

used to find the optimum. Newton’s method generalized to a vector x ∈ Rn becomes

xn+1 = xn − γ∇2f−1(xn)∇f(xn) (3.73)

where γ ∈ [0, 1] allows for a smaller step-size if desired along the search direction

∆x = −∇2f−1(xn)∇f(xn). (3.74)

Newtons method has the requirement that the function be at least twice differentiable. For func-

tions fi(x) that are only once differentiable the Gauss-Newton method can be used as only the first

derivative is required. By defining a least squares problem f(x) = 1
2

∑
i fi(x)2, the Gauss-Newton

search direction becomes

∆x = −
(∑

i

∇fi(x)∇fi(x)T

)−1(∑

i

fi(x)∇fi(x)

)
(3.75)

as developed in [73]. The interior point method is an implementation for convex optimization

problems where the objective functions are convex and at least twice differentiable. The value

in the interior point method is that it reduces an optimization problem with linear equalities and

inequalities to just a problem with linear equalities. This is commonly done using barrier method,

where a barrier function (e.g. differentiable logarithmic barrier) is used to represent the inequality

as a part of the objective function, where states very close to the barrier are heavily penalized [73].
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3.3.2 Essentials of Optimal Control

The goal of optimal control is to find the input policy u∗(t) ∈ U which causes the system ẋ(t) =

f(x(t),u(t),β(t), t) to follow a trajectory that minimizes the performance metric S(x,u,β, t).

Where u is the input and U is the set of valid control inputs, x is the state of the system, f( · )

describes the state dynamics and β are system parameters that may be either constant or varying, and

c( · ) describes state and input constraints. Formally the optimal control problem can be expressed

as

min
u, t∈[t0,tf ]

S(x(t),u(t),β(t), t) = min
u, t∈[t0,tf ]

(
m(x(tf ),u(tf ), tf ) +

∫ tf

t
g(x(s),u(s), s)ds

)

subj to ẋ = f(x(t),u(t),β(t), t)

c(x(t),u(t),β(t), t) ≤ 0 (3.76)

where m( · ) is the terminal cost function and g is the running cost function. The input that satisfies

(3.76) is the optimal policy u∗(t) over the entire interval t ∈ [t0, tf ]. This leads to the Bellman

Principle of Optimality [9] which states that “if u∗(t) is an optimal policy over t ∈ [t0, tf ] with an

initial state x(t0), then u∗(t) is necessarily optimal over the subinterval [t0 + ∆t, tf ] for any ∆t

such that tf − t0 ≥ ∆t > 0." The task becomes finding the control input that satisfies the principle,

to do this, consider the minimum cost function

S∗(x, t) = min
u, t∈[t0,tf ]

(
m(x(tf ),u(tf ), tf ) +

∫ tf

t
g(x(s),u(s), s)ds

)
(3.77)

which is satisfied by the optimal input u∗(t), by subdividing the integration integral and using the

principle of optimality

S∗(x(t), t) = min
u, t∈[t0,tf ]

(∫ t+∆t

t
g(x(s),u(s), s)ds+ S∗(x(t+ ∆t), t+ ∆t)

)
(3.78)
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Assuming S∗(x(t), t) is differentiable (partial derivatives exist and are bounded) then S∗(x(t +

∆t), t+ ∆t) then a Taylor series can be expanded about the point S∗(x(t), t)

S∗(x(t), t) = min
u, t∈[t0,tf ]

(∫ t+∆t

t
g(x(s),u(s), s)ds+ S∗(x(t), t) +

∂S∗

∂t
(x(t), t)∆t

+

(
∂S∗

∂x
(x(t), t)

)T
[x(t+ ∆t)− x(t)] +O

)
(3.79)

where O are higher order terms. Next, a very small ∆t is considered and used to find the optimal

input, which is the powerful assertion behind the principle of optimality because the problem of

finding the optimal control over the whole interval has been reduced to finding the optimal control

over the reduced interval [t, t+ ∆t]. With the small ∆t (3.79) can be simplified to

S∗(x(t), t) = min
u

(
g(x(t),u(t), t)∆t+ S∗(x(t), t) +

∂S∗

∂t
(x(t), t)∆t

+

(
∂S∗

∂x
(x(t), t)

)T
ẋ(t) + o(∆t)

)
(3.80)

where the derivative ẋ is defined in (3.76) and o(∆t) are the higher order terms. After canceling the

S∗(x(t), t) and dividing all by ∆t, the higher order terms vanish by the principle lim∆t→0

∣∣∣o(∆t)∆t

∣∣∣ =

0. Leaving the following conditions

0 =
∂S∗

∂t
(x(t), t) + min

u
(g(x(t),u(t), t)

+

(
∂S∗

∂x
(x(t), t)

)T
[f(x(t),u(t),β(t), t)]

)
(3.81)

S∗(x(tf ), tf ) = m(x(tf ),u(tf ), tf ) (3.82)
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The argument that requires the minimization of the control input is called the Hamiltonian

H(x(t),u(t),∇xS∗, t) , g(x(t),u(t), t)

+

(
∂S∗

∂x
(x(t), t)

)T
[f(x(t),u(t),β(t), t)] (3.83)

H(x(t),u∗(x(t),∇xS∗, t),∇xS∗, t) , min
u

(g(x(t),u(t), t)

+

(
∂S∗

∂x
(x(t), t)

)T
[f(x(t),u(t),β(t), t)]

)
(3.84)

using (3.84) the Hamilton-Jacobi-Bellman equation is defined as

0 =
∂S∗

∂t
(x(t), t) +H

(
x(t),u∗(x(t),

∂S∗

∂x
(x(t), t), t), t

)
(3.85)

It must be noted that while solving (3.85) is a necessary condition it is not always sufficient (an

optimal control law will satisfy (3.85), however a control law that simply satisfies (3.85) is not

guaranteed to be truly optimal). When u is unbounded and the Hessian of the Hamiltonian is

positive definite it is a necessary condition that the optimal control input satisfy

∂H
∂u

= 0 (3.86)

and will minimize H [32, 66]. For linear systems described by ẋ(t) = Alinx(t) + Blinu(t), and

performance metric g(x(t),u(t)) = xTQx + uTRuu and boundary condition m(x(t),u(t)) =

xTMx, where M , Q are real, positive semi-definite and Ru is positive definite then the control

input that satisfies (3.86) and the boundary condition (3.82) is

u∗(t) = −R−1
u BT

lin

∂S∗

∂x
(x(t), t) (3.87)

the task becomes finding the suitable solution for ∂S
∗

∂x (x(t), t), informed by the fact that a quadratic

function of the state produces the minimum cost for a discrete linear regulator problem a valid

solution choice is
∂S∗

∂x
(x(t), t) =

1

2
xT (t)Kric(t)x (3.88)
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where Kric(t) is a real, symmetric positive-definite matrix. Substituting (3.88) into (3.87) and

that into (3.81) with boundary condition (3.82), and since these must hold for all x after matrix

manipulation obtain the matrix Riccati equation and final boundary value for Kric(t)

−K̇ric(t) = Q(t)−Kric(t)Blin(t)R−1
u (t)BT

lin(t)Kric(t) +Kric(t)Alin(t) +ATlin(t)Kric(t)

(3.89)

Kric(tf ) = M (3.90)

solving the matrix Riccati equation is done by solving the system of linear equations



Ẋ

Ẏ


 =



Alin −BlinR−1

u BT
lin

−Q −ATlin






X

Y


 (3.91)

where

Kric(t) = Y (t)X−1(t) (3.92)

Using the chain rule and substitution its straight-forward to show that (3.92) with (3.91) satisfy

(3.89). When the matrices Alin, Blin, Q,Ru are time varying then (3.91) is time varying and an

analytical solution is not straight-forward, however if they are time-invariant then solutions can be

found in terms of matrix exponential functions [18]. And the optimal control law becomes

u∗(t) = −R−1
u (t)BT

lin(t)Kric(t)x(t) (3.93)

Usually to ensure a unique solution exists and use common gradient descent methods g(x(t),u(t), t)

is chosen to be differentiable and represent a convex (or is approximated as convex for local opti-

mality). This usually implies that the goal is therefore to drive x(t) to a nominal value, which can

be done with a simple change of coordinates to make a set-point x0 the origin. If however the goal

is to track a desired trajectory, then the set-point is no longer static, and the control objective can be

stated in terms of the error

ex(t) = xd(t)− x(t), (3.94)
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then the goal is to drive the error to zero, and the control objective u∗(t) becomes an explicit

function of (3.94). It must be noted in this case that the control input is only activated when the

error is non-zero, meaning that the performance metric will always be greater than the optimum

unless the desired trajectory can be estimated, and can be taken into account in a feed-forward term.

Another consideration is when there is uncertainty in the state

ẋ = f(x(t),u(t),β(t), t) + Lη(x(t), t)η(t) (3.95)

where η(t) is additive noise whose actual value is unknown and Lη(x(t), t) defines its projection

into the current state space. When (3.95) is substituted into (3.76) as the dynamical constraint this

forms the problem statement for Stochastic control. In this case, if the noise disturbances η(t) are

unknown, then the deterministic performance metric cannot be minimized by the choice of control.

However if the statistics of η(t) are known (e.g. has a zero mean and Gaussian distribution), then a

performance metric based on the expected (mean) value of the previous performance metric can be

minimized [66]. Both of these problems require prediction of a future state in order to be optimal,

which motivates predictive control as an online optimization problem which solves for the optimal

control informed by the models of the system dynamics f(x(t),u(t),β(t), t), expected desired

trajectory xd(t), and disturbances η(t) [66, 75].

3.4 Model Predictive Control

The general description of model predictive control (MPC) is the design of a controller that mini-

mizes a performance metric (3.76) using either a priori or online estimated knowledge of the dy-

namical model, the associated uncertainty in the state, and prescribed state trajectories. With such

a general description of MPC, there are many algorithms that it encapsulates including but not lim-

ited to dynamic matrix control, model algorithmic control, inferential control, and internal model

control [21, 44].

The power behind MPC is that it relies heavily on the principle of optimality, in that if the

optimal control can be continually calculated over a finite time horizon, then the total control over

the entire trajectory will be the optimal control. When the desired state trajectory is described by
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a set-point (constant), and the true dynamics of the system are known and there is no uncertainty

or disturbance in the state, then the MPC problem reduces to solving the Hamilton-Jacobi-Bellman

(principle of optimality) equation (3.85) [44]. One way to handle feasibility constraints is to use

barrier functions in the objective which also improves computation when optimizing over the control

input [75]. When there is noise or disturbance η(t) added to the system as in (3.95) whose statics

can be modeled, the principle of optimality is updated to include that uncertainty as

0 =
∂S∗

∂t
(x(t), t) +H(x(t),u∗(x(t),

∂S∗

∂x
(x(t), t), t),∇xS∗, t)

+
1

2
Tr

(
∂2S∗

∂x∂x
Lη(x(t), t)Wη(t)L

T
η (x(t), t)

)
(3.96)

where Tr( · ) is the matrix trace operator, Lη(x(t), t) is as defined in (3.95), and

E [η(t)] = η̄ = 0 (3.97)

E
[
ηT (t)η(t)

]
= η(t) (3.98)

where E[ · ] is the expectation operator, and (3.97) is the zero mean for Gaussian white noise and

(3.98) is the covariance [66]. Note that the argument of the trace in last term is positive semi-

definite, with zero being achieved only when there is no uncertainty over the disturbance or noise.

Since by definition η(t) is not explicitly known then this greater than the deterministic principle of

optimality over the trajectory as expected.

The problems of estimating the system dynamical model and estimating the desired trajectory

are essentially equivalent as a change in state using (3.94) would encapsulate both problems with

the goal of driving the state to the origin. The new state will be referred to as the error, but embodies

both the error in dynamical model parameter estimation as well as desired trajectory. If the time

variant error function e(t) of the system is unknown and is impossible or difficult to estimate,

then for relatively small perturbations robust control provides bounded performance. Traditionally,

robust control is the study of characterizing and bounding the systems worst performance over a

specified interval (formally using stability criterion), with controller design based on a pre-specified

performance metric termed as optimal synthesis [10]. To do this, the resulting error or its statistics
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must be characterized or no such bounds on performance can be found. When only the statistics are

available, if a robust contraction constraint is enforced (causing worse case prediction of the state

or performance cost to contract over the interval), then nominal performance may be achieved [44].

It is often challenging to enforce such constraints, and for large and growing errors it is often

best to actively estimate the underlying models that describe the system dynamics or the desired

trajectory. So in the cases where the states and effective model parameters are observable, improved

approximation of these models for the dynamics and desired trajectories will lead to better overall

performance and approach optimal control. To approximate a model, valid estimates of the state

or parameters as well as their processing must be obtained to update the model. The next session

presents methods and theory behind state estimation.

3.5 State Estimation

In order to attenuate the state of a generic system (denoted as x(t)), the state it must be at least

partially and preferably fully observable. These observations in robotics are usually obtained using

sensors that have a degree of uncertainty in measurements. This makes it imperative to be able to

model the statistics of these uncertainties in order better model the system and ultimately control the

system. The multivariate probability density function will be denoted as pr( · ) which must satisfy

∫
pr(x)dx = 1 (3.99)

pr(x) expresses the likelihood that x will fall in the volume dx, hence integrating over the entire

space the probability is 1. The expectation operator is denoted as E[ · ], and for a function f(x)

under a probability distribution pr(x) is defined as

E[f ] =

∫
pr(x)f(x)dx (3.100)

where f(x) = x is valid. The covariance is defined as

cov[x,y] = Ex,y
[
(x− E[x])

(
yT − E[yT ]

)]
(3.101)
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where x,y are vectors and x = y is valid [13]. A covariance of an element xi or function f(x)

with itself is called the variance. A Gaussian distribution of x denoted as N (x|x̄,Σ) where x̄,Σ

are the mean and covariance matrix respectively, is defined as

N (x|x̄,Σ) =
1√

2π|Σ|
exp

(
−1

2
(x− u)TΣ−1(x− u)

)
(3.102)

The Gaussian distribution has the following properties
∫∞
−∞N (x|x̄,Σ)dx = 1 andN (x|x̄,Σ) > 0.

Unless explicitly stated or observed, it is generally assumed that uncertainty in most measurements

of physically observed processes exhibit Gaussian noise about a mean. This is due to the Central

Limit Theorem which states that for any distribution, as the number of samples approaches infinity

the distribution converges to a normal distribution [13].

