169 research outputs found

    Scene Image Classification and Retrieval

    Get PDF
    Scene image classification and retrieval not only have a great impact on scene image management, but also they can offer immeasurable assistance to other computer vision problems, such as image completion, human activity analysis, object recognition etc. Intuitively scene identification is correlated to recognition of objects or image regions, which prompts the notion to apply local features to scene categorization applications. Even though the adoption of local features in these tasks has yielded promising results, a global perception on scene images is also well-conditioned in cognitive science studies. Since the global description of a scene imposes less computational burden, it is favoured by some scholars despite its less discriminative capacity. Recent studies on global scene descriptors have even yielded classification performance that rivals results obtained by local approaches. The primary objective of this work is to tackle two of the limitations of existing global scene features: representation ineffectiveness and computational complexity. The thesis proposes two global scene features that seek to represent finer scene structures and reduce the dimensionality of feature vectors. Experimental results show that the proposed scene features exceed the performance of existing methods. The thesis is roughly divided into two parts. The first three chapters give an overview on the topic of scene image classification and retrieval methods, with a special attention to the most effective global scene features. In chapter 4, a novel scene descriptor, called ARP-GIST, is proposed and evaluated against the existing methods to show its ability to detect finer scene structures. In chapter 5, a low-dimensional scene feature, GIST-LBP, is proposed. In conjunction with a block ranking approach, the GIST-LBP feature is tested on a standard scene dataset to demonstrate its state-of-the-art performance

    AN OPTIMIZED FEATURE EXTRACTION TECHNIQUE FOR CONTENT BASED IMAGE RETRIEVAL

    Get PDF
    Content-based image retrieval (CBIR) is an active research area with the development of multimedia technologies and has become a source of exact and fast retrieval. The aim of CBIR is to search and retrieve images from a large database and find out the best match for the given query. Accuracy and efficiency for high dimensional datasets with enormous number of samples is a challenging arena. In this paper, Content Based Image Retrieval using various features such as color, shape, texture is made and a comparison is made among them. The performance of the retrieval system is evaluated depending upon the features extracted from an image. The performance was evaluated using precision and recall rates. Haralick texture features were analyzed at 0 o, 45 o, 90 o, 180 o using gray level co-occurrence matrix. Color feature extraction was done using color moments. Structured features and multiple feature fusion are two main technologies to ensure the retrieval accuracy in the system. GIST is considered as one of the main structured features. It was experimentally observed that combination of these techniques yielded superior performance than individual features. The results for the most efficient combination of techniques have also been presented and optimized for each class of query

    Modeling the environment with egocentric vision systems

    Get PDF
    Cada vez más sistemas autónomos, ya sean robots o sistemas de asistencia, están presentes en nuestro día a día. Este tipo de sistemas interactúan y se relacionan con su entorno y para ello necesitan un modelo de dicho entorno. En función de las tareas que deben realizar, la información o el detalle necesario del modelo varía. Desde detallados modelos 3D para sistemas de navegación autónomos, a modelos semánticos que incluyen información importante para el usuario como el tipo de área o qué objetos están presentes. La creación de estos modelos se realiza a través de las lecturas de los distintos sensores disponibles en el sistema. Actualmente, gracias a su pequeño tamaño, bajo precio y la gran información que son capaces de capturar, las cámaras son sensores incluidos en todos los sistemas autónomos. El objetivo de esta tesis es el desarrollar y estudiar nuevos métodos para la creación de modelos del entorno a distintos niveles semánticos y con distintos niveles de precisión. Dos puntos importantes caracterizan el trabajo desarrollado en esta tesis: - El uso de cámaras con punto de vista egocéntrico o en primera persona ya sea en un robot o en un sistema portado por el usuario (wearable). En este tipo de sistemas, las cámaras son solidarias al sistema móvil sobre el que van montadas. En los últimos años han aparecido muchos sistemas de visión wearables, utilizados para multitud de aplicaciones, desde ocio hasta asistencia de personas. - El uso de sistemas de visión omnidireccional, que se distinguen por su gran campo de visión, incluyendo mucha más información en cada imagen que las cámara convencionales. Sin embargo plantean nuevas dificultades debido a distorsiones y modelos de proyección más complejos. Esta tesis estudia distintos tipos de modelos del entorno: - Modelos métricos: el objetivo de estos modelos es crear representaciones detalladas del entorno en las que localizar con precisión el sistema autónomo. Ésta tesis se centra en la adaptación de estos modelos al uso de visión omnidireccional, lo que permite capturar más información en cada imagen y mejorar los resultados en la localización. - Modelos topológicos: estos modelos estructuran el entorno en nodos conectados por arcos. Esta representación tiene menos precisión que la métrica, sin embargo, presenta un nivel de abstracción mayor y puede modelar el entorno con más riqueza. %, por ejemplo incluyendo el tipo de área de cada nodo, la localización de objetos importantes o el tipo de conexión entre los distintos nodos. Esta tesis se centra en la creación de modelos topológicos con información adicional sobre el tipo de área de cada nodo y conexión (pasillo, habitación, puertas, escaleras...). - Modelos semánticos: este trabajo también contribuye en la creación de nuevos modelos semánticos, más enfocados a la creación de modelos para aplicaciones en las que el sistema interactúa o asiste a una persona. Este tipo de modelos representan el entorno a través de conceptos cercanos a los usados por las personas. En particular, esta tesis desarrolla técnicas para obtener y propagar información semántica del entorno en secuencias de imágen