If it is assumed that the dynamical function or trajectory model has a unique output given partic-

ular initial conditions, then when the initial conditions are known, previous states are not required

to predict the processing of the state. This lays the foundation for state estimation using Markov

processes, as a Markov process predicts a future state independent of past states given the current

state of the system. A Hidden Markov Model (HMM) is a process where the actual state x is not

observed and is referred to as the latent variable, however there is a projection to observed variables

z. The Kalman filter is one implementation of a HMM and a class of Bayesian filter, with a latent

variable and assumes that all variables (observed and latent) have Gaussian distributions. There

are a few extensions of the Kalman filter, two common ones are the Extended Kalman filter (EKF)

and the Unscented Kalman filter (UKF), both of these improve on the approximation of the pro-

cessing dynamics as shown in (3.95). These filters make the assumption that the state is measured

discretely (which is the case using hardware), however the Kalman-Bucy filter provides a contin-

uous time representation of the Kalman Filter. Due to its generality, the UKF is presented first, to

handle non-linearity in the state-space the covariance is used to sample the local space based on the

uncertainty using the following function

X = σ(x̂,Σ) =

[
x̂ x̂+ γ

√
Σ x̂− γ

√
Σ

]
(3.103)
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The estimated (or latent) variable in (3.103) is x̂with associated uncertainty in the covariance matrix

Σ and the columns of the resulting matrix are referred to as the sigma points. For a n-dimensional

state space there are 2n + 1 sigma points in (3.103) defined by the columns of
√

Σ with γ as a

constant variable defined as γ = α2(n + κ) where α, κ are adjustable, scalar parameters. The

Kalman filter is described by an prediction step and an update step, for the UKF these are the

prediction step:

χ = f(χt−1,ut−1)

x̂t = E [χt]

Σt = cov [(χt − x̂) , (χt − x̂)] +Rkf,t

χt = σ(x̂t,Σt) (3.104)

and for the update step:

Zkf = h(χt)

ẑt = E [Zkf ]

Lkf,t = cov [(Zkf − ẑ) , (Zkf − ẑ)] +Qkf,t

Mkf,t = cov [(Xt − x̂t) , (Zkf − ẑ)]

Kkf,t = Mkf,tL
−1
kf,t

x̂t = x̂t +Kkf,t(zt − ẑt)

Σt = Σt −Kkf,tLkf,tK
T
kf,t (3.105)

whereu is the control input, z is the measurement which is observed by the sensors, andRkf,t, Qkf,t

are the uncertainties associated with the process and the measurement respectively [70]. The tradi-

tional Kalman-Bucy filter was designed for linear time invariant systems, but many renditions exist

including the hybrid Kalman-Bucy filter that has both continuous and discrete components, Ex-

tended Kalman-Bucy filter, and finally the continuous time Unscented Kalman-Bucy filter (UKBF)
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presented here for a system described by the dynamics and output

ẋ(t) = f(x(t),u(t), t) +Mkf (t)ηRkf

z(t) = h(x(t), t) + Lkf (t)ηQkf (3.106)

where ηQkf ,ηRkf are white noises with spectral densities ηQkf ∼ N (0, Qkf ) and ηRkf ∼ N (0, Rkf )

respectively and projection matrices Lkf (t), Mkf (t). Then with a weighting matrix as a function of

the weightings γ: Wσ = Γkf (γ) for the sigma points as defined in [59], the complete continuous

time UKBF can be represented as

dx̂

dt
= f(X(t),u(t), t) +Kkf (Zkf − h(χ(t), t))

dΣ

dt
= X(t)Wσf

T (χ(t),u(t), t) + f (χ(t),u(t), t)WσX(t)

+ LkfQkfL
T
kf −KkfMkfRkfM

T
kfK

T
kf

Kkf = X(t)Wσh
T (χ(t), t)Q−1

kf (3.107)

as shown in [59, 86]. So these methods present a way to model the procession of states and the

associated uncertainty given a valid dynamical model. However, if the estimating model is poor

then the associated error can be expected to reflect the quality of modeling, in fact for drastically

incorrect models, the white noise assertion in (3.106) becomes incorrect. Hence the challenge

becomes improving the model representation during operation which will in turn improve estimation

which will then in turn improve control. This motivates the need for model approximation, and that

performed online in the form of adaptive control through model approximation.

3.6 Model Approximation

In order to estimate a processing state accurately, it is important to have a valid model as this will

directly effect the accumulated errors and therefore the ability to optimally control the system. Let
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Table 3.1: Modeling types and estimation techniques [47].

Model type Estimation Architecture
Forward Model Direct modeling
Inverse Model Direct modeling, indirect modeling
Mixed Model Direct modeling*, indirect modeling, distal teacher

a system process and output model be described by

ẋ(t) = f(x(t),u(t),β(t), t)

z(t) = hx(t),β(t), t) (3.108)

where x, z,β are the state, output and time varying model parameters (present in the parametric

model). There are three major types of modeling techniques: forward modeling, inverse modeling

and mixed modeling. Forward modeling is defined as using previous states and current inputs via a

model to predict future states. Inverse modeling is defined as using previous states and future desired

or expected states via a model to determine required inputs. Mixed modeling is a combination of

forward and inverse modeling by using both previous state and previous inputs as well as future

desired or expected states to determine the current and next inputs.

Common methods of estimating these models include direct modeling, indirect modeling and

the distal teacher method. In direct modeling, a model is estimated by observing the inputs and

resulting outputs, essentially mapping actions to change in the state and adjusting the model based

on approximation errors (predictions and resulting outputs). In indirect modeling, a feedback error

measure is defined, and the model is estimated by minimizing this error metric. In distal teacher

modeling, the forward model is estimated from observing inputs and resulting outputs, and this is

used to update (or teach) the inverse model by minimizing the error between the expected output

from the forward model and the resulting output from the current inverse model, with the inverse

model being the true inverse of the forward model if this error is minimized. The inverse model is

then used to perform control on the actual system. The different model types and their corresponding

estimation architectures are shown in Table 3.1, where for the mixed model the direct modeling
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architecture is appropriate if it is known that the proposed model is invertible [47].

When the model is parametric as in (3.108), in each of the above estimation architectures, an

error metric is to be minimized by adjusting the available parameters β(t) which could be constant

or varying depending on the system. In order to see the effect of changing β(t), the fundamental

qualities of f( · ) in (3.108) must be understood. It also important to note, that parametric models

have the inherent limitation that they are subject to the structure of f( · ) regardless of the parameters

β(t) chosen, and if this modeling is fundamentally wrong then the system approximation can be

expected to have persistent errors, which is the motivation for non-parametric modeling. First the

residual must be defined, the approximation error ex(t) defined as the difference between the real

state x(t) and the estimated state x̂(t)

ex(t) = x(t)− x̂(t) (3.109)

= x(t)−
∫ t0+∆t

t0

f(x(s),u(s),β(s), s)ds (3.110)

= x(t)−
∫ ∆t

0
f(x(s),u(s),β(s), s)ds− x(t0) (3.111)

Then for very small ∆t, this can be approximated as

ex(t) = ẋ(t)∆t− f(x(t),u(t),β(t), t)∆t+ ex(t−∆t) (3.112)

ex(t) = (ẋ(t)− f(x(t),u(t),β(t), t)) ∆t+ ex(t−∆t) (3.113)

Note that if the residual (ẋ(t)− f(x(t),u(t),β(t), t)) is minimized or decreased over the whole

time interval ∀t, then the approximation error will also be minimized or decreased over the en-

tire time interval. Note that the same development can be performed for the output function

(ż(t)− hx(t),β(t), t)). If f( · ), h · ) are smooth and differentiable with respect to the parame-

ters β(t), then with an squared residual error metric defined as

eres(β, t) = (ẋ(t)− f(x(t),u(t),β(t), t))2

eres(β + ∆β, t) = eres(β, t) + eres(β, t)
(1)∆β(t) +

1

2
eres(β, t)

(2)∆β2(t) (3.114)
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when expanded by the Taylor series, then using Newtons method the change in the parameters ∆β

is

∆β(t) = γ (ẋ(t)− f(x(t),u(t),β(t), t))

(
∂f(x(t),u(t),β(t), t)

∂β

)−1

(3.115)

In non-parametric modeling, a statistical association between inputs and outputs are modeled. There

are many ways in which this non-parametric modeling can be performed, including but not limited to

Neural Nets and Gaussian Processes, but for brevity only Gaussian Processes (GP) will be presented

in this section. Given a set of inputs xk (which could include states, inputs etc) and associated

observations yk (which could be outputs, derivative states etc), a training set can be obtained from

the correlated inputs and observations ytrain, xtrain. Defining a generic Gaussian kernel as

κ(xi,xj) = σ2
κ exp

(
(xi − xj)T (xi − xj)

2l2κ

)
(3.116)

where σκ and lκ are the variance and length scale respectively. Then a variance matrix Ktrain can

be constructed, where the elements of the matrix Kij,train are found using the kernel function in

(3.116). For a set of test inputs xtest, the associated ytest is the output of the non-parametric model.

All of the statistical modeling methods make the inherent assumption that states that are ‘close’

defined by a metric distance projected through the kernel function have the same output properties

(with the obvious quality that a training point should return the trained output). Therefore the

‘closeness’ of a test point with the training points can be denoted by the covariance matrix K∗,mn,

for m test points and n training points defined by

K∗,ij = κ(xtest,i,xtrain,j) (3.117)

Finally, the covariance matrix for the test points with test points is denoted asK∗∗,mm and is defined

as

K∗∗,ij = κ(xtest,i,xtest,j) (3.118)

Defining a small value δn, and mean value function m( · ) the Gaussian Process algorithm can be
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expressed as

ytest = m(xtest) +KT
∗
(
Ktrain + δ2

nI
)−1

(ytrain −m(xtrain))

V [ytest] = K∗∗ −KT
∗
(
Ktrain + δ2

nI
)−1

K∗ (3.119)

Note that the model of the system is based on the training data output ytrain and the associated

covariance matrix of the training data Ktrain. The inherent limitations of such methods are the data

smoothness, high dimensionality, noisy data, redundant data, missing data and outliers to name a

few [47]. Some methods that are employed to improve on these limitations are using local GP’s

for high-dimensional data [48], using a mixture of experts for noisy and missing data regions [5],

and sparsification for redundant data [46]. However despite all of these methods to improve the

non-parametric methods, there is the persistent, inherent limitation that the modeling can only be

expected to perform well near (metric closeness or interpolated) training data.

To handle this last limitation, semi-parametric modeling has been proposed as a method to

bridge the gaps in both methodologies. In semi-parametric modeling the parametric model can be

used to induce a prior (which is helpful when examining test inputs far from the training data) as well

as being useful for defining an informed (e.g. physics based) kernel [19]. In this way the strengths

of both methods can be leveraged, where the parametric model improves estimation far from the

training data and is allowed to improve the parameters, and the non-parametric model allows the

system to adapt to observations that are not reflected in the given structure of the parametric model,

which over time with more observations improves the system’s performance. An example of such

a semi-parametric modeling scheme is presented using the GP for the non-parametric modeling

component

ytest(t) = f(xtest(t), t) +KT
∗
(
Ktrain + δ2

nI
)−1

(ytrain − f(xtrain(t), t))

V [ytest] = K∗∗ −KT
∗
(
Ktrain + δ2

nI
)−1

K∗

∆β(t) = γ

(
∂f(xtest(t), t)

∂β

)†
(ytest(t)− f(xtest(t), t)) (3.120)
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Adaptive control is the process of doing the above mentioned model parameter adjustments

concurrently during optimal control [60, 64].

3.7 Essentials of Controller Stability Analysis

Given a dynamical system described by (3.108), for this section let x be redefined through a change

of coordinates such that the origin x = 0 is the control objective. The origin is considered a stable

point, if for small scalars ε, δ > 0, for a state starting within ||x(t0)|| < δ, then ||x(t)|| < ε true

for all t ≥ 0. The origin is considered asymptotically stable if for c > 0, for all ||x(t0)|| < c

that limt→∞ x(t) = 0. A region of attraction DA for the origin is defined as points x ∈ Rn such

that limt→+∞ x(t) = 0. Given a dynamical function, the task becomes determining if the origin is

stable, this can sometimes be done using the Lyapunov stability theorem. A fundamental part of the

Lyapunov stability theorem is the use of the Lie derivative. The Lie derivative of a function along

a vector field measures changes in the function along differential equation solutions of the vector

field. It is defined here as

Llie,fV(x) =
∂V
∂x
· f(x) (3.121)

where f(x) describes the evolution of the state x, and is hence a vector field. If x(t) is a solution

to ẋ(t) = f(x(t), t) then

Llie,fV(x(t)) = V̇(x(t)). (3.122)

The Lyapunov time derivative is

V̇(x(t)) =
∂V
∂t

+

n∑

i

∂V(x)

∂xi

dxi
dt

=
∂V
∂t

+
n∑

i

∂V(x)

∂xi
fi(x(t),u(t),β(t), t) (3.123)

The Lyapunov stability theorem states that given a function V : D ⊂ Rn → R that is continuously

differentiable and has the property that V(0) = 0 , V(x) > 0 ∀x ∈ D\{0} and V̇ ≤ 0 ∀x ∈ D

then the origin x = 0 is stable in D, and if V̇ < 0 ∀x ∈ D then the origin is asymptotically stable

in D. However, in some cases for a given V , the property V̇ < 0 may not hold over the entire

47



region of interest, but in a given set there will be convergence to where this holds. This sets the

stage for the LaSalle invariance principle. A fundamental concept in LaSalle’s invariance principle

is that for a state starting in a set x(t0) ∈ M , then M is an invariant set if x(t) ∈ M ∀t > t0.

The LaSalle invariance principle states that given a region Ωc = {x ∈ Rn : V(x) ≤ c} for c > 0,

define the subset Ss = {x ∈ Ωc : V̇(x) = 0} with M being the largest invariant set in Ss. If

x(t0) ∈ Ωc, then x(t) → M as t → ∞. Furthermore if the set M only contains the origin (which

is the burden of proof), then the system is asymptotically stable over Ωc. Given these definitions,

control inputs can often be designed to satisfy the above constraints and make the system stable in

given regions of interest. However to do this the system must be observable and controllable. A

system is observable if the full state x can be determined in finite time from the outputs z, in linear

systems this is equivalent to the observability matrix being rank n (with n being the dimension of

the state). A system is controllable if given two valid states x0, x1 there exist a time tf such that

for x(t0) = x0, with admissible inputs u(t), then x(tf ) = x1 can be achieved.
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Part II

Cooperative Transport
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Chapter 4

Obstacle Modeling and Path Planning

for Cooperative Transport

4.1 Introduction

The chapters in this section present considerations and methodologies for cooperatively transporting

a load in a cluttered environment. Optimal Transport is defined here as taking the most efficient

path to reach the goal and conserving energy during transport. When transporting on a flat terrain

with simplistic robot kinematics, an efficient path usually correlates to the shortest path. During

transport, energy is conserved when all applied forces are used to solely perform work on the object

to transport it to the agreed upon goal. A centralized paradigm where there is a single governing

controller can easily achieve optimal transport. This is done by

1. Selecting the desired, feasible goal.

2. Planning collision free trajectories for every robot and the carried load to the goal.

3. Leveraging knowledge of robot grasp locations to command every agent to apply forces that

will mobilize to the goal and induce minimal internal stresses on the carried object.

In a decentralized paradigm, it is usually impossible to achieve the centralized performance without

all agents having prior information as well as consensus.
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In this section, decentralized robots and human collaborators are considered, and considerations

for approaching optimal transport in the following way: first in Chapter 4 it is assumed that the fea-

sible goal has been selected, and the goal is to find a collision free trajectory that optimizes a metric

such as minimal distance. Then in Chapter 5 decentralized robot teammates will be considered,

where each robot knows the optimal path from Chapter 4, but the grasp locations of other robot are

unknown. Therefore to transport efficiently they must minimize the internal stresses in the carried

object. Then finally in 6 human-robot transport is considered, where the final goal is known only

to the human and the robot must observe the human and the environment and estimate the humans

intended goal. Since the humans grasp location is known, a full pipeline would be the combination

of all three chapters, as an optimal path can be planned to the humans intended goal, then given the

grasp map, the robot knows what forces to apply to follow the optimal trajectory. The contributions

of Chapter 4 is an efficient method of decomposing traversable free space for obtaining the optimal

path. The contributions of Chapter 5 is determining the minimal information robots need to share

with their immediate neighbors in order to reach consensus and minimize internal stresses. And the

contributions of Chapter 6 is a novel approach to observe the human and environment and to predict

on a small time horizon the human’s intended goal pose. As the full pipeline implementation does

not add novelty, it is left for future work.

4.2 Obstacle Modeling and Collision Checking

Obstacles around a robot can be detected with many types of sensors which can be classified into

active and passive sensors. Active sensors project onto the environment and use this feedback to

ascertain a quality about the environment with examples being sonar, laser range finder or even con-

tact with the environment. Passive sensors detect the environment without disturbing it but measure

an inherent quality, examples being cameras, temperature gauges, or an inertial measurement unit

(which measures acceleration, angular velocity, magnetic field). Specifically for obstacle detection,

common range sensors include laser range finders, time-of-flight sensors and stereo cameras. Points

are registered in the sensor frame and transformed to the body or world frame with a measure of

uncertainty. Obstacles from such a sensor are usually provided as a point cloud in the sensor frame.
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There are many ways to represent the obstacle and the representation is usually driven by the partic-

ular application. Representation methods include as a raw point cloud, as occupancy voxels (with

varying resolution), as polytopes (which contain the obstacle points) and statistically with mean and

covariance of clusters of obstacle points. Given a representation, the objective is then to determine

how to avoid collision. If the desired representation for the obstacles is a point cloud, then by mod-

eling a polytope that encapsulates the robot, then only poses for the robot where the representing

polytope does not include obstacle points are valid poses that avoid collision. The obstacles can be

modeled as a set of polytopes whose dimensions are inflated subject to the pose of the robot so that

it is possible to model the robot as a point. In this case, the planned path for the robot must be ex-

terior to the obstacle polytopes, this is the method in mixed integer quadratic programming (MIQP)

where points that are interior to obstacle polytopes are invalid in the optimizer solver [43]. If there

are many distinct obstacles, this quickly becomes very expensive to compute a valid trajectory. An-

other approach is to represent obstacles as a point cloud, then characterize the traversable free space

with overlapping convex regions [15, 29]. Given a method of characterizing and avoiding collision,

the task becomes finding feasible trajectories that are collision free and satisfy a secondary objective

such as minimal path length, allowing the robot to reach the goal in shorter time or by expending

less power.

4.3 Generating Traversable Corridors

When both the goal pose is known along as well as a point cloud representation of the obstacles,

then the traversable free space can be represented as a set of convex regions. This is useful, as an

optimization problem can then be posed for a path that remains in the traversable free space and

optimizes a secondary objective such as path length.

The free space decomposition can be performed in multiple ways, one common way is to define

a polytope that contains the largest ellipsoid in the free region [15]. This method performs well

for approximating the true free space, however, when the objective is traversing an environment

to a known goal, it is not always necessary to have a complete representation of the entire free

space, but only the effective corridor required to traverse collision free, and focusing on the region
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required for motion can reduce computational cost. This free space decomposition is proposed in

[29] where the algorithm finds a seed path from a sample based planner or flood fill algorithm, then

uses obstacles around the seed path chords to construct polytopes containing the chord segments.

As these polytopes naturally overlap, this provides a set of overlapping convex regions from the start

to goal pose. Defining the trajectory using the polynomial basis tv = [1, t, . . . , tn] with coefficients

β = [βTx β
T
y β

T
θ ]T so that the pose p(t) of the robot in SE(2) can be expressed as

pWR(t) =

[
x(t) y(t) 0 0 0 φz(t)

]T

x(t) =
∑

i

tv,iβx,i

y(t) =
∑

i

tv,iβy,i

φz(t) =
∑

i

tv,iβθ, i. (4.1)

For k − 1 chord segments there are k − 1 independent polynomials and k boundary conditions.

Individual polynomial segment time duration’s are determined by the ratio of the initial length of

the chord from the seed path: Tchrd =

[
Tchrd,1 . . . Tchrd,k−1

]
, these times are then used to

enforce equality constraints at polynomial connections. Within these polytope, a set of polynomials

are found that satisfy the path objective function So for each i’th chord

So,i =

∫ Tchrd,i

0
||p(1)

WR(t)||2dt = βTi PH,i(Tchrd,i)βi

So,total =




β1

...

βk−1




T 


PH,1(Tchrd,1)

. . .

PH,k−1(Tchrd,k−1)







β1

...

βk−1




= βTPHβ. (4.2)

PH is the Hessian of the total objective (summed over all k chords) So,total with respect to polyno-

mial coefficients and is the matrix form of the polynomial convolution (found with outer product of
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tTv tv and put in block diagonal form). And the optimization problem becomes

min
β
βTPHβ

subj. to Aβ < b

Eeqβ = deq. (4.3)

where the inequality Aβ < b comes from the convex corridor generation and ensures the seg-

ment of the path remains interior to the respective convex corridor region. The equality constraint

Eeqβ = deq ensures boundary conditions for the start and goal pose are met along with smoothness

at connections of polynomials. This corridor generation algorithm is discussed in detail in [29]. For

demonstration, this was implemented on the KUKA youBot which is a holonomic robot with four

mecanum wheels. The states of the robot are
[
x1 x2 x3

]T
=

[
x y θ

]T
, with input being the

velocity vector u =

[
ẋ ẏ θ̇

]T
. The kinematic equation of motion is therefore




ẋ1

ẋ2

ẋ3




︸ ︷︷ ︸
ẋ

=




cos(x3) −sin(x3) 0

sin(x3) cos(x3) 0

0 0 1




︸ ︷︷ ︸
g(x)

u (4.4)

Defining the change of coordinates to the error between the desired trajectory and current state

ex = xdes(t)− x (4.5)
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Then the combined control and optimization problem becomes

min
u,β

S =

∫ tf

t0

(
ex(t)TQeex(t)

)
dt+ βTPHβ

subj. to ẋ = g(x)u

Aβ < b

Eeqβ = deq. (4.6)

where Qe is a positive semi-definite matrix. The proposed controller is

u(t) = g−1(x) (ẋdes(t) +Kpex(t)) (4.7)

then as g( · ) is a rotation matrix it is always invertible and the system is feedback linearizable and

the kinematics becomes

ėx(t) = ẋdes(t)− g(x)
(
g−1(x) (ẋdes(t) +Kpex(t))

)

= −Kpex(t) (4.8)

which is asymptotically stable about the origin ex(t) = 0 when Kp > 0. If a trajectory is found

that minimizes (4.3), then the control problem (4.6) is also minimized.

4.4 Results

This was implemented on a youBot base shown in Figure 4.1b. In Figure 4.2, red points represent

seed path points, the green dashed path represents the desired trajectory, and blue represents the

odometry using the control law presented for the experiment shown in Figure 4.1. In the Figure

4.2, the trajectories are over normalized time. This is scaled as in [43] to meet the desired trajectory

traversal rate using the normed control time represented by tc = (t−t0)/tscale where t is the current

time, t0 is the start time, tscale is the scaling.

To compare the proposed method to the leading methods in [39] and [15], all three methods

were implemented in Robot Operating System (ROS) and their outputs examined for a single chord
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(a) (b)

Figure 4.1: Implementation on KUKA youBot. Figure 4.1a shows the planned trajectory where the seedpath
is shown in red and the optimal path for the convex hull of the robot is shown in blue. Figure 4.1b shows
execution on the youBot platform.

Table 4.1: Collision Free Corridor Generation Method Comparison: Free-space characterization for proposed
method, and methods shown in [39] and [15]. These are statistics for the free space of the proposed method
and Liu et al. method divided by free space of IRIS method respectively, producing a fractional relationship.

Trial (100 iter.) Proposed method/IRIS Liu/IRIS
5 obs. 0.84 ± 0.14 0.54 ± 0.21
10 obs. 0.77 ± 0.23 0.68 ± 0.18
30 obs. 0.81 ± 0.20 0.97 ± 0.23
50 obs. 0.82 ± 0.23 1.03 ± 0.22

defined from start x = 0, y = −0.3 to goal x = 0, y = 0.3. The simulation units are consistent

for comparison, and are considered to be meters. For this chord obstacles are generated within the

world bounds of xw = ±1m, yw = ±1m and discretized the space with step size of 0.02m in both

x, y. This is visualized in ROS-rviz, shown in Figure 4.3. Figure 4.3a shows the IRIS methods’ free,

convex space, Figure 4.3b shows the proposed methods free convex space for this chord, and Figure

4.3c shows the free space generated by the Liu et al. method in [39]. It is important to note that

the Liu et al. method performs ray tracing, and subdivides a chord into sequential convex regions

defined by co-linear ray intersections. Hence while the Liu et al. method can be compared in terms

of free space, it cannot determine the convex space around a single chord as in the proposed method

and IRIS method [15]. In Table 4.1 the free space is calculated for the system shown in Figure

4.3 for 10, 30 and 50 obstacles each for 100 iterations. By dividing each respective calculated free
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(a) X position vs normalized time (b) Y position vs normalized time

(c) θ position vs normalized time

Figure 4.2: Smooth trajectory generation where red points show the seed path, green dashed lines are the
desired trajectory and blue lines represent the actual odometry.

space by the IRIS method, a scale free relation is obtained that allows for comparison of free space

between all methods, and convex space between IRIS and the proposed method.

Table 4.1 shows the free space comparison. It is important to note that the world size remains

constant while the number of obstacles increases for each trial (100 trials for each number of ob-

stacles). The proposed method is consistently about 81% (with less than 23% standard deviation)

of the free convex space calculated by IRIS. The Liu et al. method computes less free space than

the proposed and IRIS methods in open environments with few obstacles, but as the environment

becomes more cluttered, the ray-tracing feature of the Liu et al. method allows it to find more free

space. It is important to note that the free space found in the Liu et al. method in these instances

does not translate to usable convex free space required for optimization (as shown in Figure 4.3c).

In addition, the Liu et al. method’s ray tracing makes it inherently sensitive to world discretization

and dimensionality. The IRIS method finds the maximum convex polytope that can contain the

largest ellipsoid. As the proposed method formulation is to expand a polytope around the chord,

there are instances when this convex volume will exceed the IRIS method (as it solves a similar
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(a) IRIS SDP method (b) Proposed method (c) Liu et al. method

Figure 4.3: General method comparison of free space: single chord indicated by red arrow, 30 generated
obstacles and free space characterized by each method.

but different problem). It must be noted that the key difference between the proposed method and

the IRIS method are that they solve different problems, with the main goal of the proposed method

being to find the maximum usable free space around a given chord and the goal of IRIS to find

the polytope associated with maximum volume ellipsoid in the region. This leads to the apparent

advantage of computation reduction in the proposed method. Consider Figure 4.4c, in Figure 4.4a

(a) Seed path in cluttered environment

(b) IRIS Method [15] (c) Proposed method [29]

Figure 4.4: Given a seed path, the IRIS method requires more computation to calculate the effective, usable
free-space than the proposed method.

a seed path has been generated in a cluttered environment. The IRIS method shown in Figure 4.4b
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calculates the free space throughout the environment, and requires seven computation cycles in this

example. However, the proposed method shown in Figure 4.4c only requires two computation cy-

cles. So while the proposed method does not identify all of the possible free space, it does locate all

of the useful free space for the task of trajectory generation. In this analysis the proposed methods

effectiveness is demonstrated for the given application, and is compared to similar methods for free

space decomposition.
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Chapter 5

Robot-Robot Cooperative Transport

5.1 Introduction

In this chapter the scenario of multiple, decentralized robots cooperatively carrying a load is inves-

tigated. It is assumed that the goal pose is known and a collision free trajectory is determined and

known to all robotic agents as in Chapter 4. It is also assumed that every robot is capable of measur-

ing the state of the load and the resultant applied wrench assuming a quasi-static paradigm (inertial

forces are zero, and applied forces are countered by friction for the system to traverse at constant

velocity). Each robot also knows where it is grasping the object, however while the robot is able to

communicate with adjacent robots within a communication radius, the grasp points of other agents

is unknown, and as the number of robots greatly increases this information may become intractable

for some robotic platforms. Hence, the control problem becomes transporting the object along the

specified trajectory while minimizing interaction forces which do not contribute to motion of the

system.

5.2 Force Distribution in Cooperative Transport

Consider N robots grasping a load at unique points r in the inertial frame. If each agent is capable

of producing a force (but not a torque) at grasp points then the wrench on the body (force and torque)

is defined as

60



w =
∑

i



I

r
[×]
i


fi

=
∑

i

Gifi (5.1)

The matrix Gi will be referred to as the grasp map as it describes the contribution to net wrench the

i’th robot can provide. Two robots will produce internal stresses on the load if there are components

of their forces that do not contribute to the net wrench. These are denoted as interaction forces,

described for two robots i, j as

fij = (fi − fj)T r̂ij (5.2)

where

r̂ij =
(ri − rj)
|| (ri − rj) ||

(5.3)

If the objective is to minimize interaction forces, then this can be achieved using a common solution

vector β for all robots

fi(β) = GiTβ ∀i (5.4)

Substituting this into (5.2) guarantees no interaction forces because

fij(β) = (fi(β)− fj(β))T
(ri − rj)
|| (ri − rj) ||

=
(
β − r[×]

i β − β + r
[×]
j β

)T (ri − rj)
|| (ri − rj) ||

=
βT

|| (ri − rj) ||
(
r

[×]
i ri − r[×]

j ri − r[×]
i rj + r

[×]
j rj

)

=
βT

|| (ri − rj) ||
(
r

[×]
i rj − r[×]

i rj

)

= 0 (5.5)
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So for optimal transport, the optimization problem with respect to interaction forces can be stated

as

min
fi

Sint =

∫ tf

t0

f2
ij(t)dt ∀i, j (5.6)

and consensus of the solution vector β in (5.4) minimizes this objective.

5.3 Interaction Force Minimization Through Consensus

For robots to reach consensus on their solution vector to minimize interaction forces, they must com-

municate with their neighbors, and through averaging, reach consensus. It is assumed that robots

are only able to communicate with neighbors that are within a radius rcomm. The communication

structure can be represented using a Laplacian matrix:

[Li,j =





di if i = j

−1 ||ri − rj || ≤ rcomm

0 ||ri − rj || > rcomm

Where di are the number of neighbors for the i’th robot. The Laplacian L of graph G is defined as

L = D − A, and is a symmetric matrix (in an undirected graph). D is a diagonal matrix populated

by di, and A is an adjacency matrix indicating neighbors. If the graph is connected (starting on

any node it is possible to reach any other node over adjacent edges), then the first eigenvalue of

the Laplacian is zero and the rest are positive. For Laplacian averaging, the discrete consensus

algorithm is

x[s+ 1] = x[s]− γL x[s]. (5.7)

Based on the choice of γ this algorithm converges to the average after m iterations for N robots

lim
m→∞

x[s+m] =
11T

N
x[s]. (5.8)

In [30] a discrete control law is proposed, but in this analysis a continuous control law will be

developed.
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If it is asserted that consensus has been reached for the solution vector in (5.8), then the net

wrench can be expressed as

w(t) =
N∑

i

GiGiTβ

= Gβ (5.9)

for N robots, where the matrix G combines the entire grasp map. For simplicity the body fixed

frame is considered so that G is constant. Differentiating this provides the change in wrench re-

quired to track a desired trajectory and represents the dynamics of the system

ẇ(t) = Gβ̇. (5.10)

Defining the tracking error to be

ew(t) = wdes(t)−w(t) (5.11)

and the control input to be

u(t) = β̇ (5.12)

the objective is to minimize the following functional

min
ui

S =

∫ tf

t0

(
ew(t)TQew(t) + f2

ij(t)
)
dt

subj. to w(t) = Gu(t), (5.13)

where the consensus step in (5.8) minimizes the interaction force component and Q is a positive

semi-definite matrix. It is now asserted that the desired wrench wdes(t) is feasible meaning that

it remains in the column space of G, and by extension that the error ew(t) also remains feasible.