    Natural Image Statistics for Digital Image Forensics

    Get PDF
    We describe a set of natural image statistics that are built upon two multi-scale image decompositions, the quadrature mirror filter pyramid decomposition and the local angular harmonic decomposition. These image statistics consist of first- and higher-order statistics that capture certain statistical regularities of natural images. We propose to apply these image statistics, together with classification techniques, to three problems in digital image forensics: (1) differentiating photographic images from computer-generated photorealistic images, (2) generic steganalysis; (3) rebroadcast image detection. We also apply these image statistics to the traditional art authentication for forgery detection and identification of artists in an art work. For each application we show the effectiveness of these image statistics and analyze their sensitivity and robustness

    Large databases of real and synthetic images for feature evaluation and prediction

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 157-167).Image features are widely used in computer vision applications from stereo matching to panorama stitching to object and scene recognition. They exploit image regularities to capture structure in images both locally, using a patch around an interest point, and globally, over the entire image. Image features need to be distinctive and robust toward variations in scene content, camera viewpoint and illumination conditions. Common tasks are matching local features across images and finding semantically meaningful matches amongst a large set of images. If there is enough structure or regularity in the images, we should be able not only to find good matches but also to predict parts of the objects or the scene that were not directly captured by the camera. One of the difficulties in evaluating the performance of image features in both the prediction and matching tasks is the availability of ground truth data. In this dissertation, we take two different approaches. First, we propose using a photorealistic virtual world for evaluating local feature descriptors and leaning new feature detectors. Acquiring ground truth data and, in particular pixel to pixel correspondences between images, in complex 3D scenes under different viewpoint and illumination conditions in a controlled way is nearly impossible in a real world setting. Instead, we use a high-resolution 3D model of a city to gain complete and repeatable control of the environment. We calibrate our virtual world evaluations by comparing against feature rankings made from photographic data of the same subject matter (the Statue of Liberty). We then use our virtual world to study the effects on descriptor performance of controlled changes in viewpoint and illumination. We further employ machine learning techniques to train a model that would recognize visually rich interest points and optimize the performance of a given descriptor. In the latter part of the thesis, we take advantage of the large amounts of image data available on the Internet to explore the regularities in outdoor scenes and, more specifically, the matching and prediction tasks in street level images. Generally, people are very adept at predicting what they might encounter as they navigate through the world. They use all of their prior experience to make such predictions even when placed in unfamiliar environment. We propose a system that can predict what lies just beyond the boundaries of the image using a large photo collection of images of the same class, but not from the same location in the real world. We evaluate the performance of the system using different global or quantized densely extracted local features. We demonstrate how to build seamless transitions between the query and prediction images, thus creating a photorealistic virtual space from real world images.by Biliana K. Kaneva.Ph.D

    DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications

    Full text link
    Convolutional Neural Networks (CNNs) are a cornerstone of the Deep Learning toolbox and have led to many breakthroughs in Artificial Intelligence. These networks have mostly been developed for regular Euclidean domains such as those supporting images, audio, or video. Because of their success, CNN-based methods are becoming increasingly popular in Cosmology. Cosmological data often comes as spherical maps, which make the use of the traditional CNNs more complicated. The commonly used pixelization scheme for spherical maps is the Hierarchical Equal Area isoLatitude Pixelisation (HEALPix). We present a spherical CNN for analysis of full and partial HEALPix maps, which we call DeepSphere. The spherical CNN is constructed by representing the sphere as a graph. Graphs are versatile data structures that can act as a discrete representation of a continuous manifold. Using the graph-based representation, we define many of the standard CNN operations, such as convolution and pooling. With filters restricted to being radial, our convolutions are equivariant to rotation on the sphere, and DeepSphere can be made invariant or equivariant to rotation. This way, DeepSphere is a special case of a graph CNN, tailored to the HEALPix sampling of the sphere. This approach is computationally more efficient than using spherical harmonics to perform convolutions. We demonstrate the method on a classification problem of weak lensing mass maps from two cosmological models and compare the performance of the CNN with that of two baseline classifiers. The results show that the performance of DeepSphere is always superior or equal to both of these baselines. For high noise levels and for data covering only a smaller fraction of the sphere, DeepSphere achieves typically 10% better classification accuracy than those baselines. Finally, we show how learned filters can be visualized to introspect the neural network.Comment: arXiv admin note: text overlap with arXiv:astro-ph/0409513 by other author

    The robot's vista space : a computational 3D scene analysis

    Get PDF
    Swadzba A. The robot's vista space : a computational 3D scene analysis. Bielefeld (Germany): Bielefeld University; 2011.The space that can be explored quickly from a fixed view point without locomotion is known as the vista space. In indoor environments single rooms and room parts follow this definition. The vista space plays an important role in situations with agent-agent interaction as it is the directly surrounding environment in which the interaction takes place. A collaborative interaction of the partners in and with the environment requires that both partners know where they are, what spatial structures they are talking about, and what scene elements they are going to manipulate. This thesis focuses on the analysis of a robot's vista space. Mechanisms for extracting relevant spatial information are developed which enable the robot to recognize in which place it is, to detect the scene elements the human partner is talking about, and to segment scene structures the human is changing. These abilities are addressed by the proposed holistic, aligned, and articulated modeling approach. For a smooth human-robot interaction, the computed models should be aligned to the partner's representations. Therefore, the design of the computational models is based on the combination of psychological results from studies on human scene perception with basic physical properties of the perceived scene and the perception itself. The holistic modeling realizes a categorization of room percepts based on the observed 3D spatial layout. Room layouts have room type specific features and fMRI studies have shown that some of the human brain areas being active in scene recognition are sensitive to the 3D geometry of a room. With the aligned modeling, the robot is able to extract the hierarchical scene representation underlying a scene description given by a human tutor. Furthermore, it is able to ground the inferred scene elements in its own visual perception of the scene. This modeling follows the assumption that cognition and language schematize the world in the same way. This is visible in the fact that a scene depiction mainly consists of relations between an object and its supporting structure or between objects located on the same supporting structure. Last, the articulated modeling equips the robot with a methodology for articulated scene part extraction and fast background learning under short and disturbed observation conditions typical for human-robot interaction scenarios. Articulated scene parts are detected model-less by observing scene changes caused by their manipulation. Change detection and background learning are closely coupled because change is defined phenomenologically as variation of structure. This means that change detection involves a comparison of currently visible structures with a representation in memory. In range sensing this comparison can be nicely implement as subtraction of these two representations. The three modeling approaches enable the robot to enrich its visual perceptions of the surrounding environment, the vista space, with semantic information about meaningful spatial structures useful for further interaction with the environment and the human partner

    Efficient resource allocation for automotive active vision systems

    Get PDF
    Individual mobility on roads has a noticeable impact upon peoples' lives, including traffic accidents resulting in severe, or even lethal injuries. Therefore the main goal when operating a vehicle is to safely participate in road-traffic while minimising the adverse effects on our environment. This goal is pursued by road safety measures ranging from safety-oriented road design to driver assistance systems. The latter require exteroceptive sensors to acquire information about the vehicle's current environment. In this thesis an efficient resource allocation for automotive vision systems is proposed. The notion of allocating resources implies the presence of processes that observe the whole environment and that are able to effeciently direct attentive processes. Directing attention constitutes a decision making process dependent upon the environment it operates in, the goal it pursues, and the sensor resources and computational resources it allocates. The sensor resources considered in this thesis are a subset of the multi-modal sensor system on a test vehicle provided by Audi AG, which is also used to evaluate our proposed resource allocation system. This thesis presents an original contribution in three respects. First, a system architecture designed to efficiently allocate both high-resolution sensor resources and computational expensive processes based upon low-resolution sensor data is proposed. Second, a novel method to estimate 3-D range motion, e cient scan-patterns for spin image based classifiers, and an evaluation of track-to-track fusion algorithms present contributions in the field of data processing methods. Third, a Pareto efficient multi-objective resource allocation method is formalised, implemented, and evaluated using road traffic test sequences
    corecore