Based on this assertion, using a change of coordinates by differentiating (5.11) the dynamics can be
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expressed by

ėw(t) = ẇdes(t)− ẇ(t)

= Gβdes(t)−Gu(t) (5.14)

By selecting the control policy

u(t) = βdes(t) +G+Kpew(t) (5.15)

substituting (5.15) into (5.14) this becomes

ėw(t) = −GG+Kpew(t) (5.16)

which for Kp > 0 and valid feasibility assertion (meaning ew is in the column space of G, whose

eigenvalues are greater than or equal to zero), is asymptotically stable.

5.4 Results

Figure 5.1 shows a representative example of 100 robots with unique random contact locations

executing a desired wrench of wdes =

[
1, 1, 1

]T
. This is representative as contact points were

randomly selected without replacement within the object boundary. Notice in Figs. 5.1e and 5.1d

that consensus among the total number of robots takes about one hundred iterations; however, after

consensus is reached, since all the estimates of βi are the same and the graph does not change, the

system converges to the desired wrench quickly (noted by a decrease in wrench error ‖werr[s]‖ =

‖wdes[s]−wact[s]‖). Notice in Fig. 5.1c that the sum of the absolute value of the interaction

forces fin[s] =
∑

i,j |(fi[s]− fj [s]) · (ri − rj)| is steadily decreasing as a result of the values of

βi converging to their average βavg, as seen by the decrease in the first standard deviation σ1. The

convergence graph in Fig. 5.1e shows the average of the robots estimated solution vector βi as

well as the first standard deviation of these estimates σ1. This algorithm is robust to communication

failure as long as the set of graph topologies during the communication failure constitute a connected
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graph [30].
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Figure 5.1: Robot-Robot Cooperative Carrying: 100 robots executing wdes = [1, 1, 1]T , with a static com-
munication structure and convergence rate.
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Chapter 6

Human-Robot Cooperative Transport

6.1 Introduction

In this chapter, cooperative transport between a human leader and robot follower is considered. The

novelty and contribution in the proposed approach is the use of human and environment observations

to predict the human’s intended goal pose on a small time horizon. It is an added constraint is that

the human cannot explicitly communicate with the robot (verbally, digitally, or using predefined

gestures). However it is assumed that

1. The human has an intended pose for the carried object.

2. The human wants the system to avoid collisions with surrounding obstacles.

3. The human wants to transport in an energy efficient manner (which may include but is not

limited to traveling the shortest distance to reach target pose).

4. The obstacles in the environment are static.

5. The human-robot pair will carry the object such that the humans face is visible by the robot,

along with the humans legs. And in addition that the human applied wrench can be sensed.

This is shown in Figure 6.1 and Figure 6.2.

6. The obstacles in the environment can be sensed by the robot and the robot is able to measure

the carried objects odometry in the inertial reference frame.
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Obstacle	  

Robot	  
	  

Human	  

Goal	  

Figure 6.1: Human Robot Carrying Problem: The goal is to allow an autonomous robot to cooperatively carry
a load through a cluttered environment collision free, with a human counterpart with the added constraint that
explicit communication is not viable. The robot must transport efficiently by estimated the humans intended
motion in the context of the environment.

Leveraging the contributions of Chapter 4 and Chapter 5 it is asserted that once the intended goal

pose is estimated, the robot is able to plan a collision free trajectory to the goal and by observing

the grasp location of the human, apply an appropriate wrench that will minimize internal stresses

on the carried object and conserve energy.

In this chapter, what the robot can observe from the human and environment will first be pre-

sented. And based on these observations, a physics based reasoning will be proposed for how each

of these observations may predict the humans intended pose. Second, considerations for modeling

of human intent based on these observations will then be discussed. And finally positive preliminary

results will be shown as an initial attempt at modeling the human intent on a small time horizon.

6.2 Human and Environment Sensing for Cooperative Transport

Consider the scenario when a robot carries a load with a human collaborator as shown in Figure 6.1.

When the final destination is known by both the robot and human, a feasible trajectory can be

calculated and if the grasp locations are known by all collaborators then the desired motion can be

performed. However, if only the human leader knows the final target pose, then it becomes difficult

for the robot to be an effective collaborator. One method to mitigate this is to allow the robot to

simply become compliant, if the human leader applies forces to the carried load the robot can move

in manner that then minimizes the internal stress sensed. This method has been used widely in

robotics for decades, but has the fundamental drawback that there must be internal stresses in the
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carried load in order to signal the robot to move in a particular direction for transport [81], [3], [63].

To mitigate these internal stresses the robot must be able to estimate the intended pose before

the human is required to send the implicit signal of internal stresses through the carried object. If the

context of the object being carried is known within the given environment then it is possible for the

robot to plan long time horizon trajectories based on these affordances. An example of this would

be carrying a sofa through a house to the living room to be placed against a designated wall. In this

example, if the robot has a floor-plan of the house a collision free trajectory can be calculated to the

intended pose. When considering the deployable robotic assistant, it is fair to assume that without

prior experience the generic affordance of the carried object correlated to a given floor-plan may not

exist or multiple solutions may exist.

Hence, for long term deployment, if the robot can continuously and accurately approximate

the human leaders intended goal pose on a local time horizon (a few seconds into the future), then

the entire transport task can become efficient. The challenge becomes determining what can be ob-

served by the robot and is useful for estimating the human leaders intended pose. Given the transport

scenario shown in Figure 6.1, consider a local region around the human and robot collaborators. It is

assumed that the robot is capable of sensing the immediate obstacles, the orientation of the humans

head, the motion of the humans legs, the wrench applied by the human as well as the odometry of

the carried load as shown in Figure 6.2. For a small time horizon it is asserted that these quantities

in whole or in part measured at time t can be used to predict the future pose of the object (whose

frame is O) at a look ahead time horizon t + th. The assertion is based on the following intuitive

underlying physics models:

1. System Twist: The system twist ṗWsys obtained from the odometry can be integrated once

to solve for the expected pose if it is assumed that the velocity will remain constant.

2. Human Applied Wrench: The applied wrench w which consists of applied forces and

torques are a good indicator of intended acceleration. This can therefore be integrated twice

to obtain the expected pose.

3. Human Head Orientation: The orientation of the human head h may indicate a desired
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Figure 6.2: Human Intent Observation: It is asserted that the human and robot will transport facing each
other. It is also asserted that the robot is capable of sensing the human leader’s head orientation h, step vector
s, applied wrench w (force and torque), the twist of the carried load ṗWsys := ṗWO (for carried load frame
O) and the surrounding obstacles.

direction of motion. As it may be difficult to extrapolate the intended orientation, the position

may be estimated. It is important to note that the head orientation by itself does not correlate

to the expected pose, however when normalized and scaled by the magnitude of the current

planar velocity of the carried object, it can then be treated as an expected twist and integrated

once for expected pose. It is also important to note that due to the coupling with the system

twist, if the person is walking backward then it is safe to assume that the head orientation

is not viable if the human cannot observe the intended pose. This is equivalent to the head

orientation vector being in the same half-space as the twist planar vector.

4. Human Step Vector: The step vector s indicates the motion of the human and can be ob-

tained by extracting consecutive locations of the humans center of location. This is done by

detecting the leg locations and defining the centroid of the convex volume which contains the

legs as the center of location. It is important to note that across different users the magnitude

of the step vector may not be a direct indicator of the expected pose of the carried object. For

instance, a shorter person’s step may be an equivalent indicator of desired motion as a larger

step taken by a taller person. It is assumed that the step regardless of magnitude, indicates the

desired motion. Therefore, if the step vector is normalized and scaled by the magnitude of the
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current planar velocity of the carried object, it can then be treated as an expected twist vector

and integrated once for expected pose. This is expected to allow for consistent performance

across users of different heights and therefore different average step sizes. It is important to

note that if the step vector is not in the same half-space of the twist planar vector then it may

not be useful. Intuitively, if the step vector is correlated with twist and is not in the same

half-space then it is not a feasible predictor. If correlated to acceleration it may be useful, but

its correlation to twist will be considered for now.

5. Local Obstacles: The local obstacles serve as motion constraints. If it is assumed that the

human leader does not which to collide with obstacles, then if any of the above integration’s

would cause collision then it must be adjusted or negated from consideration.

The xy-planar vectors for the head and step are denoted as h and s respectively. The effective head

vector h̃ is defined based on the planar twist of the object whose frame is O expressed in the world

W ṗWO,xy as

h̃ =





||ṗWO,xy ||
||h|| h if h · ṗWO,xy > 0

0 if h · ṗWO,xy ≤ 0.

(6.1)

Likewise, the effective step vector s̃ is defined as

s̃ =





||ṗWO,xy ||
||s|| s if s · ṗWO,xy > 0

0 if s · ṗWO,xy ≤ 0.

(6.2)

The next challenge becomes appropriately combining knowledge from each of the sensing modal-

ities mentioned. To learn how humans leverage this information, data was collected between two

human teammates transporting a sensor capable of obtaining the above sensing quantities. The sen-

sor is shown in Figure 6.3, and consists of a RGB-D Kinect sensor to measure the human leader’s

head orientation, a laser range finder to obtain the leader’s location, strain gauges to measure the pla-

nar forces applied by the human leader and markers used to track odometry using a motion capture

system. To obtain the local map, a Fetch mobile manipulator was used to obtain an obstacle map

in the motion capture system’s frame as shown in Figure 6.4a. And to collect data, a human leader
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Figure 6.3: Human Intent Sensor Diagram: The sensor consists of a RGB-D Kinect sensor used to measure
the human leader’s head orientation, a laser range finder to obtain the leader’s location and extract the step
vector, strain gauges to measure the planar applied forces, and markers used to obtain odometry using a
motion capture system.

and follower traversed the obstacle course with the constraint that the human leader was unable to

verbally indicate or gesture the intended pose to the human follower (as shown in Figure 6.4b).

Data was collected over six different maps shown in Figure 6.5. For each trial the human

leader selected multiple destinations and the human follower observed the leader while attempting

to minimize internal stresses and avoid obstacles. The task becomes determining the appropriate

way to combine the sensed quantities in order to effectively predict the human leaders intended goal

pose.

6.3 Modeling Human Intent for Cooperative Transport

In order to predict the expected pose on a finite time horizon the challenge of correctly combining

the measured quantities must be addressed. One approach is to assert independence between the

quantities. In certain instances this may be effective, for example, with few obstacles the human

leader may choose a low curvature trajectory with constant velocity making integration of the twist

a valid indicator. Similarly, in an open space, the applied wrench may be a sufficient indicator of
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(a) (b)

Figure 6.4: Human Intent Data Collection: The Fetch mobile manipulator is used to construct a map of
the environment. Then a human leader and human follower then traverse the environment without explicit
communication (verbal, gesture). By observing the human leader and the environment, the human follower
predicts the leaders intended pose.

acceleration and be a sufficient predictor for the intended pose. Likewise for the effective head and

step vector in an open space, they may be good indicators of the intended pose. However, consider

the end of a hallway with two sharp turns, in this instance the human leader may look in one direction

(the intended path) and apply a wrench in the opposite direction (to rotate the object). In this and

similar examples the independent models are may be incapable of providing a complete description

of the intended motion. It is also important to note the influence the surrounding obstacles have on

the properties of these models. For example, in an open space, the head orientation may be a valid

indicator of where the human leader intends to move, but in a tight hallway if the human leader

looks toward a wall it is assumed that the head orientation is meaningless as collisions are to be

avoided.

So it is apparent that coupling these models can be advantageous in many scenarios, however

determining the most effective method of combining them is not straight forward. Consider a linear

model that combines the integrated pose from each of the measured quantities, if weights are used

to combine them, finding valid weights that improve the combined models performance can be

posed as system identification problem. An inherent challenge however is determining the best

combination, if the underlying model is not guaranteed to be a linear combination, then the model

variations must also be considered. This consideration creates a huge search space to determine

the appropriate model. One approach to solve such problems is to use genetic algorithms in which

many model forms are generated, improved and evaluated to hopefully find the model with best
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performance. A limitation of such an approach is that if an inadequate pool of models is generated

then performance will always be poor. This can easily occur when the engineer selects the base

components that compose the set of all models and if the required true model base components are

not present the model selection process may never converge to a valid selection.

This particular problem of utilizing the quantities sensed in Figure 6.2, the contribution of the

local map should not be understated as it may change the model behavior for the other quantities.

Once approach to solve this is to assume that the human follower performs using an adequate and

possibly optimal internal model. With this assertion, the goal becomes modeling the human follow-

ers performance to reproduce their prediction accuracy. For a small time horizon, it is asserted that a

Markov Process (MP) sufficiently describes the underlying model, meaning quantities in Figure 6.2

measured at time t are sufficient to predict the pose at t+ th without the history of quantities before

time t. For longer time horizons this assertion is expected to quickly break down, hence this is

restricted to small time horizons (in this work this is less than two seconds).

Given the supervised data collected in Section 6.2 a discriminative model framework can be

leveraged to approximate the underlying model. Two modeling methods to be consider are a Gaus-

sian process and a neural network. For the discriminative model framework the input state space

is the measured quantities and the output as the intended pose. The advantage of using a Gaussian

process is that training performed by constructing the information matrix and can therefore be per-

formed quickly while data is collected. A disadvantage of using the Gaussian process is when the

input state space manifold is highly nonlinear. In this case more training points are required near the

non-linearity to adequately represent the manifold and therefore the information matrix increases

proportionally. One way to overcome this is to use sparsification which only keeps training points

represent manifold curvature beyond the specified set point. Another way to overcome this is to

use a local Gaussian process which takes effect in specified regions of the state space. When the

manifold is unknown and possibly very nonlinear both of these approaches may still break down

with computational consequences. A neural network is a better approach in such a scenario, as

the number of model representation components in the computational graph remains constant for

a selected neural net architecture. Another advantage of a neural network is its inherent ability to
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approximate any bounded, continuous function provided an adequate architecture. This advantage

is formalized in the Universal Approximation Theorem [23].

With these considerations, the proposed approach uses a deep neural network shown in Fig-

ure 6.6 using supervised training from data collected in Section 6.2. First, all of the measured

quantities and local map are transformed into the current body fixed frame of the carried object O at

time t. In addition, the future pose at look ahead time t+ th is also transformed into the body fixed

frame O at time t. Intuitively, the primary architecture is described by a set of convolutional layers

that scan the local map extracting the notion of constraints, the effective head and step pass together

through a set of fully connected networks as it assumed that they both are indicators of the expected

planar position. Finally, the output from the map, the effective head and step are combined with the

applied wrench and carried object twist through a set of fully connected layers in order extract the

inherent coupling for the prediction of the intended pose. Leaky ReLU activation functions are used

for all nodes.

For supervised training, given the MP assumption, each carrying trial can be subdivided with

measured quantities at time t and true pose at time t + th creating a training set. When training,

batches are randomly selected from all carrying trials with no ordering, allowing for the extraction

of the model under the MP assumption. The error function was designed to penalize the SE(2)

error with position in units of centimeters and orientation in degrees. By squaring the error, the

network would approach the true model.

Two back-propagation methods were considered, first was error in the final predicted SE(2)

pose as well as positional error psys,xy(t + th) with the output from the fully connected networks

connected to the effective head and step vectors. The hypothesis was that the effective head and

step vectors correlated directly to the expected planar position. This method of back-propagation

was found to not converge even with further modification in the neural net architecture. This led

to the conclusion that while the head and step may indicate the expected planar position it is not

sufficient to enforce assertion. The second back-propagation method tested was to just use the

supervised error with the final SE(2) pose. It was determined that this back propagation method

led to convergence.
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Many renditions of the internal architecture were tested with varying convolutional layer depths

and channels, varying depth in fully connected layers for both the effective head and step as well

as the final fully connected layers which combined all inputs. General trends indicated that suffi-

cient depth was required for adequate model generalization, and sufficient width in fully connected

layers improved model approximation. The final neural net architecture design selected is shown

in Figure 6.6. All of the intent quantities are transformed into the local body fixed frame O, along

with the future pose obtained at t + th. The deep network shown in Figure 6.6 has two convolu-

tional layers that operate on the local map, the output of which is passed through a fully connected

layer. The deep network passes the effective head and step vectors through a set of fully connected

layers. Then the network combines the output from the effective head and step along with the ap-

plied wrench and body twist in a set of fully connected layers. Finally, the output from the effective

head and step, wrench and body twist are all combined with the output from the map and passed

through multiple fully connected layers to estimate the expected SE(2) pose of the carried load

for a given time horizon th. The guiding rational behind the construction of this network is that

similar information is first combined and passed through layers that model pertinent features, then

later, this output is combined with more dissimilar information in order to obtain the final desired

output. For instance, the head and the step both intuitively indicate future position (not orientation).

Whereas the applied wrench is a good indicator of acceleration. The system twist is directly useful

for integration for expected pose. The local map is a good indicator of immediate constraints, if any

other prediction would cause collision this would be infeasible. The convolutional and subsequent

fully connected layers serve to extract this notion of constraint. The information from all of these

quantities is then mapped through the multiple fully connected layers to a final output of expected

pose for a given time horizon. While the best performing architecture is shown in Figure 6.6, com-

peting architectures were examined. Most notably, an architecture that made the final error function

a combination of final predicted pose error summed with the position error between the true position

and the output of the head, step vectors fully connected layers was attempted with the hypothesis

that the head and step vectors directly correlate to the expected position. Error convergence did

not occur for this architecture, and the reasoning is that while the head and step vectors are good
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indicators of position, across all scenarios it is imperative that the surrounding obstacles and other

intention quantities be considered in unison to predict the accurate pose. This is exemplified in the

final architecture Figure 6.6.

6.4 Results

To estimate the human intended pose on a small time horizon from measured quantities shown in

Figure 6.2, the final selected neural net architecture is shown in Figure 6.6. Independent models

were trained for for time horizons of 0.5s, 1.0s, 1.5s and 2.0s. The data size for each time horizon

is shown in Table 6.1, and the hold out set (training data never touched and used to truly evaluate

model performance) is 15% of the data size.

Table 6.1: Human Intent Training: Using the MP assumption for each time horizon th, the data size is
shown and the hold out percentage is 15% of the data size.

Time horizon (sec) Data size

0.5 2912
1.0 2902
1.5 2890
2.0 2878

Figure 6.7 shows the model error during training on the hold out set for the positional error in

centimeters squared ‖exy‖2 on a semi-log graph. Figure 6.8 shows the model error during training

on the hold out set for the angular error in degrees squared e2
θ on a semi-log graph. Finally, Fig-

ure 6.9 shows the combined error of Figure 6.7 and Figure 6.8 on a semi-log graph. In each case the

unfiltered signal for each time horizon is shown (faded), and the low-pass filtered signal is shown in

bold with a low-pass filter gain of 0.1.

The final error for the position and angular components are shown in Table 6.2. Since the back

propagated error was squared, the final true error is shown in Table 6.2. While smaller times perform

better as expected under the MP assumption, the goal is to find the largest, valid time horizon as it

allows for more computational capacity before the predicted pose is reached.

Both Figure 6.10 and Figure 6.11 show the prediction for the time horizon of 1.5s for the map
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Table 6.2: Human Intent Training: Final hold out set errors. Low pass filter gains are 0.1.

Time horizon (sec) ‖exy‖ (cm) ‖exy‖ (cm) eθ (deg) eθ (deg)
no filter low-pass filtered no filter low-pass filtered

0.5 14.5905 14.3788 4.78913 6.11002
1.0 18.2051 22.2244 9.03606 9.78113
1.5 33.4619 34.829 11.4714 13.9134
2.0 42.4927 47.9171 18.7699 19.1647

shown in Figure 6.5e. In Figure 6.11 the red arrows indicate the pose of the carried load, and

the purple arrows indicate the predicted poses with a time horizon of 1.5s. While the training

error shown in Figure 6.9 represents the average error of randomly selected maps and measured

quantities, the representation in Figure 6.11 validates the MP assumption over sequential data. To

validate the performance of the neural net prediction, it is compared against integration of the system

twist over the corresponding time horizons in Figure 6.12. In Figure 6.12 the MP assumption is used

to average the predictions from all maps shown in Figure 6.5. The position and angular error mean

and covariance are shown. For position error, the neural network clearly outperforms the velocity

integration with increased disparity for longer time horizons. For angular error, the performance

is comparable with velocity integration performing slightly better for short time horizons, then for

longer time horizons the neural network again outperforms velocity integration.

6.5 Conclusion

In this chapter a framework is presented and demonstrated to predict the human leader’s intended

pose on a finite time horizon for the cooperative transport problem. The complete cooperative

transport problem between a human leader and robot collaborator is a combination of the methods

presented in Chapter 4, Chapter 5 and Chapter 6. Figure 6.13 illustrates this where the human is

first observed (Chapter 6), then a collision free trajectory is calculated to the estimated intended

pose (Chapter 4), and finally given the grasp map which includes the human and robot, the robot

is able to actuate along the specified trajectory while minimizing interaction forces (Chapter 5).

During implementation, the robot remains compliant while actuating along the expected path, and

77



continuously updates the expected pose based on new human and environment information.
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(a) Dashed lines
(b) Dead ends

(c) Four rings
(d) Hall and diamond

(e) Scattered obstacles
(f) Two hallways

Figure 6.5: Obstacle maps for training human intent inference.
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ṗsys,3⇥1(t)
<latexit sha1_base64="c+PE79XtoajuotdFlgst4x/b8Mc=">AAAFPnicfVTNbtQwEE7LAiVQaOGEuIxYVbSoijbbIhCoUgEJ9Viq/klJuvI6TjfaxI5sp8tiWTwNV3gFXoMX4Ia4cmSS3ULTrbAUaTye7/tmxhP3iyxVutP5Pjd/rXX9xs2FW+7tO4t37y0t3z9UopSUHVCRCXncJ4plKWcHOtUZOy4kI3k/Y0f94dvq/OiMSZUKvq/HBYtycsrTJKVEo6u39DCMhTaF7Rk1VusboU5zpny7qtd6S+2O16kXzBr+1Gg707XbW24tIhktc8Y1zYhSgd8pdGSI1CnNmHXDUrGC0CE5ZQGanKBUZOoaLKygJ4ZESPy4htp7EWFIrtQ472NkTvRANc76eYPdnDKRMy3HGAyKMTjfe0WcgOAwECPQAjIyBlFq0AMGBeI82B8wyZ4oyIRWnhue4wzZLEjBqjQBM8yY1kxWFnlW+yvT8zxgmrrwD5URHiuKARVOCk00llgJ/U3ocoVVaVdVGJQ6eRGZlBelZpxO2pWUWVVFda0Qp5JRnY3RIFSm2HGgAyIJxUSbvdLp8GOzW0RKMm66Yux/mXN0cjaiIs+xkqchTSVeZBz4kQkrmuB88rZWKzGv2q5FxoULK+QiZoEaYBe2Jvj1WJLReso59g0Vt7o4JFATrIFp+/aVte6KEjCVhVS9hHNp00wzY4lO4w9XxE9PzMkba/as6b22rttsA+MK5+5igSbcK8TIBt3IYN6TgOCkSimqOUy7ay2gGNKgRBVsGI977yROsjVK46T3knrjNnkTndhgY5YWDJiwnwASQy2wcVEAUTX/hNKc4QVjxv/TUUM2EoWtLgja/okJJv9zZO1sHM7YFYGAo7VDNOSkAIGTTXT1G16B3Z8F7zfQLj4g/uXnYtY47Hr+htd5v9ne3pw+JQvOI+exs+r4znNn29lxdp0DhzqfnM/OF+dr61vrR+tn69ckdH5uinngNFbr9x9FEMai</latexit>

psys,3⇥1(t + th)
<latexit sha1_base64="9vtvvZJB/58tFYllXfxie5fLbiQ="></latexit>

Conv:	  1@
5x5 

Conv:	  32@
5x5 

Reshape:	  1x529 

FC: 20 nodes	  

FC:	  100 nodes	  

Concatena0on	  

FC:	  100 nodes	  

FC: 20 nodes	  

Concatena0on	  

FC:	  50 nodes	  FC:	  100 nodes	  

FC:	  40 nodes	  

FC:	  10 nodes	  

FC:	  10 nodes	  

Figure 6.6: Neural net architecture for detecting human intent for cooperative transport. Convolutional layers
are denoted with conv. and the number of channels and kernel size are shown with the notation: channel
@ kernel size. Fully connected layers are denoted by FC and the number of nodes in the width shown.
Leaky ReLU activation functions were used for all nodes. This network was trained by minimizing predicted
pose error in SE(2) in units of degrees and centimeters squared. To improve generalization, a dropout
rate of 10% was used for convolution and 20% for fully connected layers. The essential intuition for this
particular architecture is that the head and step vectors pass through the same layers as they are both related
to the expected position. The local map serves as a constraint, with convolutional and fully connected layers
working to model the constraint. These are then combined with the wrench which relates to acceleration
and system twist for velocity through a set of fully connected layers which models there interdependence for
predicting the expected pose on the time horizon.
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Figure 6.7: NN training error for position error squared, each legend is for horizon time in seconds on hold
out set (training data never touched and used to truly evaluate model performance). For times much greater
than 2 seconds the Markov process assertion begins to break down as expected in cluttered environments.

Figure 6.8: NN training error for angular error squared. Each legend is for horizon time in seconds on hold
out set.
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Figure 6.9: NN training error combined for both position and angular error squared, each legend is for horizon
time in seconds on hold out set.

Figure 6.10: Top down view of human intent prediction for a look-ahead time horizon th = 1.5s. The purple
arrows are predicted SE(2) poses, the red arrows are the actual pose of the carried load. This was obtained
in Rviz in top-down-view, hence while it may appear that the trajectory goes over obstacles this is an artifact
of this view.
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Figure 6.11: Top down view of human intent prediction for a look-ahead time horizon th = 1.5s. Additional
images of the intention predictions performance with same representation as Figure 6.10.
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Figure 6.12: Comparison between neural net prediction and velocity integration for expected pose for a given
time horizon. Shown are the mean and variance errors for position ‖exy‖ and orientation eθ for all maps
shown in Figure 6.5. Neural net outperforms velocity clearly for ‖exy‖ for all time horizons, with increasing
disparity for longer time horizons. For small time horizons, the performance of the neural net and velocity
integration is comparable but for longer horizons the neural net outperforms the velocity integration with
smaller average error and tighter variance.
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Observe Human Collaborator
and Environment

Chapter 6
Estimate Human Intended Pose

Chapter 4
Plan feasible trajectory

to estimated pose

Chapter 5
Given the grasp map,

apply forces that
follow trajectory and

minimize internal stresses

Compliantly Transport

Figure 6.13: Human-Robot Cooperative Transport System Algorithm: The human and environment are first
observed, then using methods presented in Chapter 6 the human leaders intended pose is estimated. Then
using methods presented in Chapter 4, a collision free trajectory is planned to the estimated goal pose. Then
the robot actuates along the calculated trajectory using methods presented in Chapter 5. During implemen-
tation the robot follower would be compliant while continually observing the human and environment and
constantly updating the estimated intended pose.
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Part III

Precision Pouring
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Chapter 7

Precision Pouring from Known

Containers

7.1 Introduction

The chapters in this section consider a robot wet-lab collaborator that assists in rapid experiment

preparation for research and development scientists. In this scenario, it is inefficient for scientists to

use large batch solution making machines, however considerable time is spent making solutions for

experiments. The necessity is for an autonomous robot that is capable of making such small batch

solutions while requiring very little environment augmentation as it works alongside the research

scientist collaborator. To be effective, the robot must be able to manipulate containers already in

use by the wet-lab, as well as pour precisely compared to a human counterpart. During deployment,

a robot assistant would approach a workbench to assist the human collaborator. The human collab-

orator would then indicate the experiment preparation procedure to the robot. The preparation task

would require pouring known fluids from an initial open container (pouring container) into a final

open container (receiving container). In this work, it is assumed that the fluid is an incompressible,

isotropic Newtonian fluid. Even with known fluids, the inherent challenge is to pour both quickly

and precisely within a single attempt.

In this section, it is always assumed that the receiving container is transparent and the received
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(a) (b)

Figure 7.1: The Rethink Robotics Sawyer manipulator precisely pours colored water into a beaker using
visual feedback from a mvBluefox MLC202bc camera.

volume can be measured either visually or using weight. However, two alternative scenarios are

considered concerning the pouring container. In Chapter 7 it is assumed that the geometry of the

pouring container is known, and an analytical solution is derived to pour quickly and precisely. In

Chapter 8 it is asserted that an analytical representation of the pouring container does not exist and

the container may be opaque. In this case, the geometry of the pouring container is scanned and

used to predict the expected flowrate in order to pour both quickly and precisely in a single attempt.

In this chapter, a simplistic pouring geometry is considered for analytical representation. And a

hybrid control strategy is proposed to pour the precise amount of fluid [28].

7.2 General Pouring Problem

Using the Rethink Robotics Sawyer manipulator shown in Figure 7.1a precision pouring is per-

formed using a container of known geometry, colored fluid for easy fluid height detection from a

MLC202bc camera and a scale for ground truth as shown in Figure 7.1b. For a pouring container α

and receiving container β, the flowrate between the two containers assuming no spillage is

qfr = V̇β(t+ td) = −V̇α(t) = −(V̇L,α(t) + V̇s,α(t)). (7.1)
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Figure 7.2: The Pouring Problem: For a fluid poured from container α to container β with specified geometric
parameters, the goal is to pour a precise amount of fluid using visual or weight feedback based on an analytical
model and closed form control.

where td is the time delay which for the proposed system is due to the fall-time of the liquid, and

V̇β is the volume of the receiving container defined as

Vβ =

∫ hβ

0
Aβ(zβ)dzβ. (7.2)

where hβ is the height of the fluid in the container and Aβ(hβ) is the cross sectional area as a

function of height. For the pouring container α, if the container geometry is known, then the volume

can be divided into the volume above the pouring lip L

VL,α ' hL,αAs,α(θ). (7.3)

where hL,α is the height of the fluid above the lip, and As,α is the horizontal cross-sectional area of

the interior of the pouring container that contains the pouring edge as shown in Figure 7.2. And the

volume of fluid below the pouring lip is

Vs,α =

∫
As,α(zα)dzα. (7.4)
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assuming that the fall time is negligible, then (7.1) can be expanded to

qfr = −ḣL,αAs,α − hL,α
∂As,α
∂θ

θ̇ − ∂Vs,α
∂θ

θ̇

= Aβ(hβ)ḣβ. (7.5)

as shown in Figure 7.2. The flowrate over the pouring lip can be found using Bernoulli’s principle.

The height of the fluid above the pouring lip hL,α is used to define the area of the pouring mouth

as AL = hL,αLL,α(hL,α), where LL,α(hL,α) is the line of the opening of the mouth at varying

heights). For an incompressible, isotropic Newtonian fluid, the height hL,α is related to the flowrate

by Bernoulli’s principle v2

2 +gz+ Pbern
ρ = const. where Pbern, z, v, ρ are the fluid pressure, height,

velocity and density respectively at a particular point in the steady, streamline flow. Considering

Bernoulli’s principle acting on volume VL,α, the fluid at the top surface has no velocity, whereas the

fluid at the bottom (height hL,α below the surface) has a velocity v(hL,α) =
√

2ghL,α. As flow rate

is defined as qfr[m
3

s ] or [m2 · ms ], then by integrating over the pouring area, the flowrate is

qfr = AL(hL,α)v(hL,α) =

∫ hL,α

0
LL,α(h)

√
2ghdh. (7.6)

Differentiating (7.6) with respect to time, then ḣL,α can be expressed in terms of the flowrate and it’s

derivative qfr, q̇fr, which when substituted provides the dynamical equation of the system. The task

becomes obtaining the pouring container geometry specific functions for the lip length LL,α(hL,α),

flow rate qfr(hL,α), dividing area As,α(θ), and volume below the lip Vs,α(θ).

7.3 Container Geometry Influence on Pouring Dynamics

The main parameters that are considered for the pouring dynamics in (7.5) and (7.6) are the lip

length LL,α(hL,α), flow rate qfr(hL,α), dividing area As,α(θ), and volume below the lip Vs,α(θ).

For the lip length, consider three cases: a rectangular lip with constant length, a v-shaped lip which

has an opening angle ϕ, and a circular lip shape, where the entire opening has a radius rL,α. These
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Figure 7.3: Pouring geometry used to derive the analytical model.

lip shape equations become

LL,α,rect(h) = LL,α (7.7)

LL,α,vshape(h) = 2h cos(
ϕ

2
) (7.8)

LL,α,circ(h) = 2
√
h(2rL,α − h). (7.9)

The flowrate qfr for circular and rectangular lip geometries are

qfr,rect =
2

3
LL,α

√
2gh

3
2
L,α (7.10)

qfr,circ = −4
√

2g

15

(
128r5

L,α − 120r3
L,αh

2
L,α

+20r2
L,αh

3
L,α + 30rL,αh

4
L,α − 9h5

L,α

)
. (7.11)

which when differentiated with respect to time become

q̇fr,rect = LL,α
√

2gh
1
2
L,αḣL,α (7.12)

q̇fr,circ =
−4
√

2g

15

((
−240r3

L,αhL,α + 60r2
L,αh

2
L,α

+120rL,αh
3
L,α − 45h4

L,α

))
ḣL,α. (7.13)
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For the dividing areaAs,α, consider two container geometries: circular and square. In both instances

the cross sectional area is constant in body frame zα. In both cases the dividing area As,α is defined

to consist of a major and minor axis a, b, where rotation occurs about the minor axis b. For a circular

container, the area of an ellipse is πab, hence the respective areas are

As,α,circ = πa′b = (πab)sec(θ) (7.14)

As,α,rect = a′b = (ab)sec(θ), (7.15)

where a′ is the elongated axis as a function of the angle θ. Differentiation with respect to time

produces

Ȧs,α,circ = πab tan(θ) sec(θ)θ̇ (7.16)

Ȧs,α,rect = ab tan(θ) sec(θ)θ̇. (7.17)

Note that while other geometries can be found, the volume of fluid below the dividing surface Vs,α

for rectangular geometry is straight forward. Using the geometry notation shown in Figure 7.3, with

container width Wα, length lα, total height Hα

Vs,α,rect =

∫ lα

0

∫ H(y)

0

∫ Wα

0
dxdzdy

=

∫ l1

0
WαH(y)dy =

∫ l1

0
Wα(Hα − y tan(θ))dy

= WαHαlα −
l2α
2
Wα tan(θ). (7.18)

The derivative with respect to time produces

V̇s,α,rect = − l
2
αWα

2
sec2(θ)θ̇. (7.19)

By substituting hL,α from (7.10) into (7.12), then (7.12) can be expressed as

ḣL,α =

(
2

3

) 1
3

L
− 2

3
L,α(2g)−

1
3 q
− 1

3
fr q̇fr. (7.20)
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The container with known geometry used in controls in this experiment is the rectangular geometry

with dimensions shown in Figure 7.3. With the rectangular parameterization, the dynamical equa-

tion is found by using equations (7.7), (7.10), (7.12), (7.20), (7.15), (7.17), (7.19) and assuming

constant Aβ to expand (7.5) and solve for q̇fr, then substituting the relation

q̇fr = Aβḧβ. (7.21)

and solving for ḧβ yields

ḧβ = E1(θ)A
1
3
β ḣβ

4
3 +

(
E2(θ)ḣβ + E3(θ)A

− 2
3

β ḣβ
1
3

)
θ̇. (7.22)

E1(θ) = −3
1
3L

2
3
L,αg

1
3Wαlαsec(θ)

E2(θ) = −3

2
tan(θ)

E3(θ) =

(
3

8

) 1
3

lαsec(θ)L
2
3
L,αg

1
3

as derived in [28].

7.4 Hybrid Control for Precision Pours

The state of the system can be defined as
[
x1 x2 x3

]T
=

[
hβ ḣβ θ

]T
and input u = θ̇. The

dynamics of the system is then represented as




ẋ1

ẋ2

ẋ3




︸ ︷︷ ︸
ẋ

=




x2

E1(x3)A
1
3
βx

4
3
2

0




︸ ︷︷ ︸
f(x)

+




0

E2(x3)x2 + E3(x3)A
− 2

3
β x

1
3
2

1




︸ ︷︷ ︸
g(x)

u, (7.23)
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The height is the control objective and is represented in the output equation

z(t) =




1 0 0

0 1 0

0 0 0



x(t) (7.24)

Given a goal final volume of fluid corresponding to a goal height, a minimum jerk trajectory for the

fluid described by a 5’th order polynomial can be uniquely defined with known boundary conditions

for fluid start and final height, velocity and acceleration. This 5th order polynomial trajectory is

described by the function z1,des(t). Defining the error as

ex(t) = z1,des(t)− z1(t) (7.25)

The control problem becomes

min
u
S =

∫ t

0
ex(s)Qex(s)ds

subj to. ẋ(t) = f(x(t)) + g(x(t))u (7.26)

where Q is a positive semi-definite matrix. The system is feedback linearizable if

[
g(x) adfg(x) ad2

fg(x)

]
(7.27)

is full rank and the span is involutive. Here adf is the adjoint of f and is therefore it’s lie bracket

with g. This is the case when x2 6= 0 (which means the height must be changing), and the second

term in g(x) is only invertible when x3 6= −π
2 or x3 6= π

2 . The hybrid control scheme

u =





g(x)†(s− f(x)) x2 6= 0 and x3 ∈ (−π
2 ,

π
2 )

sgn(x3)δθ̇ x2 = 0 and x3 ∈ (−π
2 ,

π
2 )

0 x3 6∈ (−π
2 ,

π
2 ),

(7.28)
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where

s(t) = ẍ1,des(t) +Kp(x1,des(t)− x1(t)) +Kd(x2,des(t)− x2(t)). (7.29)

Through feedback linearization, the error dynamics become

ėx =




0 1

−Kp −Kd


 ex (7.30)

which is asymptotically stable when the following conditions hold: Kp,Kd > 0, K2
d > 4Kp. The

error being asymptotically stable about the origin satisfies the optimal control objective in (7.26).

7.5 Results

The measured height of the fluid is found using vision to track the fluid. A mvBluefox MLC202bc

camera is used and ground truth is established with a DYMO Digital Postal Scale M25. A fiducial

is used to locate the beaker in the frame, then an OpenCV online background subtractor which

is an implementation of a Gaussian mixture-based background/foreground segmentation algorithm

[87] is used. Given the foreground, a Sobel operator is used to find the gradient in the image then

K-means clustering is performed on the gradient y-pixels under the fiducial to distinguish between

fluid entering the beaker and the rising height of the fluid in the beaker as shown in Figure 7.4a.

In Figure 7.5, volume objectives of 80ml, 100ml, 120ml are poured with 8s, 10s, and 12s trajec-

tories. Note that with longer trajectories and larger volumes the accuracy increases. In Figure 7.6a

50 trials of 100ml pours with 10s trajectories is presented. Contributions to the variance include

the fact that the pouring container did not always contain the same initial amount of fluid, hence

the hybrid controller provides a constant positive velocity until pouring begins, then the trajectory

is initialized at the onset of pouring.

Figure 7.6b shows the error between the visual volume estimation and the reported scale. Across

all 50 trials there is a consistent peak in the difference at the beginning of the pours. This is attributed

to the fact that because the camera is kept at a constant height, when the fluid level is observed from

above, the surface of the fluid can offset the reported height, but as the level of the fluid approaches

the height of the camera, the reported value increases in accuracy.
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(a) (b)

Figure 7.4: Using background subtraction, Sobel gradient detection and K-means clustering (Figure 7.4a),
the top of the fluid is tracked for feedback control. In Figure 7.4b the goal was to pour 100ml which was
achieved.
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ṁh 80 ml

scale 80 ml
mh 100 ml
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(c) 12 second trajectory

Figure 7.5: Representative experimental trials of pouring. The trials are for pouring 80, 100, and 120ml, over
three different time intervals.
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Figure 7.6: Figure 7.6a 50 Trials pouring 100ml for 10s trajectories. Black line is average, shaded region is
1st standard deviation. Figure 7.6b average and standard deviation between scale and vision report of height.
Consistent dip is due to detection of the top of the fluid at the beginning of the pour from camera perspective
registering as higher heights.

7.6 Conclusion

This chapter presents a method of pouring a known incompressible, isotropic Newtonian fluid

quickly and precisely from open containers when the geometry of the pouring and receiving con-

tainers have known analytical representations. A hybrid controller is presented that is robust to the

initial amount of fluid in the pouring container. The controller is also robust to halts in fluid flow

which occur due to errors in visual volume estimation caused by sloshing or by the formation of

bubbles. In these instances the controller relies on its hybrid nature to re-initiate flow to pour the

precise amount of fluid.

When the geometries of all containers are known it is shown that it is possible to derive an ana-

lytical model for the flowrate and solve for the controller input that will track the desired trajectory.

However, this becomes a challenge when the geometry of the pouring container is unknown and a

analytical representation is not provided or easily obtained. Chapter 8 addresses this by first assum-

ing that the pouring container can be scanned. Then by combining online system identification and

prior models, an approximate flow rate model is obtained and used for control.
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Chapter 8

Precision Pouring from Unknown

Containers

8.1 Introduction

In this chapter the autonomous precision pouring problem is solved with the relaxed condition

that the geometry of the pouring container is unknown. However, in order for this application

to be useful, it is necessary that the accuracy of the system not be compromised during system

identification. The additional constraint is added that the pours should be relatively quick given an

accurately identified model and a known incompressible, isotropic Newtonian fluid.

The precision pouring problem can be decomposed into the observation of the poured fluid,

modeling of the flow dynamics and controlling the pouring container to reach a target volume.

Previous work has investigated methods of detecting water in flight [80], [61] as well as fluid in a

cup when viewed from above classified into 11 fill percentages [45]. The proposed method measures

the volume of fluid in the receiver by combining both mass from scale and vision by detecting water

pixels in a transparent receiver.

Once the fluid is detected, the flow dynamics between the containers must be modeled. In [72]

and [49] system identification on model parameters is performed to improve the performance of

derived models. Motion primitives for the pouring task were learned in [34], [69] and [58]. In
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(a) (b)

Figure 8.1: The objective is to pour precisely from an unknown container. The pouring rate (which depends
on the profile of maximum volume of fluid containable at a given tilt angle) is modeled by estimating the
container geometry (Figure 8.1a) and then using model priors and online system identification to identify the
profile and pour precisely in a single attempt (Figure 8.1b).

[11] and [38] transformations of points clouds from example containers were morphed to observed

containers and a corresponding transformation was applied to the task space trajectory for pouring.

In [40] simulated pours are used to learn to mitigate spillage. The proposed approach combines

online system identification with model priors leveraging the pouring container geometry, as well

as focuses on precise fluid transference assuming no spillage as opposed to just emptying contents.

Once the pouring model has been identified, the system must be controlled to pour the spec-

ified volume. In [72], [62], [28] the angular rate of the pouring container is controlled based on

the known pouring model. The proposed approach utilizes a hybrid control strategy that incorpo-

rates the process model and estimated time delay in the plant. For this application, the proposed

approach improves on [62] with an average pour error and time of 38ml and 20 seconds with an ac-

curacy within 10ml and average of 3ml with pour times varying from 20-45 seconds. The proposed

approach improves on [72] and [28] in that the robot pours precisely in a single attempt and is not

confined to a particular geometry given the pouring container is symmetric.

This work advances the state of the art in autonomous pouring with an effective wet-lab solution

preparation system capable of a) Leveraging simulated containers and pours to obtain pouring dy-

namics and expected plant time delay for a new target container. b) Pouring target volumes quickly

and precisely leveraging system identification and model priors. c) Combining vision and mass fluid

detection methods to obtain the received volume.
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Figure 8.2: The goal is to pour a specified amount of a known fluid from container α to container β quickly
and precisely. The receiver volume Vβ is sensed (through weight and height hβ) and the geometry of the
pourer Γ is estimated. Where Γ describes the radius as a function of height. Vα,t and Vα,θ are the transient
and steady state volumes in α for a given tilt angle θ.

8.2 Methodology

8.2.1 Problem Formulation

Given a pouring container α, and receiving container β, the goal of this work is to quickly and

precisely pour a designated amount of fluid. The general pouring problem is presented in Figure 8.2

where both containers are open, and during pouring only the volume in the receiver Vβ is detected.

For symmetric containers, Γ specifies the radius of the container as a function of height which is

observed before pouring as shown in Figure 8.2. In container α, the volume of fluid above and

below the pouring edge are denoted as Vα,t and Vα,θ respectively and are the transient and steady

state volumes when α is held at tilt angle θ. Let the function Vα,θ(θ) be denoted as the volume angle

profile. The height of fluid in the receiver is denoted as hβ .

The generalized pouring problem is to consider the volumetric flow rate between containers α
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and β and the dynamics of the system are

V̇β(t+ tfall) = −V̇α(t)

V̇β(t+ tfall) = −
(
dVα,θ
dθ

∣∣∣∣
θ(t)

+
dVα,t
dθ

∣∣∣∣
θ(t)

)
dθ

dt

V̇β(t+ td) = − dVα,θ
dθ

∣∣∣∣
θ(t)︸ ︷︷ ︸

V
(1)
α,θ

dθ

dt
, (8.1)

where tfall is the fall time of the fluid from α to β, td is the time delay for both the fall time and

dissipation of Vα,t, θ and dθ
dt are the angular position and velocity of the pouring container. V (1)

α,θ

denotes the derivative of Vα,θ with respect to θ. Since the receiving container is only observed, the

volume angle profile must be expressed in terms of container β. At steady state the following holds

V
(1)
α,θ = −V (1)

β,θ , (8.2)

and for bounded velocity pours this equivalence is asserted in (8.1). Defining the volumetric error

as

eV (t) = Vβ,des(t)− Vβ(t), (8.3)

the goal is to determine the control input u(t) = dθ
dt that achieves the desired volume

min
u(t)

∫ t

0
eV (s)2ds. (8.4)

The desired trajectory Vβ,des(t) is specified using a trapezoidal trajectory generation algorithm to

minimize pouring time, subject to velocity and acceleration constraints and is discussed further

in Section 8.2.4. The generalized time delay is an unknown function of the pouring container

geometry, the tilt angle and control input

td(t) = ft (Γ, θ(t), u(t− tu)) . (8.5)
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Define tu to be the period of the controller, as the current time delay is approximated with the last

commanded velocity. The time delay approximates the dissipation of Vα,t (which is a function of

Γ, θ and u) and tfall. Making the following assumptions a) That the pours are slow enough

that substitution of (8.2) into (8.1) is valid. b) There is no spillage during pouring and sloshing

is insignificant for a sigmoid desired trajectory and the specified maximum angular rotation rate.

c) The viscosity of the fluid is known, and at steady state the fluid conforms to the geometry of

the container. d) The geometry of the receiving container is known. e) There is enough fluid in

the pouring container required to reach the specified target volume in the receiver. f ) The fall time

can be approximated by a small constant. g) That similarity in container geometry Γ correlates

to similarity in volume profile Vα,θ. h) The pouring container has a symmetric edge profile for

simplistic implementation in container scanning. But the method extends to any container geometry.

Controller

u(t) = fu

(
eV , V

(1)
β,θ , td

) Plant

Model
Vβ,θ(t) = fV (Γ, θ)

td(t) = ft (Γ, θ, u(t− tu))

Vβ,des(t) [Vβ(t), θ(t)]

Estimator

Vβ(t)

Figure 8.3: Pouring Control Diagram. The desired volume is specified by trajectory generator, the controller
fu processes this and the model approximations (fV and ft which must be determined) in order to control
the angular rate of the pouring container.

The system control diagram is shown in Figure 8.3. The models for Vβ,θ and td are informed by

scanning the pouring container geometry Γ(zα) as in Figure 8.2.

8.2.2 Model Learning

Define the error (or distance) between two symmetric container geometries Γ1,Γ2 as

eΓ =

∫ 1

0
(Γ1(HΓ,1s)− Γ2(HΓ,2s))

2 ds (8.6)
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whereHΓ,1 andHΓ,2 are the respective heights of the containers and with the radial function Γ(zα),

the function Γ(HΓs) defines the radius for s ∈ [0, 1] for zα ∈ [0, H]. The assumption states that

lim
eΓ→0

Vβ,θ,1 = Vβ,θ,2, (8.7)

and is extended to the time delay in (8.5) for a given θ, u. The training set of pouring container

geometries are artificially generated and used to simulate pouring with known fluid properties as

shown in Figure 8.5. The geometry of the pouring container is scanned before pouring, and the top

ten nearest neighbors are then selected based on minimal distance eΓ. This is then used to generate

a mixture probability pstat,j by

pstat,j =
e−1

Γ,j∑
i e
−1
Γ,i

. (8.8)

If the new container profile can be interpolated from the training set, then this mixture model will

effectively describe the new container profile with adequate resolution in the space of example

containers. However in practice this is a strong assertion which is relaxed through adjusting the

kernel variance in addition to the mixture probability in semi-parametric model approximation.

Combined Parametric and Non-Parametric Approximations

The maximum volume profile Vβ,θ is modeled using three methods: parametric, non-parametric and

semi-parametric. The parametric method approximates Vβ,θ using a polynomial of 9th degree

Vβ,θ(θ) = fV (θ) =
N∑

i=0

ciθ
i (8.9)

whose coefficients c minimize the following functional
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Sθ =

C∑

j=1

(
Vβ,θ,j −

N∑

i=0

ciθ
i
j

)2

︸ ︷︷ ︸
Residual

+ k1

N∑

i=1

c2
i

︸ ︷︷ ︸
Regulator

+ k2 exp

(
−

M∑

m=1

N∑

i=1

iciθ
i−1
m

)

︸ ︷︷ ︸
Soft Constraint

. (8.10)

The residual term fits the polynomial to C volume observations in the receiver by minimizing

the squared error, the regulator term ensures the N coefficients do not diverge with positive gain k1,

and the soft constraint ensures the polynomial derivative is positive at M control points (locations

enforcing constraint) evenly spaced over the entire pouring angle domain which respects the physics

that volume in the receiver β is strictly increasing with positive gain k2.

The non-parametric method uses a Gaussian process (GP) with the radial basis kernel function

with white noise:

κ(θi, θj) = σ2
κ exp

(
−(θi − θj)2

l2κ

)
+ η. (8.11)

The variance is related to the edge profile error through σκ,j = k3e
−1
Γ,j with positive gain k3, and

lκ is a distance scale factor. The white noise η in the kernel is associated with the volume milliliter

measurement error. The covariance matrices are defined as

K∗i,j = κ(θtest,i, θtrain,j) (8.12)

Ki,j = κ(θtrain,i, θtrain,j) (8.13)

and the information matrix as

LGP = (K + δ2I)−1. (8.14)

With these terms, define the non-parametric estimate

Vβ,θ(θ) = fV (Γ, θ) =
∑

j

pstat,jK
∗
jLGP,jVβ,θ,train,j . (8.15)
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The limitation of the parametric method is that it does not leverage prior knowledge of similar

containers when available. Likewise, the limitation of the non-parametric method is that it cannot

adapt when the new container is drastically different from the training set. By combining these

methods, their positive attributes can be leveraged for better performance across a larger range of

containers. This is done by making the parametric profile estimation the mean of the GP:

Vβ,θ(θ) =
N∑

i=0

ciθ
i +

10∑

j=1

pstat,jK
∗
jLGP,j

(
Vβ,θ,train,j −

N∑

i=0

ciθ
i
train,j

)
. (8.16)

The additional component is the last term which uses the current parametric model to evaluate the

training pours. The error of the parametric function and true training volume is used to adjust the

expected value for Vβ,θ. If the parametric function is a very good approximation, the error between

Vβ,θ,train and the function evaluation becomes zero and the parametric mean dominates. If the

parametric mean is a poor fit, but the container is interpolated well between example containers,

then the GP terms accommodates this error with sufficient sampling of θtrain.

8.2.3 Real-Time Volume Estimation

A combination of visual feedback and weight measurement is used to track the volume of the fluid in

the receiving container. For visual volume detection, the receiver is first located the container in the

scene via a fiducial. Once the container is localized, a neural network is used to find the probability

that each pixel is water. As in [28], clustering is used to distinguish between fluid entering the

receiver and contained rising fluid. With the known cross section this provides an estimate of the

volume of water in the receiving container to be considered with the measured mass. A load cell

is used to obtain the weight of fluid in the receiver and the volume estimate from both vision and

weight are combined using a Kalman filter whose details are in Section 8.3.1.

8.2.4 Trajectory Planning and Control

Trajectory Generation

Trajectories for volume in the receiving container Vβ,des(t) are determined using the user specified

target volume, and specified upper and lower maximum velocities dependent on the current residual
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of the Vβ,θ approximation. The area under the trapezoid is the target volume. Respecting maximum

allowable accelerations, time optimal trajectories are computed in a similar implementation to [55].

A key difference is the calculation of the maximum velocity is a sigmoid function of the mean

residual:

r̄res =
1

C

C∑

j

|Vβ,θ,pred,j − Vβ,θ,meas,j | , (8.17)

where this is evaluated for every new accumulated measurement set C, and new model Vβ,θ which

adjusts Vβ,θ,pred,j . Given this residual, the maximum velocity is calculated using the following

function

V̇β,max(r̄res) = V̇β,ml +
V̇β,mu

1 +
V̇β,ml

(V̇β,mu−V̇β,ml)

(
exp

(
k4

r̄res
rres,max

)) , (8.18)

where V̇β,ml, V̇β,mu are the lower and upper bounds on allowable maximum velocities and r̄res ∈

[0,∞) is the residual for fitting Vβ,θ. The term rres,max is a threshold residual ensuring for large

residual that V̇β,max ' V̇β,ml.

Proposed Controller

Given the trajectory generator specifies Vβ,des(t), the controller then uses the volume error eV along

with model estimates of the volume profile and time delay Vβ,θ, td, to calculate the control output

which is the angular velocity of the container.

The hybrid controller is dependent on the following conditions (a): θ ∈ [0, π], (b): V (1)
β,θ (θ) > 0,

(c): V̇β > 0, and (d) eV > 0

u(t) =





(
V

(1)
β,θ (θ(t))

)−1
(KpeV (t+ td)) if: (a) ∧ (b) ∧ (c)

δω if: (a) ∧ (d) ∧ ¬ ((b) ∧ (c))

0 if: ¬(a).

(8.19)

The third state stops motion if the angle is outside the acceptable regions of operation. The second

state (re)initiates the pour. Hence when the container is in the operation domain from condition (a)

the first state is obtained.
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Controller Stability

A stability analysis is presented for the first hybrid state, as the second state always results in the

first state unless there is not enough fluid in the container to pour the target volume which violates

a base assumption. Given the current time t, the future error at t+ td for time delay td is

eV (t+ td) = Vβ,des(t+ td)− Vβ(t+ td)

= Vβ,des(t+ td)−
∫ t

0
V

(1)
β,θ (θ(s))u(s)ds. (8.20)

Consider the Lyapunov function V = 1
2e

2
V , the system is asymptotically stable if V̇ < 0:

V̇ = eV ˙eV

= eV

(
V̇β,des(t+ td)− V (1)

β,θ (θ(t))u(t)
)
. (8.21)

Let

u(t) =
(
V

(1)
β,θ (θ(t))

)−1
KpeV (t+ td) (8.22)

then if

V̇β,des(t+ td) = 0, (8.23)

then (8.21) reduces to

−Kpe
2
V < 0, (8.24)

which is true if Kp > 0 and the system is asymptotically stable. If V̇β,des(t + td) > 0 then (8.21)

stability condition becomes

eV (t+ td) > K−1
p V̇β,des(t+ td). (8.25)

Hence the system will trail until the condition of (8.25) is true, then when V̇β,des = 0 the error will

attenuate to zero. Note that a larger Kp will reduce the magnitude of eV required for asymptotic

stability in (8.25).
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Figure 8.4: Volume in the receiver is detected combining vision and weight. The volume is visually estimated
by using a fiducial to locate the receiver of known geometry then a network detects fluid pixels. The detection
is robust to fluid color and transparency.

8.3 Implementation

8.3.1 Volume Measurement

Volume Detection

The receiving container is placed on an illuminated stand. A 1280 × 1040 pixel Point Grey RGB

camera is mounted horizontally facing the container, and a checkerboard background shown in

Figure 8.1b is used to leverage distortion and occlusion for fluid detection. The network architecture

from Holistically-Nested Edge Detection is used, it is a network that extracts multi-scale features

from VGGNet and uses them for pixel-wise edge detection [79]. The trained network detects pixel

masks that show the locations of water (instead of detecting edges as in [79]) and runs at 21Hz on a

cropped 390× 412 pixel image based on the fiducial location.The visual system is able to calculate

the height of the water hβ for many different colors of water, ranging from clear to completely

opaque as shown in Figure 8.4.

The beaker is placed 42 ± 5cm from the camera, the camera is 6cm above the platform, and

the receiver diameter is known (in this experiment 3.64cm) as shown in (Figure 8.1b). This makes

the top of the fluid visible if the volume of fluid is below 250ml, with a maximal error of 1.04cm

translating to 43ml at the onset of pouring. To mitigate this effect, similar triangles are used to
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Figure 8.5: Artificial containers are generated to provide a simulation of pouring liquid of known properties
in NVIDIA FleX [41].

determine the true height of the container as the fiducial provides both the beakers distance from

the camera, and pixel-metric scale factor in the fiducial plane. This geometric adjustment is utilized

when the height of fluid is below the center pixel of the camera (which for this beaker correlates to

below 250ml). A Uxcell 5kg load cell with an Arduino Uno micro-controller is used to detect the

weight of the fluid in the receiving container which runs at 12Hz. The receiver container sits on a

suspended platform shown in Figure 8.1b which is a cantilever with the load cell.

Sensor Fusion

Both the volume estimate from vision and scale are combined using a Kalman filter running at 30Hz

to approximate the volume in the receiving container. The associated uncertainties for the scale and

vision are 1.5ml and 15ml respectively, the process noise was set to be 0.02ml. For the vision, this

is due to an 20 pixel variance in detection of fluid height.

8.3.2 Simulated Pouring

To obtain simulated pours, the physics engine NVIDIA FleX is used to match the fluid properties

of water for different containers. NVIDIA Flex is a particle based unified graphics solver from

[41], used to simulate pouring liquids from different containers. A total of 1792 symmetric con-

tainers were randomly generated and scaled between 5 and 20cm. Each container is poured once
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in simulation (Figure 8.5) and the Vβ,θ profile is generated by filling the container to the brim with

the liquid particles and slowly rotating the container. At each time step, the quantity of liquid in-

side the container is measured by counting the number of particles that were inside the container’s

mesh. Parameters in the FleX software were empirically chosen to match behavior for real container

geometries for water at room temperature.

8.3.3 Volume Estimation and Attenuation

Establishing a reference frame at the bottom, center of the pouring container which is assumed to

be a surface of revolution (SOR). Given the 128 points along the edge of the container, the edge-

profile is defined by the set of vectors consisting of each point height and radius. This edge-profile

is then compared with the edge profiles of simulated containers, and the closest top 10 containers

are selected. For trajectory generation, the parameter was set as k4 = 8 in (8.18).

8.3.4 Volume Profile and Time Delay Estimation

Container Edge Extraction

The geometry of the pouring container is obtained to compare to simulated container geometries to

approximate the volume profile. For symmetric containers it is sufficient to scan half of the con-

tainer to extrapolate the entire geometry. The PMD Technologies Pico Flexx time-of-flight depth

sensor is used to extract the point cloud of the container. RANSAC is used extract the table points

and approximate the container with a set of cylinders every 1.5cm. The edge profile is then extracted

using a Gaussian process. This is shown in Figure 8.6, where Figure 8.6a shows the container, Fig-

ure 8.6b shows the extracted points and the fitted surface, and Figure 8.6c shows the fitted cylinders

radii and height and the resulting 128 points from the GP fitting. During data collection, the surface

of the containers were augmented with form fitting paper for better performance of the time of flight

sensor.

Time Delay

The time delay is modeled in simulation by rotating fully filled containers at randomly chosen,

constant angular velocities until they reached randomly chosen stop angles. The time delay was

defined as time to reach 20% of the initial Vα,t from the stopping point. A total of 3,888 trials were
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simulated for the time delay. A neural network consisting of three convolutional layers for the edge

profile and then five fully connected layers combining the convolutional output and the containers

height, tilt angle and angular velocity is used to predict the time delay by approximating ft in (8.5).

8.3.5 Pouring System

The full state machine shown in Figure 8.7, was implemented on the KUKA LBR iiwa manipulator

for the KUKA innovation award and can be found on YouTube: “Finalist Spotlight - Precise Robotic

Dispenser System - KUKA Innovation Award 2018", and “Kuka Innovation Award finalist: Precise

Robotic Dispenser System". In these experiments, for brevity, the container edge-profile extraction

and precision pouring were the focus. A video demonstrating this method can be found on at

“Autonomous Precision Pouring from Unknown Containers”

8.4 Results and Discussion

8.4.1 Volume Profile Estimation Method Comparison

Three representative containers are shown in Figure 8.8, with the container classifications along

with their final volume error performance for each maximum volume profile estimation method.

The statistical data is represented using violin plots showing the data distribution along with box

plots consisting of data minimum and maximum as thin black line, first and third quartile as solid

black line, and the median as white dot. Figure 8.8a shows container 1 which is a small flask, in

Figure 8.8b container 2 is a small cylinder, in Figure 8.8c container 3 is a tall flask. For container 1,

Figure 8.8a shows the training container along with their mixture probabilities. The second row of

Figure 8.8 shows the final volume error for each method while pouring 100ml of fluid. For container

1 and container 2 in Figures 8.8d and 8.8e each method statistic was generated using 30 trials for

each method, statistics for container 3 where generated from 30 trials of param, and 10 trials for

semi and non-param. For 200ml pours each method for all three containers were generated from 10

trials each. In Figure 8.8 the general trend is that for 100ml pours the parameterized method usually

performed better than semi and non-parameterized methods, with these two methods being compa-

rable in performance. However, for the larger volume 200ml pour the semi and non-parameterized

methods were more consistent compared to the 100ml pour and performed better than the parame-
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terized pour. All of the containers consistently started with 250ml of fluid before each pour. Another

notable aspect is that better performing methods usually had a larger pour time than the lower per-

forming counter parts for the same container and target volume. A negative example is shown in

Figure 8.9 where the priors are used from container 1 in Figure 8.8a. Here Figure 8.9b shows each

method performance with 30 trials each, and Figure 8.9c shows each method with 10 trials each.

Note that while the trend for 100ml is similar to that in Figure 8.8, the spread of the semi and non-

parametric methods is much greater. This is an important example as it demonstrates the capacity of

the proposed system when a container is far from the training set of containers. In both Figures 8.9b

and 8.9c, the contribution of the parametric method influences the semi-parametric performance

making it comparable to the parametric performance. The parametric method performance varies

with the container as it is performing online system identification, this is evident in how parametric

performed worse for larger volumes for containers 1 and 2 however improved for container 3. If

valid model priors are known then the performance across container volumes can be more consistent

as seen in the non-parametric methods with accurate priors. The semi-parametric method usually

interpolates these performances with sufficient overlap with the highest performing method.

8.4.2 Semi-Parametric Estimation for Diverse Containers

It is shown that the semi-parametric combines the qualities of the other methods by leveraging

online system identification and model priors. Due to the strong priors in Figure 8.8a the semi-

parametric method prediction of Vβ,θ was very close in prediction to the non-parametric method for

container 1. These profiles vary more for the parametric method and semi-parametric method when

the container is sufficiently far from the training set. The semi-parametric method was used on a

total of 13 containers pouring target volumes of 100ml with 10 trials each. The final volumetric

error for each container is shown versus each containers height in Figure 8.10. The mean and

variance is shown for each container and a Gaussian process is fit with a radial basis function kernel

to demonstrate the increase in error vs height with associated variance. This trend is attributed to

the fact that the lower maximum velocity used in the trapezoidal trajectory generator was constant

for all containers. This means that the slowest angular rate was constant for the containers which

reduces the control authority for larger containers. This can be remedied by making the lower
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maximum velocity a function of container height.

In Figure 8.11 the relationship between final error and final pour time is shown for the same

pours shown in Figure 8.10. Over the majority of pours, the performance is largely under 5ml error

and between 20 to 45 seconds for 100ml pours. The main two outliers to are those with largest

height as shown in Figure 8.10. Therefore with the remedy of making the lower maximum velocity

a function of container height, larger containers would also be expected to perform within 5ml

error. However this remedy while decreasing final error would also increase the pour time, therefore

requiring task based optimization to determine appropriate parameters for best performance. In

practice, the volume profile for containers observed before can be stored and utilized as an additional

prior therefore increasing the performance with continued operation.

8.5 Conclusions

A system capable of pouring fluids from new containers accurately and quickly in a single attempt

is presented. This is done by comparing the profile of the new container to simulated containers

pouring an incompressible, isotropic Newtonian fluid with known properties. By defining the maxi-

mum volume profile as the maximum fluid containable at a given angle, it is asserted that containers

with similar geometries have similar maximum volume profiles. This closeness in geometry is used

to combine priors in a mixture model to estimate the maximum volume profile required for control.

The fluid is detected in the receiving container using both weight and visual detection of the fluid.

A hybrid controller is proposed that accounts for time delay in the plant and attenuates volumetric

error given a specified volume trajectory from an optimal time, trapezoidal trajectory generator that

accounts for the residual in the volume profile estimation. It is shown that by combining online sys-

tem identification and model priors through a Gaussian process, the performance is maximized with

the specified system without tuning parameters for a given container. It is shown that for constant

minimum, maximum desired volume velocity the performance of under 5ml error and between 20

to 45 second pours for the majority of containers can be achieved. For larger containers the accuracy

can be increased while sacrificing pour time. This system is demonstrated on the Rethink Robotics

Sawyer manipulator as well as an implementation on the KUKA LBR iiwa manipulator. Future
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directions may include increasing the complexity of receiving glass detection as well as relaxing

the stated assumptions by mitigating spillage, and expanding this implementation to non-symmetric

containers.
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(a) (b)

(c)

Figure 8.6: Container geometry is scanned, where it is assume that it is a surface of revolution and the
geometry can be represented with the edge profile Figure 8.6c. A time of flight sensor is used to extract
the edge-profile. For simplicity, the time of flight sensor is used, an alternative method for extracting edge
profiles from surfaces of revolution is discussed in [54].
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Check station setup

Locate container

Scan container geometry

Grasp container

Transport to pour

Perform precision pouring

Rotate to recovery pose

Transport to replace

Release container

Return to nominal pose
(iterate to next container)

Figure 8.7: System pipeline for autonomous pouring
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Figure 8.8: Container profiles and pour statistics: containers 1, 2 and 3 are 8.8a, 8.8b and 8.8c respectively,
with their statistics directly below each container. Percentages are the mixture probabilities defined in (8.8).
Final volume error statistics are shown for a 100ml target volume in the second row for each method (30
pours each), and 200ml target volume in the third row (10 pours each). Each method statistics are shown
using violin plots for distribution and inset box plot with mean and quartiles. A total of 360 pours are shown.
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Figure 8.9: Container 3 negative example with weak priors along with method statistical data for pours of
100ml in 8.9b and 200ml in 8.9c.
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Figure 8.10: Semi-parametric method: final error versus container height for 13 containers. Mean and vari-
ance are shown for 10 pours of 100ml each. Trend line and variance fit shows the general increase in error
with container height attributed to constant lower bound angular velocity. A Gaussian process is used to
generate this fit with the kernel defined in (3.116) with σκ = 5.7 and lκ = 0.12.
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Figure 8.11: Semi-parametric method: final error versus pour time for 13 containers pouring 100ml with
10 trials each. Mean and covariance are shown. Larger error corresponds to larger container height in
Figure 8.10.
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Chapter 9

Contributions and Future Work

9.1 Contributions

As robotics transitions to applications in which human augmentation is required, an emerging area

of research is making robots effective collaborators and assistants. In order to become effective

assistants, robot must have the capacity to complete complex tasks in unstructured environments.

This work specifically focuses on tasks relevant to a wet-lab robotic assistant, but the underlying

theory extends to many robotic assistant applications. The challenges addressed in this work are

the modeling of complex tasks and designing control strategies based on the estimated model. The

two main tasks considered are cooperative transport and precision pouring for rapid experiment

preparation.

The first task is cooperative transport with both robotic and human teammates. The problem

is challenging when multiple robots and humans must transport an object efficiently in a cluttered

environment with limitations on communication. Here efficient transport is described by minimizing

energy through traversing the optimal path or minimizing internal stresses in the carried object. The

cooperative transport problem for a robot collaborator can be decomposed into: detecting the goal

pose for the robot, planning a collision free trajectory to the goal and executing the trajectory such

that internal stresses are minimized in the carried object. Goal selection is most interesting when

there is a human leader, but they are unable to directly convey the goal location to a robot follower.

A contribution of this work is a proposed neural net architecture that is informed by the underlying
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physics of sensed quantities to predict the human leaders intended pose. Because the architecture

is informed by the underlying physics minimal data compared to similar work is required to obtain

a well performing model. For planning a feasible trajectory to the identified goal, a contribution of

this work is a free-space decomposition algorithm that is computationally efficient as it is design

specifically for determining path optimality. Once the trajectory has been determined, the robot

must actuate with teammates along the trajectory in an energy efficient manner. This is achieved by

minimizing interaction forces (internal stresses) in the carried load that do not contribute to motion.

If the grasp map (location of grasps) of all teammates is known to the robot, then the necessary

action can be calculated given the described controller. A contribution of this work is in the case

that the grasp map is not known by every robot but robots are able to communicate a small amount of

information. By reaching consensus with other robot teammates on a small solution vector, robots

are able to minimize interaction forces and carry the object efficiently. All of these contributions

allow for a framework for a robotic assistant capable of transporting a load with a human counterpart

in a cluttered environment while predicting the humans intended goal pose on a small time horizon

and using this prediction to minimize internal stresses on the carried load and conserve energy. An

underlying strength and consistency in these approaches is that in each case an underlying physics

principle has been exploited to make the model more effective and efficient.

The second task is precision pouring. It is a challenging problem because the robot assistant

must pour a known incompressible, isotropic Newtonian fluid quickly and precisely from open con-

tainers. When the geometries of the pouring and receiving containers are known with an analytical

representation, the pouring dynamics must be developed and the appropriate controller must be de-

signed in order to pour precisely. When the geometry of the pouring container is unknown, then the

model of the pouring dynamics must be identified in addition to utilizing the appropriate controller.

For the case when both geometries have analytical representation, a contribution of this work is the

development of the physics model and the hybrid controller that allows for quick, precise pours.

For the case where the pouring container geometry is unknown, the contribution of this work is

to present a method to extrapolate a physical model from a single scan and perform online system

identification in addition to leveraging limited model priors from simulated containers to estimate
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the underlying physical model. The additional contribution is the design of a hybrid control strat-

egy that leverages this estimated model to pour quickly and precisely in a single attempt. All of

these contributions allow for a framework that allows the human collaborator to describe the pour-

ing experiment to the robot and the robot executes, pouring both quickly and precisely. The entire

framework pipeline was demonstrated at the KUKA innovation award competition at the Hannover

Messe in April 2018. Again, the concept that is the strength and is consistent for all contributions is

that in each case key underlying physical principle(s) have been exploited to make the model more

effective and efficient by combining model-based and data-driven approaches for best performance.

9.2 Future Work

There are many directions for future work for robotic assistants and specifically for a wet-lab as-

sistant. In the area of precision pouring next steps are relaxing task assumptions and requiring the

modeling of more variables that increase the capacity of a deployed system performing this task.

An example of this is considering motions that mitigate spillage during pouring regardless of the

pouring container edge configuration. Another consideration is exploring the modeling dimension

of different fluids. In this work the fluid properties were known to be that of water at room temper-

ature, but for a long-term deployed system it is useful for the robot to be effective with a range of

fluid properties. Another direction to explore is the manipulation of powders, specifically scooping

or pouring in order to add additives to experiment fluid solutions.

In the area of cooperative transport, one immediate extension is considering a model that consid-

ers the temporal effect during transport which would allow for predictions on longer time horizons.

One way to do this would be to use a recurrent neural network as a ‘history’ of previously measured

quantities would influence the current prediction. Another extension is making the human intent es-

timation model robust to various carrying configurations, example being what if the human carried

with their back to the robot, determine if the robot can still make effective predictions. In addition, a

further consideration is that of re-grasping an object with the human leader in order to reach a target

grasp map configuration required to traverse the environment or place the object in a final goal pose.

The underlying theme that connects each of the contributions in this work is leveraging compact,
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physics based models to complete complex tasks. A natural extension is consideration for how a

robot can autonomously deduce these simplistic but accurate dynamical models of the complex task

in order to correctly plan and control to achieve the task objectives in the unstructured environment.

9.3 Concluding Remarks

This dissertation presents methods of executing complex tasks in unstructured environments for

robot collaborators in the context of tasks relevant for a wet-lab assistant. Task models are presented

that lend themselves to adaptation via data driven-models with priors based on knowledge of the

modeled process. The tasks considered are cooperative transport and precision pouring. These are

the beginning of a suite of capabilities that will be required for wet-lab robotic assistants, and the

utilized approaches for modeling complex tasks and methods of control are applicable and useful

for the design and deployment of collaborative robots for a broad class of tasks.

The methods developed here can be generalized for new tasks. It is assumed that the task pro-

cess model is never fully known, but some inherent structure in the task can be exploited. For a

process model manifold that is continuous with low curvature, system identification can leverage

the inherent structure and be coupled with model priors from data utilized in a framework such as

Bayesian modeling approach (in this work a Gaussian process). Because the model prior data is

maintained, a distance function can be designed to assess the quality of prediction. This can be used

to allow the model to quickly adapt in the presence of good model priors and use system identifica-

tion more when these priors are not sufficient. This approach was exemplified in Chapter 8. When

the process model manifold is continuous but has high curvature, statistical modeling approaches

like the Gaussian process become expensive in areas of high curvature as the generating data must

be maintained. Here it is advantageous to utilize a neural network with adequate architecture. This

is because the computational graph is capable of representing the highly curvature manifold of the

process manifold with the static computational graph structure, allowing for an efficient model rep-

resentation. Often with high curvature process model manifolds it is harder to exploit knowledge

of the inherent structure. However this knowledge can usually be used as a guide when designing

the neural net architecture. As the generating training data is not maintained in deployment but
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instead encoded into the computational graph, it is essential that the neural network be trained on

the coverage of the state space expected to be visited during operation. Therefore knowledge of the

process models inherent structure can guide the engineer on state space regions to focus on when

generating training data to ensure the resultant neural network adequately describes the useful state

space. This was exemplified in Chapter 6.

Exciting next steps are addressing similarly complex tasks in the case of a wet lab assistant.

Designing a fundamental framework that would allow a robot to reason about the task and the

environment, leveraging classical understanding of kinematics and dynamics necessary for control.

Allowing the robot to become more effective as a human collaborator capable of anticipating the

humans desires in a wide range of task and scenarios, which would both enable the human to

complete a desired task and amplifying their abilities.
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